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ABSTRACT 
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This research is being conducted to understand the behaviour of the cloud application 

deployed in the public cloud, private cloud and Blockchain based Hyperledger fabric 

environments. The main idea is to extract the intension of the cloud resource usage by the 

application in the generous manner and to derive the expected results that is intended to 

perform. 

Due to the growing demand of the Cryptocurrency usage, the environments used to mine 

the cryptocurrency is drawing a lot of attention. The environment that is in the form of 

cloud resources, on prem resources pose a lot of security threats from the hacker in utilizing 

the hardware resources without the application being disturbed. This results in the 

increased cost cloud resources billed to the customer. 

The tools used in the research methodology to detect the cryptojacking comprises of the 

open source (Intel V-Tune) and not bind to any hardware vendor that cater the needs of the 
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customer.  The goal is to analyse the application on the fly using the tool and collect the 

data from output of the tools. The data is further cleaned and converted to format (CSV) 

that is consumed by the necessary deciding logic to further analyse.  

The source of the data is driven by the open-source tools used for mining the 

cryptocurrency.  The mining can be done on any popular cloud agonistic platforms that has 

well defined hardware config.  After the application is found to be using the excess 

hardware that is beyond the threshold value, the method of finding the application usage is 

done by the method described above. 

The challenge in K8S environment to bring the application down without interrupting the 

operation is well compensated by the ISTIO mesh framework. ISTIO helps in diverting the 

user traffic for the application to the other instance of the application on the fly. The side 

car container injection to the K8S pods and configuring the destination rules makes the 

process smooth in bringing down the affected application.  

The results of the study were conducted on the industry standard hardware such has Intel 

and AMD CPU’s. The MSR (Model specific register) configuration plays a vital role in 

identifying the affected application before and after the application starts. 

This research helps the academic people to further enhance the study of different mining 

application and helps the Enterprise sector to reduce the TCO (Total Cost of Ownership) 

by identifying the unintended usage of hardware resource by the application. 
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The results obtained from the research shows that for identifying the cryptojacking the 

tools used shows positive note. The usage of the tools along with the ease of configuration 

with respect to the customer application gains upper hand.  In short context, the open-

source tools selection with hardware platform as abstract on which customer has chosen 

for the application deployment helps to reduce the TCO. 

 

The results of the study were compared to those of Rupesh Raj Karn et al (2021). The 

findings of this study may be used by existing academic as a reference in further enhancing 

the methods of identifying the cryptojacking. 
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CHAPTER I:  

INTRODUCTION 

This section will provide a high-level overview of the subject under study within the 

current knowledge set. A background of the subject along with key points will be provided, 

and the importance of the research will be underscored. Furthermore, the motivation and 

expected outcomes of the research will be outlined in this section, along with the 

justification of why the research is important, and why it must be performed. Next, the 

problem statement will be presented, and later used to propose research questions. Finally, 

this section will address the gap this research will fill in existing literature. 

 

1.1 Research Background and Scope 

Today K8S (Kubernetes) is the widely used standard platform for the application package 

and deployment. The same is followed by the SME, Enterprise, and Start-up Co using the 

Cloud based offerings. The Kubernetes (will refer as K8S thru this doc), offers very flexible 

and easy to deploy the enterprise application packages with existing and new application 

packages.  

A Kubernetes cluster consists of a set of worker machines, called nodes, that run 

containerized applications. Every cluster has at least one worker node. 

The worker node(s) host the Pods that are the components of the application workload. The 

control plane manages the worker nodes and the Pods in the cluster. In production 

environments, the control plane usually runs across multiple computers and a cluster 

usually runs multiple nodes, providing fault-tolerance and high availability. 



 

Micro services-based architecture is followed by the K8S preliminary design. The different 

services form the Endpoint for the application to interact with each other. The modularity 

gives the micro services to alter or upgrade the service alone on the fly while without 

affecting the existing services. With the recent momentum gaining the Crypto currency 

acceptance by the different countries, the threat also comes from the Crypto miners to mine 

the cryptocurrencies. The “Cryptojacking” is the term coined by the industry to mention 

the same.  The mining requires lot of digital hardware with enterprise grade level to mine 

the crypto currency. Cryptojacking is a type of cyberattack in which hackers exploit a 

device's computing power without the owner's authorization and use it to mine 

cryptocurrency.  

 

Dmitry Tanana (2020) says Cryptojacking doesn’t harm infected users directly, victims 

still suffer losses as their hardware wears out and their processing power works towards 

interests of cybercriminals instead of their own. The cryptojacking attack is even more 

harmful for businesses – if a cluster of computers is infected, the business would suffer 

huge financial losses associated with payment for additional consumed electricity as well 

as replacing processing units which worked under huge load for a long time. Therefore, 

early detection of cryptojacking malware is extremely important because it will help to 

minimize the losses for victims. Malware detection is one of the most relevant tasks in the 

world of information security.  

There are two main approaches to solve this task: statistical analysis and dynamical 

analysis. Statistical analysis tools usually look for specific signatures in files and compare 



 

them to the signatures of known malware within the tool’s library. It is characterized by a 

high degree of reliability upon detection. Dynamical analysis studies the behavior of an 

already running program, therefore it is also called behavioral analysis. Both those 

approaches can be applied toward crypt jacking malware (scmagzine, 2022). 

  



 

1.2 Research Problem 

The Hackers have targeted the less secure cloud deployments as the platforms to introduce 

the malware and get access to the hardware platforms. By this, the malware will start 

consuming the Hardware resources (CPU, GPU, FPGA Accelerators, RAM etc.) without 

the notice of the platform’s owners. The intension of the miners is to steal the HW 

resources.  

 

1.3 Purpose of Research and Questions 

The purpose of this research is to generate a better understanding of the risks involved in 

the cloud environment with little security involved while deploying the applications. The 

Hackers will come in various form at various levels to make use of the hardware resources 

without affecting the applications flow. 

The challenge for the customers will be dissect the original applications vs affected 

applications and the method used to resolve the problem. 

Research Questions: 

 How can the customer identify the applications targeted by miners to make use of 

the HW platforms? 

 What best methods/tools can be are used to identify? 

 How can be applications be re- launched without affecting the traffic with zero 

downtime?  

 

Furthermore, the research will be critical to increase the TCO for the enterprise customers 

and for academic purpose to go for an extra mile to tackle the mining applications of 



 

different variants. By conducting this research now, it is expected to see a higher chance 

of success in identifying the miners.  

 

  



 

1.4 Significance of the Study  

There are several challenges that an enterprise customer must overcome when they deploy 

the application on the public cloud or less secured environments. Although the several 

measures are taken enough to protect the application from hackers, a small loophole is 

enough for the jackers to penetrate in several various to gain the access for application.  

Once the application is taken control, it is very difficult to identify the pattern of the miners 

used for mining.  

This study looks to tackle the challenges faced by enterprise customers in identifying the 

mining process that affects the customer application. 

Further, this research will contribute to the business practices of companies in this space 

by recommending certain methods or by sharing insights that have been formed by 

observing and inferring from the experiences of other businesses in the same space.  

 

  



 

CHAPTER II:  

LITERATURE REVIEW 

 

2.1 Blockchain in K8S 

Blockchain technology is widely adopted in various areas of governmental policies such 

as Banking, Insurance, Healthcare domain. The backbone of Cryptocurrency is the 

Blockchain tech adopted which is proven for de centralized entity in ensuring the genuine 

transaction between two parties. Gulenko, A et al (2020). 

Banach, R (2019) mentions that the years 2016 and 2017 saw a boom in interest in 

cryptocurrencies and blockchains. The drive to speculation in Bitcoin specifically, caught 

the public imagination and caused a bubble in Bitcoin’s value in December 2017. 

When a new blockchain application (running on a fresh blockchain) is made live, one of 

the most common problems encountered is a dearth of ‘hashing power’ or its analogue 

(according to the consensus protocol used).  

Blockchain (Investopedia, 2022) is a distributed digital ledger technology storing the peer-

to-peer (P2P) transactions conducted by the parties in the network in an immutable way. 

Blockchain structure consists of a chain of blocks. As an example, in Bitcoin, each block 

has two parts: block header and transactions.  

  



 

A block header consists of the following information: 

 Hash of the previous block 

 Version,  

 Timestamp,  

 Difficulty target,  

 Nonce 

  The root of a Merkle tree. 

 By inclusion of the hash of the previous block, every block is mathematically bound to the 

previous one. This binding makes it impossible to change data from any block in the chain. 

On the other hand, the second part of each block includes a set of individually confirmed 

transactions. 

The power consumption needed to mine a cryptocurrency is for more and needs a special 

computer that has a good hardware specification. Because of the mining, some countries 

have restricted the mining as it requires a lot of power consumption. As a matter of fact, 

the hackers or miners will try to utilize the existing hardware resources by injecting the 

malware in user application or the Operating systems images that are publicly available. 

The list of malware injection does not restrict to only user applications, but it may happen 

at several levels such as: 

 Operating systems Images. 

 User Browser.  

 Java script code auto execution Etc. 



 

The detection of cryptocurrency malware has been performed by generating its signatures 

in terms of power consumption, network traffic behavior, operating system processes, and 

patterns in hardware performance counters 

 

Nukala et al (2021) refers that most of the classic cryptocurrencies such as bitcoin, monero, 

web chain are built on proof-of-work(pow) algorithm called CryptoNight, which is CPU-

bound. They make use of memory bound functions for constructing computational puzzles, 

in order to maximize profit. This total process requires a lot of disc read and write 

operations. 

 

Tunde-Onadele et al (2019) states that Emerging container techniques speed up 

deployments of applications and ease the distribution and delivery of software, but securing 

containers still has a long way to go toward maturity. 

Also, according to Pothula, D.R et al (2019) The runtime container is one of the difficult 

to secure because threats are happening in real-time when applications are running. Most 

of the traditional security tools are not designed to monitor run time containers in the 

production environment. 

 

Hardware prefetcher is a technique in which the processors prefetch data based on the past 

access behavior by the core. The processor (or the CPU), by using hardware prefetcher, 

stores instructions from the main memory into the L2 cache. However, on multicore 

processors, the use of aggressive hardware prefetching causes hampering and results in 

overall degradation of system performance. 

 



 

MSR (MSR) registers in processor architecture are used to toggle certain CPU features and 

computer performance monitoring. By manipulating the MSR registers, hardware 

prefetchers can be disabled. 

A miner running with root privileges can disable the prefetcher. This is done to boost the 

miner execution performance, thereby increasing the speed of the mining process. We have 

seen Xmrig miners in our threat intelligence systems using MSR to disable the hardware 

prefetcher. 

 

Xmrig miners use the RandomX algorithm which generates multiple unique programs that 

are generated by data selected from the dataset generated from the hash of a key block. The 

code to be run inside the VM is generated randomly and the resultant hash of its outcome 

is used as proof of work. 

 

As RandomX programs are run in a VM, this operation is generally memory intensive. 

Hence, the miner disables the hardware prefetcher using the MSR. According to the 

documentation of Xmrig, disabling the hardware prefetcher increases the speed up to 15%. 

 

  



 

According to Liz Rice (2017) Containers bring many advantages: as described in Docker’s 

original tagline, they allow you to “build once, run anywhere.” They do this by bundling 

together an application and all its dependencies and isolating the application from the rest 

of the machine it’s running on. The containerized application has everything it needs, and 

it is easy to package up as a container image that will run the same on the laptop, or in a 

server in a data center.  The points which state difference between threat and risk is as 

follows: 

 A risk is a potential problem, and the effects of that problem if it were to occur. 

 A threat is a path to that risk occurring. 

 A mitigation is a countermeasure against a threat—something you can do to prevent 

the    threat or at least reduce the likelihood of its success.  

 



 

One way to start thinking about the threat model is to consider the actors involved. These 

might include: 

 

 External attackers attempting to access a deployment from outside 

 Internal attackers who have managed to access some part of the deployment 

 Malicious internal actors such as developers and administrators who have some 

level of privilege to access the deployment 

 Inadvertent internal actors who may accidentally cause problems 

 Application processes that, while not sentient beings intending to compromise your 

system, might have programmatic access to the system (Istio, 2022). 

 

 

  



 

Following are the best security principles recommended by (Liz Rice, 2017): 

 Least privilege 

One can give can different containers different sets of privileges, each 

minimized to the smallest set of permissions it needs to fulfil its function 

 Defense in depth  

Containers give another boundary where security protections can be 

enforced. 

 Reducing the surface attack 

Splitting a monolith into simple microservices can create clean interfaces 

between them that may, if carefully designed, reduce complexity, and hence 

limit the attack surface. There is a counterargument that adding a complex 

orchestration layer to coordinate containers introduces another attack 

surface. 

According to Liz Rice (2017), A vulnerability is a known flaw in a piece of software that 

an attacker can take advantage of to perform malicious activity. As a rule, you can assume 

that the more complex a piece of software is, the more likely it is to have flaws, some of 

which will be exploitable. 

When there is a vulnerability in a common piece of software, attackers may be able to take 

advantage of it wherever it is deployed, so there is an entire research industry devoted to 

finding and reporting new vulnerabilities in publicly available software, especially 

operating system packages and language libraries. You have probably heard of some of the 

most devastating vulnerabilities, like Shellshock, Meltdown, and Heartbleed, which get not 



 

just a name but sometimes even a logo. These are the rock stars of the vulnerability world, 

but they are a tiny fraction of the thousands of issues that get reported every year. 

Dealing with software vulnerabilities is an important aspect of risk management. It’s very 

likely that a deployment of any nontrivial software will include some vulnerabilities, and 

there is a risk that systems will be attacked through them. To manage this risk, you need to 

be able to identify which vulnerabilities are present and assess their severity, prioritize 

them, and have processes in place to fix or mitigate these issues. 

To know whether the deployment is running containers with vulnerable software, you need 

to scan all the dependencies within those containers. There are some different approaches 

you could take to achieve this. 

Imagine a tool that can scan each running container on a host (or across a deployment of 

multiple hosts). In today’s cloud native deployments, it’s common to see hundreds of 

instances of containers initiated from the same container image, so a scanner that takes this 

approach would be very inefficient, looking at the same dependencies hundreds of times. 

It’s far more efficient to scan the container image from which these containers were 

derived. 

According to Liz Rice (2017), Several tools are available for container image scanning 

such as Trivy, Clair, and Anchore to commercial solutions from companies like Jogo, Palo 

Alto, and Aqua. Many container image registry solutions, such as Docker Trusted Registry 

and the CNCF project Harbor, as well as the registries provided by the major public clouds, 

include scanning as a built-in feature. 



 

Unfortunately, the results you get from different scanners vary considerably. 

If it’s possible for a third-party library to have a bug that an attacker can exploit, the same 

is true for any code—including the applications that your team is writing. Peer review, 

static analysis, and testing can all help to identify security issues in your code, but there’s 

a chance that some issues will slip through. Depending on your organization and the value 

of its data, there may be bad actors in the world for whom it’s worthwhile trying to find 

these flaws. 

According to Sandro Bartolini et al (2008),  Instruction-set extension (ISE) has been widely 

studied as a means to improve the performance of microprocessor devices running 

cryptographic applications. It consists, essentially, in endowing an existing processor with 

a set of additional instructions that can be useful for speeding-up specific cryptographic 

computations. Recently, researchers became aware of the following: ”The efficiency of an 

implementation algorithm often depends heavily on the details of the target platform, e.g., 

on the instruction set or the pipeline of a processor.  Instruction-set extension can be better 

understood only after having clear what an instruction-set is. At the higher level, an 

instruction-set (or instruction set architecture - ISA) can be defined as the pool of 

instructions made available by a processor to the assembler programmer or to the compiler. 

In this sense, the ISA defines a significant quote of the programming interface of the 

processor: the basic operations that the outside world can ask the processor to do. The 

whole programming interface of a processor is surely wider than the sole ISA and, in brief, 

it also encompasses the structure and features of the processor registers, the organization 



 

of the memory space, as it is perceived by the programmer (e.g., virtual memory, 

permissions), and the features of the I/O space. All this information is needed to take full 

advantage from the features exposed by a microprocessor. Anyway, instructions cannot be 

arbitrarily complex: a tradeoff has to be done in order to have fast circuits behind the 

implementation, and the RISC approach (simple, modular, efficient instructions, e.g. 

MIPS, SPARC, PowerPC) versus the CISC approach (many powerful instructions, e.g. 

Intel x86) has characterized the main microprocessors on the market. For instance, we will 

briefly outline some of the features of the ISA of Intelr processors and its evolution through 

specific extensions during the years. The base ISA of the Intel Pentium-4 class processors 

[32] is almost the same since the old 386-class processor and is named x86 instruction set. 

It comprises hundreds of instructions, operating on eight 32-bit general-purpose registers. 

They can be seen also as the sole 16-bit lower part and four of them even allow using their 

16-bit lower part as two 8-bit registers (e.g., AH and AL are 8-bit registers that, together, 

form the AX 16-bit register, which is the lower part of the 32-bit register EAX ). Specific 

instructions for integer arithmetic, bitwise operations, movement among registers and 

between registers and memory or I/O space can use 8-, 16- or 32-bit registers. Other 

instructions manage the program control flow at various levels: jumps, calls and loops, up 

to interrupt service routine management. This 32-bit ISA has been extended to a 64- bit 

backward compatible ISA (x86-64) in 2004, after that a similar proposal was done in 2002 

by AMD. This extension was motivated by the need to access wide memory regions (i.e., 

beyond 2-4 GByte, according to the available Operating System) easily, and to support an 

increased word-level parallelism which was needed by a number of high-end applications. 



 

Since some versions of the 486 model, the processor was extended to natively support 

floating-point operations, without the need of an external coprocessor. In this way, the 

programmer sees some additional configuration registers and eight 80-bit registers for 

working on floating-point operands. Specific instructions move the operands to/from the 

floating-point register set and trigger floating point computations. Specific circuits 

implement the register file and the operations that are performed upon instruction 

execution. Another class of extensions have been proposed, in steps, for vector-like 

operations which are motivated by the need of supporting efficiently a variety of 

multimedia applications such as 2-D and 3-D graphics, motion video, image processing, 

speech recognition, audio synthesis, telephony, and video conferencing. Beginning with 

the Pentium II and Pentium with Intel MMX technology processor families, a number of 

incremental extensions have been introduced into the IA-32 architecture to permit IA-32 

processors to perform single-instruction multiple-data (SIMD) operations. These 

extensions include the MMX technology, SSE, SSE2, SSE3 and SSE4 extensions. Each of 

these extensions provides a group of instructions that perform SIMD operations on packed 

integer and/or packed floating-point data elements contained in specific registers (64-bit 

MMX or 128-bit XMM registers). MMX extension allows the programmer to see eight 64-

bit register which can be used as groups of eight packed bytes, four packed 16-bit words 

or two packed 32-bit doublewords. In this way, specific instructions can operate on such 

vector-like operands more efficiently (e.g., parallel saturating addition on all packed 

elements) and other instructions are provided for loading/storing values from/to MMX 

registers. Architecturally, specific circuits for parallel elaboration of SIMD operations are 



 

added to the processor, while the MMX register file is shared with the floating-point unit. 

In this way, no additional storage for MMX registers was needed but, as drawback, big 

attention has to be taken when using in the same time both floating point and MMX 

instructions. SSE extension introduce a separated set of eight 128-bit registers (XMM ) for 

SIMD operations, which are intended to support floating-point SIMD operations too. With 

a dedicated register file, the conflicts with other internal resources, as in case of the 

floating-point register file used by MMX, are reduced. In particular, each XMM register 

can be seen by the programmer as four 32-bit single-precision floating-point values. The 

SIMD operations on such values can help in supporting advanced media and 

communications applications, for which MMX integer/fixed-point SIMD operations are 

limiting. Move and conversion instructions too are provided for the interaction of XMM 

registers with memory, MMX and general-purpose registers. SSE2 extension increase 

flexibility in using XMM registers as additional floating-point packed values and introduce 

the support for packed integers too. In fact, each XMM register can be used also as two 

packed 64-bit double precision floating-point values, 16 packed bytes, eight packed 16-bit 

words, four packed 32-bit doublewords and two packed 64-bit quadwords. Operations on 

packed integers into SSE registers allow double parallelism than using MMX and avoid 

conflicts with the floating-point unit. Additional instructions are provided to operate on 

this variety of operand types. SSE3 extension enhances the previous instruction set with 

only 13 instructions that accelerate some SSE, SSE2 and floating-point capabilities. For 

instance, an optimized floating-point to integer conversion instruction is provided, as well 

as an unaligned 128-bit load instruction for integer operands, and additional SIMD 



 

operations. This highlights the importance of easing the interaction between the existing 

processor data formats (e.g., integers and float values) and hardware modules from one 

side, and the extended circuitry (e.g., registers) and operands (e.g., float or integer packed 

values) on the other side, in order to boost programmability and performance. SSE4 

extension was recently proposed with the Intel CoreTM processor family and further 

improve SSE capabilities. Essentially it improves the flexibility of SSE in supporting 

compiler vectorization and significantly increases the available packed doubleword 

computations. This brief story of ISA extensions in Intel processors highlights that the 

study of the interaction between special hardware resources (e.g., registers, circuits) and 

the set of available instructions is crucial for accelerating specific computations and thus 

for the final performance of an ISA extension. It is very interesting to highlight here the 

implications of ISA extensions towards an Operating System (OS). This occurs mainly 

when an OS, even minimal, is employed to enable multiprogramming through processor 

virtualization. In fact, in a multiprogramming system, the physical processor is assigned 

by the Operating System to the different processes (i.e., running programs) that are 

contemporarily in execution so that each one is able to execute, even if in an intermittent 

fashion. The OS switches the process-processor association according to the time spent by 

the running process (e.g., round robin) or when the latter blocks(e.g., wait for an external 

event). When a process P1 leaves the processor to the next process P2 (i.e., a context switch 

happens), the complete processor state has to be saved so that it can be restored later when 

P1 will be able to continue its execution exactly as if it was never interrupted at all. The 

state of a process comprises, at least, the value of all processor registers, including the state 



 

registers (e.g., flags). Therefore, extending the register organization of a processor implies 

modifications into the OSs in order to properly manage the machine state. If the OS is not 

updated, upon a context switch, it saves only the original processor state and it neglects the 

additional extended registers. In this way, when the process state will eventually be restored 

on the processor, a part of its state can be corrupted, and the elaboration can become 

erroneous. This might be considered when designing a solution based on ISE for a target 

processor for which a number of Operating Systems are already present in the market. All 

of them have to be updated to support certain ISA extensions. On this point, note that the 

Intel MMX extension could be supported without OS modifications because they relied on 

the registers already used by the floating-point unit.  

According to Hyperledger (hyperledger-fabric.readthedocs.io, 2023), Fabric has a 

highly modular and configurable architecture, enabling innovation, versatility, and 

optimization for a broad range of industry use cases including banking, finance, insurance, 

healthcare, human resources, supply chain and even digital music delivery. 

Fabric is the first distributed ledger platform to support smart contracts authored in 

general-purpose programming languages such as Java, Go and Node.js, rat her than 

constrained domain-specific languages (DSL). This means that most enterprises already 

have the skill set needed to develop smart contracts, and no additional training to learn a 

new language or DSL is needed. 

The Fabric platform is also permissioned, meaning that, unlike with a public 

permissionless network, the participants are known to each other, rather than anonymous 

and therefore fully untrusted. This means that while the participants may not fully trust one 



 

another (they may, for example, be competitors in the same industry), a network can be 

operated under a governance model that is built off of what trust does exist between 

participants, such as a legal agreement or framework for handling disputes. 

One of the most important of the platform’s differentiators is its support for pluggable 

consensus protocols that enable the platform to be more effectively customized to fit 

particular use cases and trust models. For instance, when deployed within a single 

enterprise, or operated by a trusted authority, fully byzantine fault tolerant consensus might 

be considered unnecessary and an excessive drag on performance and throughput. In 

situations such as that, a crash fault tolerant (CFT) consensus protocol might be more than 

adequate whereas, in a multi-party, decentralized use case, a more traditional byzantine 

fault tolerant (BFT) consensus protocol might be required. 

Fabric can leverage consensus protocols that do not require a native cryptocurrency to 

incent costly mining or to fuel smart contract execution. Avoidance of a cryptocurrency 

reduces some significant risk/attack vectors, and absence of cryptographic mining 

operations means that the platform can be deployed with roughly the same operational cost 

as any other distributed system. 

 

The combination of these differentiating design features makes Fabric one of the better 

performing platforms available today both in terms of transaction processing and 

transaction confirmation latency, and it enables privacy and confidentiality of 

transactions and the smart contracts (what Fabric calls “chaincode”) that implement them. 

Hyperledger Fabric has been specifically architected to have a modular architecture. 



 

Whether it is pluggable consensus, pluggable identity management protocols such as 

LDAP or OpenID Connect, key management protocols or cryptographic libraries, the 

platform has been designed at its core to be configured to meet the diversity of enterprise 

use case requirements. 

  



 

At a high level, Fabric is comprised of the following modular components: 

 A pluggable ordering service establishes consensus on the order of transactions and 

then broadcasts blocks to peers. 

 A pluggable membership service provider is responsible for associating entities in 

the network with cryptographic identities. 

 An optional peer-to-peer gossip service disseminates the blocks output by ordering 

service to other peers. 

 Smart contracts (“chaincode”) run within a container environment (e.g. Docker) for 

isolation. They can be written in standard programming languages but do not have 

direct access to the ledger state. 

 The ledger can be configured to support a variety of DBMSs. 

 A pluggable endorsement and validation policy enforcement that can be 

independently configured per application. 

There is fair agreement in the industry that there is no “one blockchain to rule them all”. 

Hyperledger Fabric can be configured in multiple ways to satisfy the diverse solution 

requirements for multiple industry use cases. 

  



 

In a permissionless blockchain, virtually anyone can participate, and every participant is 

anonymous. In such a context, there can be no trust other than that the state of the 

blockchain, prior to a certain depth, is immutable. In order to mitigate this absence of trust, 

permissionless blockchains typically employ a “mined” native cryptocurrency or 

transaction fees to provide economic incentive to offset the extraordinary costs of 

participating in a form of byzantine fault tolerant consensus based on “proof of work” 

(PoW). 

Permissioned blockchains, on the other hand, operate a blockchain amongst a set of known, 

identified and often vetted participants operating under a governance model that yields a 

certain degree of trust. A permissioned blockchain provides a way to secure the interactions 

among a group of entities that have a common goal but which may not fully trust each 

other. By relying on the identities of the participants, a permissioned blockchain can use 

more traditional crash fault tolerant (CFT) or byzantine fault tolerant (BFT) consensus 

protocols that do not require costly mining. 

Additionally, in such a permissioned context, the risk of a participant intentionally 

introducing malicious code through a smart contract is diminished. First, the participants 

are known to one another and all actions, whether submitting application transactions, 

modifying the configuration of the network or deploying a smart contract are recorded 

on the blockchain following an endorsement policy that was established for the network 

and relevant transaction type. Rather than being completely anonymous, the guilty party 

can be easily identified, and the incident handled in accordance with the terms of the 

governance model. 



 

A smart contract, or what Fabric calls “chaincode”, functions as a trusted distributed 

application that gains its security/trust from the blockchain and the underlying 

consensus among the peers. It is the business logic of a blockchain application.  

There are three key points that apply to smart contracts, especially when applied to a 

platform: 

 many smart contracts run concurrently in the network, 

 they may be deployed dynamically (in many cases by anyone), and 

 application code should be treated as untrusted, potentially even malicious. 

Most existing smart-contract capable blockchain platforms follow an order-

execute architecture in which the consensus protocol: 

 validates and orders transactions then propagates them to all peer nodes, 

 each peer then executes the transactions sequentially. 

The order-execute architecture can be found in virtually all existing blockchain systems, 

ranging from public/permissionless platforms such as Ethereum (with PoW-based 

consensus) to permissioned platforms such as Tendermint, Chain, and Quorum. 

Smart contracts executing in a blockchain that operates with the order-execute architecture 

must be deterministic; otherwise, consensus might never be reached. To address the non-

determinism issue, many platforms require that the smart contracts be written in a non-

standard, or domain-specific language (such as Solidity) so that non-deterministic 

operations can be eliminated. This hinders wide-spread adoption because it requires 

developers writing smart contracts to learn a new language and may lead to programming 

errors. 



 

Further, since all transactions are executed sequentially by all nodes, performance and scale 

is limited. The fact that the smart contract code executes on every node in the system 

demands that complex measures be taken to protect the overall system from potentially 

malicious contracts in order to ensure resiliency of the overall system. 

Fabric introduces a new architecture for transactions that we call execute-order-validate. It 

addresses the resiliency, flexibility, scalability, performance and confidentiality challenges 

faced by the order-execute model by separating the transaction flow into three steps: 

 execute a transaction and check its correctness, thereby endorsing it, 

 order transactions via a (pluggable) consensus protocol, and 

 validate transactions against an application-specific endorsement policy before 

committing them to the ledger 

This design departs radically from the order-execute paradigm in that Fabric executes 

transactions before reaching final agreement on their order. 

In Fabric, an application-specific endorsement policy specifies which peer nodes, or how 

many of them, need to vouch for the correct execution of a given smart contract. Thus, 

each transaction need only be executed (endorsed) by the subset of the peer nodes necessary 

to satisfy the transaction’s endorsement policy. This allows for parallel execution 

increasing overall performance and scale of the system. This first phase also eliminates any 

non-determinism, as inconsistent results can be filtered out before ordering. 

Because we have eliminated non-determinism, Fabric is the first blockchain technology 

that enables use of standard programming languages. 

As we have discussed, in a public, permissionless blockchain network that leverages PoW 



 

for its consensus model, transactions are executed on every node. This means that neither 

can there be confidentiality of the contracts themselves, nor of the transaction data that they 

process. Every transaction, and the code that implements it, is visible to every node in the 

network. In this case, we have traded confidentiality of contract and data for byzantine fault 

tolerant consensus delivered by PoW. 

This lack of confidentiality can be problematic for many business/enterprise use cases. For 

example, in a network of supply-chain partners, some consumers might be given preferred 

rates as a means of either solidifying a relationship or promoting additional sales. If every 

participant can see every contract and transaction, it becomes impossible to maintain such 

business relationships in a completely transparent network — everyone will want the 

preferred rates! 

As a second example, consider the securities industry, where a trader building a position 

(or disposing of one) would not want her competitors to know of this, or else they will seek 

to get in on the game, weakening the trader’s gambit. 

In order to address the lack of privacy and confidentiality for purposes of delivering on 

enterprise use case requirements, blockchain platforms have adopted a variety of 

approaches. All have their trade-offs. 

Encrypting data is one approach to providing confidentiality; however, in a permissionless 

network leveraging PoW for its consensus, the encrypted data is sitting on every node. 

Given enough time and computational resource, the encryption could be broken. For many 

enterprises use cases, the risk that their information could become compromised is 

unacceptable. 



 

Zero knowledge proofs (ZKP) are another area of research being explored to address this 

problem, the trade-off here being that, presently, computing a ZKP requires considerable 

time and computational resources. Hence, the trade-off in this case is performance for 

confidentiality. 

In a permissioned context that can leverage alternate forms of consensus, one might explore 

approaches that restrict the distribution of confidential information exclusively to 

authorized nodes. 

Hyperledger Fabric, being a permissioned platform, enables confidentiality through its 

channel architecture and private data feature. In channels, participants on a Fabric network 

establish a sub-network where every member has visibility to a particular set of 

transactions. Thus, only those nodes that participate in a channel have access to the smart 

contract (chaincode) and data transacted, preserving the privacy and confidentiality of both. 

Private data allows collections between members on a channel, allowing much of the same 

protection as channels without the maintenance overhead of creating and maintaining a 

separate channel. 

 

The ordering of transactions is delegated to a modular component for consensus that is 

logically decoupled from the peers that execute transactions and maintain the ledger. 

Specifically, the ordering service. Since consensus is modular, its implementation can be 

tailored to the trust assumption of a particular deployment or solution. This modular 

architecture allows the platform to rely on well-established toolkits for CFT (crash fault-

tolerant) or BFT (byzantine fault-tolerant) ordering. 

https://hyperledger-fabric.readthedocs.io/en/release-2.5/private-data/private-data.html


 

Note also that these are not mutually exclusive. A Fabric network can have multiple 

ordering services supporting different applications or application requirements. 

  



 

 

2.2 Malware Problem & Remedy 

The problem of detecting the malware in the container runtime is very overlooked and 

believed that traditional secure methods are enough. But the hackers are innovating the 

latest way to get entry into the customer platform without getting noticed.  One main 

problem that malware poses is that the functionality of the user application will not be 

altered by the malware so that any traditional malware detectors fail in detecting the 

malware.  The only way one can notice is the de graded performance by the application at 

the peak of its usage. 

 

Rupesh Raj Karn et al (2021), clearly states that in public cloud computing services, 

access to the hardware resources is typically not available to the customer. Instead, 

the Linux-kernel system calls at the operating system level can be used as a proxy to signal 

the possibility of threat in a running container. The system call (syscall) is the fundamental 

interface between an application and the Linux kernel. A syscall is generated every time 

the application interacts with the Linux-kernel. 

 

Intel V-Tune Profiler is a performance analysis tool for x86 based machines running Linux 

or Microsoft Windows operating systems. It can help us optimize application performance, 

system performance, and system configuration for HPC, cloud, IoT, media, storage, and 

more, the tool is used to analyze the customer application on the fly to detect the resource 

usage, system stack trace, Hot spot analysis etc. 



 

 

The idea of malware detection in the run time production platforms poses the challenges 

of performance degradation to the user accessing the application. Our research study 

proposes adapting Istio (Istio) framework in analyzing the logs by diverting some 

production traffic to Intel V-Tune. By this the user will not experience the performance 

degradation. 

 

Istio’s traffic routing rules let you easily control the flow of traffic and API calls between 

services. Istio simplifies configuration of service-level properties like circuit breakers, 

timeouts, and retries, and makes it easy to set up important tasks like A/B testing, canary 

rollouts, and staged rollouts with percentage-based traffic splits. It also provides out-of-

box reliability features that help make your application more resilient against failures of 

dependent services or the network. 

 

Istio’s traffic (Traffic shifting) shifting can be configured by two Istio Custom Resources, 

namely Destination Rule and Virtual Service. In short, in a Destination Rule so-called 

subsets need to be defined to identify specific versions of a service, and in a Virtual Service 

different weights can be assigned to these subsets in order to control how much traffic 

should be directed to each service version. 

 

  



 

For the subsets, you’ll need to define a Destination Rule like this: 

kind: DestinationRule 

metadata: 

  name: xmrig 

spec: 

  host: xmrig 

  subsets: 

  - name: v1 

    labels: 

      version: v1 

  - name: v2 

    labels: 

      version: v2 

  - name: v3 

    labels: 

      version: v3 

 

Figure 2.1 

Istio – Destination Rules 

 

This defines the following subset names: v1, v2 and v3. These subset names can be used 

later in Virtual Services to route traffic to the appropriate version. 

  



 

For the weights, it is needed to define a Virtual Service like this: 

apiVersion: networking.istio.io/v1alpha3 

kind: VirtualService 

metadata: 

  name: xmrig 

spec: 

  hosts: 

  - movies 

  http: 

  - route: 

    - destination: 

        host: xmrig 

        subset: v1 

      weight: 33 

    - destination: 

        host: xmrig 

        subset: v2 

      weight: 33 

    - destination: 

        host: xmrig 

        subset: v3 

      weight: 34 

 

Figure 2.2 

Istio – Virtual Service 

 

Now the Virtual Service is set to route 33% of all traffic to subset v1, 33% to v2 and 34% 

to v3. 

  



 

From Kubiya (kubiya.ai),  The concept of generative AI describes machine learning 

algorithms that can create new content from minimal human input. The field has rapidly 

advanced in the past few years, with projects such as the text authorship tool ChatGPT and 

realistic image creator DALL-E2 attracting mainstream attention. 

 

Generative AI isn’t just for content creators, though. It’s also poised to transform technical 

work in the software engineering and DevOps fields. GitHub Copilot, the controversial “AI 

pair programmer,” is already prompting reconsideration of how code is written, but 

collaborative AI’s potential remains relatively unexplored in the DevOps arena. 

Organizations that make regular use of AI are likely to have the best results because their 

agents will become more adept at anticipating their requirements. However, it’s also 

important not to overreach as you add AI to your workflows. The most successful adoptions 

will be focused on solving a genuine business need. Assess your processes to identify 

where bottlenecks exist, such as between dev and ops teams, then target those repetitive 

use cases with AI. 

 

The solution you select should help you reach your KPIs, such as closing more issues or 

resolving incidents faster. Otherwise, the AI agent will be underused and could even hinder 

your natural operating procedures. 

  



 

Generative AI is one of today’s most quickly maturing technologies. ChatGPT has attained 

a degree of virality as more researchers, consumers, and organizations begin exploring its 

capabilities. DALL-E2 has delivered similarly spectacular results, while GitHub Copilot 

was used by over 1.2 million developers during its first 12 months. 

 

All three technologies demonstrate clear revolutionary potential, but it’s the mixed and 

highly complex workflows of DevOps that could benefit the most in the long term. DevOps 

combines the creation of new assets, such as code and configs, with sequential processes 

like deployment approvals and review requests.  

 

Contrary to some outsider projections, generative AI for DevOps will go beyond mere 

templating of common file snippets to offer full workflow automation. Using simple 

conversational phrases, you’ll be able to instruct your agent to take specific actions on your 

behalf, from provisioning new cloud resources to checking performance in production. The 

agent will provide a real-time bi-directional feedback loop that improves collaboration, 

boosts productivity, and reduces the everyday pressures faced by devs. 

  



 

2.3 Literarture Conclusion  

Following environment  are considered while evaluating the data. 

 

 Hyperledger Framework is chosen as the case study for Blockchain Deployment. 

 The basic software images or binaries will be of Docker images. 

 Istio Framework is employed to mitigate the risk of zero downtime in production 

environment. 

 XMRIG Client is used to simulate the miner process. 

 Intel V-Tune Profile is used to inspect the miner process. 

 Custom Decider Logic is employed to check the logs/reports and conclude the 

results. 

 Repeat the steps from top if necessary for other process. 

 

  



 

The primary research method for this study is literature review and the data collected by 

the Intel V-Tune Profiler in effectively zeroing the threat models. Various results, and the 

accuracy will be taken into the account as part of the research study. The recent trends 

show the multifold adaptation of the blockchain technology for all the areas (Finance, 

Automobile, Healthcare, etc.). The algorithm is fed with data that relates to the problem 

domain and metadata that attributes a label to the data. The Model will look for the system 

calls and other HW resource utilization (Hot Spot analysis) usages of the existing 

application deployed in the safe environments before deploying the applications into the 

cloud platforms. The various literature concepts and gaps (such has minimized the time in 

detecting the malware and reducing the storage needed to collect the logs of the application) 

mentioned have well taken into the account in enhancing the research study. 

 

According to Uptycs (2020), With the rise and sky-high valuation of Bitcoin and several 

other cryptocurrencies, cryptomining-based attacks have continued to dominate the threat 

landscape. Wormed cyptominer attacks have a greater threshold as they write multiple 

copies and spread across endpoints in a corporate network. Alongside the mining process, 

modification of the MSR registers can lead to fatal performance issues of the corporate 

resources. 

 

Researchers from Uptycs (2020), have revealed that the worm scans for known 

vulnerabilities in Unix and Linux-based web servers, such as Oracle WebLogic Server or 

XML-RPC Server. 



 

Following are the points to be considered while evaluating the methods of cryptojacking: 

 

 CVE-2017-11610 is a remote execution flaw used to abuse XML-RPC, while CVE-

2020-14882 is a path-traversal vulnerability used for abusing exposed Web Logic 

servers. It looks like the attackers are attempting to bypass the authorization 

mechanism by modifying the URL and performing a path traversal (by exploiting 

CVE-2020-14882) with double encoding on /console/images. 

 After exploiting the vulnerabilities, the attack uses a shell script (ldr.sh) that 

downloads the worm with curl utility. Additionally, the script uses evasion methods 

such as disabling monitoring agents or altering firewalls. 

 The first-stage worm is compiled in Golang and packed with UPX. The worm 

utilizes a go-bindata package to insert off-the-shelf XMRig cryptominer. 

 

XMRig miners use the RandomX algorithm to produce various unique programs, which 

are created by data selected from the dataset produced from the hash of a key block. 

Memory intensive RandomX programs are executed within a VM. Therefore, the miner 

disables the hardware prefetcher by abusing the Model Specific Register (MSR), boosting 

its performance. 

 

While conducting the research, all possible level of hardware support will be explored to 

scan the malware image and any other software components of platform. 

 

2.4 Summary  



 

The research intends to claim that with the advanced in the computational capacity of the 

Cloud resources and the efficiency of the Intel V-Tune Profiler together helps to minimize 

the threats by the malware or hackers’ application in utilizing the HW resources in the K8S 

environment. 

This research study helps in reducing the run time of threat detection of an existing 

application in the customer environment. The window period of threat detection will be 

reduced as its makes use of the micro service architecture out of which part of the logs 

collection will happen in run time.  

The K8S is chosen as the reference orchestrating platform to deploy containers. The 

solution is equally applicable for other orchestrating platforms such as Docker Swarm, 

Rancher, Red hat OpenShift, Mesos, AWS, Microsoft Azure, GKE etc. 

  



 

CHAPTER III:  

METHODOLOGY 

3.1 Introduction 

This section will articulate the various aspects of how the research will be conducted, the 

guiding principles, the nature and philosophy of the research. 

There are two main research designs used in academia, quantitative research design and 

qualitative research design. The quantitative design is primarily about examining the 

relationship between variables. It involves generating data from samples and analyzing 

them using statistical techniques and works well with the deductive approach. Qualitative 

research design, on the other hand, is used with the inductive and abductive approaches. 

This research design is based on the open-source software tools for analyzing the customer 

applications for cryptocurrency mining scenario. While quantitative research design 

involves examining the relationship between variables, qualitative research design involves 

examining the relationship between entities. The research being presented looks to properly 

explain the various phenomena around the analysis of the applications in identifying the 

threat. 

  



 

The data collection process and verification are summarized as below: 

 Install the Intel V-Tune software tool in the host machine. 

 Configure the Hot spot analysis and stack trace collection option. 

 Identify the customer application crossing the threshold value of CPU usage.   

 Start the Hot Spot analysis to generate the required logs, stack trace, LBR etc.  

 The duration of the log collection, stack trace depends on the applications running 

in the customer environment and can be decided by the customer. 

 The log collections process results into the data cleaning process that results into 

the required format (CSV – Comma separated value) for further analysis.  

 The Final Decider component of the flow will be the log parser which identify the 

application is affected by crypto mining logic or not. 

 If the parser results in threat, then the further action is decided by the framework 

suggested by current research to divert the application traffic to another instance 

without bringing down the running application. 

 K8S Istio is the Framework suggested by the research to enable the seamless traffic 

diversion from the existing affected application to another instance of the 

unaffected applications.  

 The customer environment can be High scale data centre running enterprise 

applications, small and medium enterprise segment to local desktop applications.  

 The Blockchain based De – Centralised applications and the framework 

components are focus of the research. 

 



 

3.2 Research Questions 

The purpose of this research is to generate a better understanding of the risks involved in 

the cloud environment with little security involved while deploying the applications. The 

Hackers will come in various form at various levels to make use of the hardware resources 

without affecting the applications flow. 

The challenge for the customers will be dissect the original applications vs affected 

applications and the method used to resolve the problem. 

 

 How can the customer identify the applications targeted by crypto miners to make 

use of the HW platforms? 

 Whether the open-source methods/tools like Intel V-Tune profiler can be used to 

identify? 

 Which best resolution methods can be employed to remove the miners targeted 

application dynamically in the production network?  

 

Furthermore, the research will be critical to increase the TCO for the enterprise customers 

and for academic purpose to go for an extra mile to tackle the miners of different variants. 

By conducting this research now, we can expect to see a higher chance of success in 

identifying the miners.  

  



 

3.3 Research Design and Strategy 

To answer the research questions proposed in the previous section, the researcher will 

apply quantitative research design. The researcher will use open-source tools and software 

frameworks to identify the crypto mining process. During the flow, the researcher will note 

several observations through the course of the logs generated. The data obtained from these 

logs and with the pipeline structure that logs will traverse through will make an 

approximate conclusion of the threat.  These observations will then be used to formulate 

the most likely scenario or explanation for the phenomenon. 

 

The investigation undertaken for this study will be of analytics nature. The research aims 

to explore and helps in exploring more suitable option and fine-tuning methods for the tool 

to produce more meaningful logs. 

 

The strategy of research is method applied to study the nature of application logs to produce 

results in-line with the research objectives. Quantitative strategies are best applied to 

studies that involve mathematical, statistical, and analytical approach. 

 

This research will use a quantitative approach through the means of software tool option 

exploration and applying the knowledge of the hardware platforms and taking extra mile 

in checking the specific option for the hardware platform. Specifically, the Intel and AMD 

processors MSR are values are different in checking the default values.  

  



 

3.4 Population and Sample 

Data samples are needed when the data from the source is extremely large. In our research, 

the Intel V-Tune tool is feasible enough to generate the data that is considered as the right 

sample data to analyze. Based on the duration of the customer application monitor, that 

generate the logs defines the sample size. The sample size consists of the application flow 

type, repetitive functions, duration of the function execution, CPU usage limit etc.  

 

Some of the advantages of quantitative analysis are: 

 Conduct in-depth research: Since quantitative data can be statistically analysed, it is 

highly likely that the research will be detailed. 

 Minimum bias: There are instances in research, where personal bias is involved which 

leads to incorrect results. Due to the numerical nature of quantitative data, personal bias 

is reduced to a great extent. 

 Accurate results: As the results obtained are objective in nature, they are extremely 

accurate. 

Using quantitative data (Quantitative data) in an investigation is one of the best strategies 

to guarantee reliable results that allow better decisions. In summary, quantitative data is 

the basis of statistical analysis. Data that can be measured and verified gives us information 

about quantities; that is, information that can be measured and written with numbers. 

Quantitative data defines a number, while qualitative data is descriptive.   

  



 

For Ex, The Intel V-tune generated data log is considered as Quantitative research data log 

and it has following pattern: 

 

 CPU Threshold. 

 Application function repetitive count. 

 Miners pattern count. 

 CPU Model specific registers contents. 

 

3.5 Research Instrumentation 

For this research, following are the tools employed to ensure that the data being collected 

for the research was relevant, valuable and could potentially assist in the research.  

 PMU (Performance monitoring Units) Profilers. 

o Analysis of Speculative Execution Side Channels. 

 Last Branch records. 

 Intel v-Tune Profiler. 

 Blockchain Hyperledger Fabric. 

 Kubernetes Resources (K8S) 

 K8S Istio - Mesh Service Framework. 

  



 

3.5.1 PMU Profilers 

The Intel Doc (Document Number: 334467-001, Revision 1.0) refers Performance 

monitoring units (PMUs) are present in all modern Intel processor generations, allowing 

profiling utilities to characterize the interaction between software and CPU resources using 

a rich set of performance metrics. Profilers are critical tools for software to harvest optimal 

performance out of the CPU hardware.  

The programming interfaces that profiling utilities use to access PMUs or related hardware 

resources consist of:  

 A set of instructions (some require privilege access available only in kernel mode, 

like RDMSR, WRMSR).  

 PMU configuration resources: these are typically Model Specific Registers 

(MSRs).  

 Counter register resources: these can include performance counters in the PMU as 

well as other counter registers accessible as MSRs.  

Traditionally, profiling utilities employ special device drivers operating with ring 0 

privilege to configure the PMU, access counter registers, and handle interrupts if the 

profiler supports sampling (i.e. capture samples of incremental data at fine-grain intervals). 

Some OS, such as Linux, provide API access for root privileged user programs to access 

privileged resources (such as MSRs). When a user program’s profiling needs can be served 

by counting of events (without the need to capture incremental samples), it is often possible 

and desirable to implement the profiler as a ring 3 application to make use of these 

privileged APIs. This simplifies development and deployment of the profiler compared to 



 

the traditional approaches of a kernel based driver solution with a command line front-end 

parser. For security reasons in multi-user OS, the OS only allows access to privileged 

resources by root users. This implies that the monitoring tool would run with full root rights 

and have rights to operate privileged resources (as permitted by those API) beyond just 

monitoring performance events. To configure and use the PMU, read and write accesses to 

some PMU MSRs are needed by a user-space profiler. However, having full write access 

to the entire set of MSRs in a CPU can compromise the OS. Thus, full root rights and write 

access to full set MSRs should be selectively provisioned to a user-space profiler. On 

secured shared server systems or securely booted clients with secured kernels full MSR 

access is usually not available.  

The goal of this white paper is to define a subset of MSRs and mechanism with the 

following in mind:  

 Writes to the subset of MSRs are to configure performance metric selection and 

conduct monitoring of the counter registers, without changing any non-PMU states.  

 Define write masks that are applicable to the subset of MSRs to ensure the user 

space profiler operates within the intended monitoring mode (i.e. counting). 

 A bridge between the OS-API requirement of full root rights and the desired 

nonroot permission for user-space applications. 

 Allow collecting performance metrics of the whole system, but do not modify any 

other state. A specialized MSR access layer can then give the monitoring tool only 

access to this safe “monitoring only” subset of MSRs and allow it to run the 

monitoring as non-root, without risking compromising the system. Note that 



 

monitoring access is still opt-in by the administrator and cannot be done without an 

explicit configuration change. 

The privilege level gives read and write access to a limited number of MSRs in the logical 

processor and the physical package. Filtering of input settings specified by the application 

is written to the MSRs by a privileged software layer (kernel driver or a special secure 

access layer). The active settings of the MSRs reflect the configuration of the performance 

monitoring hardware. Input from the non-root application to change any of the secured 

monitoring registers does not allow:  

 Reading or writing any data in memory or in data registers. 

 Triggering interrupts.  

 Changing state of processes outside the monitoring tool.  

 In general, the expectation of performance impact to the target system due to 

enabling monitoring hardware and the software layer is minimal. Input from the 

non-root application permit the following changes to the secured monitoring 

registers:  

 Selection of performance monitoring counter events which are supported by the 

PMU, as well as (optionally) conditioning of performance counter results (e.g. 

thresholding, edge triggering).  

 This includes the ability to monitor events such as cache misses, branch 

mispredictions and other architectural and micro architectural events 

  



 

From (Document Number: 336983-004, Revision 4.0),  Intel is committed to improving 

the overall security of computer systems through hardware and software. As detailed by 

Google Project Zero, https://googleprojectzero.blogspot.com/, a new series of side-channel 

analysis methods have been discovered that potentially facilitate access to unauthorized 

information. These methods rely on common properties of both high-performance 

microprocessors and modern operating systems. Susceptibility to these methods is not 

limited to Intel processors, nor does it imply the processor is working outside its intended 

functional specification. All of the methods take advantage of speculative execution, a 

common technique in processors used to achieve high performance.  

3.5.1.1 Speculative Execution 

Speculative execution is one of the main techniques used by most modern high-

performance processors to improve performance. The concept behind speculative 

execution is that instructions are executed ahead of knowing that they are required. Without 

speculative execution, the processor would need to wait for prior instructions to be resolved 

before executing subsequent ones. By executing instructions speculatively, performance 

can be increased by minimizing latency and extracting greater parallelism. The results may 

be discarded if it is discovered that the instructions were not needed after all. The most 

common form of speculative execution involves the control flow of a program. Instead of 

waiting for all branch instructions to resolve to determine which operations are needed to 

execute, the processor predicts the control flow using a highly sophisticated set of 

mechanisms. Usually the predictions are correct, which allows high performance to be 

achieved by hiding the latency of the operations that determine the control flow and 



 

increasing the parallelism the processor can extract by having a larger pool of instructions 

to analyze. However, if a prediction is wrong, then the work that was executed 

speculatively is discarded and the processor will be redirected to execute down the correct 

instruction path. While speculative operations do not affect the architectural state of the 

processor, they can affect the microarchitectural state, such as information stored in 

Translation Lookaside Buffers (TLBs) and caches. The side channel methods described in 

this white paper take advantage of the fact that the content of caches can be affected by 

speculative execution. 

3.5.1.2 Side Channel Cache Methods  

A side channel method works by gaining information through observing the system, such 

as by measuring microarchitectural properties about the system. Unlike buffer overflows 

and other vulnerability classes, side channels do not directly influence the execution of the 

program, nor do they allow data to be modified or deleted. A cache timing side channel 

involves an agent detecting whether a piece of data is present in a specific level of the 

processor’s caches, where its presence may be used to infer some other piece of 

information. One method to detect whether the data in question is present is to use timers 

to measure the latency to access memory at the address. If the memory access takes a short 

time, then the data must be present in a nearby cache. If the access takes a longer time, then 

the data may not be in the nearby cache. Google Project Zero identified several methods 

through which a cache timing side channel can potentially be used to leak secret 

information. 



 

Variant 1: Bounds Check Bypass: 

The bounds check bypass method takes advantage of speculative execution after 

conditional branch instructions. A malicious actor discovers or causes the creation of 

“confused deputy” code which allows the attacker to use speculative operations to infer 

information not normally accessible to the attacker. This method uses speculative 

operations that occur while the processor is checking whether an input is in bounds, such 

as checking if the index of an array being read is within acceptable values. It takes 

advantage of memory accesses to out of bound memory that are performed speculatively 

before the bounds check resolves. These memory accesses can be used in certain 

circumstances to leak information to the attacker. If the attacker can identify an appropriate 

“confused deputy” in a more privileged level, the malicious actor may be able to exploit 

that deputy to deduce the contents of memory accessible to that deputy but not to the 

malicious actor. One subvariant of this technique, known as bounds, check bypass store, is 

to use speculative stores to overwrite younger speculative loads in a way that creates a side 

channel controlled by a malicious actor. 

  



 

Refer to the example bounds check bypass store sequence below: 

 int function(unsigned bound, unsigned long user_key)  

{ unsigned long data[8], i;  

;; bound is trusted and is never more than 8  

i = 0;  

while (i < bound) { data[i] = user_key; i++; }  

return 0; }  

It is possible that the above sequence might speculatively overwrite the return address on 

the stack with user_key. This may allow a malicious actor to specify a key that is actually 

the RIP of a disclosure gadget that they wish to be speculatively executed. 

  



 

The steps below describe how an example attack using this method might occur: 

 The CPU conditional branch predictor predicts that the loop will iterate 10 

iterations, when in reality the loop should have only executed 8 times. After the 

10th iteration, the predictor will resolve, fall through, and execute the following 

instructions. However, the 9th iteration of the loop may speculatively overwrite 

the return address on the stack. 

 The CPU decodes the RET and speculatively fetches instructions based on the 

prediction in the return stack buffer (RSB). The CPU may speculatively execute 

those instructions.  

 RET executes and redirects the instruction pointer to the value that the RET loaded 

from memory (which came from the older speculative store of user_key in step 1). 

The results of any operations speculatively executed in step 2 are discarded.  

 The disclosure gadget at the instruction pointer of user_key (which was specified 

by the malicious actor) speculatively executes and creates a side channel that 

reveals data specified by the malicious actor.  

 The conditional jump that should have ended the loop then executes and redirects 

the instruction pointer to the next instruction after the loop. This discards the 

speculative store of user_key that overwrote the return address on the stack, as well 

as all other operations between step 1 and step 4. 6. The CPU executes the RET 

again, and the program continues. 

  



 

Variant 2: Branch Target Injection 

The branch target injection method takes advantage of the indirect branch predictors inside 

the processor that are used to direct what operations are speculatively executed. By 

influencing how the indirect branch predictors operate, an attacker can cause malicious 

code to be speculatively executed and then use the effects such code has on the caches to 

infer data values. For conditional direct branches, there are only two options as to what 

code speculatively executes –either the target of the branch or the fall-through path of 

instructions directly subsequent to the branch. The attacker cannot cause code to be 

speculatively executed outside of those locations. Indirect branches, however, can cause 

speculative execution of code at a wider set of targets. This method works by causing an 

indirect branch to speculatively execute a ‘gadget’ which creates a side channel based on 

sensitive data available to the victim. The ability to interfere with the processor’s predictors 

to cause such a side channel is highly dependent on the microarchitectural implementation, 

and the exact methods used may thus vary across different processor families and 

generations. For example, the indirect branch predictors in some processor 

implementations may only use a subset of the overall address to index into the predictor. 

If an attacker can discern what subset of bits are used, the attacker can use this information 

to create interference due to aliasing. Similarly, on processors that support Intel® 

Hyperthreading Technology (Intel® HT Technology), whether one thread’s behavior can 

influence the prediction of the other thread is a consideration. The branch target injection 

method can only occur for a near indirect branch instruction. 

  



 

Variant 3: Rogue Data Cache Load 

The rogue data cache load method involves an application (user) attacker directly probing 

kernel (supervisor) memory. Such an operation would typically result in a program error 

(page fault due to page table permissions). However, it is possible for such an operation to 

be speculatively executed under certain conditions for certain implementations. For 

instance, on some implementations such a speculative operation will only pass data on to 

subsequent operations if the data is resident in the lowest level data cache (L1). This can 

allow the data in question to be queried by the application, leading to a side channel that 

reveals supervisor data. This method only applies to regions of memory designated 

supervisor-only by the page tables; not memory designated as not present. 

The rogue system register read method, as described as Variant 3a in the ARM* 

whitepaper1, uses both speculative execution and side channel cache methods to infer the 

value of some processor system register state which is not architecturally accessible by the 

attacker. This method uses speculative execution of instructions that read system register 

state while the processor is operating at a mode or privilege level that does not 

architecturally allow the reading of that state. The set of system registers that can have their 

value inferred by this method is implementation specific. Although these operations will 

architecturally fault or VM exit, in certain cases, they may return data accessible to 

subsequent instructions in the speculative execution path. These subsequent instructions 

can then create a side channel to infer the system register state. Intel’s analysis is that the 

majority of state exposed by the Variant 3a method is not secret or sensitive, nor directly 

enables attack or exposure of user data. The use of the Variant 3a method by an attacker 



 

may result in the exposure of the physical addresses for some data structures and may also 

expose the linear addresses of some kernel software entry points. Knowledge of these 

physical and linear addresses may enable attackers to determine the addresses of other 

kernel data and code elements, which may impact the efficacy of the Kernel Address Space 

Layout Randomization (KASLR) technique. KASLR, as a security defense in-depth 

feature, has been subject to a number of attacks in recent years; in particular against local 

attackers who can control code execution. As the rogue system register read method 

involves attacker-controlled code execution, a local attacker employing rogue system 

register read to break KASLR may be low impact for most end users. 

  



 

Variant 4: Speculative Store Bypass  

The speculative store bypass method takes advantage of a performance feature present in 

many high-performance processors that allows loads to speculatively execute even if the 

address of preceding potentially overlapping store is unknown. In such a case, this may 

allow a load to speculatively read a stale data value. The processor will eventually correct 

such cases, but an attacker may be able to discover “confused deputy” code which may 

allow them to use speculative execution to reveal the value of memory that is not normally 

accessible to them. In a language-based security environment (e.g., a managed runtime), 

where an attacker is able to influence the generation of code, an attacker may be able to 

create such a confused deputy. Intel has not currently observed this method in situations 

where the attacker has to discover such a confused deputy instead of being able to cause it 

to be generated. 

  



 

3.5.2 Last Branch Records 

Support of the architectural LBR feature in a logical processor is reported in 

CPUID.(EAX=07H, ECX=0):EDX[19]=1. When the architectural LBR feature is 

supported, capability details like the number of LBR records that are available is indicated 

in CPUID.(EAX=1CH, ECX=0):EAX[7:0]. The number of LBR records available varies 

across processor generations, so software is expected to query the CPUID.(EAX=1CH, 

ECX=0):EAX[7:0] reported value and only access the available LBR records. 

 

 Last Branch Records (LBRs) enable recording of software path history by logging taken 

branches and other control flow transfers within processor registers. Each LBR record or 

entry is comprised of three MSRs:  

 IA32_LBR_x_FROM_IP − Holds the source IP of the operation.  

 IA32_LBR_x_TO_IP − Holds the destination IP of the operation.  

 IA32_LBR_x_INFO − Holds metadata for the operation, including mispredict, 

TSX, and elapsed cycle time information.  

LBR records are stored in age order. The most recent LBR entry is stored in 

IA32_LBR_0_*, the next youngest in IA32_LBR_1_*, and so on. When an operation to 

be recorded completes (retires) with LBRs enabled (IA32_LBR_CTL.LBREn=1), older 

LBR entries are shifted in the LBR array by one entry, then a record of the new operation 

is written into entry 0. The number of LBR entries available for recording operations is 

dictated by the value in IA32_LBR_DEPTH.DEPTH. By default, the DEPTH value 

matches the maximum number of LBRs supported by the processor, but software may opt 



 

to use fewer in order to achieve reduced context switch latency. In addition to the LBRs, 

there is a single Last Event Record (LER). It records the last taken branch preceding the 

last exception, hardware interrupt, or software interrupt. Like LBRs, the LER is comprised 

of three MSRs (IA32_LER_FROM_IP, IA32_LER_TO_IP, IA32_LER_INFO), and is 

subject to the same dependencies on enabling and filtering. 

 

LBRs can log most control flow transfer operations. The source IP recorded for a branch 

instruction is the IP of that instruction. For events that take place between instructions, the 

source IP recorded is the IP of the next sequential instruction. The destination IP recorded 

is always the target of the branch or event, the next instruction that will execute. 

  



 

3.5.3 Intel V-Tune Profiler 

Intel V-Tune profiler tool is used to locate or determine: 

 

 The most time-consuming (hot) functions in your application and/or on the whole 

system. 

 Sections of code that do not effectively utilize available processor time. 

 The best sections of code to optimize for sequential performance and for threaded 

performance. 

 Synchronization objects that affect the application performance. 

 Whether, where, and why your application spends time on input/output operations. 

 Whether your application is CPU or GPU bound and how effectively it offloads 

code to the GPU. 

 The performance impact of different synchronization methods, different numbers 

of threads, or different Algorithms. 

 Thread activity and transitions 

 Hardware-related issues in your code such as data sharing, cache misses, branch 

misprediction, and others. 

 

 

  



 

Step 1: Configure the Intel V-Tune profiler tool : 

Following figure depicts the main screen of the tool 

 

Figure 3.1 

Intel V-Tune Profiler 

 

Intel V-Tune Profiler profiles the given application and collects data. Once this process 

completes, Intel V-Tune Profiler finalizes the collected results and resolves symbol 

information. 

 

  



 

Step 2: Elapsed Time (Duration of the application to run) 

The Hotspots section of the application depicted below emphasizes the CPU threshold 

value. 

 

Figure 3.2 

Intel V-Tune Profile – ELP Time 

 

 

Step 3:  The application most active functions 

Following figure gives the glimpse of the application call flow and CPU usage time 

 

Figure 3.3 

Intel V-Tune Profile – Hotspots  

 

  



 

Step 4: Call Stacks trace  

The stack trace of any applications is on the vital info in understanding the application 

flow as follows: 

 

 

Figure 3.4 

Intel V-Tune Profile – Stack Trace  

 

  



 

Step 5: Flame Graph  

 

The flame graph is a graphical representation of the data contained in the tabular Top-

Down view 

  

 

Figure 3.5 

Intel V-Tune Profile – Flame Graph 

 

A Flame Graph is a visual representation of the stacks and stack frames in your application. 

Every box in the graph represents a stack frame with the complete function name. The 

horizontal axis shows the stack profile population, sorted alphabetically. The vertical axis 

shows the stack depth, starting from zero at the bottom. 

  



 

This graph displays stacks and stack frames executing application. Every box in the graph 

represents a stack frame with the complete function name. The horizontal axis shows the 

stack profile population, sorted alphabetically. The vertical axis shows the stack depth, 

starting from zero at the bottom. 

The flame graph does not display data over time. The width of each box in the graph 

indicates the percentage of the function CPU time to total CPU time. The total function 

time includes processing times of the function and all its children (callees). 

The flame graph is a graphical representation of the data contained in the tabular Top-

Down view. 

 

  



 

Following are the some more features that makes Intel V-Tune profiler as the go to tool 

in the developer community. 

 Examine how efficiently the code is threaded. Identify threading issues that impact 

performance. 

 Evaluate compute-intensive or throughput HPC applications for efficient CPU use, 

vectorization, and memory use. 

 Locate performance bottlenecks in I/O-intensive applications. Explore how 

effectively the hardware processes I/O traffic generated by external PCIe* devices 

or integrated accelerators. 

 See a holistic view of system behavior for long-running workloads with Platform 

Profiler. 

 Get a fine-grained overview for short-running workloads with System Overview. 

 Locate hot spots—the most time-consuming parts of your code. 

 Visualize hot code paths and time spent in each function and with its callees with 

Flame Graph. 

 Identify the most significant hardware issues that affect the performance of your 

application with microarchitecture exploration analysis. 

 

 

 

 



 

 Pinpoint memory-access-related issues such as cache misses and high-bandwidth 

problems. 

 Optimize GPU offload schema and data transfers for SYCL, OpenCL code, 

Microsoft DirectX*, or OpenMP* offload code. Identify the most time-consuming 

GPU kernels for further optimization. 

 Analyze GPU-bound code for performance bottlenecks caused by 

microarchitectural constraints or inefficient kernel algorithms. 

 Explore CPU and FPGA interactions, and FPGA use.  

 Characterize performance aspects of large-scale message passing interface (MPI) 

and OpenMP workloads. 

 Identify scalability issues and get recommendations for in-depth analysis. 

  



 

3.5.4 Hyperledger Fabric 

Hyperledger Fabric is an enterprise-grade, distributed ledger platform that offers 

modularity and versatility for a broad set of industry use cases. The modular architecture 

for Hyperledger Fabric accommodates the diversity of enterprise use cases through plug 

and play components, such as consensus, privacy, and membership services. 

 

 Private: membership to channels is controlled 

 Permissioned: members are identifiable via PKI 

 Decentralized: full ledger replicated to members 

 Ledger is an append-only blockchain 

 Cryptography ensures an immutable ledger, i.e., a system-of-proof 

 Smart contracts support queries. 

 Consensus: agreeing valid transactions and applying them in order 

At its core, blockchain is a new type of data system that maintains and records data in a 

way that allows multiple stakeholders to confidently share access to the same data and 

information. A blockchain is a type of Distributed Ledger Technology, meaning it is a data 

ledger that is shared by multiple entities operating on a distributed network. 

This technology operates by recording and storing every transaction across the network in 

a cryptographically linked block structure that is replicated across network participants. 

Every time a new data block is created, it is appended to the end of the existing chain 

formed by all previous transactions, thus creating a chain of blocks called the blockchain.  



 

This blockchain (Hyperledger Fabric Components) format contains records of all 

transactions and data, starting from the inception of that data structure. 

 

Figure 3.6  Hyperledger Topology  

 

Hyperledger uses officially published Hyperledger Fabric Docker images from 

hub.docker.com.  

The following are the Hyperledger Fabric Docker Images that are targeted by the hackers 

in Hyperledger framework. 

 fabric-ca - Hyperledger Fabric Certificate Authority 

 fabric-couchdb - CouchDB for Hyperledger Fabric Peer 

 fabric-kafka - Kafka for Hyperledger Fabric Orderer 

 fabric-orderer - Hyperledger Fabric Orderer 

 fabric-peer - Hyperledger Fabric Peer 

 fabric-zookeeper - Zookeeper for Hyperledger Fabric Orderer 



 

 

3.5.4.1  Key Concepts of Hyperledger Fabric 

According to Hyperledger  Fabric(hyperledger-fabric.readthedocs.io, 2023), it is private 

and permissioned. Rather than an open permissionless system that allows unknown 

identities to participate in the network (requiring protocols like “proof of work” to validate 

transactions and secure the network), the members of a Hyperledger Fabric network enroll 

through a trusted Membership Service Provider (MSP). 

Hyperledger Fabric also offers several pluggable options. Ledger data can be stored in 

multiple formats, consensus mechanisms can be swapped in and out, and different MSPs 

are supported. 

Hyperledger Fabric also offers the ability to create channels, allowing a group of 

participants to create a separate ledger of transactions. This is an especially important 

option for networks where some participants might be competitors and not want every 

transaction they make — a special price they’re offering to some participants and not 

others, for example — known to every participant. If two participants form a channel, then 

those participants — and no others — have copies of the ledger for that channel. 

  



 

 Shared Ledger 

Hyperledger Fabric has a ledger subsystem comprising two components: the world 

state and the transaction log. Each participant has a copy of the ledger to every 

Hyperledger Fabric network they belong to. 

The world state component describes the state of the ledger at a given point in time. 

It’s the database of the ledger. The transaction log component records all 

transactions which have resulted in the current value of the world state; it’s the 

update history for the world state. The ledger, then, is a combination of the world 

state database and the transaction log history. 

The ledger has a replaceable data store for the world state. By default, this is a 

LevelDB key-value store database. The transaction log does not need to be 

pluggable. It simply records the before and after values of the ledger database being 

used by the blockchain network. 

  



 

 Smart Contracts 

Hyperledger Fabric smart contracts are written in chaincode and are invoked by an 

application external to the blockchain when that application needs to interact with 

the ledger. In most cases, chaincode interacts only with the database component of 

the ledger, the world state (querying it, for example), and not the transaction log. 

Chaincode can be implemented in several programming languages. Currently, Go, 

Node.js, and Java chaincode are supported. 

 

 Privacy 

Depending on the needs of a network, participants in a Business-to-Business (B2B) 

network might be extremely sensitive about how much information they share. For 

other networks, privacy will not be a top concern. 

Hyperledger Fabric supports networks where privacy (using channels) is a key 

operational requirement as well as networks that are comparatively open. 

  



 

 Consensus 

Transactions must be written to the ledger in the order in which they occur, even 

though they might be between different sets of participants within the network. For 

this to happen, the order of transactions must be established and a method for 

rejecting bad transactions that have been inserted into the ledger in error (or 

maliciously) must be put into place. 

This is a thoroughly researched area of computer science, and there are many ways 

to achieve it, each with different trade-offs. For example, PBFT (Practical 

Byzantine Fault Tolerance) can provide a mechanism for file replicas to 

communicate with each other to keep each copy consistent, even in the event of 

corruption. Alternatively, in Bitcoin, ordering happens through a process called 

mining where competing computers race to solve a cryptographic puzzle which 

defines the order that all processes subsequently build upon. 

Hyperledger Fabric has been designed to allow network starters to choose a 

consensus mechanism that best represents the relationships that exist between 

participants. As with privacy, there is a spectrum of needs; from networks that are 

highly structured in their relationships to those that are more peer-to-peer. 

  



 

3.5.4.2 Hyperledger Fabric Model 

This section outlines the key design features woven into Hyperledger Fabric that fulfill its 

promise of a comprehensive, yet customizable, enterprise blockchain solution: 

 Assets — Asset definitions enable the exchange of almost anything with monetary 

value over the network, from whole foods to antique cars to currency futures. 

Assets can range from the tangible (real estate and hardware) to the intangible 

(contracts and intellectual property). Hyperledger Fabric provides the ability to 

modify assets using chaincode transactions. 

 

Assets are represented in Hyperledger Fabric as a collection of key-value pairs, 

with state changes recorded as transactions on a Channel ledger. Assets can be 

represented in binary and/or JSON form. 

 Chaincode — Chaincode execution is partitioned from transaction ordering, 

limiting the required levels of trust and verification across node types, and 

optimizing network scalability and performance. 

Chaincode is software defining an asset or assets, and the transaction instructions 

for modifying the asset(s); in other words, it’s the business logic. Chaincode 

enforces the rules for reading or altering key-value pairs or other state database 

information. Chaincode functions execute against the ledger’s current state 

database and are initiated through a transaction proposal. Chaincode execution 

results in a set of key-value writes (write set) that can be submitted to the network 

and applied to the ledger on all peers. 



 

 Ledger Features — The immutable, shared ledger encodes the entire transaction 

history for each channel and includes SQL-like query capability for efficient 

auditing and dispute resolution. 

The ledger is the sequenced, tamper-resistant record of all state transitions in the 

fabric. State transitions are a result of chaincode invocations (‘transactions’) 

submitted by participating parties. Each transaction results in a set of asset key-

value pairs that are committed to the ledger as creates, updates, or deletes. 

 

The ledger is comprised of a blockchain (‘chain’) to store the immutable, sequenced 

record in blocks, as well as a state database to maintain current fabric state. There 

is one ledger per channel. Each peer maintains a copy of the ledger for each channel 

of which they are a member. 

 Query and update ledger using key-based lookups, range queries, and 

composite key queries. 

 Read-only queries using a rich query language (if using CouchDB as state 

database). 

 Read-only history queries — Query ledger history for a key, enabling data 

provenance scenarios. 

 Transactions consist of the versions of keys/values that were read in 

chaincode (read set) and keys/values that were written in chaincode (write 

set). 



 

 Transactions contain signatures of every endorsing peer and are submitted 

to ordering service. 

 Transactions are ordered into blocks and are “delivered” from an ordering 

service to peers on a channel. 

 Peers validate transactions against endorsement policies and enforce the 

policies. 

 Prior to appending a block, a versioning check is performed to ensure that 

states for assets that were read have not changed since chaincode execution 

time. 

 There is immutability once a transaction is validated and committed 

 A channel’s ledger contains a configuration block defining policies, access 

control lists, and other pertinent information. 

 Channels contain Membership Service Provider instances allowing for 

crypto materials to be derived from different certificate authorities. 

  



 

 

 Privacy — Channels and private data collections enable private and confidential 

multi-lateral transactions that are usually required by competing businesses and 

regulated industries that exchange assets on a common network. 

Hyperledger Fabric employs an immutable ledger on a per-channel basis, as well 

as chaincode that can manipulate and modify the current state of assets (i.e. update 

key-value pairs). A ledger exists in the scope of a channel — it can be shared across 

the entire network (assuming every participant is operating on one common 

channel) — or it can be privatized to include only a specific set of participants. 

In the latter scenario, these participants would create a separate channel and thereby 

isolate/segregate their transactions and ledger. In order to solve scenarios that want 

to bridge the gap between total transparency and privacy, chaincode can be installed 

only on peers that need to access the asset states to perform reads and writes (in 

other words, if a chaincode is not installed on a peer, it will not be able to properly 

interface with the ledger). 

When a subset of organizations on that channel need to keep their transaction data 

confidential, a private data collection (collection) is used to segregate this data in a 

private database, logically separate from the channel ledger, accessible only to the 

authorized subset of organizations. 

 



 

Thus, channels keep transactions private from the broader network whereas 

collections keep data private between subsets of organizations on the channel. 

To further obfuscate the data, values within chaincode can be encrypted (in part or 

in total) using common cryptographic algorithms such as AES before sending 

transactions to the ordering service and appending blocks to the ledger. Once 

encrypted data has been written to the ledger, it can be decrypted only by a user in 

possession of the corresponding key that was used to generate the cipher text. 

 Security & Membership Services — Permissioned membership provides a trusted 

blockchain network, where participants know that all transactions can be detected 

and traced by authorized regulators and auditors. 

Hyperledger Fabric underpins a transactional network where all participants have 

known identities. Public Key Infrastructure is used to generate cryptographic 

certificates which are tied to organizations, network components, and end users or 

client applications. As a result, data access control can be manipulated and 

governed on the broader network and on channel levels. This “permissioned” 

notion of Hyperledger Fabric, coupled with the existence and capabilities of 

channels, helps address scenarios where privacy and confidentiality are paramount 

concerns. 

  



 

 Consensus — A unique approach to consensus enables the flexibility and scalability 

needed for the enterprise.   

In distributed ledger technology, consensus has recently become synonymous with 

a specific algorithm, within a single function. However, consensus encompasses 

more than simply agreeing upon the order of transactions, and this differentiation 

is highlighted in Hyperledger Fabric through its fundamental role in the entire 

transaction flow, from proposal and endorsement, to ordering, validation and 

commitment. In a nutshell, consensus is defined as the full-circle verification of the 

correctness of a set of transactions comprising a block. 

 

Consensus is achieved ultimately when the order and results of a block’s 

transactions have met the explicit policy criteria checks. These checks and balances 

take place during the lifecycle of a transaction, and include the usage of 

endorsement policies to dictate which specific members must endorse a certain 

transaction class, as well as system chain codes to ensure that these policies are 

enforced and upheld. Prior to commitment, the peers will employ these system 

chaincodes to make sure that enough endorsements are present, and that they were 

derived from the appropriate entities. Moreover, a versioning check will take place 

during which the current state of the ledger is agreed or consented upon, before any 

blocks containing transactions are appended to the ledger. This final check provides 

protection against double spend operations and other threats that might compromise 

data integrity and allows for functions to be executed against non-static variables. 



 

 

In addition to the multitude of endorsement, validity and versioning checks that 

take place, there are also ongoing identity verifications happening in all directions 

of the transaction flow. Access control lists are implemented on hierarchical layers 

of the network (ordering service down to channels), and payloads are repeatedly 

signed, verified, and authenticated as a transaction proposal passes through the 

different architectural components. To conclude, consensus is not merely limited 

to the agreed upon order of a batch of transactions; rather, it is an overarching 

characterization that is achieved as a by-product of the ongoing verifications that 

take place during a transaction’s journey from proposal to commitment 

 

  



 

3.5.5 Kubernetes Resources (K8S) 

Kubernetes (Kubernetes.io) is a portable, extensible, open-source platform for managing 

containerized workloads and services, that facilitates both declarative configuration and 

automation. It has a large, rapidly growing ecosystem. Kubernetes services, support, and 

tools are widely available. 

 

The name Kubernetes originates from Greek, meaning helmsman or pilot. K8s as an 

abbreviation results from counting the eight letters between the "K" and the "s". Google 

open-sourced the Kubernetes project in 2014. Kubernetes combines over 15 years of 

Google's experience running production workloads at scale with best-of-breed ideas and 

practices from the community. 

 

Traditional deployment era:  

Early on, organizations ran applications on physical servers. There was no way to define 

resource boundaries for applications in a physical server, and this caused resource 

allocation issues. For example, if multiple applications run on a physical server, there can 

be instances where one application would take up most of the resources, and as a result, 

the other applications would underperform. A solution for this would be to run each 

application on a different physical server. But this did not scale as resources were 

underutilized, and it was expensive for organizations to maintain many physical servers. 

 

  



 

Virtualized deployment era:  

As a solution, virtualization was introduced. It allows you to run multiple Virtual Machines 

(VMs) on a single physical server's CPU. Virtualization allows applications to be isolated 

between VMs and provides a level of security as the information of one application cannot 

be freely accessed by another application. 

 

Virtualization allows better utilization of resources in a physical server and allows better 

scalability because an application can be added or updated easily, reduces hardware costs, 

and much more. With virtualization you can present a set of physical resources as a cluster 

of disposable virtual machines. 

 

Each VM is a full machine running all the components, including its own operating system, 

on top of the virtualized hardware. 

 

Container deployment era: 

 Containers are similar to VMs, but they have relaxed isolation properties to share the 

Operating System (OS) among the applications. Therefore, containers are considered 

lightweight. Similar to a VM, a container has its own filesystem, share of CPU, memory, 

process space, and more. As they are decoupled from the underlying infrastructure, they 

are portable across clouds and OS distributions. 

  



 

Containers have become popular because they provide extra benefits, such as: 

 Agile application creation and deployment: increased ease and efficiency of 

container image creation compared to VM image use. 

 Continuous development, integration, and deployment provides for reliable and 

frequent container image build and deployment with quick and efficient rollbacks 

(due to image immutability). 

 Dev and Ops separation of concerns: create application container images at 

build/release time rather than deployment time, thereby decoupling applications 

from infrastructure. 

 Observability: not only surfaces OS-level information and metrics, but also 

application health and other signals. 

 Environmental consistency across development, testing, and production: runs the 

same on a laptop as it does in the cloud. 

 Cloud and OS distribution portability: runs on Ubuntu, RHEL, CoreOS, on-

premises, on major public clouds, and anywhere else. 

 Application-centric management raises the level of abstraction from running an OS 

on virtual hardware to running an application on an OS using logical resources. 

 Loosely coupled, distributed, elastic, liberated micro-services: applications are 

broken into smaller, independent pieces and can be deployed and managed 

dynamically – not a monolithic stack running on one big single-purpose machine. 

 Resource isolation: predictable application performance. 

 Resource utilization: high efficiency and density 



 

Kubernetes provides you with: 

 Service discovery and load balancing Kubernetes can expose a container using the 

DNS name or using their own IP address. If traffic to a container is high, Kubernetes 

is able to load balance and distribute the network traffic so that the deployment is 

stable. 

 Storage orchestration Kubernetes allows you to automatically mount a storage 

system of your choice, such as local storages, public cloud providers, and more. 

 Automated rollouts and rollbacks You can describe the desired state for your 

deployed containers using Kubernetes, and it can change the actual state to the 

desired state at a controlled rate. For example, you can automate Kubernetes to 

create new containers for your deployment, remove existing containers and adopt 

all their resources to the new container. 

 Automatic bin packing You provide Kubernetes with a cluster of nodes that it can 

use to run containerized tasks. You tell Kubernetes how much CPU and memory 

(RAM) each container needs. Kubernetes can fit containers onto your nodes to 

make the best use of your resources. 

 Self-healing Kubernetes restarts containers that fail, replaces containers, kills 

containers that don't respond to your user-defined health check, and doesn't 

advertise them to clients until they are ready to serve. 

 Secret and configuration management Kubernetes lets you store and manage 

sensitive information, such as passwords, OAuth tokens, and SSH keys. You can 



 

deploy and update secrets and application configuration without rebuilding your 

container images, and without exposing secrets in your stack configuration. 

3.5.5.1 Kubernetes Components 

A Kubernetes cluster consists of a set of worker machines, called nodes, that run 

containerized applications. Every cluster has at least one worker node. 

The worker node(s) host the Pods that are the components of the application workload. The 

control plane manages the worker nodes and the Pods in the cluster. In production 

environments, the control plane usually runs across multiple computers and a cluster 

usually runs multiple nodes, providing fault-tolerance and high availability.  

  



 

Control Plane Components 

 kube-apiserver 

The API server is a component of the Kubernetes control plane that exposes the 

Kubernetes API. The API server is the front end for the Kubernetes control plane. 

The main implementation of a Kubernetes API server is kube-apiserver. kube-apiserver 

is designed to scale horizontally—that is, it scales by deploying more instances. You 

can run several instances of kube-apiserver and balance traffic between those instances. 

 Etcd 

Consistent and highly-available key value store used as Kubernetes' backing store for 

all cluster data. 

If your Kubernetes cluster uses etcd as its backing store, make sure you have a back up 

plan for the data. 

 

 kube-scheduler 

Control plane component that watches for newly created Pods with no assigned node 

and selects a node for them to run on. 

Factors considered for scheduling decisions include: individual and collective resource 

requirements, hardware/software/policy constraints, affinity and anti-affinity 

specifications, data locality, inter-workload interference, and deadlines. 

  



 

 kube-controller-manager 

Control plane component that runs controller processes. 

Logically, each controller is a separate process, but to reduce complexity, they are all 

compiled into a single binary and run in a single process. 

 

Some types of these controllers are: 

 Node controller: Responsible for noticing and responding when nodes go 

down. 

 Job controller: Watches for Job objects that represent one-off tasks, then 

creates Pods to run those tasks to completion. 

 EndpointSlice controller: Populates EndpointSlice objects (to provide a link 

between Services and Pods). 

 ServiceAccount controller: Create default ServiceAccounts for new 

namespaces. 

 

 cloud-controller-manager 

A Kubernetes control plane component that embeds cloud-specific control logic. The 

cloud controller manager lets you link your cluster into your cloud provider's API, and 

separates out the components that interact with that cloud platform from components 

that only interact with your cluster. 



 

The cloud-controller-manager only runs controllers that are specific to your cloud 

provider. If you are running Kubernetes on your own premises, or in a learning 

environment inside your own PC, the cluster does not have a cloud controller manager. 

 

As with the kube-controller-manager, the cloud-controller-manager combines several 

logically independent control loops into a single binary that you run as a single process. 

You can scale horizontally (run more than one copy) to improve performance or to help 

tolerate failures. 

 

The following controllers can have cloud provider dependencies: 

 

Node controller: For checking the cloud provider to determine if a node has been 

deleted in the cloud after it stops responding 

Route controller: For setting up routes in the underlying cloud infrastructure 

Service controller: For creating, updating and deleting cloud provider load balancers 

  



 

Node Components 

Node components run on every node, maintaining running pods and providing the 

Kubernetes runtime environment. 

 Kubelet 

An agent that runs on each node in the cluster. It makes sure that containers are running 

in a Pod. 

The kubelet takes a set of PodSpecs that are provided through various mechanisms and 

ensures that the containers described in those PodSpecs are running and healthy. The 

kubelet doesn't manage containers which were not created by Kubernetes. 

 kube-proxy 

kube-proxy is a network proxy that runs on each node in your cluster, implementing 

part of the Kubernetes Service concept. 

kube-proxy maintains network rules on nodes. These network rules allow network 

communication to your Pods from network sessions inside or outside of your cluster. 

kube-proxy uses the operating system packet filtering layer if there is one and it's 

available. Otherwise, kube-proxy forwards the traffic itself. 

  



 

 

 Container runtime 

The container runtime is the software that is responsible for running containers. 

Kubernetes supports container runtimes such as containerd, CRI-O, and any other 

implementation of the Kubernetes CRI (Container Runtime Interface). 

 

 Addons 

Addons use Kubernetes resources (DaemonSet, Deployment, etc) to implement cluster 

features. Because these are providing cluster-level features, namespaced resources for 

addons belong within the kube-system namespace. 

 

 DNS 

While the other addons are not strictly required, all Kubernetes clusters should have 

cluster DNS, as many examples rely on it. 

Cluster DNS is a DNS server, in addition to the other DNS server(s) in your 

environment, which serves DNS records for Kubernetes services. 

Containers started by Kubernetes automatically include this DNS server in their DNS 

searches. 

 

  



 

 Web UI (Dashboard) 

Dashboard is a general purpose, web-based UI for Kubernetes clusters. It allows users 

to manage and troubleshoot applications running in the cluster, as well as the cluster 

itself. 

 

 Container Resource Monitoring 

Container Resource Monitoring records generic time-series metrics about containers in 

a central database, and provides a UI for browsing that data. 

 

 Cluster-level Logging 

A cluster-level logging mechanism is responsible for saving container logs to a central 

log store with search/browsing interface. 

The control plane's components make global decisions about the cluster (for example, 

scheduling), as well as detecting and responding to cluster events (for example, starting up 

a new pod when a deployment's replicas field is unsatisfied). 

Control plane components can be run on any machine in the cluster. However, for 

simplicity, set up scripts typically start all control plane components on the same machine, 

and do not run user containers on this machine. 

  



 

Resource Management for Pods and Containers 

One can specify how much of each resource a container needs. The most common 

resources to specify are CPU and memory (RAM); there are others. 

When you specify the resource request for containers in a Pod, the kube-scheduler uses this 

information to decide which node to place the Pod on. When you specify a resource limit 

for a container, the kubelet enforces those limits so that the running container is not allowed 

to use more of that resource than the limit you set. The kubelet also reserves at least the 

request amount of that system resource specifically for that container to use. 

If the node where a Pod is running has enough of a resource available, it's possible (and 

allowed) for a container to use more resource than its request for that resource specifies. 

However, a container is not allowed to use more than its resource limit. 

 

For example, if you set a memory request of 256 MiB for a container, and that container is 

in a Pod scheduled to a Node with 8GiB of memory and no other Pods, then the container 

can try to use more RAM. 

 

If you set a memory limit of 4GiB for that container, the kubelet (and container runtime) 

enforce the limit. The runtime prevents the container from using more than the configured 

resource limit. For example: when a process in the container tries to consume more than 



 

the allowed amount of memory, the system kernel terminates the process that attempted 

the allocation, with an out of memory (OOM) error. 

 

Limits can be implemented either reactively (the system intervenes once it sees a violation) 

or by enforcement (the system prevents the container from ever exceeding the limit). 

Different runtimes can have different ways to implement the same restrictions. 

  



 

Resource types 

CPU and memory are each a resource type. A resource type has a base unit. CPU represents 

compute processing and is specified in units of Kubernetes CPUs. Memory is specified in 

units of bytes. For Linux workloads, you can specify huge page resources. Huge pages are 

a Linux-specific feature where the node kernel allocates blocks of memory that are much 

larger than the default page size. 

 

For example, on a system where the default page size is 4KiB, you could specify a limit, 

hugepages-2Mi: 80Mi. If the container tries allocating over 40 2MiB huge pages (a total 

of 80 MiB), that allocation fails. 

CPU and memory are collectively referred to as compute resources, or resources. Compute 

resources are measurable quantities that can be requested, allocated, and consumed. They 

are distinct from API resources. API resources, such as Pods and Services are objects that 

can be read and modified through the Kubernetes API server. 

  



 

For each container, you can specify resource limits and requests, including the following: 

 spec.containers[].resources.limits.cpu 

 spec.containers[].resources.limits.memory 

 spec.containers[].resources.limits.hugepages-<size> 

 spec.containers[].resources.requests.cpu 

 spec.containers[].resources.requests.memory 

 spec.containers[].resources.requests.hugepages-<size> 

Although you can only specify requests and limits for individual containers, it is also useful 

to think about the overall resource requests and limits for a Pod. For a particular resource, 

a Pod resource request/limit is the sum of the resource requests/limits of that type for each 

container in the Pod. 

Limits and requests for CPU resources are measured in cpu units. In Kubernetes, 1 CPU 

unit is equivalent to 1 physical CPU core, or 1 virtual core, depending on whether the node 

is a physical host or a virtual machine running inside a physical machine. 

 

Fractional requests are allowed. When you define a container with 

spec.containers[].resources.requests.cpu set to 0.5, you are requesting half as much CPU 

time compared to if you asked for 1.0 CPU. For CPU resource units, the quantity 

expression 0.1 is equivalent to the expression 100m, which can be read as "one hundred 

millicpu". Some people say "one hundred millicores", and this is understood to mean the 

same thing. 



 

 

CPU resource is always specified as an absolute amount of resource, never as a relative 

amount. For example, 500m CPU represents the roughly same amount of computing power 

whether that container runs on a single-core, dual-core, or 48-core machine. 

Limits and requests for memory are measured in bytes. You can express memory as a plain 

integer or as a fixed-point number using one of these quantity suffixes: E, P, T, G, M, k. 

You can also use the power-of-two equivalents: Ei, Pi, Ti, Gi, Mi, Ki. 

  



 

The following Pod has two containers. Both containers are defined with a request for 0.25 

CPU and 64MiB (226 bytes) of memory. Each container has a limit of 0.5 CPU and 

128MiB of memory. You can say the Pod has a request of 0.5 CPU and 128 MiB of 

memory, and a limit of 1 CPU and 256MiB of memory. 

 

Figure 3.7  

 Pod Resource (Kubernetes.io) 



 

When you create a Pod, the Kubernetes scheduler selects a node for the Pod to run on. Each 

node has a maximum capacity for each of the resource types: the amount of CPU and 

memory it can provide for Pods. The scheduler ensures that, for each resource type, the 

sum of the resource requests of the scheduled containers is less than the capacity of the 

node. Note that although actual memory or CPU resource usage on nodes is very low, the 

scheduler still refuses to place a Pod on a node if the capacity check fails. This protects 

against a resource shortage on a node when resource usage later increases, for example, 

during a daily peak in request rate 

 

 When the kubelet starts a container as part of a Pod, the kubelet passes that container's 

requests and limits for memory and CPU to the container runtime. 

 

On Linux, the container runtime typically configures kernel cgroups that apply and enforce 

the limits you defined. 

 

The CPU limit defines a hard ceiling on how much CPU time that the container can use. 

During each scheduling interval (time slice), the Linux kernel checks to see if this limit is 

exceeded; if so, the kernel waits before allowing that cgroup to resume execution. 

The CPU request typically defines a weighting. If several different containers (cgroups) 

want to run on a contended system, workloads with larger CPU requests are allocated more 

CPU time than workloads with small requests. 



 

The memory request is mainly used during (Kubernetes) Pod scheduling. On a node that 

uses cgroups v2, the container runtime might use the memory request as a hint to set 

memory.min and memory.low. 

The memory limit defines a memory limit for that cgroup. If the container tries to allocate 

more memory than this limit, the Linux kernel out-of-memory subsystem activates and, 

typically, intervenes by stopping one of the processes in the container that tried to allocate 

memory. If that process is the container's PID 1, and the container is marked as restartable, 

Kubernetes restarts the container. 

The memory limit for the Pod or container can also apply to pages in memory backed 

volumes, such as an emptyDir. The kubelet tracks tmpfs emptyDir volumes as container 

memory use, rather than as local ephemeral storage. 

If a container exceeds its memory request and the node that it runs on becomes short of 

memory overall, it is likely that the Pod the container belongs to will be evicted. 

A container might or might not be allowed to exceed its CPU limit for extended periods of 

time. However, container runtimes don't terminate Pods or containers for excessive CPU 

usage.  



 

3.5.6 ISTIO 

Istio extends Kubernetes to establish a programmable, application-aware network using 

the powerful Envoy service proxy. Working with both Kubernetes and traditional 

workloads, Istio brings standard, universal traffic management, telemetry, and security to 

complex deployments. 

             

Figure 3.7 

Istio Framework (istio.io) 

 

Istio is an open-source service mesh that layers transparently onto existing distributed 

applications. Istio’s powerful features provide a uniform and more efficient way to secure, 

connect, and monitor services. Istio is the path to load balancing, service-to-service 

authentication, and monitoring – with few or no service code changes. Its powerful control 

plane brings vital features, including: 



 

 Secure service-to-service communication in a cluster with TLS encryption, strong 

identity-based authentication, and authorization 

 Automatic load balancing for HTTP, gRPC, WebSocket, and TCP traffic 

 Fine-grained control of traffic behaviour with rich routing rules, retries, failovers, 

and fault injection 

 A pluggable policy layer and configuration API supporting access controls, rate 

limits and quotas 

 Automatic metrics, logs, and traces for all traffic within a cluster, including cluster 

ingress and egress 

  



 

3.5.2.1 Traffic management 

 
Routing traffic, both within a single cluster and across clusters, affects performance and 

enables better deployment strategy. Istio’s traffic routing rules let you easily control the 

flow of traffic and API calls between services. Istio simplifies configuration of service-

level properties like circuit breakers, timeouts, and retries, and makes it easy to set up 

important tasks like A/B testing, canary deployments, and staged rollouts with percentage-

based traffic splits. 

The Traffic management as per Istio (istio.io) framework, routing rules let you easily 

control the flow of traffic and API calls between services. Istio simplifies configuration of 

service-level properties like circuit breakers, timeouts, and retries, and makes it easy to set 

up important tasks like A/B testing, canary rollouts, and staged rollouts with percentage-

based traffic splits. It also provides out-of-box reliability features that help make your 

application more resilient against failures of dependent services or the network. 

 

Istio’s traffic management model relies on the Envoy proxies that are deployed along with 

your services. All traffic that your mesh services send and receive (data plane traffic) is 

proxied through Envoy, making it easy to direct and control traffic around your mesh 

without making any changes to your services. 

  



 

In order to direct traffic within your mesh, Istio needs to know where all your endpoints 

are, and which services they belong to. To populate its own service registry, Istio connects 

to a service discovery system. For example, if you’ve installed Istio on a Kubernetes 

cluster, then Istio automatically detects the services and endpoints in that cluster. 

Using this service registry, the Envoy proxies can then direct traffic to the relevant services. 

Most microservice-based applications have multiple instances of each service workload to 

handle service traffic, sometimes referred to as a load balancing pool. By default, the Envoy 

proxies distribute traffic across each service’s load balancing pool using a least requests 

model, where each request is routed to the host with fewer active requests from a random 

selection of two hosts from the pool; in this way the most heavily loaded host will not 

receive requests until it is no more loaded than any other host. 

 

While Istio’s basic service discovery and load balancing gives you a working service mesh, 

it’s far from all that Istio can do. In many cases you might want more fine-grained control 

over what happens to your mesh traffic. You might want to direct a particular percentage 

of traffic to a new version of a service as part of A/B testing or apply a different load 

balancing policy to traffic for a particular subset of service instances. You might also want 

to apply special rules to traffic coming into or out of your mesh or add an external 

dependency of your mesh to the service registry. You can do all this and more by adding 

your own traffic configuration to Istio using Istio’s traffic management API. 



 

Virtual services, along with destination rules, are the key building blocks of Istio’s traffic 

routing functionality. A virtual service lets you configure how requests are routed to a 

service within an Istio service mesh, building on the basic connectivity and discovery 

provided by Istio and your platform. Each virtual service consists of a set of routing rules 

that are evaluated in order, letting Istio match each given request to the virtual service to a 

specific real destination within the mesh. Your mesh can require multiple virtual services 

or none depending on your use case. 

 

Virtual services play a key role in making Istio’s traffic management flexible and powerful. 

They do this by strongly decoupling where clients send their requests from the destination 

workloads that actually implement them. Virtual services also provide a rich way of 

specifying different traffic routing rules for sending traffic to those workloads. 

 

Why is this so useful? Without virtual services, Envoy distributes traffic using least 

requests load balancing between all service instances, as described in the introduction. You 

can improve this behavior with what you know about the workloads. For example, some 

might represent a different version. This can be useful in A/B testing, where you might 

want to configure traffic routes based on percentages across different service versions, or 

to direct traffic from your internal users to a particular set of instances. 

 



 

With a virtual service, you can specify traffic behavior for one or more hostnames. You 

use routing rules in the virtual service that tell Envoy how to send the virtual service’s 

traffic to appropriate destinations. Route destinations can be different versions of the same 

service or entirely different services. 

 

A typical use case is to send traffic to different versions of a service, specified as service 

subsets. Clients send requests to the virtual service host as if it was a single entity, and 

Envoy then routes the traffic to the different versions depending on the virtual service rules: 

for example, “20% of calls go to the new version” or “calls from these users go to version 

2”. This allows you to, for instance, create a canary rollout where you gradually increase 

the percentage of traffic that’s sent to a new service version. The traffic routing is 

completely separate from the instance deployment, meaning that the number of instances 

implementing the new service version can scale up and down based on traffic load without 

referring to traffic routing at all. By contrast, container orchestration platforms like 

Kubernetes only support traffic distribution based on instance scaling, which quickly 

becomes complex. You can read more about how virtual services help with canary 

deployments in Canary Deployments using Istio. 

 

  



 

Virtual services also let you: 

 Address multiple application services through a single virtual service. If your mesh 

uses Kubernetes, for example, you can configure a virtual service to handle all 

services in a specific namespace. Mapping a single virtual service to multiple “real” 

services is particularly useful in facilitating turning a monolithic application into a 

composite service built out of distinct microservices without requiring the 

consumers of the service to adapt to the transition. Your routing rules can specify 

“calls to these URIs of monolith.com go to microservice A”, and so on. You can 

see how this works in one of our examples below. 

 Configure traffic rules in combination with gateways to control ingress and egress 

traffic. 

Along with virtual services, destination rules are a key part of Istio’s traffic routing 

functionality. You can think of virtual services as how you route your traffic to a given 

destination, and then you use destination rules to configure what happens to traffic for that 

destination. Destination rules are applied after virtual service routing rules are evaluated, 

so they apply to the traffic’s “real” destination. 

 

  



 

In particular, you use destination rules to specify named service subsets, such as grouping 

all a given service’s instances by version. You can then use these service subsets in the 

routing rules of virtual services to control the traffic to different instances of your services. 

 

Destination rules also let you customize Envoy’s traffic policies when calling the entire 

destination service or a particular service subset, such as your preferred load balancing 

model, TLS security mode, or circuit breaker settings. You can see a complete list of 

destination rule options in the Destination Rule reference. 

 

By default, Istio uses a least requests load balancing policy, where requests are distributed 

among the instances with the least number of requests. Istio also supports the following 

models, which you can specify in destination rules for requests to a particular service or 

service subset. 

 Random: Requests are forwarded at random to instances in the pool. 

 Weighted: Requests are forwarded to instances in the pool according to a specific 

percentage. 

 Round robin: Requests are forwarded to each instance in sequence. 

 

One can use a gateway to manage inbound and outbound traffic for your mesh, letting you 

specify which traffic you want to enter or leave the mesh. Gateway configurations are 



 

applied to standalone Envoy proxies that are running at the edge of the mesh, rather than 

sidecar Envoy proxies running alongside your service workloads. 

 

Unlike other mechanisms for controlling traffic entering your systems, such as the 

Kubernetes Ingress APIs, Istio gateways let you use the full power and flexibility of Istio’s 

traffic routing. You can do this because Istio’s Gateway resource just lets you configure 

layer 4-6 load balancing properties such as ports to expose, TLS settings, and so on. Then 

instead of adding application-layer traffic routing (L7) to the same API resource, you bind 

a regular Istio virtual service to the gateway. This lets you basically manage gateway traffic 

like any other data plane traffic in an Istio mesh. 

 

Gateways are primarily used to manage ingress traffic, but you can also configure egress 

gateways. An egress gateway lets you configure a dedicated exit node for the traffic leaving 

the mesh, letting you limit which services can or should access external networks, or to 

enable secure control of egress traffic to add security to your mesh, for example. You can 

also use a gateway to configure a purely internal proxy. 

 

Istio provides some preconfigured gateway proxy deployments (istio-ingressgateway and 

istio-egressgateway) that you can use - both are deployed if you use our demo installation, 

while just the ingress gateway is deployed with our default profile. You can apply your 



 

own gateway configurations to these deployments or deploy and configure your own 

gateway proxies. 

One can  use a service entry to add an entry to the service registry that Istio maintains 

internally. After you add the service entry, the Envoy proxies can send traffic to the service 

as if it was a service in your mesh. Configuring service entries allows you to manage traffic 

for services running outside of the mesh, including the following tasks: 

 

Redirect and forward traffic for external destinations, such as APIs consumed from the 

web, or traffic to services in legacy infrastructure. 

Define retry, timeout, and fault injection policies for external destinations. Run a mesh 

service in a Virtual Machine (VM) by adding VMs to your mesh. 

You don’t need to add a service entry for every external service that you want your mesh 

services to use. By default, Istio configures the Envoy proxies to passthrough requests to 

unknown services.  

By default, Istio configures every Envoy proxy to accept traffic on all the ports of its 

associated workload, and to reach every workload in the mesh when forwarding traffic. 

You can use a sidecar configuration to do the following: 

 

Fine-tune the set of ports and protocols that an Envoy proxy accepts. Limit the set of 

services that the Envoy proxy can reach. You might want to limit sidecar reachability like 



 

this in larger applications, where having every proxy configured to reach every other 

service in the mesh can potentially affect mesh performance due to high memory usage. 

 

You can specify that you want a sidecar configuration to apply to all workloads in a 

particular namespace, or choose specific workloads using a workloadSelector. 

 

A timeout is the amount of time that an Envoy proxy should wait for replies from a given 

service, ensuring that services don’t hang around waiting for replies indefinitely and that 

calls succeed or fail within a predictable timeframe. The Envoy timeout for HTTP requests 

is disabled in Istio by default. 

 

For some applications and services, Istio’s default timeout might not be appropriate. For 

example, a timeout that is too long could result in excessive latency from waiting for replies 

from failing services, while a timeout that is too short could result in calls failing 

unnecessarily while waiting for an operation involving multiple services to return. To find 

and use your optimal timeout settings, Istio lets you easily adjust timeouts dynamically on 

a per-service basis using virtual services without having to edit your service code. Here’s 

a virtual service that specifies a 10 second timeout for calls to the v1 subset of the ratings 

service: 

  



 

A retry setting specifies the maximum number of times an Envoy proxy attempts to connect 

to a service if the initial call fails. Retries can enhance service availability and application 

performance by making sure that calls don’t fail permanently because of transient problems 

such as a temporarily overloaded service or network. The interval between retries (25ms+) 

is variable and determined automatically by Istio, preventing the called service from being 

overwhelmed with requests. The default retry behavior for HTTP requests is to retry twice 

before returning the error. 

Like timeouts, Istio’s default retry behavior might not suit your application needs in terms 

of latency (too many retries to a failed service can slow things down) or availability. Also 

like timeouts, you can adjust your retry settings on a per-service basis in virtual services 

without having to touch your service code. You can also further refine your retry behavior 

by adding per-retry timeouts, specifying the amount of time you want to wait for each retry 

attempt to successfully connect to the service. The following example configures a 

maximum of 3 retries to connect to this service subset after an initial call failure, each with 

a 2 second timeout. 

Circuit breakers are another useful mechanism Istio provides for creating resilient 

microservice-based applications. In a circuit breaker, you set limits for calls to individual 

hosts within a service, such as the number of concurrent connections or how many times 

calls to this host have failed. Once that limit has been reached the circuit breaker “trips” 

and stops further connections to that host. Using a circuit breaker pattern enables fast 

failure rather than clients trying to connect to an overloaded or failing host. 



 

 

As circuit breaking applies to “real” mesh destinations in a load balancing pool, you 

configure circuit breaker thresholds in destination rules, with the settings applying to each 

individual host in the service. The following example limits the number of concurrent 

connections for the reviews service workloads of the v1 subset to 100 

  



 

3.5.2.2 Observability 

 
As services grow in complexity, it becomes challenging to understand behaviour and 

performance. Istio generates detailed telemetry for all communications within a service 

mesh. This telemetry provides observability of service behaviour, empowering operators 

to troubleshoot, maintain, and optimize their applications. Even better, you get almost all 

this instrumentation without requiring application changes. Through Istio, operators gain a 

thorough understanding of how monitored services are interacting. 

Istio’s telemetry includes detailed metrics, distributed traces, and full access logs. With 

Istio, you get thorough and comprehensive service mesh observability. 

Istio generates detailed telemetry for all service communications within a mesh. This 

telemetry provides observability of service behaviour, empowering operators to 

troubleshoot, maintain, and optimize their applications – without imposing any additional 

burdens on service developers. Through Istio, operators gain a thorough understanding of 

how monitored services are interacting, both with other services and with the Istio 

components themselves. 

 

  



 

Istio generates the following types of telemetry to provide overall service mesh 

observability: 

 Metrics. Istio generates a set of service metrics based on the four “golden signals” 

of monitoring (latency, traffic, errors, and saturation). Istio also provides detailed 

metrics for the mesh control plane. A default set of mesh monitoring dashboards 

built on top of these metrics is also provided. 

 Distributed Traces. Istio generates distributed trace spans for each service, 

providing operators with a detailed understanding of call flows and service 

dependencies within a mesh. 

 Access Logs. As traffic flows into a service within a mesh, Istio can generate a full 

record of each request, including source and destination metadata. This information 

enables operators to audit service behavior down to the individual workload 

instance level. 

 

  



 

Metrics provide a way of monitoring and understanding behavior in aggregate. 

To monitor service behavior, Istio generates metrics for all service traffic in, out, and within 

an Istio service mesh. These metrics provide information on behaviors such as the overall 

volume of traffic, the error rates within the traffic, and the response times for requests. 

In addition to monitoring the behavior of services within a mesh, it is also important to 

monitor the behavior of the mesh itself. Istio components export metrics on their own 

internal behaviors to provide insight on the health and function of the mesh control plane. 

Istio metrics collection begins with the sidecar proxies (Envoy). Each proxy generates a 

rich set of metrics about all traffic passing through the proxy (both inbound and outbound). 

The proxies also provide detailed statistics about the administrative functions of the proxy 

itself, including configuration and health information. 

 

Envoy-generated metrics provide monitoring of the mesh at the granularity of Envoy 

resources (such as listeners and clusters). As a result, understanding the connection 

between mesh services and Envoy resources is required for monitoring the Envoy metrics. 

 

Istio enables operators to select which of the Envoy metrics are generated and collected at 

each workload instance. By default, Istio enables only a small subset of the Envoy-

generated statistics to avoid overwhelming metrics backends and to reduce the CPU 

overhead associated with metrics collection. However, operators can easily expand the set 



 

of collected proxy metrics when required. This enables targeted debugging of networking 

behavior, while reducing the overall cost of monitoring across the mesh. 

Distributed tracing provides a way to monitor and understand behavior by monitoring 

individual requests as they flow through a mesh. Traces empower mesh operators to 

understand service dependencies and the sources of latency within their service mesh. 

 

Istio supports distributed tracing through the Envoy proxies. The proxies automatically 

generate trace spans on behalf of the applications they proxy, requiring only that the 

applications forward the appropriate request context. 

 

Istio supports a number of tracing backends, including Zipkin, Jaeger, Lightstep, and 

Datadog. Operators control the sampling rate for trace generation (that is, the rate at which 

tracing data is generated per request). This allows operators to control the amount and rate 

of tracing data being produced for their mesh.  



 

3.5.2.3 Security capabilities 

 
Microservices have particular security needs, including protection against man-in-the-

middle attacks, flexible access controls, auditing tools, and mutual TLS. Istio includes a 

comprehensive security solution to give operators the ability to address all these issues. It 

provides strong identity, powerful policy, transparent TLS encryption, and authentication, 

authorization, and audit (AAA) tools to protect your services and data. 

Istio’s security model is based on security-by-default, aiming to provide in-depth defence 

to allow you to deploy security-minded applications even across distrusted networks. 

 To defend against man-in-the-middle attacks, they need traffic encryption. 

 To provide flexible service access control, they need mutual TLS and fine-grained 

access policies. 

 To determine who did what at what time, they need auditing tools. 

Istio Security provides a comprehensive security solution to solve these issues. This page 

gives an overview on how you can use Istio security features to secure your services, 

wherever you run them. In particular, Istio security mitigates both insider and external 

threats against your data, endpoints, communication, and platform. 

  



 

The Istio security features provide strong identity, powerful policy, transparent TLS 

encryption, and authentication, authorization and audit (AAA) tools to protect your 

services and data. The goals of Istio security are: 

 

 Security by default: no changes needed to application code and infrastructure. 

 Defense in depth: integrate with existing security systems to provide multiple 

layers of defense. 

 Zero-trust network: build security solutions on distrusted networks. 

Security in Istio involves multiple components: 

 

 A Certificate Authority (CA) for key and certificate management 

 The configuration API server distributes to the proxies: 

o authentication policies 

o authorization policies 

o secure naming information 

 Sidecar and perimeter proxies work as Policy Enforcement Points (PEPs) to 

secure communication between clients and servers. 

 A set of Envoy proxy extensions to manage telemetry and auditing  



 

Identity is a fundamental concept of any security infrastructure. At the beginning of a 

workload-to-workload communication, the two parties must exchange credentials with 

their identity information for mutual authentication purposes. On the client side, the 

server’s identity is checked against the secure naming information to see if it is an 

authorized runner of the workload. On the server side, the server can determine what 

information the client can access based on the authorization policies, audit who accessed 

what at what time, charge clients based on the workloads they used, and reject any clients 

who failed to pay their bill from accessing the workloads. 

 

The Istio identity model uses the first-class service identity to determine the identity of a 

request’s origin. This model allows for great flexibility and granularity for service identities 

to represent a human user, an individual workload, or a group of workloads. On platforms 

without a service identity, Istio can use other identities that can group workload instances, 

such as service names. 

 

  



 

The following list shows examples of service identities that you can use on different 

platforms: 

 Kubernetes: Kubernetes service account 

 GCE: GCP service account 

 On-premises (non-Kubernetes): user account, custom service account, service 

name, Istio service account, or GCP service account. The custom service account 

refers to the existing service account just like the identities that the customer’s 

Identity Directory manages. 

 

Istio provides two types of authentication: 

 Peer authentication: used for service-to-service authentication to verify the client 

making the connection. Istio offers mutual TLS as a full stack solution for transport 

authentication, which can be enabled without requiring service code changes. This 

solution: 

o Provides each service with a strong identity representing its role to enable 

interoperability across clusters and clouds. 

o Secures service-to-service communication. 

o Provides a key management system to automate key and certificate 

generation, distribution, and rotation. 

 Request authentication: Used for end-user authentication to verify the credential 

attached to the request. Istio enables request-level authentication with JSON Web 



 

Token (JWT) validation and a streamlined developer experience using a custom 

authentication provider or any OpenID Connect providers, for example: 

 ORY Hydra 

 Keycloak 

 Auth0 

 Firebase Auth 

 Google Auth 

In all cases, Istio stores the authentication policies in the Istio config store via a custom 

Kubernetes API. Istiod keeps them up to date for each proxy, along with the keys where 

appropriate. Additionally, Istio supports authentication in permissive mode to help you 

understand how a policy change can affect your security posture before it is enforced. 

 

Istio mutual TLS has a permissive mode, which allows a service to accept both plaintext 

traffic and mutual TLS traffic at the same time. This feature greatly improves the mutual 

TLS onboarding experience. 

 

Many non-Istio clients communicating with a non-Istio server presents a problem for an 

operator who wants to migrate that server to Istio with mutual TLS enabled. Commonly, 

the operator cannot install an Istio sidecar for all clients at the same time or does not even 

have the permissions to do so on some clients. Even after installing the Istio sidecar on the 

server, the operator cannot enable mutual TLS without breaking existing communications. 



 

 

With the permissive mode enabled, the server accepts both plaintext and mutual TLS 

traffic. The mode provides greater flexibility for the on-boarding process. The server’s 

installed Istio sidecar takes mutual TLS traffic immediately without breaking existing 

plaintext traffic. As a result, the operator can gradually install and configure the client’s 

Istio sidecars to send mutual TLS traffic. Once the configuration of the clients is complete, 

the operator can configure the server to mutual TLS only mode. 

 

You can specify authentication requirements for workloads receiving requests in an Istio 

mesh using peer and request authentication policies. The mesh operator uses .yaml files to 

specify the policies. The policies are saved in the Istio configuration storage once deployed. 

The Istio controller watches the configuration storage. 

 

Upon any policy changes, the new policy is translated to the appropriate configuration 

telling the PEP how to perform the required authentication mechanisms. The control plane 

may fetch the public key and attach it to the configuration for JWT validation. 

Alternatively, Istiod provides the path to the keys and certificates the Istio system manages 

and installs them to the application pod for mutual TLS. You can find more info in the 

Identity and certificate management section. 

 



 

Istio sends configurations to the targeted endpoints asynchronously. Once the proxy 

receives the configuration, the new authentication requirement takes effect immediately on 

that pod. 

 

Client services, those that send requests, are responsible for following the necessary 

authentication mechanism. For request authentication, the application is responsible for 

acquiring and attaching the JWT credential to the request. For peer authentication, Istio 

automatically upgrades all traffic between two PEPs to mutual TLS. If authentication 

policies disable mutual TLS mode, Istio continues to use plain text between PEPs. To 

override this behavior explicitly disable mutual TLS mode with destination rules. 

Istio’s authorization features provide mesh-, namespace-, and workload-wide access 

control for your workloads in the mesh. This level of control provides the following 

benefits: 

 Workload-to-workload and end-user-to-workload authorization. 

 A simple API: it includes a single AuthorizationPolicy CRD, which is easy to use 

and maintain. 

 Flexible semantics: operators can define custom conditions on Istio attributes, and 

use CUSTOM, DENY and ALLOW actions. 



 

 High performance: Istio authorization (ALLOW and DENY) is enforced natively 

on Envoy. 

 High compatibility: supports gRPC, HTTP, HTTPS and HTTP/2 natively, as well 

as any plain TCP protocols. 

 



 

3.6 Data Collection Procedures 

Data for this research was collected from two sources, namely, primary, and secondary. 

Primary data is typically defined as the first occurrence of a piece of work. For this 

research, primary data is obtained from the open-source tools such as Intel V-Tune Profiler. 

The configuration of the tools for Hot Spot analysis makes the data to be narrowed down 

and quite suitable for further analysis. 

Secondary data is obtained from literature review, where the researcher has perused several 

articles, journals, papers, and books to gain as much information as possible that is relevant 

to this research. 

The researcher thoroughly investigated the tools used for data generation. The 

configuration of the tools for cryptocurrency mining process was focus. 

To analyse the data collected, the researcher prepared pipeline from source of data 

generation, data cleaning to get the suitable data format. Working on a framework to store 

and retrieve data, building a logic to search the frequency of certain key words, reducing 

redundancies, and removing irrelevant data. By using these procedures, the researcher was 

able to reduce the data collected to only relevant data to be analysed. More info about the 

data collection and analysis is described in further section in detail. 

  



 

3.7 Data Analysis 

Data collection for quantitative research very often involve data in the form of counts or 

numbers where each data set has a unique numerical value. This data is any quantifiable 

information that researchers can use for mathematical calculations and statistical analysis 

to make real-life decisions based on these mathematical derivations. This data however 

must be analyzed to make sense of. There are multiple methods of analyzing quantitative 

data collected as follows (Quantitative data): 

 Cross-tabulation: It is the most widely used quantitative data analysis methods. 

It is a preferred method since it uses a basic tabular form to draw inferences 

between different data-sets in the research study. It contains data that is mutually 

exclusive or have some connection with each other. 

 Trend analysis: Trend analysis is a statistical analysis method that provides the 

ability to look at quantitative data that has been collected over a long period of 

time. This data analysis method helps collect feedback about data changes over 

time and if aims to understand the change in variables considering one variable 

remains unchanged. 

 MaxDiff analysis: The MaxDiff analysis is a quantitative data analysis method 

that is used to gauge customer preferences for a purchase and what parameters rank 

higher than the others in this process. In a simplistic form, this method is also called 

the “best-worst” method. This method is very similar to conjoint analysis but is 

much easier to implement and can be interchangeably used.   

 Conjoint analysis: Like in the above method, conjoint analysis is a similar 

https://www.questionpro.com/blog/what-is-conjoint-analysis/


 

quantitative data analysis method that analyses parameters behind a purchasing 

decision. This method possesses the ability to collect and analyse advanced metrics 

which provide an in-depth insight into purchasing decisions as well as the 

parameters that rank the most important. 

 TURF analysis: TURF analysis or Total Unduplicated Reach and Frequency 

Analysis, is a quantitative data analysis methodology that assesses the total market 

reach of a product or service or a mix of both. This method is used by organizations 

to understand the frequency and the avenues at which their messaging reaches 

customers and prospective customers which helps them tweak their go-to-market 

strategies. 

 Gap analysis: Gap analysis uses a side-by-side matrix to depict data that helps 

measure the difference between expected performance and actual performance. 

This data analysis helps measure gaps in performance and the things that are 

required to be done to bridge this gap. 

 SWOT analysis: SWOT analysis, is a quantitative data analysis method that 

assigns numerical values to indicate strength, weaknesses, opportunities and threats 

of an organization or product or service which in turn provides a holistic picture 

about competition. This method helps to create effective business strategies. 

 Text analysis: Text analysis is an advanced statistical method where intelligent 

tools make sense of and quantify or fashion qualitative and open-ended data into 

easily understandable data. This method is used when the raw survey data is 

unstructured but must be brought into a structure that makes sense. 



 

Steps to conduct Quantitative Data Analysis: 

 For Quantitative Data, raw information must be presented in a meaningful manner 

using data analysis methods. This data should be analysed to find evidential data 

that would help in the research process. 

 Associate measurement scales such as Nominal, Ordinal, Interval and Ratio with 

the variables. This step is important to arrange the data in proper order. Data can be 

entered into an excel sheet to organize it in a specific format. 

 Link descriptive statistics to encapsulate available data. It can be difficult to 

establish a pattern in the raw data. Some widely used descriptive statistics are: 

 Mean- An average of values for a specific variable 

 Median- A midpoint of the value scale for a variable 

 Mode- For a variable, the most common value 

 Frequency- Number of times a particular value is observed in the scale 

 Minimum and Maximum Values- Lowest and highest values for a scale 

 Percentages- Format to express scores and set of values for variables 

It is important to decide the measurement scale to conclude descriptive statistics for the 

variable. For instance, a nominal variable score will never have a mean or median and so 

the descriptive statistics will correspondingly vary. Descriptive statistics suffice in 

situations where the results are not to be generalized to the population. 

Select appropriate tables to represent data and analyze collected data: After deciding on a 

suitable measurement scale, researchers can use a tabular format to represent data. This 

data can be analyzed using various techniques such as Cross-tabulation or TURF.   

https://www.questionpro.com/blog/quantitative-data/


 

In summary, the author of this research will follow the above steps, especially 

categorization of the data. To accomplish this, the author has adopted the Text Analysis to 

ensure the correct prediction for the crypto miner process. Multiple analyses are also 

required so that the context of each output is not missed or misinterpreted by the author, 

highlighting key output and information that may have been overlooked in previous 

readings.  

  



 

3.8 Coding and analysis 

The researcher derived a coding process based on the work of Taylor-Powell (2003). The 

coding process used in this research was divided into the following phases 

 The review phase – The researcher reviewed the logs of the customer application 

monitored by the Intel V-Tune profiler several times to get familiarised with the 

data. During the review phase, several fine tunings to the tool’s configuration has 

done accordingly.  

 The coding phase – The output of the Intel V-Tune has clearly will be in the raw 

format and the prepossessing the log to CSV format is very much necessary and 

important phase of the research. Once the log data is made a proper table format 

will be ready for consumption by the parser to decide the results. 

 The analysis phase – Here the researcher uses the CSV Format file for further 

parsing logic that decides the application is affected by the mining logic or not. 

Based on the output, if the application is affected, then the process continues in the 

pipeline for Istio framework. The researcher uses the logic and text analysis method 

to derive the deciding factor.  



 

3.9 Methods of validation 

Following environment  are considered while evaluating the data. 

 

 Hyperledger Framework is chosen as the case study for Blockchain Deployment. 

 The basic software images or binaries will be of Docker images. 

 Istio Framework is employed to mitigate the risk of zero downtime in production 

environment. 

 XMRIG Client is used to simulate the miner process. 

 Intel V-Tune Profile is used to inspect the miner process. 

 Custom Decider Logic is employed to check the logs/reports and conclude the 

results. 

 Repeat the steps from top if necessary for other process. 

  



 

The quality of a research depends on whether the research can withstand the test of 

reliability and validity. According to the work of Shoaib and Mujtaba in 2016, the research 

must address the components of dependability, transferability, credibility, and 

conformability (Shoaib, Mujtaba, 2016).  

In a quantitative analysis, the researcher achieves reliability and validity by ensuring that 

the data is genuine. The researcher analyzed each log of the mining process and concluded 

the stack trace that always remains the same. Reliability of a research can be defined as the 

likelihood of the results of similar research, using the same parameters would yield the 

same results. By using multiple data collection methods, the risk of a single approach is 

minimized.  

To ensure that the results of the research are trustworthy, the researcher must adhere to the 

principles of integrity, transferability, and reliability. According to Robert K. Yin , (2015) 

The validity of a research is dependent on the quality of the research process, and therefore 

must not be impaired at any stage. Therefore, the validity of the research is a metric to 

measure the quality of the research.  

Because quantitative analyses depend on the numeric data, the results and findings of the 

researcher must be consistent and verifiable if they are to be contribute to existing 

knowledge and create additional proposals for research in the future.  

 

  



 

3.10 Research Design Limitations 

This research does have some limitations that may reduce the generalization of the 

findings. Since this was a study conducted on the x86 based hardware and assumptions 

were made that the same behavior would result on other hardware platforms also. 

Furthermore, the Intel V-Tune assumes that the detecting the mining process in the test bed 

would be done mostly on X-86 architectures. The tool Intel V-Tune will not work other 

than X-86 architectures. So, it is advised to make sure that, before the tool is used for testing 

purpose, a user manual and compatibly check is carried out of the tool and supported 

platform.  

 

  



 

3.11 Conclusion 

The research findings have explored quantitative method of research design. The research 

instruments used for this research were readily available open-source tools. Also, the 

research has taken care of supporting any x86 platform architecture to support. End to End 

pipeline has been discussed with clear explanations of each framework components. 

Finally, the limitations of the research were stated and discussed.  

  



 

CHAPTER IV:  

RESULTS AND FINDINGS 

4.1 Introduction 

This chapter covers the results of the research and its major findings. This chapter is 

roughly divided into two parts: the first part covers the research case, where details about 

the Intel V-Tune configurations, Xmrig (Cryptomining application) parameters, other CPU 

hog applications run. The second part consists of the data analysis performed by the 

researcher after the logs of the applications monitored by the Intel V-Tune profiler were 

collected.  

 

4.2 The Research Case 

This section details the research insights and the pipeline involved from source of data 

generation till the analysis is concluded. Following theoretical aspects is chosen for the 

steps to be taken. 

.  

  



 

4.2.1 Cryptomining 

 

Crypto mining (Crypto mining) simply is not only as a way of creating new digital 

currency. Crypto mining, however, also involves validating cryptocurrency transactions on 

a blockchain network and adding them to a distributed ledger. Most importantly, crypto 

mining prevents the double-spending of digital currency on a distributed network. 

 

Like physical currencies, when one member spends cryptocurrency, the digital ledger must 

be updated by debiting one account and crediting the other. However, the challenge of a 

digital currency is that digital platforms are easily manipulated. Bitcoin’s distributed 

ledger, therefore, only allows verified miners to update transactions on the digital ledger. 

This gives miners the extra responsibility of securing the network from double spending. 

 

Meanwhile, new coins are generated to reward miners for their work in securing the 

network. Since distributed ledgers lack a centralized authority, the mining process is crucial 

for validating transactions. Miners are, therefore, incentivized to secure the network by 

participating in the transaction validation process that increases their chances of winning 

newly minted coins. 

 

To ensure that only verified crypto miners can mine and validate transactions, a proof-of-

work (PoW) consensus protocol has been put into place. PoW also secures the network 

from any external attacks. 

 



 

4.2.2 PROOF-OF-WORK  

Mining the coin will trigger the release of new coins into circulation. For miners to be 

rewarded with new coins, they need to deploy machines that solve complex mathematical 

equations in the form of cryptographic hashes. A hash is a truncated digital signature of a 

chunk of data. Hashes are generated to secure data transferred on a public network. Miners 

compete with their peers to zero in on a hash value generated by a crypto coin transaction, 

and the first miner to crack the code gets to add the block to the ledger and receive the 

reward. 

Each block uses a hash function to refer to the previous block, forming an unbroken chain 

of blocks that leads back to the first block. For this reason, peers on the network can easily 

verify whether certain blocks are valid and whether the miners who validated each block 

properly solved the hash to receive the reward. 

Over time, as miners deploy more advanced machines to solve PoW, the difficulty of 

equations on the network increases. At the same time, competition among miners rises, 

increasing the scarcity of the cryptocurrency as a result. 

4.2.3 CPU Based CryptoMining 

Cryptocurrencies mining requires computers with special software specifically designed to 

solve complicated, cryptographic mathematic equations. In the technology’s early days, 

cryptocurrencies like Monero could be mined with a simple CPU chip on a home computer. 

Over the years, however, CPU chips have become impractical for mining most 

cryptocurrencies due to the increasing difficulty levels. 



 

Today, mining cryptocurrencies requires a specialized GPU or an application-specific 

integrated circuit (ASIC) miner. In addition, the GPUs in the mining rig must be always 

connected to a reliable internet connection. Each crypto miner is also required to be a 

member of an online crypto mining pool as well.  

 

CPU mining was the go-to option for most miners. As it is easily available hardware for 

mining. Any decent hardware x86 based configuration were used in early days for crypto 

mining. 

GPU mining is another method of mining cryptocurrency. It maximizes computational 

power by bringing together a set of GPUs under one mining rig. For GPU mining, a 

motherboard and cooling system is required for the rig. 

 

Similarly, ASIC mining is yet another method of mining cryptocurrencies. Unlike GPU 

miners, ASIC miners are specifically designed to mine cryptocurrencies, so they produce 

more cryptocurrency units than GPUs. However, they are expensive, meaning that, as 

mining difficulty increases, they quickly become obsolete. 

 

Given the ever-increasing costs of GPU and ASIC mining, cloud mining is becoming 

increasingly popular. Cloud mining allows individual miners to leverage the power of 

major corporations and dedicated crypto mining facilities.  



 

Pooling the hardware resources and mining the block will be beneficial as it reduces the 

need of capacity of hardware resources. The rewards for mining will be distributed among 

the pool participants in proportion to the number of resources that each miner contributed 

to the pool. Miners consider official crypto mining pools more reliable since they receive 

frequent upgrades by their host companies, as well as regular technical support. The best 

place to find mining pools is CryptoCompare, where miners can compare different mining 

pools based on their reliability, profitability, and the coin that they want to mine. 

Prospective miner chooses a CPU, GPU, ASIC miner, or cloud mining, the most important 

factors to consider are the mining rig’s hash rate, electric power consumption, and overall 

costs. Generally, crypto mining machines consume a considerable amount of electricity 

and emit significant heat. 

For instance, the average ASIC miner will use about 72 terawatts of power to create a 

bitcoin in about ten minutes. These figures continue to change as technology advances and 

mining difficulty increases. 

Even though the price of the machine matters, it is just as important to consider electricity 

consumption, electricity costs in the area, and cooling costs, especially with GPU and ASIC 

mining rigs. 

 



 

It is also important to consider the level of difficulty for the cryptocurrency that an 

individual wants to mine, in order determine whether the operation would even be 

profitable. 

For the research XMRig is used to demonstrate the cryptojacking. 

XMRig is a high performance, open source, cross platform RandomX, KawPow, 

CryptoNight, AstroBWT and GhostRider unified CPU/GPU miner and RandomX 

benchmark. Official binaries are available for Windows, Linux, macOS and FreeBSD.  

 Mining backends 

 CPU (x64/ARMv7/ARMv8) 

 OpenCL for AMD GPUs. 

 CUDA for NVIDIA GPUs via external CUDA plugin. 

https://github.com/xmrig/xmrig/tree/master/src/crypto/ghostrider#readme


 

4.2.4 Business and Social Impacts of CPU based Cryptojacking 

 

Following are the points found as part of the business and social impacts from nacdl.org 

(1986). 

Legal and Regulatory Impact: 

 

 Unauthorized access and computer crimes: 

o The CFAA (Computer Fraud and Abuse Act) prohibits unauthorized access to 

protected computers and networks. CPU-based cryptojacking, which involves 

unauthorized use of computing resources, may fall under this law, especially if 

the perpetrator gains access through hacking or unauthorized means. 

o CPU-based cryptojacking involves unauthorized access to computer systems 

and the use of computing resources without permission. This activity may be 

considered a computer crime, and laws related to unauthorized access, hacking, 

or computer fraud may apply. Identify relevant laws and regulations in your 

jurisdiction that address these issues. 

 Data Protection Laws (General Data Protection Regulation - GDPR): 

o CPU-based cryptojacking can lead to the exposure or unauthorized access of 

personal data, which may violate data protection laws. Businesses are 

responsible for protecting personal data and may face penalties if they fail to 

implement appropriate security measures or adequately respond to incidents. 

  



 

 Cybersecurity and Data Breach Notification Laws: 

o Many jurisdictions have specific regulations that require businesses to 

implement reasonable cybersecurity measures and notify individuals in the 

event of a data breach. Cryptojacking incidents may trigger these requirements 

if they involve unauthorized access and potential data exposure. 

o If a business detects a cryptojacking incident resulting in the compromise of 

customer data, they may be obligated to notify affected individuals and 

regulatory authorities in accordance with data breach notification laws. 

 International legal considerations:  

o If businesses operating across international borders, consider the legal 

implications of cryptojacking in different jurisdictions. Laws and regulations 

can vary significantly, so it's important to understand the legal landscape in each 

relevant jurisdiction. 

 Intellectual property implications:  

o Cryptojacking malware is often distributed through malicious websites, emails, 

or compromised software, potentially infringing on intellectual property rights. 

Assess the legal implications related to the distribution of malicious software 

and potential copyright or trademark infringement issues. 

  



 

 Consumer protection and fraud:  

o If cryptojacking affects consumers or customers, consumer protection laws and 

regulations may come into play. Evaluate regulations related to unfair or 

deceptive trade practices, fraud, or consumer rights to understand the potential 

legal implications for businesses. 

  



 

Economic Impact : 

According to aquasec.com (2004), following points can be derived after careful analysis 

 System Performance: 

o Cryptojacking activities consume a considerable amount of CPU resources, 

which can cause noticeable performance degradation of affected systems. 

Slower processing speeds and increased system instability can lead to decreased 

productivity and efficiency, particularly for businesses relying on computer-

intensive tasks. 

 Hardware life degradation: 

 

o Continuous mining operations using CPUs can place excessive strain on 

hardware components, potentially shortening their lifespan. As a result, 

individuals or organizations may need to incur additional expenses for repairing 

or replacing affected hardware, further impacting their budgets. 

 Opportunity costs: 

 

o CPU-based cryptojacking siphons off computing power and resources that 

could have been used for legitimate tasks or operations. This opportunity cost 

translates into lost productivity and potentially missed business opportunities. 

 Power consumption: 

 

o CPU-based cryptojacking utilizes significant computational power, leading to 

a substantial increase in electricity consumption. This can result in higher 

energy bills for affected individuals or organizations, impacting their 

operational costs. 



 

 Choking in Network: 

o In large-scale cryptojacking incidents, where numerous systems are 

compromised within a network, the increased network traffic can lead to 

congestion and slower network performance. This can affect communication, 

data transfer, and overall network efficiency 

 Trust Factor: 

o Organizations that fall victim to CPU-based cryptojacking may suffer 

reputational damage and a loss of trust from their customers or stakeholders. 

This can impact their brand image, customer loyalty, and long-term business 

relationships, potentially leading to financial consequences 

 Expense towards security measures: 

o Implementing countermeasures and mitigation strategies to detect and prevent 

CPU-based cryptojacking requires investments in security solutions, software 

updates, employee training, and infrastructure enhancements. These costs 

should also be factored into the overall economic impact analysis. 

  



 

Strategic Implications on various sectors of Business : 

According to enterslice.com (2024),  digital banking implications because of cryptojacking 

can be applied in general for following sectors 

 Financial Sector: 

 

o Strategic Implications: In the financial sector, CPU-based cryptojacking can 

disrupt critical systems, impact transaction processing speed, and compromise 

data integrity. This can undermine customer trust and confidence in the security 

of financial services. 

o Strategic Considerations: Financial institutions need to prioritize robust 

cybersecurity measures to prevent and detect cryptojacking incidents. They 

should invest in real-time monitoring, intrusion detection systems, and 

employee training to enhance their defense against such threats. 

 Healthcare Sector: 

 
o Strategic Implications: CPU-based cryptojacking can severely affect healthcare 

organizations by slowing down critical systems, leading to delays in patient 

care, and compromising sensitive medical data. It can also disrupt medical 

research activities and the availability of life-saving services. 

o Strategic Considerations: Healthcare organizations must prioritize 

cybersecurity measures, including regular system patching, network 

segmentation, and staff education on identifying and reporting suspicious 

activities. Protecting patient data and ensuring uninterrupted delivery of 

healthcare services should be top priorities. 



 

 IT and Technology Sector: 

o Strategic Implications: CPU-based cryptojacking can have significant 

consequences for IT and technology companies, impacting their own systems 

and potentially leading to reputational damage if their products or services are 

exploited by attackers. It can also divert valuable computing resources from 

core business operations. 

o Strategic Considerations: IT and technology companies need to focus on secure 

software development practices, regular vulnerability assessments, and prompt 

security updates to mitigate the risk of their products being used for 

cryptojacking. Implementing robust intrusion detection and prevention systems 

is crucial to safeguard their infrastructure and customer data. 

 E-commerce and Retail Sector: 

o Strategic Implications: In the e-commerce and retail sector, CPU-based 

cryptojacking can affect website performance, leading to slow page load times, 

poor user experience, and potentially impacting sales and customer retention. It 

can also compromise customer payment information. 

o Strategic Considerations: E-commerce and retail businesses should prioritize 

website security and implement strong access controls. Regular vulnerability 

scanning, secure payment processing, and customer communication regarding 

security measures can help maintain customer trust and protect their sensitive 

data. 

  



 

 Energy Sector: 

o Strategic Implications: CPU-based cryptojacking in the energy sector can lead 

to increased electricity consumption, impacting operational costs and energy 

efficiency goals. It can also disrupt critical infrastructure and result in power 

outages or other operational failures. 

o Strategic Considerations: Energy companies should focus on securing their 

control systems, implementing network segmentation, and investing in 

intrusion detection and prevention mechanisms. Regular monitoring of energy 

consumption patterns can help identify abnormal usage indicative of 

cryptojacking activities. 

 

 Education Sector: 

o Strategic Implications: CPU-based cryptojacking can impact educational 

institutions by slowing down computer systems, hindering academic 

activities, and potentially compromising sensitive student and faculty data. 

o Strategic Considerations: Educational institutions should raise awareness 

among students, faculty, and staff about safe computing practices and the 

risks of cryptojacking. Robust cybersecurity measures, including system 

monitoring and strong access controls, should be in place to protect the 

integrity of academic operations and student information.  



 

Ethics and Social responsibility : 

 

The cointelegraph.com (2018) collects the points as below for ethics of cryptojacking  

 Cybercrime and Criminal Profit:  

o CPU-based cryptojacking is often linked to cybercriminal activities. This 

raises ethical questions regarding the exploitation of technology for 

personal gain, contributing to a broader landscape of cybercrime. 

 

 Educational Awareness and Digital Literacy:  

o Cryptojacking highlights the need for increased awareness and education 

about online security, digital threats, and safe computing practices. 

Enhancing digital literacy can empower individuals and organizations to 

protect themselves against such risks. 

 

 Regulatory and Legal Considerations:  

o Ethical and social implications may drive the need for regulatory 

frameworks and legislation to address CPU-based cryptojacking, ensuring 

appropriate consequences for perpetrators and providing protections for 

victims. 

 

  



 

 Impact on System Performance and User Experience:  

o Cryptojacking can degrade system performance, resulting in slow response 

times, increased heat generation, and reduced battery life. This negatively 

affects user experience, productivity, and the usability of devices. 

 

 Public Perception of Cryptocurrencies:  

o Cryptojacking incidents can influence public perception of 

cryptocurrencies, associating them with illicit activities and unethical 

behaviour. This perception may impact the broader acceptance and adoption 

of cryptocurrencies as a legitimate form of digital currency. 

 Inequitable Distribution of Costs:  

o Cryptojacking imposes costs, such as increased electricity bills and 

potential hardware damage, on the victims. The burden falls 

disproportionately on individuals and organizations that may be less 

equipped to handle the financial impact. 

 

 Trust and Security: 

o Cryptojacking undermines trust in digital systems and cybersecurity. It 

raises concerns about the security and integrity of software and websites, 

impacting individuals' and organizations' confidence in online transactions 

and interactions. 

  



 

 Resource Misuse:  

o Cryptojacking exploits the computational resources of individuals and 

organizations without their permission. This misuse of resources can be 

seen as unethical, as it diminishes the intended purpose of those resources 

and can disrupt normal operations. 

 Power Consumption and Environmental Impact:  

o CPU-based cryptojacking significantly increases power consumption, 

leading to increased carbon footprint and energy waste. This has 

environmental consequences and conflicts with sustainability goals.  



 

4.3 Data Analysis 

E2E is the pipeline that explains the end-to-end process for identifying the cryptojacking. 

It includes the steps for from source of data collection, data cleaning, report generation 

and final data analysis. 

  

Figure 4.1 

E2E Pipeline  

 

  



 

Further following points explain the technical part at high level. Detailed explanation will 

follow in the subsequent sections. 

 Start the XMRig process with the shared pool mode (Pools are groups of miners 

who share their computational resources. Mining pools utilize these combined 

resources to strengthen the probability of finding a block). 

 Configure the Intel V T-Tune to monitor the XMRig process. 

 After the desired duration of monitor, CSV based report is generated. 

 Logic for checking the Cryptojacking is started. 

 If “yes” for Cryptojacking, then the affected traffic is diverted to Istio framework 

else “No” for further monitor of other process to monitor. 

  



 

4.4 Pipeline stages 

 

1) Launch the XMRig process with options available as below 

 

 Figure 4.2 

 XMRig Process options 

 



 

 

 

Figure 4.3 

Intel V-Tune Profile – XMRig Launch  

 

2)  Measure the CPU consumption of the crypto process 

To know what application process to measure, check the most CPU utilizing application 

using the OS specific commands. For Ex: Linux platform use “top” command 

Measure the CPU utilization by the XMRig process  using the “top” command. In below 

figure the XMRig process shows 200% CPU utilization which leads to suspect the activity. 

 

 

Figure 4.4 

Intel V-Tune Profile – XMRig CPU Utilization 

 



 

XMRig shares the CPU with connection pool as below. The mining pool is general pool 

hosted in the public domain and anyone can join by specifying the pool main at the launch 

of process. 

 

 

Figure 4.5 

Intel V-Tune Profile – Miners Pool 

 

 

Model Specific Registers are the configurations register to control the default settings of 

CPU, by altering the values via MSR, the flow can be controlled. The default  settings for 

hardware prefetcher are altered by XMRig process to increase the hash rate. 

 

 

Figure 4.6 

Intel V-Tune Profile – XMRig Model Specific Registers 

  



 

 

Hash rate variance seen after the MSR altering settings by XMRig crypto process. 

 

Figure 4.7 

 XMRig Hash Rate 

 

 
3)  Start the monitor of XMRig process via Intel V -Tune in Hot Spot mode   

Intel V-Tune tool has several options as follows 

vtune <-action> [-action-option] [-global-option] [[--] <target> [target-options]] 

vtune - The name of the V-Tune Profiler command line tool. 

<-action> - The action to perform, such as collect or report. 

[-action-option] - Action-options modify behavior specific to the action. You can have 

multiple action-options per action. Using an action-option that does not apply to the action 

results in a usage error. 

[-global-option] - Global-options modify behavior in the same manner for all actions. You 

can have multiple global-options per action. 

[--] <target> - The target application to analyze. 

  



 

-collect <analysis_type> - hotspots 

Identify your most time-consuming source code using one of the available collection 

modes: 

-knob sampling-mode=sw (former Basic Hotspots) to collect hotspots and stack 

information based on the user-mode sampling and tracing, which does not required 

sampling drivers but incurs higher collection overhead). This mode cannot be used to 

profile a system, but must either launch an application/process or attach to one. 

Generate a hotspots collection based on the process id by following Intel V-Tune cmd 

 

 

 

Generate a hotspots report from a hotspots analysis that was previously generated in the 

directory r0001hs 

 

  

vtune -collect hotspots -knob sampling-mode=sw -call-stack-mode all  -target-

process xmrig 

 

vtune -R hotspots -report-output xmrig.csv -format csv -csv-delimiter comma -r 

r0001hs 

 



 

4) Deciding logic for Cryptojacking detection is done by the following formula  

 

 

 

 

 

Figure 4.8 

Intel V-Tune Profile – XMRig Decider Logic 

  

CPU Threshold Usage > 100% + MSR value altered for hash rate + Stack trace 

showing the signature of mining application 

 



 

5) Non-Crypto Process Analysis 7zip  

7zip is the general file compression utility available on all OS flavors (Linux, Microsoft 

etc.). The purpose of 7zip is to show the CPU consumption that can be compared to the 

crypto process.  

 

 

Figure 4.9 

Intel V-Tune Profile – 7za CPU Utilization   

 

 

Generate a hotspots collection based on the process id by following Intel V-Tune cmd 

 

Generate a hotspots report from a hotspots analysis that was previously generated in the 

directory r0002hs 

 

  

vtune -collect hotspots -knob sampling-mode=sw -call-stack-mode all  -target-

process 7za 

 

vtune -R hotspots -report-output 7za.csv -format csv -csv-delimiter comma -r 

r0002hs 

 



 

Deciding logic for Non Cryptojacking detection 

 

 

 

 

Figure 4.10  

Intel V-Tune Profile – 7za Decider Logic   

CPU Threshold Usage > 100% + MSR value altered for hash rate + Stack trace 

showing the signature of compression application 

 

 



 

 

The idea of malware detection in the run time production platforms poses the challenges 

of performance degradation to the user accessing the application. Our research study 

proposes adapting Istio (Istio) framework in analysing the logs by diverting some 

production traffic to Intel V-Tune. By this the user will not experience the performance 

degradation. 

Istio’s traffic routing rules let you easily control the flow of traffic and API calls between 

services. Istio simplifies configuration of service-level properties like circuit breakers, 

timeouts, and retries, and makes it easy to set up important tasks like A/B testing, canary 

rollouts, and staged rollouts with percentage-based traffic splits. It also provides out-of-

box reliability features that help make your application more resilient against failures of 

dependent services or the network. 

 

Istio’s traffic (Traffic shifting) shifting can be configured by two Istio Custom Resources, 

namely Destination Rule and Virtual Service. In short, in a Destination Rule so called 

subsets need to be defined to identify specific versions of a service, and in a Virtual Service 

different weights can be assigned to these subsets to control how much traffic should be 

directed to each service version. 

  



 

For the subsets, you’ll need to define a Destination Rule like this: 

 

kind: DestinationRule 

metadata: 

  name: xmrig 

spec: 

  host: xmrig 

  subsets: 

  - name: v1 

    labels: 

      version: v1 

  - name: v2 

    labels: 

      version: v2 

  - name: v3 

    labels: 

      version: 

v3         

 

Figure 4.11 

Istio – Destination Rules 

 

  



 

This defines the following subset names: v1, v2 and v3. These subset names can be used 

later in Virtual Services to route traffic to the appropriate version. 

 

For the weights, need to define a Virtual Service like this: 

apiVersion: networking.istio.io/v1alpha3 

kind: VirtualService 

metadata: 

  name: xmrig 

spec: 

  hosts: 

  - movies 

  http: 

  - route: 

    - destination: 

        host: xmrig 

        subset: v1 

      weight: 33 

    - destination: 

        host: xmrig 

        subset: v2 

      weight: 33 

    - destination: 

        host: xmrig 

        subset: v3 

      weight: 34 

 

Figure 4.12 

Istio – Virtual Service 

 

Now the Virtual Service is set to route 33% of all traffic to subset v1, 33% to v2 and 34% 

to v3. 

  



 

4.4 Summary 

This research goal is to identify and evaluate the K8S resources affected by the crypto 

miner’s malware. For this the researcher identified the open-source tool Intel V-Tune 

profiler to monitor the miner process. The report or logs generated out will be transformed 

to the CSV format for further analysis by the decider logic. 

Above scenario also discussed the non-miner process 7zip application which is meant for 

compressing/decompressing the files. The idea behind choosing is to make sure the CPU 

usage overshoots the threshold value which will help to analyze the core logic of crypto 

mining process.  

The latest report by (scmagazine, 2022) shows how easily hackers are targeting the 

dockers, K8S resources.  

The next chapter will discuss the major findings and provide some practical results of the 

research and finally make recommendations for future research. 

  



 

CHAPTER V:  

DISCUSSION, IMPLICATIONS AND RECOMMENDATIONS 

 

5.1 Introduction 

The primary objective of this study is to identify the customer application hardware 

resource consumption beyond the threshold value in the Public or Private cloud 

environment, Private Data canters and any small and medium business IT centers managing 

the hardware clusters. The research has utilized the open-source tools and framework for 

the demonstration of the pipeline discussed in previous section. 

The findings from the previous chapter demonstrate that the phenomena, opinions and lived 

experiences of researcher in the world of cyber threats. 

 

  



 

5.2 Discussion of Results 

 
Following topic discuss the results comparison between the crypto application vs non 

crypto application. Here “XMRig” is the open-source crypto mining application chosen to 

compare 7zip application.  

 

5.2.1 XMRig Crypto Application Analysis: 

Measure the CPU utilization by the XMRig process  

 

 

Figure 5.1 

Intel V-Tune Profile – XMRig CPU Utilization 

 

  



 

 Deciding logic for Cryptojacking detection 

 

 

 

 

 

 

Figure 5.2 

Intel V-Tune Profile – XMRig Cryptojacking detection 

  

CPU Threshold Usage > 100% + MSR value altered for hash rate + Stack trace showing 

the signature of mining application 

 

 



 

5.2.3 Non-Crypto Process 7zip Analysis: 

Non-Crypto Process Analysis 7zip (Compressing application) 

 

Figure 5.3 

Intel V-Tune Profile 7za CPU Utilization 

 

Deciding logic for Cryptojacking detection 

 

 

 

Figure 5.4 

Intel V-Tune Decider Logic 

 

CPU Threshold Usage > 100% + MSR value altered for hash rate + Stack trace 

showing the signature of compression application 

 

 



 

5.2.3 CPU Threshold Comparison 

The following table compares the CPU threshold vs actual recorded value for crypto 

application process (XMRig) and non-crypto application process (7zip). 

 
Process Name CPU Threshold Limit in 

% 

Actual Recorded Value in % 

XMRig (Crypto Application) 100 200 

7zip (Non-Crypto Application) 100 285.7 

 

Table  5.1 

Intel V-Tune CPU Threshold  

 

From the above table it is clear that CPU threshold will be the first parameter to be 

considered by the Crypto logic decider process. The threshold value plus the stack trace of 

the Intel V- Tune will help in checking the miner’s logic. 

  



 

Also, the Model specific registers settings of default values vs XMRig process settings on 

platform specific will pinpoint the intension of the crypto miner’s logic. 

 

Figure 5.5 

Intel V-Tune MSR Values 

 

The MSR value is changed by the XMRig miners process is specifically changed to 

increase the Hash rate by the miners. This is done to avoid the hardware prefetching feature 

that results in poor hash rate by RandomX algorithm. This plays a vital clue for the Crypto 

logic decider to conclude the mining. 

 

Supported CPUs: 

 Intel (Nehalem, Westmere, Sandy Bridge, Ivy Bridge, Haswell, Broadwell and 

newer) 

 Ryzen (All Zen based CPUs: Ryzen, Threadripper, EPYC) 

 

After launching the XMRig application, it modifies the MSR value to bypass the 

hardware prefetching capability. If the application is exited for some reason for error or 

on graceful exit, the initial value of the MSR registers is restored. 

 

  



 

Preset values shipped with the XMRig miner application: 

Following values are preset via the MSR when the XMRig application is launched. 

 "wrmsr": ["0x1a4:0xf"]   

Intel CPU preset value to bypass hardware prefetch capability. 

 

 "wrmsr": ["0xc0011020:0x4480000000000",  

"0xc0011021:0x1c000200000040:0xffffffffffffffdf",  

"0xc0011022:0xc000000401500000", "0xc001102b:0x2000cc14"]   

AMD Ryzen (Zen3) CPU ‘s preset value to bypass hardware prefetch 

capability. 

 

 

 "wrmsr": ["0xc0011020:0x0", "0xc0011021:0x40:0xffffffffffffffdf",  

"0xc0011022:0x1510000", "0xc001102b:0x2000cc16"]   

AMD Ryzen (Zen1/Zen2)  CPU’s preset value to bypass hardware prefetch 

capability. 

 

 "wrmsr": ["0xc0011020:0x0", "0xc0011021:0x60",  

"0xc0011022:0x510000", "0xc001102b:0x1808cc16"]   

Special custom value for first generation Zen CPUs (with known hardware 

bug) to disable opcache and enable MSR mod. 

 

  



 

5.2.4 Research Implications on Business 

As part of the research, following business sectors and many others are direct beneficiary 

of eliminating the cryptojacking but not limited to. 

Area 

Financial Sector: 

 

Healthcare Sector 

 

IT and Technology Sector 

 

E-commerce and Retail Sector: 

 

Education Sector 

 

Energy Sector 

  



 

Business Benefit Examples 

Preserved Computing Resources 

An e-commerce platform experiences faster page load times, leading to 

higher conversion rates and improved user satisfaction. 

Enhanced Security and Reputation 

A financial institution strengthens its cybersecurity measures, protecting 

customer data and enhancing its reputation as a trusted institution. 

Cost Savings 

A cloud service provider reduces energy costs and avoids hardware 

degradation by removing cryptojacking, resulting in significant cost savings. 

Maintained Customer Trust 

A software company promptly patches vulnerabilities exploited for 

cryptojacking, earning customer trust and loyalty, reducing churn rates. 

Avoided Legal and Regulatory 

Consequences 

An online gaming platform eliminates cryptojacking to comply with legal 

requirements, avoiding regulatory fines and maintaining its standing in the 

industry. 

Improved Business Continuity 

A healthcare provider removes cryptojacking from its network, ensuring 

uninterrupted critical systems and preventing harm caused by disruptions. 

Table  5.2 

Business Benefits Components  

 



 

Also, the following use case demonstrates the approximate potential savings that cloud 

service provider can benefits that hosts 200 server nodes. 

 

 Table  5.3 

Components for TOC Gain  

 

Components Potential Earnings/Savings 

Potential Cost Savings for 200 

nodes (Approximate Estimates) 

Reduced Energy 

Consumption 

Savings on electricity costs due to decreased 

energy usage. $200K/year 

Extended Hardware 

Lifespan 

Reduced expenses on hardware maintenance 

and replacement. $50K/ year 

Improved Efficiency 

and Performance 

Enhanced resource allocation and improved 

customer experience. $60K/year 

Maintenance and 

Incident Response 

Decreased expenses associated with incident 

response, system recovery, and customer 

support. $30K/year 

Preserved Reputation 

and Trust 

Retained customers, increased customer 

acquisition, and improved brand reputation. N/A (Indirect Benefit) 



 

 

General benefits according to aquasec (2004) that any sector or company can get are 

summarized as below : 

 

Preserved Computing Resources:  

By preventing cryptojacking, businesses can ensure that their computing resources are used 

for intended purposes. This preserves system performance, improves productivity, and 

avoids unnecessary strain on hardware components. 

 

Enhanced Security and Data Protection: 

 Avoiding cryptojacking helps businesses protect their systems, networks, and sensitive 

data. It reduces the risk of unauthorized access, data breaches, and potential legal and 

regulatory consequences associated with compromised security. 

 

Improved Operational Efficiency:  

Without the burden of cryptojacking incidents, businesses can operate with greater 

efficiency. Systems run at optimal performance, enabling smoother workflows, faster 

response times, and increased productivity. 

 

  



 

Cost Savings:  

By avoiding cryptojacking, businesses can save costs associated with increased energy 

consumption, hardware damage, and incident response. They can allocate resources more 

effectively, reduce operational expenses, and optimize budget allocation. 

 

Maintained Customer Trust:  

By prioritizing security and protecting customer data, businesses can maintain customer 

trust and loyalty. Avoiding cryptojacking incidents demonstrates a commitment to 

customer privacy and helps build a positive reputation. 

 

Uninterrupted Business Continuity:  

Cryptojacking can disrupt operations, leading to downtime and financial losses. By 

proactively preventing these incidents, businesses can ensure uninterrupted services, 

maintain customer satisfaction, and avoid reputational damage. 

 

  



 

Regulatory Compliance:  

Cryptojacking incidents can violate data protection and privacy regulations. By avoiding 

such incidents, businesses can demonstrate compliance with relevant laws, ensuring the 

protection of customer information and avoiding potential legal consequences. 

 

Positive Brand Image:  

Taking a proactive stance against cryptojacking demonstrates responsible business 

practices. It enhances a business's brand image, positioning it as a trusted and security-

conscious organization within the industry and among customers. 

  



 

According to Aulia Arif Wardana et al (2019)  and research methods can determine 

the benefits to general management by the IT team in adopting the steps for 

eliminating the Cryptojacking. 

1. Focus on Technical Risk Mitigation: Frame the discussion around the technical 

risks associated with cryptojacking. Explain the potential impact on computing 

resources, system performance, and data integrity. Emphasize that eliminating 

cryptojacking is crucial for maintaining operational continuity, safeguarding 

critical systems, and protecting sensitive data from unauthorized access. 

 

2. Quantify Technical Implications: Provide technical insights and statistics to 

demonstrate the potential impact of cryptojacking incidents. Estimate the potential 

strain on computing resources, the energy consumption of mining activities, and 

the potential hardware degradation caused by prolonged cryptojacking. Present 

these figures alongside the projected technical improvements achievable by 

implementing preventive measures, showcasing the technical return on investment 

(ROI). 

 

3. Link to Security Compliance and Best Practices: Explain how cryptojacking 

incidents can violate security best practices and compliance requirements. 

Highlight the importance of adhering to security frameworks, such as the NIST 

Cybersecurity Framework or ISO 27001, and how implementing preventive 



 

measures aligns with these frameworks. Emphasize the technical and regulatory 

risks of non-compliance and potential financial and legal consequences. 

 

4. Illustrate Operational Efficiency Gains: Showcase how eliminating 

cryptojacking can enhance operational efficiency from a technical perspective. 

Discuss the benefits of improved system performance, optimized resource 

allocation, and reduced incidents of system downtime. Demonstrate how proactive 

measures, such as implementing intrusion detection systems, enhancing network 

segmentation, and leveraging threat intelligence, can contribute to increased 

productivity, streamlined workflows, and improved technical operations. 

 

5. Highlight Technical Security: Measures: Emphasize the significance of 

implementing technical security measures to maintain customer trust and protect 

the company's brand reputation. Explain that by eliminating cryptojacking, the 

company showcases its commitment to secure computing practices and customer 

privacy. Illustrate how this commitment enhances technical operations, mitigates 

risks, and establishes the company as a leader in the industry. 

 

6. Present ML/AI Solutions: Discuss the advantages of leveraging ML/AI solutions 

for cryptojacking detection and prevention. Explain how ML/AI algorithms can 



 

analyze large datasets, identify patterns, and detect cryptojacking activities in real-

time. Highlight the technical advantages of adaptive ML/AI models that 

continuously learn and improve their detection capabilities, staying ahead of 

evolving threats. Present technical details on the implementation and integration of 

ML/AI solutions within the existing infrastructure. 

 

7. Provide Technical Implementation Plan: Outline a technical implementation 

plan for adopting steps to eliminate cryptojacking. Present a roadmap that includes 

necessary technical upgrades, software/hardware configurations, integration with 

existing security systems, and employee training on security practices. Address 

technical concerns, such as infrastructure compatibility, scalability, and 

performance impact, and propose feasible technical solutions. 

 

   



 

5.3 Recommendations for Future Research 

As stated, there are some limitations to this study, which future researchers may wish to 

explore further.  

The research intends to claim that with the advanced in the computational capacity of the 

Cloud resources and the efficiency of the Intel V-Tune Profiler together helps to minimize 

the threats by the malware or hackers’ application in utilizing the HW resources in the K8S 

environment. 

This research study claims the reducing the run time of threat detection of an existing 

application in the customer environment.  The window period of threat detection will be 

reduced as its makes use of the micro service architecture out of which part of the logs 

collection will happen in run time.  

The K8S is chosen as the reference orchestrating platform to deploy containers. The 

solution is equally applicable for other orchestrating platforms such as Docker Swarm, 

Rancher, Red hat OpenShift, Mesos, AWS, Microsoft Azure, GKE etc. 

A study on the new and upcoming hardware platforms and new crypto miner’s applications 

will always lead to reduce the crypto miner’s target.  The decider logic function should be 

kept on adding to support new crypto miners’ logic. Also, to support more hardware 

architectures, the future versions. 

  



 

Following are the possible list of open-source miner applications that can be targeted by 

the academic professionals or enterprise customers to identify the cryptojacking. 

 

 Pionex 

 ECOS 

 Kryptex Miner 

 Cudo Miner 

 BeMine 

 Awesome Miner 

 BFGMiner 

 MultiMiner 

 EasyMiner 

 CGMiner 

 BTCMiner 

 DiabloMiner 

 NiceHash Miner 

  



 

Following are the possible list of cloud service providers that can be used as the platform 

to identify the cryptojacking 

 Amazon Web Services (AWS) 

 Microsoft Azure 

 Google Cloud (GCP—formerly Google Cloud Platform) 

 IBM Cloud  

 Oracle Cloud 

 Alibaba Cloud 

 RedHat 

 Heroku 

 Digital Ocean 

 CloudFlare 

 Linode 

 Cloudways 

 Rackspace 

.  

  



 

Following are the possible list of service mesh for K8S that can be used as the framework 

for identify the cryptojacking. 

 Linkerd 

 AWS App Mesh 

 Consul Connect 

 Kuma 

 Traefik Mesh 

 Apache ServiceComb 

 Network Service Mesh (NSM) 

 Kiali Operator 

 NGINX Service Mesh 

 Aspen Mesh 

 Open Service Mesh (OSM) 

 Grey Matter 

 OpenShift Service Mesh 

  



 

According to Kubiya (kubiya.ai), The concept of generative AI describes machine learning 

algorithms that can create new content from minimal human input. The field has rapidly 

advanced in the past few years, with projects such as the text authorship tool ChatGPT and 

realistic image creator DALL-E2 attracting mainstream attention. 

 

Generative AI isn’t just for content creators, though. It’s also poised to transform technical 

work in the software engineering and DevOps fields. GitHub Copilot, the controversial “AI 

pair programmer,” is already prompting reconsideration of how code is written, but 

collaborative AI’s potential remains relatively unexplored in the DevOps arena. 

 

There’s huge potential for generative AI to redefine how Cryptojacking can be identified, 

in accordance with the above logic discussed and to train the AI model accordingly. Some 

points below gives a strong contention to choose the generative AI Path as part of the future 

work to carry on identifying the Cryptojacking. 

 

  



 

Automatic Failure Detection, with Suggested Remedies 

 

 Failures are a constant problem for developers and operators alike. They’re 

unpredictable interruptions that force an immediate context switch to prioritize a 

fix. This hinders productivity, slows down release schedules, and causes frustration 

when remedial work doesn’t go to plan. 

 

 AI agents can detect faults and investigate their cause. They can combine their 

analysis with generative capabilities and knowledge of past failures to suggest 

immediate actions, within the context where the alert’s displayed. 

 

 Consider a simple Kubernetes example: The assistant notices that production is 

down; realizes the Pod has been evicted due to resource constraints; and provides 

action buttons to restart the Pod, scale the cluster, or terminate other disused 

resources. The team can resolve the incident with a single click, instead of spending 

several minutes manually troubleshooting. 

  



 

On-Demand Code/Config Generation and Deployment 

 

 Generative AI’s ability to author code provides incredible value. Layering in 

conversational intents makes it more accessible and convenient. You can ask an AI 

agent to set up a new project, config file, or Terraform state definition by writing a 

brief message into a chat interface. The agent can prompt you to supply values for 

any template placeholders, then notify appropriate stakeholders that the content’s 

ready for review. 

 

 After approval’s been obtained, AI can inform the original developer, launch the 

project into a live environment, and provide a link to view the deployment and start 

iterating upon it. This condenses several distinct sequences into one self-service 

action for developers. Ops teams don’t need to manually provision the project’s 

resources ahead of time, allowing them to stay focused on their own tasks. 

 

 The next generation of AI agents go beyond simple text and photo creation to 

support fully automated prompt-driven workflows. Bi-directional AI lets you start 

processes using natural language to interact with your cloud or other resources. AI 

doesn’t need to be told which platform you’re using, or the specific steps it should 

run. 

 



 

5.4 Conclusion  

The primary research method for this study is literature review and the data collected by 

the Intel V-Tune Profiler in effectively zeroing the threat models. Various results, and the 

accuracy has taken into the account as part of the research study. The recent trends show 

the multifold adaptation of the blockchain technology for all the areas (Finance, 

Automobile, Healthcare, etc.). The pipeline is fed with data that relates to the problem 

domain and metadata that attributes a label to the data. The Model will look for the system 

calls and other HW resource utilization (Hot Spot analysis) usages of the existing 

application deployed in the safe environments before deploying the applications into the 

cloud platforms. The various literature concepts and gaps (such has minimized the time in 

detecting the malware and reducing the storage needed to collect the logs of the application) 

mentioned have well taken into the account in enhancing the research study. 

Using machine learning (ML) and artificial intelligence (AI) for eliminating cryptojacking 

offers several benefits. ML/AI algorithms can analyze large volumes of data, detect 

patterns, and identify cryptojacking activities with high accuracy. By leveraging ML/AI, 

businesses can proactively identify and respond to cryptojacking incidents in real-time, 

preventing unauthorized mining activities and protecting computing resources. ML/AI-

based solutions can adapt to evolving attack techniques, continuously learning from new 

data, and improving detection capabilities. This advanced technology enables businesses 

to enhance their cybersecurity posture, preserve system performance, and reduce the risk 

of data breaches. Furthermore, ML/AI can assist in analyzing network traffic, identifying 

vulnerabilities, and automatically applying security patches, thereby streamlining incident 



 

response, and improving overall operational efficiency. By harnessing the power of 

ML/AI, businesses can fortify their defenses against cryptojacking, safeguard customer 

trust, and maintain a secure computing environment. 

 

As stated, following research questions has been answered: 

 

 How can the customer identify the applications targeted by crypto miners to make 

use of the HW platforms? 

As discussed, the E2E pipeline concept which explains the end-to-end scenario starting 

from the source data collection, data cleaning, report generation and finally analysis.        

 

    

     Figure 5.6 

     E2E Pipeline 

 

The pipeline has been explained in detail in the methodology section and discussed the 



 

outcome of the results clearly in the result section.  The justification has been provided for 

the research question. 

  



 

 Whether the open-source methods/tools like Intel V-Tune profiler can be used to 

identify? 

The Intel V-Tune profiler is a solid tool in analysing the process on any 

recommended OS flavours such as Linux, Microsoft OS etc. The pipeline setup 

proves a solid line of study for system administrators.  Although the tool used for 

this research has targeted X86 based CPU’s.  This is because most of the deployed 

data centres servers are X86 based. 

 

 What best resolution methods can be employed to remove the miners targeted 

application dynamically in the production network?  

The E2E Pipeline is developed on the concept of K8S Mesh service framework. 

Traffic Re-direction on the fly ensures that there is no disruption in the service to 

the customers. 

 

  



 

The research helps the academic professionals in analyzing the various open source for 

identifying the cryptojacking. In fact, the various mining applications can be a worth 

considering using the pipeline suggested. 

 

For the enterprise segment, the research study if the pipeline would help them to uncover 

the potential threats in their production networks if the tools used efficiently. 

  

The research not only focus the problem of identifying the miners process, but also the 

suggestion of bringing down the miner’s process dynamically in the production 

environment helps the customer to bring down the TCO. 

  



 

APPENDIX A:  

CA COHERENCY AGENT 

CFAA COMPUTER FRAUD AND ABUSE 

ACT 

CJ CRYPTOJACKING 

CPU  CNTRAL PROCESSIGN UNIT 

CSR CONFIGURATION SPACE 

REGISTER 

CSV COMMA SEPARATED VALUE 

DLT DISTRIBUTED LEDGER 

TECHNOLOGY 

E2E END-TO-END PIPILINE CYCLE 

GDPR GENERAL DATA PROTECTION 

REGULATION 

ICU INSTRUCTION CACHE UNIT 

ISTIO KUBERNETS ISTIO 

K8S KUBERNETES 

LBR LAST BRANCH RECORD 

MLC MID LEVEL CACHE 

MSR MODEL SPECIFIC REGISTERS 

P2P PEER-TO-PEER 



 

PIPELINE PROCESS STARTING FROM DATA 

COLLECTION TO ANALYSIS 

PROCESS LINUX OS PROCESS 

SGX INTEL SOFTWARE GUARD 

EXTENSIONS 

SKU STOCK KEEPING UNIT 

TOC TOTAL COST OF OWNERSHIP 

V-TUNE INTEL V-TUNE PROFILER 

X86 X86 CPU ARCHITECTURE 
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