
   

 

DECISION MAKING ON A SOFTWARE UPGRADE OR DECOMMISSION 

WITH DATA MINING AND MACHINE LEARNING TECHNIQUES  

IN INFORMATION TECHNOLOGY INDUSTRY 

BY 

 

RAVIKANTH KOWDEED 

 

DISSERTATION 

 

Presented to the Swiss School of Business and Management Geneva 

 

In fulfillment of the requirements 

for the Degree 

 

GLOBAL DOCTOR OF BUSINESS ADMINISTRATION 

 

December 2024 

 

 

 

 

 

 

 

 

 

 

 



2 

 

 

 

 

 

 

 

 

 

 

Approved by 

 

     
 

Prof.dr.sc. Saša Petar, Ph.D., dissertation Chair  

 

     

 

Received/Approved By: 

 

            

Admissions Director 

  



3 

 

 

 

Dedication 

I dedicate this idea, proposal and research work to my family who supported me in this 

journey. 

 

  



4 

 

 

 

Acknowledgements 

I acknowledge and thank my mentor Dr Monika Singh for valuable review inputs 

and suggestions in my entire journey of this research work. As part of this research, I 

tried to come up with a process and framework for the complex problem of decision 

making on software upgrades and decommissions in terms of providing a decision tree, 

defining and integrating the input data sets, providing a prototype solution to derive the 

recommendations. 

In this process, I have also filed a patent application for the proposal of 

recommendation tool that performs the above-mentioned functionality. I dedicate this to 

my family who has supported me in thick and thin times of my career so far. 

  



5 

 

 

 

 

ABSTRACT 

 

Decision Making on a Software Upgrade or Decommission with Data Mining and 

Machine Learning Techniques in Information 

Technology Industry 

 

 

 

RAVIKANTH KOWDEED 

2024 

 

 

 

Dissertation Chair: <Chair’s Name> 

Co-Chair: <If applicable. Co-Chair’s Name> 

 

 

  



6 

 

 

 

Background: 

As part of Digital Transformation needs, the Organizations are investing more in 

Technology and Infrastructure like software upgrades, software renewals, software 

replacements, Cloud migrations etc., apart from investment in Business, People, and 

Processes. In this context, it is not an easy task for stakeholders to decide whether to go 

for a software upgrade or to replace it with another software. There is no unified 

approach or solution available today which proactively integrates key data such as 

Software Versions, Platform Compatibility, Dependent Software versions, Investment 

and Operational Costs, Open defects and fixes, Software Performance Metrics and 

Service level objectives. Due to this, the so-called decision making is a manual and 

tedious process taking time and effort.  

  



7 

 

 

 

Research Method: 

This research is quantitative and experimental, tries to simplify the decision-making 

process by conceptualizing and prototyping a recommendation system that is proactive 

and data driven in nature. 

This gathers information from the Software Engineering Life Cycle stages and apply 

Pareto law on the metrics - 80% of consequences come from 20% of causes - after 

establishing relationship between the data sets, executing Machine learning models on 

this big data.  

This research proposes relational data modelling of input data, store the input data in 

database tables, apply Data Mining and Machine Learning techniques on the aggregated 

data to derive recommendation insights on a regular basis. 

 

 Software assets versions (source: Software release documentation) 

 Platform compatible versions (source: Software feature documentation) 

 Dependencies with other software (source: Software release documentation, Tools 

and Frameworks to manage Compile and Run time dependencies) 

 Operational service level agreement needs (source: Business requirements) 

 SLA and SLO requirements (source: Organizational Operational metrics) 

 Quality assurance and Systems performance metrics (source: Organizational 

Operational metrics) 

 Cyber Security vulnerability fixes (NVD reported issues and resolutions) 

 Number of defects and fixes in timely manner (Defects and resolution as tracked 

at software level and as provided in Software release documentation) 

 Investment Cost (Software cost) 

 Operational Cost (Software cost for renewals/patches/maintenance) 

 Estimated cost for replacement (Cost of new software adoption and 

decommissioning the current software) 

 

  



8 

 

 

 

Limitations of this Research: 

Every Organization will have own challenges and learnings in modernizing their software 

systems. While the software vendor release notes are publicly available, the release 

documentation is precise, and system dependencies are complex. All this data needs to be 

collated and analyzed to define data relationships and variables. While a prototype 

process and framework are proposed, the actual derivations and recommendations on this 

time series data in organizations depends on lot of other factors including constant 

reviews and uploading them back to the public domain for reuse, which remains out of 

the scope topic. 

 

Opportunities for future: 

With evolution and adoption of Generative Artificial Intelligence, Organizations may 

leverage their own data in conjunction with other publicly available Organization case 

studies. This research can be further expanded to build recommendation systems using 

private Large Language Models which provides capabilities of having Chat bots on the 

Organizational data considering data privacy. The overall idea and concept remain the 

same i.e., have a user interface that feeds the input data set, have a background process 

that performs data mining and provides graphical representation of data variables and 

outliers, have a presentation layer that chooses the machine learning model that triggers 

process of generating recommendation if software needs upgrade or replacement thereby 

decommissioning the existing software.  

 

  



9 

 

 

 

TABLE OF CONTENTS 

CHAPTER 1:  INTRODUCTION .................................................................................... 11 

1.1 Research Problem ............................................................................... 15 
1.2 Purpose ................................................................................................ 16 
1.2 Scope of Research ............................................................................... 16 
1.3 Significance of the Study .................................................................... 16 
1.4 Research Questions ............................................................................. 17 

CHAPTER 2:  REVIEW OF LITERATURE ................................................................... 18 

2.1 Available Research - Findings ............................................................ 18 
2.2 Available Research - Opportunities .................................................... 20 

CHAPTER 3:  METHODOLOGY ................................................................................... 25 

3.1 Hypotheses .......................................................................................... 25 
Systems Asset documentation................................................................... 28 
Software and Hardware Compatibility ..................................................... 29 
Collecting Metrics ..................................................................................... 29 
Planned Cost ............................................................................................. 29 
Actual Cost................................................................................................ 30 
Internal Audit ............................................................................................ 30 
3.2 Research Design.................................................................................. 30 
3.3 Population and Sample ....................................................................... 30 
3.4 Instrumentation ................................................................................... 31 
3.5 Data Collection Procedures................................................................. 36 
3.6 Data Analysis ...................................................................................... 36 
3.7 Limitations .......................................................................................... 36 
3.8 Proposed prototype solution ............................................................... 37 

CHAPTER 4:  EXPERIMENTATION RESULTS .......................................................... 38 

4.1 Extracting software and hardware compatible version 

information ................................................................................................ 38 
4.2 Listing software versions compatibility information ....................... 39 
4.3 Knowing end of life information of a given software library 

version ....................................................................................................... 45 
4.4 Tracking open defects and resolution time ...................................... 48 
4.5 Track security vulnerabilties and resolution time ............................ 49 
4.6 Knowing software service level objectives pass and fail ................. 49 
4.7 Be aware of software version functionality and features ................. 50 
4.8 Knowing the right time for software upgrade or 

decommission ........................................................................................... 50 
4.9 Cost Optimization with a Business Use Case: ................................. 51 

CHAPTER VI:  SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS ......... 78 



10 

 

 

 

5.1 Summary ............................................................................................. 78 
5.2 Implications......................................................................................... 80 
5.3 Recommendations for Future Research .............................................. 80 
5.4 Conclusion .......................................................................................... 81 

REFERENCES ................................................................................................................. 82 

APPENDIX ...................................................................................................................... 84 

 

  



11 

 

 

 

CHAPTER 1:  

INTRODUCTION 

 

This research tries to simplify the decision-making process by conceptualizing and 

prototyping a recommendation system that is data driven and customizable in nature. 

This research is about collecting critical data needed, integrating it, building a 

relational data model, storing data in database tables, applying Data Mining and 

Machine Learning techniques to derive recommendation insights on a regular basis. 

All the input data is fed into the proposed recommendation system that could provide 

insights helping decision making of software upgrade and decommissions in the Digital 

Transformation exercise. This research also proposes unified solution for Software 

Development Upgrades and Decommissions Life Cycle as shown in picture below. 

  



12 

 

 

 

FIG. 1 

 
  

Recommendation
Report

Data Source

Software 
requirements

Systems Asset 
Metadata

Defects/Issues
Vulnerability

Software
Budget/Cost

Execution 
metrics

Ethical Rules/
Data Privacy

Database
Extract

ETL Connectors

Input data

Model Selection, Training, 
Evaluation

- Decision Tree

- Support Vector Models
- XGBoost

- LSTM

Data analysis

- Predictive maintenance analysis
- Cost benefit analysis

- User feedback integration
- Iterative improvement

- Decision Making

Application Interface

User Interface



13 

 

 

 

FIG. 2 

 

 

 

The data is gathered from the public web sites, software release documentation and 

organization case studies, listed below. 

 Software Requirements (Business objective, System needs, Software features, 

Hardware specifications, Cloud vs non-Cloud infrastructure supported). 

 Software Cost (Invest vs Operate Cost i.e., installation, renewals, upgradation 

and decommission costs) 

 System Asset Metadata (Software features, version information, service level 

objective, end of life date). 

 Software Issues (Compatibility issues with other software and hardware, Security 

Vulnerabilities, Quality defects, integration errors) 

 Software Execution metrics (configurations, change management, performance 

metrics and maintenance activity insights) 

The Hypotheses are: 

 System Asset data determines the right time for upgrade and decommission. 

 Software and hardware systems compatibility is the key factor. 

 Software and hardware system metrics help in taking timely decisions in 

upgrading, retiring or consolidating systems assets. 

User 
Interface

Application Interface

Input module

Data 
collection 

Tier

Pre-processing 
Tier

ETL Connectors

Processing 
module

Machine 
learning 
Models

Data 
mining

Output 
module

Database

Recommendation Tool



14 

 

 

 

 Baseline costs (also known as planned costs) determine operational cost guidance 

year on year. 

 Operational costs (also known as actual costs) drive systems upgrades and 

systems decommissions. 

 The Information Technology audits and findings drive compliance requirements 

and available time to upgrade or decommission a particular software. 

 Business service level objectives and new features drive Systems upgrades and 

decommissioning efforts. 

  



15 

 

 

 

 

1.1 Research Problem 

 

1. Identifying what is the right time of software upgrade or decommission. 

a. Today, there is no decision tree to identify risks with a given software 

running on hardware since software performance is function of time 

besides many other factors. 

2. Decision making on Software upgrade or decommission is a complex and 

lengthy exercise.  Simplifying this process reduces manual effort involved. 

a. Today, there is no unified approach or solution to programatically run 

through the checklist in the entire process.  

b. There is need of continuous data integration required for software 

upgrades in terms of finding software stable version, updating software 

dependencies, checking platform compatibility, identifying end of life 

components, in-time defects resolution, prioritizing business 

requirements, considering data privacy needs and keeping a check on 

the overall invest and operate cost. 

3. Setup a systematic process that generates data insights on a continuous basis. 

a. Propose user interface to upload the input data 

b. Build the Python based application that performs data exploration, 

describes variables and relationships 

c. Run machine learning models on the aggrgated data to derive key 

recommendations 

  



16 

 

 

 

1.2 Purpose 

 

Helping Research community, Information Technology Industry at large, with this 

research proposal and thesis.  

 

1.2 Scope of Research  

1. Listing all the input data sets. 

2. Data modelling 

3. Define variables that need continous review i.e., operational risks, year on year 

technology spend, time and effort going in defect fixes, security vulnerabilities, 

systems degradation, service level objective misses, good to have business needs, 

remediating deprecated software and hardware, cloud migration for better system 

scalability and availaibility etc.  

4. Propose a multi utility application with an UI and backend process framework 

that simulates Generative Artificial Intelligence Engine.  

5. Apply Time Series, Decision Tree, Supervised Machine Learning and many other 

Machine Learning Models on the aggregated data. 

6. Propose software upgrades and decomissions life cycle as a continuos process, 

monitored and executed on the systems data to generate recommendations in a 

timely manner, helping stakeholders to take decisions. 

 

1.3 Significance of the Study  

The software version management, compatibility with other software and 

hardware, software library dependency management, fixing security vulnerabilities, 

tracking invest and operate cost, tracking end of life systems, tracking turn around time in 

releasing new business features to customers etc are function of time and effort. There is 

no unified approach to integrate all this data and derive key insights for the stakeholders.  



17 

 

 

 

1.4 Research Questions  

1. How to integrate software and hardware versions information that are compatible 

to each other? 

2. How to integrate end of life information for a given software and hardware 

version ? 

3. How to track cost factor, vulnerabilities and open defects in using a choosing a 

particular software library on a particular platform ? 

4. What is the right time for a software upgrade or decommission (replace with 

another one)?  

5. How to setup a systematic process that simulates ensemble learning on the 

software asset data and help in the data driven decision making? 

 

For example, consider an application in Python 3.1 connecting to Oracle 11g R2 

database. When Oracle needs upgrade to 23 version or any stable version next to 11R2, 

the feasibility check is needed. 

See Google search screenshot below, there is a clear dependency and compatibility 

between two software here i.e., Python 2.6 (client) and Oracle 23 (database). 

 

  



18 

 

 

 

 

CHAPTER 2:  

REVIEW OF LITERATURE 

2.1 Available Research - Findings 

Every Organization has Digital Transformation goal today and one of the primary 

objectives is “paperless and seamless experience to the customers”. This may call for 

Software upgrade or a Software replacement for outdated Software Systems. There is an 

interesting publication on this topic by Harvard Business Review (Pombriant D, 2021). 

The traditional approach of Software selection often means buying the market leader or at 

least finding a technology solution that provides about 80% of business needs. In either 

case, existing software needs an upgrade (Bachwani R., et al, 2012) to address the 

deficiencies or go for new software, decommission (Zijden S.V.D., 2022) the old one. 

However, there is no guidance on what the right time is to upgrade the software or go 

with replacement. Key here is cost for investing in new software vis a vis upgrading 

existing software. If new software was chosen for obvious reasons, the existing software 

needs systematic decommission. 

The modernization of legacy systems (Ortiz-Ochoa M., 2016) explains the problems with 

legacy systems but there is no guidance on data drive decision making for the systems 

modernization. 

The periodic review on software assets data (Nouh F., 2016) is a manual task for the 

Systems Engineering team but is a critical responsibility to keep track of validity status of 

the products and software in use. There is an opportunity to relate this data with 

performance of software, service level agreement misses, upgrade need due to dependent 

software or hardware components undergoing upgrades replacements etc. 

The Software performance metrics (Iqbal M., Khalid M. and Khan M.N.A., 2013) is 

another important piece of information to track. There is no guidance available on 

https://www.researchgate.net/profile/Mauricio-Ortiz-Ochoa?_sg%5B0%5D=Pna1R3akYXIRFxgIo8dvY-Owp4QQotHTIO2uoyvOVIJlIVqDzFP4MIXMVquiAHgJVbwgKLY.DHa_FSO1t1ekL1nKMaePggJb0VyCk7GIvINg3RQMGIj1ajpxvYKSfDtW1sQVraETifLHjOS00BeUTs0_APEnBg&_sg%5B1%5D=qibAwa30Bkrz6QZcKR7tXjH9pKy5g7ON8zLvyoZudazNhdG-F9cCzHyTjbBrlFwn13voIFk.ZOU4Z_l5Dcq4uLdTQy6Q23-OLsIGlxSRMi1Ohkl4VzNg1FDdC5wzcuTFubFY99TQMwhZw6dcwhYEG81bbVZhAg


19 

 

 

 

defining success or error rate with software in use with respect to performance metrics. 

There is a need to adopt a centralized tool or methodology to capture the above-

mentioned data so the software footprint like – execution traces, response times, memory 

spikes, space consumption, CPU overhead, cyber security issues, integration errors etc. 

can be known, consolidated as issues and then success likelihood can be defined.  

The Quality Assurance of a Software is yet another important metric. The quicker the 

fault prediction (Singh M. and Chabbra J.K., 2021) and issue resolution, the easier the 

Software Upgrades. There is no guidance on how these metrics can be used to define the 

success likelihood of software upgrade or software decommission needs today. 

In addition to the above, the Software Security Assurance is one more important metric 

that cuts across the software development and operate life cycle stages. The Software 

Security Metrics (Saarela M., et al, 2017) helps in continuous evaluation and resolution 

of security issues in the software. Integrating with SNYK (snyk.com) , which sources 

from National Vulnerability Database vulnerabilities and severity associated, there is a 

need to prioritize error resolution to stabilize the current state of software.  

 

There are some key studies and research papers on software upgrades and 

decommissions: 

 

1. Software Upgrade Strategies: Research from arXiv evaluates different software update 

strategies in response to security threats. The study compares strategies like immediate 

updates, planned updates (with delays), and reactive updates based on vulnerability 

disclosures. It provides insights into how enterprises can optimize their update intervals 

to balance security risks and operational stability. 

 

2. Case Study on Packaged Software Upgrades: A study from the European Journal of 

Information Systems explores upgrade decisions in large organizations. It examines the 

transition of two widely used software products, SAP and Windows, highlighting how 



20 

 

 

 

cost, operational disruptions, and organizational factors play significant roles in deciding 

to upgrade. 

 

3. Survey on Operating System Upgrades: This research investigates user behavior 

related to OS upgrades, focusing on why users often delay or avoid updating their 

systems. Factors such as fear of bugs, software compatibility, and the perceived 

complexity of new versions are common reasons for hesitancy. 

 

4. Software Aging and Rejuvenation: A systematic review on software aging, which 

refers to the gradual degradation of software performance over time, outlines various 

approaches to manage this issue. The study emphasizes the importance of regular 

software rejuvenation and upgrades to prevent failures due to aging. 

 

5. Risk in IT Development and Decommissioning: Research has highlighted the risks 

associated with decommissioning outdated IT systems, including data loss, security 

vulnerabilities, and operational disruptions. These studies underline the need for careful 

planning and phased execution when retiring legacy systems. 

 

These provide a well-rounded perspective on the complexities involved in upgrading or 

decommissioning software systems, with a particular emphasis on security, cost, and 

organizational impacts. 

2.2 Available Research - Opportunities 

 

Below is the summary. 

S. No. Papers/Publications Available Research Future 

Opportunities 

[1] Fadi Nouh: 2016  

‘SAM Software Asset 

Management’, 

ResearchGate publication 

This details importance of 

Software Asset 

Management which helps 

reduce IT costs and limit 

operational, financial, and 

Identify critical 

software asset 

information like asset 

expiry, asset renewal 

date, cost to upgrade 



21 

 

 

 

legal risks related to the 

ownership and use of 

software. 

etc. and assign 

weightage 

[2] Rekha Bachwani. Olivier 

Crameri. Ricardo Bianchini 

and others: 2012 

‘Recommendation system 

for software upgrades’, 

ResearchGate publication 

Authors in this paper have 

come up with 

recommendations for 

software upgrade by 

users, by checking the 

new user environment and 

inputs compare with 

existing users data whose 

upgrade succeeded or 

failed.  

Collect the data such 

as software version, 

compatible platform 

version, other 

dependent software 

versions, cost for 

upgrade etc. and 

assign weightage 

[3] Harco Leslie Hendric Spits 

Warnars and 6 others: 2017 

‘Software metrics for fault 

prediction using machine 

learning approaches’, 

ResearchGate publication 

In this paper, authors 

described possible 

software metric for fault 

prediction by using 

machine learning 

algorithm 

Use these metrics, 

define weightage, 

derive if software 

upgrade is needed by 

training data with 

multiple Machine 

Learning models like 

Time Series 

forecasting, various 

Supervised Machine 

Learning models. 

[4] Investopedia, 2022. 

Feasibility Study 

Importance: 

Investopedia.com 

feasibility-study business 

essentials publication 

The publishing 

organization has 

explained the feasibility 

checks of using any 

Software for Business 

essentials. 

Need to provide 

weightage for 

Business 

requirements along 

with feasibility 

checks that can help 

choose a software 

https://www.researchgate.net/profile/Rekha-Bachwani?_sg%5B0%5D=MxOodS74facMC4Sg8tbVNdNjW8QcbuATH7RoNUg3A7JdlnLKvMP1gqosvvG2-DJwHa3Y-hI.ioFIlbpS4E1axqvmkFA6QTtxZfkwzfsumJGlq9NPTVHRFq1aCdiSjB5Aw1-vA6dTwsxy-fj4XnpSvR6jAgNHpg&_sg%5B1%5D=fMGpEL-PwS92PYpCGdXynfzxZkrlxi2BfZ33ueeGxC1Wr05RQeYyl0oaH1rXaVdI3sfRPDM.jS9jy0D4JAUnACKq8QkJ1NmN7eKL4xJYTzoExfjKdfzRL4ahJDIl-LA3-d7b-vJ6kuOBv7K09oL1D5OVYUiNzw
https://www.researchgate.net/profile/Olivier-Crameri?_sg%5B0%5D=MxOodS74facMC4Sg8tbVNdNjW8QcbuATH7RoNUg3A7JdlnLKvMP1gqosvvG2-DJwHa3Y-hI.ioFIlbpS4E1axqvmkFA6QTtxZfkwzfsumJGlq9NPTVHRFq1aCdiSjB5Aw1-vA6dTwsxy-fj4XnpSvR6jAgNHpg&_sg%5B1%5D=fMGpEL-PwS92PYpCGdXynfzxZkrlxi2BfZ33ueeGxC1Wr05RQeYyl0oaH1rXaVdI3sfRPDM.jS9jy0D4JAUnACKq8QkJ1NmN7eKL4xJYTzoExfjKdfzRL4ahJDIl-LA3-d7b-vJ6kuOBv7K09oL1D5OVYUiNzw
https://www.researchgate.net/profile/Olivier-Crameri?_sg%5B0%5D=MxOodS74facMC4Sg8tbVNdNjW8QcbuATH7RoNUg3A7JdlnLKvMP1gqosvvG2-DJwHa3Y-hI.ioFIlbpS4E1axqvmkFA6QTtxZfkwzfsumJGlq9NPTVHRFq1aCdiSjB5Aw1-vA6dTwsxy-fj4XnpSvR6jAgNHpg&_sg%5B1%5D=fMGpEL-PwS92PYpCGdXynfzxZkrlxi2BfZ33ueeGxC1Wr05RQeYyl0oaH1rXaVdI3sfRPDM.jS9jy0D4JAUnACKq8QkJ1NmN7eKL4xJYTzoExfjKdfzRL4ahJDIl-LA3-d7b-vJ6kuOBv7K09oL1D5OVYUiNzw
https://www.researchgate.net/profile/Ricardo-Bianchini?_sg%5B0%5D=MxOodS74facMC4Sg8tbVNdNjW8QcbuATH7RoNUg3A7JdlnLKvMP1gqosvvG2-DJwHa3Y-hI.ioFIlbpS4E1axqvmkFA6QTtxZfkwzfsumJGlq9NPTVHRFq1aCdiSjB5Aw1-vA6dTwsxy-fj4XnpSvR6jAgNHpg&_sg%5B1%5D=fMGpEL-PwS92PYpCGdXynfzxZkrlxi2BfZ33ueeGxC1Wr05RQeYyl0oaH1rXaVdI3sfRPDM.jS9jy0D4JAUnACKq8QkJ1NmN7eKL4xJYTzoExfjKdfzRL4ahJDIl-LA3-d7b-vJ6kuOBv7K09oL1D5OVYUiNzw
https://www.researchgate.net/profile/Harco-Leslie-Hendric-Spits-Warnars
https://www.researchgate.net/profile/Harco-Leslie-Hendric-Spits-Warnars
https://www.researchgate.net/publication/323719116_Software_metrics_for_fault_prediction_using_machine_learning_approaches_A_literature_review_with_PROMISE_repository_dataset?_iepl%5BgeneralViewId%5D=RGqBkQ12Z50lKSE9I3YFxv111ll0IDLPLcOi&_iepl%5Bcontexts%5D%5B0%5D=searchReact&_iepl%5BviewId%5D=ft6X0DPQ1ftpBpR5fJ395aOjipvotctb3uIt&_iepl%5BsearchType%5D=publication&_iepl%5Bdata%5D%5BcountLessEqual20%5D=1&_iepl%5Bdata%5D%5BinteractedWithPosition1%5D=1&_iepl%5Bdata%5D%5BwithEnrichment%5D=1&_iepl%5Bposition%5D=1&_iepl%5BrgKey%5D=PB%3A323719116&_iepl%5BtargetEntityId%5D=PB%3A323719116&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/323719116_Software_metrics_for_fault_prediction_using_machine_learning_approaches_A_literature_review_with_PROMISE_repository_dataset?_iepl%5BgeneralViewId%5D=RGqBkQ12Z50lKSE9I3YFxv111ll0IDLPLcOi&_iepl%5Bcontexts%5D%5B0%5D=searchReact&_iepl%5BviewId%5D=ft6X0DPQ1ftpBpR5fJ395aOjipvotctb3uIt&_iepl%5BsearchType%5D=publication&_iepl%5Bdata%5D%5BcountLessEqual20%5D=1&_iepl%5Bdata%5D%5BinteractedWithPosition1%5D=1&_iepl%5Bdata%5D%5BwithEnrichment%5D=1&_iepl%5Bposition%5D=1&_iepl%5BrgKey%5D=PB%3A323719116&_iepl%5BtargetEntityId%5D=PB%3A323719116&_iepl%5BinteractionType%5D=publicationTitle
https://www.researchgate.net/publication/323719116_Software_metrics_for_fault_prediction_using_machine_learning_approaches_A_literature_review_with_PROMISE_repository_dataset?_iepl%5BgeneralViewId%5D=RGqBkQ12Z50lKSE9I3YFxv111ll0IDLPLcOi&_iepl%5Bcontexts%5D%5B0%5D=searchReact&_iepl%5BviewId%5D=ft6X0DPQ1ftpBpR5fJ395aOjipvotctb3uIt&_iepl%5BsearchType%5D=publication&_iepl%5Bdata%5D%5BcountLessEqual20%5D=1&_iepl%5Bdata%5D%5BinteractedWithPosition1%5D=1&_iepl%5Bdata%5D%5BwithEnrichment%5D=1&_iepl%5Bposition%5D=1&_iepl%5BrgKey%5D=PB%3A323719116&_iepl%5BtargetEntityId%5D=PB%3A323719116&_iepl%5BinteractionType%5D=publicationTitle


22 

 

 

 

[5] Stefan Van Der Zijden: 

2022 ‘Gartner: Three key 

tasks needed to 

decommission 

applications’, 

ComputerWeekly.com  

Author emphasized on the 

key tasks and associated 

effort in the 

decommission of an 

application 

Consider the cost, 

time and effort 

required for the 

software 

decommission and 

define weightage. 

[6] Ajay Kumar and 

Kamaldeep Kaur: 2022 

‘Recommendation of 

Regression Techniques for 

Software Maintainability 

Prediction with Multi-

Criteria Decision-Making’, 

ResearchGate 

In this, the authors have 

recommended regression 

techniques for software 

maintainability prediction 

Use these metrics and 

define confidence 

levels on the software 

maintainability 

parameters 

[7] Denis Pombriant: 2021 ‘Do 

you have the right software 

for your digital 

transformation’, Harvard 

Business Review 

This article covers the 

need of robust, 

systematic, and unified 

systems replacing 

outdated systems for 

Digital Transformation 

goals, however for 

decision making, there is 

a need to capture, measure 

and relate all of this. 

Consider the below 

dependencies and 

assign weightage: 

software with another 

software, software 

with a given 

hardware, number of 

data copies and 

integrations, number 

of user screens etc. 

[8] Shahid Iqbal. Muhammad 

Khalid and M.N.A. Khan: 

2013  

‘A Distinctive Suite of 

Performance Metrics for 

Software Design’, 

ResearchGate publication 

This research evaluates 

and highlights the 

importance of various 

metrics in the software 

performance around 

software design, 

development, and 

Use these metrics and 

define weightage on 

software performance 



23 

 

 

 

management, however 

there is a need to measure 

all this. 

[9] Marko Saarela, Shohreh 

Hosseinzadeh, Sami 

Hyrynsalmi and Ville 

Leppänen: 2017 ‘Measuring 

Software Security from the 

Design of Software’, 

ResearchGate publication. 

 

This paper studies kinds 

of security measurement 

tools (i.e., metrics) that 

are available, and what 

these tools and metrics 

reveal about the security 

of software 

Use these metrics and 

further define 

weightage on widely 

occurring software 

security 

vulnerabilities based 

on OWASP[10] 

NVD[12] and 

SNYK[11] guidance 

[10] OWASP This site stores security 

vulnerabilities 

Reference only 

[11] SNYK This site scans the code in 

GITHUB repositories and 

provides the list of 

dynamic scans and open-

source vulnerabilities and 

fixes for the same. 

Reference only 

[12] NVD NVD stands for National 

Vulnerability Database, a 

comprehensive online 

database maintained by 

the United States 

Department of Homeland 

Security to provide 

detailed information on 

vulnerabilities in software 

and other systems. The 

database contains a vast 

Reference only 



24 

 

 

 

collection of vulnerability 

descriptions, including 

key factors such as 

severity, impact, and 

effective dates. The NVD 

is freely accessible and 

widely used by 

cybersecurity 

professionals, researchers, 

and organizations to 

identify and prioritize 

vulnerabilities, patch 

software, and improve 

overall security 

 

  



25 

 

 

 

CHAPTER 3:  

METHODOLOGY 

 

This Research is based on Quantitative and Experimental methodology. 

3.1 Hypotheses  

 

Software Upgrade hypotheses 

 

When considering software upgrades, several hypotheses can guide the decision to 

proceed with an upgrade. Here are some possible hypotheses to explore: 

 

1. Improved Performance Hypothesis 

   - Hypothesis: Upgrading the software will improve overall system performance, 

including speed, reliability, and efficiency. 

   - Test: Compare system performance metrics such as processing speed, response times, 

and error rates between the current version and the upgraded version. 

 

2. Enhanced Security Hypothesis 

   - Hypothesis: The upgrade will enhance the security of the system, providing better 

protection against vulnerabilities, malware, and breaches. 

   - Test: Analyze security features in the upgrade, such as updated encryption protocols, 

patching of known vulnerabilities, and stronger authentication mechanisms. 

 

3. Feature Enhancement Hypothesis 

   - Hypothesis: The new software version includes additional features and functionality 

that will benefit the organization, improve user experience, or streamline operations. 

   - Test: Review the release notes for new features, gather feedback from users on desired 

features, and assess the impact of these improvements on workflows. 

 

4. Increased Compatibility Hypothesis 

   - Hypothesis: The software upgrade will improve compatibility with other systems, 

tools, or platforms, allowing better integration and interoperability. 

   - Test: Test the upgraded software’s ability to communicate and integrate with other 

systems, APIs, and modern platforms that the current version may not support. 

 

5. Vendor Support Hypothesis 

   - Hypothesis: Upgrading will extend the duration of vendor support, ensuring that the 

system receives ongoing maintenance, patches, and updates. 

   - Test: Verify the vendor’s support timeline for both the current and upgraded versions 

and evaluate the availability of future updates and maintenance. 

 

6. Cost Efficiency Hypothesis 



26 

 

 

 

   - Hypothesis: The software upgrade will result in long-term cost savings, either through 

better resource utilization, reduced downtime, or lower maintenance costs. 

   - Test: Estimate the upgrade costs versus the potential savings from improved 

efficiency, reduced operational costs, or avoided expenses from running outdated 

software. 

 

7. User Satisfaction Hypothesis 

   - Hypothesis: Users will experience increased satisfaction and productivity with the 

upgraded software, thanks to improved usability, performance, or new features. 

   - Test: Conduct user surveys or pilot tests to gauge user reaction to the upgraded 

software and its impact on their work processes. 

 

8. Scalability Hypothesis 

   - Hypothesis: Upgrading the software will improve its scalability, allowing it to handle 

larger volumes of data, more users, or increased workloads without degradation in 

performance. 

   - Test: Test the software's performance under increased loads or in a simulated 

environment to assess how well it scales after the upgrade. 

 

9. Compliance and Regulatory Hypothesis 

   - Hypothesis: The upgrade will ensure that the software remains compliant with 

updated industry regulations, standards, or legal requirements. 

   - Test: Compare the compliance features of the current and upgraded versions, checking 

for any new certifications or regulatory updates the upgrade provides. 

 

10. Stability and Bug Fixes Hypothesis 

   - Hypothesis: The software upgrade will resolve bugs and known issues in the current 

version, leading to a more stable and reliable system. 

   - Test: Review the release notes or bug tracker for fixes included in the upgrade and test 

for system stability improvements by monitoring error logs and crash reports. 

 

11. Reduced Technical Debt Hypothesis 

   - Hypothesis: Upgrading the software will reduce technical debt, making the system 

easier to maintain and more future-proof by modernizing the codebase or architecture. 

   - Test: Evaluate the underlying technology, code structure, and maintainability of the 

upgraded version compared to the current one and assess long-term maintenance 

requirements. 

 

12. Market Competitiveness Hypothesis 

   - Hypothesis: Upgrading the software will make the organization more competitive in 

its market by enabling the use of cutting-edge features, automation, or improved 

analytics. 

   - Test: Assess how the new features or improvements can enhance the organization's 

market position, comparing against competitors' capabilities. 

 

13. Innovation Enablement Hypothesis 



27 

 

 

 

   - Hypothesis: The upgrade will enable the organization to innovate more rapidly, by 

providing tools, frameworks, or features that facilitate new product development or 

process improvements. 

   - Test: Analyze the new capabilities introduced in the upgrade, especially those related 

to automation, AI, or integration with other innovation-driven platforms. 

 

14. Ease of Adoption Hypothesis 

   - Hypothesis: The software upgrade will be easy to adopt by the current user base, with 

minimal disruption, training, or adaptation required. 

   - Test: Pilot the upgrade with a small group of users, evaluate the learning curve, and 

identify any barriers to adoption, such as required training or significant changes in the 

user interface. 

 

Each of these hypotheses would need to be validated through testing, user feedback, and 

technical assessments to determine if a software upgrade is beneficial. 

 

Software Decommissions hypotheses 

 

When decommissioning software, various hypotheses might guide the decision-making 

process. Here are some potential hypotheses that could be considered: 

1. Cost Savings Hypothesis 

- Hypothesis: Decommissioning the software will lead to significant cost savings by 

eliminating licensing fees, support contracts, and maintenance costs. 

- Test: Compare the current operational costs of maintaining the software versus the 

projected costs of replacing or retiring it. 

 

2. Technology Obsolescence Hypothesis 

- Hypothesis: The software is obsolete and no longer meets the organization's 

technological needs or integrates well with newer systems. 

- Test: Evaluate how well the software supports modern technology standards, APIs, and 

workflows. Assess the impact of using outdated technology on efficiency and 

compatibility. 

 

3. Security and Compliance Hypothesis 

- Hypothesis: Decommissioning the software will reduce security risks and help ensure 

compliance with updated regulations or industry standards. 

- Test: Analyse the software for vulnerabilities, outdated encryption protocols, or 

unsupported software components. Review any compliance gaps associated with 

continuing its use. 

 

4. Low Usage Hypothesis 

- Hypothesis: The software is underutilized, and the value it provides does not justify its 

continued operation. 

- Test: Examine usage logs, user feedback, and frequency of access to determine if the 

software is essential or if its functions can be performed more efficiently through other 

tools. 



28 

 

 

 

 

5. Performance Degradation Hypothesis 

- Hypothesis: The performance of the software is negatively affecting business 

operations, causing bottlenecks or inefficiencies. 

- Test: Measure system performance, including speed, reliability, and downtime, and 

assess the impact on business productivity. 

 

6. Transition to Cloud/Modern Systems Hypothesis 

- Hypothesis: Migrating to cloud-based solutions or modern platforms will offer better 

scalability, flexibility, and lower overall operational costs compared to maintaining the 

legacy system. 

- Test: Evaluate the benefits of cloud infrastructure or modern alternatives in terms of 

scalability, cost efficiency, and ability to integrate with other services. 

 

7. Duplicate Functionality Hypothesis 

- Hypothesis: The software provides functionality that is duplicated by other systems or 

tools, making it redundant. 

- Test: Conduct an inventory of features and assess overlap with other existing or planned 

systems, determining whether consolidation can occur. 

 

8. User Dissatisfaction Hypothesis 

- Hypothesis: Users are dissatisfied with the software due to poor user experience, lack of 

features, or frequent errors, which reduces productivity. 

- Test: Gather user feedback, survey employees or customers, and review incident logs to 

determine whether the software is causing frustration or inefficiency. 

 

9. End-of-Life (EOL) Vendor Support Hypothesis 

- Hypothesis: The software vendor has declared the software as end-of-life, meaning it 

will no longer provide updates, patches, or support, making the software unsustainable. 

- Test: Review vendor communications and support policies to determine if ongoing 

support is viable and compare it with the timeline for replacement or decommissioning. 

 

10. Data Migration Complexity Hypothesis 

- Hypothesis: The complexity and risk of migrating critical data from the software to a 

new system justifies its continued use, at least in the short term. 

- Test: Analyse the effort required for data migration, the risk of data loss or corruption, 

and the compatibility between the legacy system and new systems. 

 

Each hypothesis is validated through data collection and analysis, including technical 

feasibility study and implementation. Details are given below. 

Systems Asset documentation 

This is a critical bookkeeping activity for any Organization as they are shipped from 

different vendors and so there are known issues, compatibility gaps between the system 

assets available vs needed vs used, number of resources needed vs utilized, systems 

uptime vs downtime, systems idle time vs busy time in Production and Non-Production 



29 

 

 

 

environments of the Data Centers. The continued monitoring involved here is manual in 

nature to track what versions are being used, what are being upgraded, what are 

decommissioned, which code or configurations are obsolete, redundancy factors needed 

for systems high availability, tracking system alert behavior and patterns, backup and 

resiliency of system assets, tracking defects and their resolution, and of course reviewing 

when to go for upgrade or decommissioning of software or hardware. 

 

Hypothesis: asset data determines when system upgrade is needed. 

Software and Hardware Compatibility 

Software and Hardware compatibility refers to affinity between software version and 

associated hardware platform. It is measured by success rate of regular health checks 

including security scans, execution time, defect resolution turnaround time, system 

response time after patching or upgrading exercise. With ever increasing demand in 

software usage along with Artificial Intelligence capabilities and Digital Transformation 

needs, decisions are taken at the top level and then cascaded to the lower levels. This 

often leads to improper planning of assets needed to upgrade or decommission because 

there will be a need of tracking existing issues, open defects and security risks to resolve, 

tracking end of life components, replacing them with right assets at the right time with 

minimum down time. So, the level of uncertainty associated with software upgrade or 

software decommission is usually high when the health of Software and Hardware is not 

tracked. Hence the need to collect data and metrics associated to assets, on a continued 

basis. 

 

Hypothesis: software and hardware systems compatibility influence systems upgrade, or 

systems decommission.  

Collecting Metrics 

Collecting metrics is an important task in the software and hardware health check 

activity. The metrics such as software issues, hardware issues, time taken for regular 

patches, new issues, security findings, increase in operational cost, increase or decrease 

in renewal cost, additional upgrade cost, service level objectives w.r.t assets 

performance, system components to retire etc need to be saved at a centralized location, 

dependencies to be determined and reviewed periodically. 

 

Hypothesis: software and hardware system metrics help in taking timely decisions in 

upgrading, retiring, consolidating assets.  

Planned Cost 

The cost incurred with software and hardware assets installation and maintenance is 

another important aspect. The same is used as reference against operational cost to see 



30 

 

 

 

if there are any deviations. The overall IT expenditure of an organization in a given fiscal 

year considers this as baseline cost.  

 

Hypothesis: baselined planned costs determine operational cost guidance year on year. 

Actual Cost 

This is the accrued cost in maintenance of software and hardware assets. The overall IT 

expenditure of an organization comprises of this actual budget spent in the fiscal year 

against the planned budget guidance start of the year. The profit or loss margins of an 

organization depend on this important piece of information. 

 

Hypothesis: operational costs drive systems upgrades and systems decommissions. 

Internal Audit 

The organizations do periodic internal IT system audits of software and hardware 

components nearing upgrades, end of life, having security risks and vulnerabilities, 

performance issues to name a few. This is a planning and monitoring exercise where 

everyone acts according to guidelines defined by the IT Systems head of the department, 

under the supervision of the Chief Technology Officer and Chief Information Officer. 

The information tracking needs to be maintained at a certain centralized location, so root 

cause analysis can take place when things don’t go as expected. Therefore, there is a 

need to use Machine Learning models to churn the system assets data and system activity 

data for better decision making considering current and future needs of IT systems.  

 

Hypothesis: The IT audit findings drive Systems upgrade and decommissioning need. 

3.2 Research Design 

The Research design is to collect various data sets, model the data, load that to relational 

tables, analyze the data, aggregate the data per software asset version and then find the 

evidence for the hypotheses by applying the machine learning models on the resultant 

aggregated data.  

 

3.3 Population and Sample 

Software versions and compatible versions of other software and hardware 

28 years data of Java versions, 

- Java JDK 1.0 released in 1996 and current stable version is 21 

30 years data of Python versions. 



31 

 

 

 

- Python 1.0 released in 1994 and current stable version is 3.12 

22 years data of Microsoft .NET version and end of life/end of support data. 

- .NET framework 1.0 released in 2002 and current stable version is 4.8 

32 years data of Oracle and MySQL 

- Oracle 7 released in 92 and current stable version is 21c 

Install and operate cost of software on hardware platform 

Open defects and security vulnerabilities associated with software library 

Sample data is ~ 200K records 

3.4 Instrumentation 

The data is collected from the publicly available software websites, release 

documentation pages, such data is loaded comma separated files. Python program is 

created to read such data into pandas data frames, identify risk by applying pareto law 

based on cumulative defects of the software and dependent software defects. Below are 

the steps to follow. 

1. Iterate through the software library version 

a. Check if the version and its dependent software version are 

compatible to each other. If yes, go to 2. below. If no, get the open defects 

+ security vulnerabilities count if they can be resolved before end of life. 

If yes, go to 2. Below. If no, go to step.b 

b. Choose another software , pick the feasible version which has 

lower install cost, lesser defects, passing compatibility and repeat from 1.  

2. Check if meeting business requirements and no missed Service Level Objectives. 

If yes, go to 3. 

3. Perform software upgrade, test with configuration changes, perform testing and 

go live validations. Decommission the old software. 

 



32 

 

 

 

 

 

Thus, the risk assessment and guidance helps stakeholders address the problems and take 

informed decisions. 

The overall approach is integrate this in the program that automates the manual steps 

required in identifying bottlenecks with use of Data Mining and Machine Learning 

Models. 

Below mentioned are several case studies that provide valuable lessons on software 

upgrades, highlighting both successful and failed expercises across different industries. 

  



33 

 

 

 

 

1. Microsoft’s Transition from Windows XP to Windows 10 

   - Background: Many organizations used Windows XP long after it had been declared 

end-of-life (EOL) in 2014. This created a need for upgrades to newer operating systems 

like Windows 7 or Windows 10. 

   - Challenges: Upgrading from XP to Windows 10 required hardware compatibility 

checks, application re-engineering, and user training. Some organizations faced 

compatibility issues with legacy applications, which had been built for XP. 

Lessons: 

     - Lesson 1: Upgrading critical software systems often necessitates simultaneous 

hardware upgrades. 

     - Lesson 2: Compatibility testing is essential, especially for legacy systems that may 

not run properly on new platforms. 

     - Lesson 3: Proactive migration planning helps avoid the risks associated with running 

unsupported software, such as security vulnerabilities and lack of vendor support. 

   - Outcome: Successful migrations occurred where organizations thoroughly planned the 

transition, accounted for downtime, and communicated changes to users. 

2. Netflix’s Migration to the Cloud 

   - Background: Netflix transitioned from a traditional data center infrastructure to a fully 

cloud-based architecture in order to better scale and meet demand. This required 

significant software upgrades. 

   - Challenges: During the migration, Netflix encountered challenges in maintaining 

service uptime while re-architecting its systems to function in the cloud. Additionally, 

they had to train engineers on new tools and methodologies suited to cloud architecture. 

Lessons: 

     - Lesson 1: Incremental upgrades, such as shifting parts of the infrastructure to the 

cloud over time, can minimize risk and allow for ongoing operations without major 

disruptions. 

     - Lesson 2: Cloud-based upgrades enable greater scalability but require new 

operational processes and tools, which may necessitate re-skilling the workforce. 

     - Lesson 3: A phased approach allows for testing and validation at each stage, 

reducing the risk of full-system failure during upgrades. 

   - Outcome: Netflix’s cloud migration was highly successful, enabling it to scale rapidly 

to meet global demand and maintain service reliability. 



34 

 

 

 

3. Adobe Creative Cloud: Transition from License-Based to Subscription Model 

   - Background: Adobe transitioned its Creative Suite software from a perpetual license 

model to a subscription-based model with Creative Cloud in 2013, which involved 

significant software and business model upgrades. 

   - Challenges: Many users were resistant to the subscription model, preferring to own 

perpetual licenses. Adobe also had to ensure that the cloud-based delivery of software 

maintained high performance and reliability. 

Lessons: 

     - Lesson 1: Upgrading to a new software delivery model can impact customer 

satisfaction if not communicated effectively. Transparency about the benefits and long-

term value is crucial. 

     - Lesson 2: New software models, such as SaaS (Software as a Service), require 

careful consideration of pricing structures, value propositions, and customer education. 

     - Lesson 3: Continuous updates and cloud delivery can improve customer retention, as 

users consistently receive the latest features and improvements. 

   - Outcome: Adobe successfully transitioned its business model, becoming a leader in 

the subscription software market, with increased recurring revenue and customer base 

growth. 

4. UK National Health Service (NHS) ERP Upgrade 

   - Background: The NHS decided to upgrade its ERP (Enterprise Resource Planning) 

system to better manage healthcare operations and patient data. This upgrade aimed to 

improve financial management and patient services. 

   - Challenges: The NHS faced technical and organizational challenges during the 

upgrade, including integration issues with legacy systems, data migration challenges, and 

employee training. 

Lessons: 

     - Lesson 1: Large-scale software upgrades require significant investment in training 

and change management to ensure end users can utilize the new system effectively. 

     - Lesson 2: Integrating upgraded software with legacy systems can be complex and 

requires detailed planning and testing. 

     - Lesson 3: Proper stakeholder engagement is critical. Getting feedback from 

healthcare staff, administrative personnel, and IT teams early on can prevent disruptions. 

   - Outcome: Despite initial setbacks, the NHS achieved improvements in financial 

oversight and patient management, but only after addressing post-upgrade usability 

issues. 



35 

 

 

 

5. Slack’s Backend Infrastructure Upgrade 

   - Background: Slack, the team collaboration tool, upgraded its backend infrastructure to 

improve performance and handle larger user volumes. The goal was to reduce downtime 

and improve the speed of message delivery. 

   - Challenges: During the upgrade, Slack experienced some downtime and performance 

issues, particularly when moving away from a monolithic architecture to microservices. 

Lessons: 

     - Lesson 1: Upgrading a high-availability system requires meticulous planning and 

testing to avoid service interruptions for end users. 

     - Lesson 2: Switching to new architectural paradigms (e.g., microservices) during an 

upgrade can introduce unforeseen complications and necessitates new monitoring and 

troubleshooting tools. 

     - Lesson 3: Post-upgrade performance should be continuously monitored, with a 

strategy in place to address emerging issues quickly. 

   - Outcome: Slack successfully transitioned to a more scalable infrastructure, reducing 

downtime and improving overall system responsiveness, but not without temporary 

challenges along the way. 

6. Target’s Website Upgrade (2011) 

   - Background: In 2011, Target upgraded its website infrastructure, shifting from a third-

party platform (Amazon) to an in-house platform. This upgrade was meant to improve 

user experience and provide greater control over the e-commerce platform. 

   - Challenges: The transition led to a series of outages, particularly during high-traffic 

periods, like the launch of a major fashion collection. The new platform struggled to 

handle the load, leading to customer frustration. 

Lessons: 

     - Lesson 1: High-traffic, customer-facing software upgrades require robust load testing 

and contingency planning for handling demand spikes. 

     - Lesson 2: Insufficient testing or inadequate infrastructure can lead to loss of revenue 

and brand reputation if the upgraded system fails during peak usage times. 

     - Lesson 3: Cross-functional collaboration (e.g., between marketing, IT, and customer 

service) is crucial when launching upgrades that impact customer experience directly. 

   - Outcome: Target recovered from the initial challenges, but the experience highlighted 

the importance of rigorous testing and scalability planning before a major software 

upgrade. 



36 

 

 

 

7. Toyota’s Transition to SAP ERP 

   - Background: Toyota implemented SAP ERP across its global operations to 

standardize processes and improve data management. 

   - Challenges: The upgrade was massive in scale and scope, spanning multiple 

geographies, and it required Toyota to rethink its existing processes to fit within SAP’s 

framework. 

 Lessons: 

     - Lesson 1: Global software upgrades require alignment between local and corporate 

needs, as well as thorough testing in different operational contexts. 

     - Lesson 2: Business process reengineering is often necessary when upgrading 

enterprise systems. Companies must be prepared to adapt their processes to fit the new 

system. 

     - Lesson 3: Having a dedicated project management office (PMO) to oversee large 

upgrades helps ensure that timelines, budgets, and resources are managed effectively. 

   - Outcome: Toyota successfully implemented the SAP ERP system, streamlining 

operations and improving data visibility, but the transition required years of planning and 

execution. 

These case studies emphasize the importance of planning, stakeholder engagement, and 

testing when upgrading software. Key lessons include the need for phased rollouts, 

comprehensive testing, and careful consideration of user experience to ensure a smooth 

transition. 

3.5 Data Collection Procedures 

Download publicly available data from software release documentation. 

3.6 Data Analysis 

Load the collected data in to csv files, use Python libraries to create the data frames, join 

the data sets, explore and mine the data so Machine Learning models can be run on it. 

3.7 Limitations 

The research is based on few data sets from software vendors like Java, Python, Oracle , 

MySQL and Microsoft .NET as they are the popular technologies today. These softwares 

will in turn have many libraries with dependencies and compatibility versions. There are 



37 

 

 

 

many other softwares, libraries like e-Business Suite products, open source by products 

that can be used in future. 

3.8 Proposed prototype solution 

Given below is the process flow proposed for Software Upgrades and Decommissions 

Life Cycle along with Software Development Life Cycle. This is a continuous process for 

generating recommendation insights from the input data sets on a regular basis. 

 

 
  



38 

 

 

 

 

CHAPTER 4:  

EXPERIMENTATION RESULTS 

4.1 Extracting software and hardware compatible version information 

This information is downloaded from the software release documentation pages. For 

example, Oracle, Java, Python, MySQL and Microsoft .NET data is collated as below. 

Software/ 

Library 

Version Release  

Year 

General Compatibility Notes 

Oracle 

Database 

11g 2007 Compatible with Java 6, Java 7; connectors provided for 

.NET. 

  12c 2013 Supports Java 7, Java 8; connectors for Python (cx_Oracle), 

.NET. 

  18c 2018 Compatible with Java 8, Java 11; supports Python 

connectors and .NET through Oracle Data Provider. 

  19c 2019 Compatible with Java 8, Java 11, and Java 17 (LTS); Python 

connectors, .NET Core, and .NET 5/6 supported. 

  21c 2021 Compatible with Java 11 and Java 17; supports Python 

connectors and .NET 6. 

Java JDK 6 2006 Compatible with Oracle Database 10g/11g; commonly used 

in MySQL 5.x applications; limited .NET interop with JNI. 

  7 2011 Improved performance; compatible with Oracle Database 

11g/12c, MySQL 5.5+, .NET integrations via web services. 

  8 (LTS) 2014 Widely compatible with Oracle Database 11g/12c, MySQL 

5.5+, and Python 2/3 through JDBC-ODBC bridges. 

  11 (LTS) 2018 Compatible with Oracle Database 12c/19c; better 

performance with MySQL 8.0; integrates well with .NET 

through web APIs. 

  17 (LTS) 2021 Preferred for Oracle 19c/21c; compatible with MySQL 8.0; 

works alongside Python 3.7+ and .NET Core/6. 

MySQL 5.5 2010 Compatible with Java 6, Java 7, and Python 2/3; basic 

compatibility with .NET. 

  5.7 2015 Preferred with Java 8 and Python 3.6+; supported by .NET 

Core connectors. 

  8 2018 Best suited for Java 11/17 and Python 3.7+; compatible with 

.NET Core/6 connectors. 



39 

 

 

 

Microsoft 

.NET 

.NET 

Framework 

4.x 

2010–

2019 

Works with Oracle 11g/12c and MySQL 5.x; some interop 

with Java (web services). 

  .NET Core 

3.x 

2019 Preferred for Oracle 18c/19c and MySQL 8.0; supports 

Python libraries. 

  .NET 5 2020 Compatible with Oracle 19c/21c and MySQL 8.0; works 

with Java APIs through REST. 

  .NET 6 2021 Best for Oracle 21c and MySQL 8.0; highly compatible with 

Java APIs and Python 3.8+. 

Python 2.7 2010 Limited support for Oracle 11g/12c and MySQL 5.x; 

deprecated in most modern setups. 

  3.6 2016 Compatible with Oracle 12c/18c and MySQL 5.7/8.0; 

limited interop with Java/.NET. 

  3.7 2018 Improved compatibility with Oracle 18c/19c, MySQL 8.0; 

works alongside Java 11+. 

  3.9 2020 Preferred for Oracle 19c/21c and MySQL 8.0; integrates 

well with Java 17 and .NET Core/6. 

  3.10+ 2021+ Best compatibility with modern Oracle, MySQL, and .NET 

ecosystems; works seamlessly with Java 17+. 

 

4.2 Listing software versions compatibility information 

This information can be downloaded from the software release documentation pages. For 

example, Oracle , Java, Python, MySQL and Microsoft .NET data is collated as below. 

Software Version 
Dependent Software 

Version 
Compatible 

Java 6 Oracle Database 10g Yes 

Java 6 Oracle Database 11g Yes 

Java 7 Oracle Database 11g Yes 

Java 7 Oracle Database 12c Yes 

Java 8 Oracle Database 11g No 

Java 8 Oracle Database 12c Yes 

Java 8 Oracle Database 18c Yes 

Java 8 Oracle Database 19c Yes 

Java 9 Oracle Database 12c No 

Java 9 Oracle Database 18c No 

Java 9 Oracle Database 19c No 

Java 10 Oracle Database 12c No 

Java 10 Oracle Database 18c No 



40 

 

 

 

Java 10 Oracle Database 19c No 

Java 11 Oracle Database 12c Yes 

Java 11 Oracle Database 18c Yes 

Java 11 Oracle Database 19c Yes 

Java 11 Oracle Database 21c Yes 

Java 12 Oracle Database 19c Yes 

Java 12 Oracle Database 21c Yes 

Java 13 Oracle Database 19c Yes 

Java 13 Oracle Database 21c Yes 

Java 14 Oracle Database 19c Yes 

Java 14 Oracle Database 21c Yes 

Java 15 Oracle Database 19c Yes 

Java 15 Oracle Database 21c Yes 

Java 16 Oracle Database 19c Yes 

Java 16 Oracle Database 21c Yes 

Java 17 Oracle Database 19c Yes 

Java 17 Oracle Database 21c Yes 

Java 18 Oracle Database 19c Yes 

Java 18 Oracle Database 21c Yes 

Java 19 Oracle Database 19c Yes 

Java 19 Oracle Database 21c Yes 

Java 21 Oracle Database 12c No 

Java 21 Oracle Database 18c No 

Java 21 Oracle Database 19c Yes 

Java 21 Oracle Database 21c Yes 

Java 21 Oracle Database 23c Yes 

Python 2.7 Oracle 10g Yes 

Python 2.7 Oracle 11g Yes 

Python 2.7 Oracle 12c Yes 

Python 2.7 Oracle 18c Yes 

Python 2.7 Oracle 19c Yes 

Python 3.4 Oracle 10g No 

Python 3.4 Oracle 11g Yes 

Python 3.4 Oracle 12c Yes 

Python 3.4 Oracle 18c Yes 

Python 3.4 Oracle 19c Yes 

Python 3.5 Oracle 10g No 

Python 3.5 Oracle 11g Yes 

Python 3.5 Oracle 12c Yes 

Python 3.5 Oracle 18c Yes 



41 

 

 

 

Python 3.5 Oracle 19c Yes 

Python 3.6 Oracle 10g No 

Python 3.6 Oracle 11g Yes 

Python 3.6 Oracle 12c Yes 

Python 3.6 Oracle 18c Yes 

Python 3.6 Oracle 19c Yes 

Python 3.7 Oracle 10g No 

Python 3.7 Oracle 11g Yes 

Python 3.7 Oracle 12c Yes 

Python 3.7 Oracle 18c Yes 

Python 3.7 Oracle 19c Yes 

Python 3.8 Oracle 10g No 

Python 3.8 Oracle 11g Yes 

Python 3.8 Oracle 12c Yes 

Python 3.8 Oracle 18c Yes 

Python 3.8 Oracle 19c Yes 

Python 3.9 Oracle 10g No 

Python 3.9 Oracle 11g No 

Python 3.9 Oracle 12c Yes 

Python 3.9 Oracle 18c Yes 

Python 3.9 Oracle 19c Yes 

Python 3.10 Oracle 10g No 

Python 3.10 Oracle 11g No 

Python 3.10 Oracle 12c Yes 

Python 3.10 Oracle 18c Yes 

Python 3.10 Oracle 19c Yes 

Python 3.11 Oracle 10g No 

Python 3.11 Oracle 11g No 

Python 3.11 Oracle 12c Yes 

Python 3.11 Oracle 18c Yes 

Python 3.11 Oracle 19c Yes 

Oracle 8i .NET Framework 1.0 No 

Oracle 8i .NET Framework 1.1 No 

Oracle 8i .NET Framework 2.0 No 

Oracle 8i .NET Framework 3.0 No 

Oracle 8i .NET Framework 3.5 No 

Oracle 9i .NET Framework 1.0 No 

Oracle 9i .NET Framework 1.1 No 

Oracle 9i .NET Framework 2.0 No 

Oracle 9i .NET Framework 3.0 No 



42 

 

 

 

Oracle 9i .NET Framework 3.5 No 

Oracle 10g .NET Framework 1.0 No 

Oracle 10g .NET Framework 1.1 No 

Oracle 10g .NET Framework 2.0 Yes 

Oracle 10g .NET Framework 3.0 Yes 

Oracle 10g .NET Framework 3.5 Yes 

Oracle 11g .NET Framework 2.0 Yes 

Oracle 11g .NET Framework 3.0 Yes 

Oracle 11g .NET Framework 3.5 Yes 

Oracle 11g .NET Framework 4.0 Yes 

Oracle 11g .NET Framework 4.5 Yes 

Oracle 12c .NET Framework 4.0 Yes 

Oracle 12c .NET Framework 4.5 Yes 

Oracle 12c .NET Framework 4.6 Yes 

Oracle 12c .NET Framework 4.7 Yes 

Oracle 12c .NET Framework 4.8 Yes 

Oracle 18c .NET Framework 4.5 Yes 

Oracle 18c .NET Framework 4.6 Yes 

Oracle 18c .NET Framework 4.7 Yes 

Oracle 18c .NET Framework 4.8 Yes 

Oracle 18c .NET 5.0 Yes 

Oracle 18c .NET 6.0 Yes 

Oracle 19c .NET Framework 4.5 Yes 

Oracle 19c .NET Framework 4.6 Yes 

Oracle 19c .NET Framework 4.7 Yes 

Oracle 19c .NET Framework 4.8 Yes 

Oracle 19c .NET 5.0 Yes 

Oracle 19c .NET 6.0 Yes 

Oracle 21c .NET Framework 4.5 Yes 

Oracle 21c .NET Framework 4.6 Yes 

Oracle 21c .NET Framework 4.7 Yes 

Oracle 21c .NET Framework 4.8 Yes 

Oracle 21c .NET 5.0 Yes 

Oracle 21c .NET 6.0 Yes 

Oracle 21c .NET 7.0 Yes 

Oracle 21c .NET 8.0 Yes 

Java 1.0 MySQL 3.x No 

Java 1.0 MySQL 4.x No 

Java 1.1 MySQL 3.x No 

Java 1.1 MySQL 4.x No 



43 

 

 

 

Java 1.2 MySQL 4.x No 

Java 1.2 MySQL 5.0 No 

Java 1.3 MySQL 4.x No 

Java 1.3 MySQL 5.0 No 

Java 1.4 MySQL 4.x No 

Java 1.4 MySQL 5.0 No 

Java 1.4 MySQL 5.1 No 

Java 5.0 MySQL 5.0 Yes 

Java 5.0 MySQL 5.1 Yes 

Java 5.0 MySQL 5.5 Yes 

Java 6 MySQL 5.0 Yes 

Java 6 MySQL 5.1 Yes 

Java 6 MySQL 5.5 Yes 

Java 6 MySQL 5.6 Yes 

Java 7 MySQL 5.1 Yes 

Java 7 MySQL 5.5 Yes 

Java 7 MySQL 5.6 Yes 

Java 7 MySQL 5.7 Yes 

Java 8 MySQL 5.5 Yes 

Java 8 MySQL 5.6 Yes 

Java 8 MySQL 5.7 Yes 

Java 8 MySQL 8.0 Yes 

Java 9 MySQL 5.6 Yes 

Java 9 MySQL 5.7 Yes 

Java 9 MySQL 8.0 Yes 

Java 10 MySQL 5.6 Yes 

Java 10 MySQL 5.7 Yes 

Java 10 MySQL 8.0 Yes 

Java 11 MySQL 5.6 Yes 

Java 11 MySQL 5.7 Yes 

Java 11 MySQL 8.0 Yes 

Java 12 MySQL 5.7 Yes 

Java 12 MySQL 8.0 Yes 

Java 13 MySQL 5.7 Yes 

Java 13 MySQL 8.0 Yes 

Java 14 MySQL 5.7 Yes 

Java 14 MySQL 8.0 Yes 

Java 15 MySQL 8.0 Yes 

Java 16 MySQL 8.0 Yes 

Java 17 MySQL 8.0 Yes 



44 

 

 

 

Java 18 MySQL 8.0 Yes 

Java 19 MySQL 8.0 Yes 

Java 20 MySQL 8.0 Yes 

Java 21 MySQL 8.0 Yes 

MySQL 3.x .NET Framework 1.0 No 

MySQL 3.x .NET Framework 1.1 No 

MySQL 3.x .NET Framework 2.0 No 

MySQL 3.x .NET Framework 3.0 No 

MySQL 3.x .NET Framework 3.5 No 

MySQL 4.x .NET Framework 1.0 No 

MySQL 4.x .NET Framework 1.1 No 

MySQL 4.x .NET Framework 2.0 Yes 

MySQL 4.x .NET Framework 3.0 Yes 

MySQL 4.x .NET Framework 3.5 Yes 

MySQL 5.0 .NET Framework 1.0 No 

MySQL 5.0 .NET Framework 1.1 No 

MySQL 5.0 .NET Framework 2.0 Yes 

MySQL 5.0 .NET Framework 3.0 Yes 

MySQL 5.0 .NET Framework 3.5 Yes 

MySQL 5.1 .NET Framework 2.0 Yes 

MySQL 5.1 .NET Framework 3.0 Yes 

MySQL 5.1 .NET Framework 3.5 Yes 

MySQL 5.5 .NET Framework 3.5 Yes 

MySQL 5.5 .NET Framework 4.0 Yes 

MySQL 5.5 .NET Framework 4.5 Yes 

MySQL 5.6 .NET Framework 4.0 Yes 

MySQL 5.6 .NET Framework 4.5 Yes 

MySQL 5.6 .NET Framework 4.6 Yes 

MySQL 5.7 .NET Framework 4.5 Yes 

MySQL 5.7 .NET Framework 4.6 Yes 

MySQL 5.7 .NET Framework 4.7 Yes 

MySQL 5.7 .NET Framework 4.8 Yes 

MySQL 8.0 .NET Framework 4.6 Yes 

MySQL 8.0 .NET Framework 4.7 Yes 

MySQL 8.0 .NET Framework 4.8 Yes 

MySQL 8.0 .NET 5.0 Yes 

MySQL 8.0 .NET 6.0 Yes 

MySQL 8.0 .NET 7.0 Yes 

MySQL 8.0 .NET 8.0 Yes 

Python 2.7 MySQL 3.x No 



45 

 

 

 

Python 2.7 MySQL 4.x No 

Python 2.7 MySQL 5.0 Yes 

Python 2.7 MySQL 5.1 Yes 

Python 2.7 MySQL 5.5 Yes 

Python 2.7 MySQL 5.6 Yes 

Python 2.7 MySQL 5.7 Yes 

Python 2.7 MySQL 8.0 No 

Python 3.4 MySQL 5.1 Yes 

Python 3.4 MySQL 5.5 Yes 

Python 3.4 MySQL 5.6 Yes 

Python 3.4 MySQL 5.7 Yes 

Python 3.4 MySQL 8.0 No 

Python 3.5 MySQL 5.5 Yes 

Python 3.5 MySQL 5.6 Yes 

Python 3.5 MySQL 5.7 Yes 

Python 3.5 MySQL 8.0 No 

Python 3.6 MySQL 5.6 Yes 

Python 3.6 MySQL 5.7 Yes 

Python 3.6 MySQL 8.0 Yes 

Python 3.7 MySQL 5.6 Yes 

Python 3.7 MySQL 5.7 Yes 

Python 3.7 MySQL 8.0 Yes 

Python 3.8 MySQL 5.7 Yes 

Python 3.8 MySQL 8.0 Yes 

Python 3.9 MySQL 5.7 Yes 

Python 3.9 MySQL 8.0 Yes 

Python 3.10 MySQL 5.7 Yes 

Python 3.10 MySQL 8.0 Yes 

Python 3.11 MySQL 5.7 Yes 

Python 3.11 MySQL 8.0 Yes 

4.3 Knowing end of life information of a given software library version 

This information can be downloaded from the software release documentation pages. For 

example, Oracle, Java, Python, MySQL and Microsoft .NET data is collated as below. 

Software Version Release Date End of Life (EOL) Date 

JDK 1.0 23-01-1996 01-01-2000 

JDK 1.1 19-02-1997 01-01-2000 

JDK 1.2 08-12-1998 30-10-2003 

JDK 1.3 08-05-2000 05-02-2006 



46 

 

 

 

JDK 1.4 13-02-2002 30-10-2008 

JDK 5.0 30-09-2004 30-10-2009 

JDK 6 11-12-2006 31-12-2018 

JDK 7 28-07-2011 29-07-2022 

JDK 8 18-03-2014 2030-12-31 (LTS) 

JDK 9 21-09-2017 01-03-2018 

JDK 10 20-03-2018 30-09-2018 

JDK 11 25-09-2018 2026-09-30 (LTS) 

JDK 12 19-03-2019 30-09-2019 

JDK 13 17-09-2019 30-03-2020 

JDK 14 17-03-2020 30-09-2020 

JDK 15 15-09-2020 30-03-2021 

JDK 16 16-03-2021 30-09-2021 

JDK 17 14-09-2021 2029-09-30 (LTS) 

JDK 18 22-03-2022 30-09-2022 

JDK 19 20-09-2022 31-03-2023 

JDK 20 21-03-2023 30-09-2023 

JDK 21 19-09-2023 2031-09-30 (LTS) 

Oracle 7 01-06-1992 31-12-2004 

Oracle 8 01-06-1997 31-12-2004 

Oracle 8i 01-03-1999 31-12-2006 

Oracle 9i 01-06-2001 31-07-2007 

Oracle 10g 01-01-2003 31-07-2013 

Oracle 10g R2 01-09-2005 31-07-2015 

Oracle 11g 01-08-2007 31-08-2015 

Oracle 11g R2 01-09-2009 31-12-2021 

Oracle 12c 01-06-2013 31-07-2018 

Oracle 12c R2 01-03-2016 31-03-2022 

Oracle 18c 16-02-2018 30-06-2021 

Oracle 19c 13-01-2019 2027-04-30 (Extended) 

Oracle 21c 01-01-2021 31-12-2023 

Oracle 23c 01-04-2023 31-12-2031 

Python 1.0 26-01-1994 27-10-1996 

Python 1.5 31-12-1998 05-09-2000 

Python 1.6 05-09-2000 12-06-2002 

Python 2.0 16-10-2000 22-06-2001 

Python 2.1 17-04-2001 01-04-2006 

Python 2.2 21-12-2001 01-04-2006 

Python 2.3 29-07-2003 11-03-2008 

Python 2.4 30-11-2004 18-10-2008 



47 

 

 

 

Python 2.5 19-09-2006 26-05-2011 

Python 2.6 01-10-2008 29-10-2013 

Python 2.7 03-07-2010 01-01-2020 

Python 3.0 03-12-2008 27-06-2009 

Python 3.1 27-06-2009 09-04-2012 

Python 3.2 20-02-2011 20-02-2016 

Python 3.3 29-09-2012 29-09-2017 

Python 3.4 16-03-2014 18-03-2019 

Python 3.5 13-09-2015 13-09-2020 

Python 3.6 23-12-2016 23-12-2021 

Python 3.7 27-06-2018 27-06-2023 

Python 3.8 14-10-2019 14-10-2024 

Python 3.9 05-10-2020 05-10-2025 

Python 3.10 04-10-2021 04-10-2026 

Python 3.11 24-10-2022 24-10-2027 

Python 3.12 02-10-2023 02-10-2028 

.NET Framework 1.0 13-02-2002 14-07-2009 

.NET Framework 1.1 24-04-2003 08-10-2013 

.NET Framework 2.0 07-11-2005 
2011-07-12 (mainstream), 2016-07-12 

(extended) 

.NET Framework 3.0 06-11-2006 
2011-07-12 (mainstream), 2016-07-12 

(extended) 

.NET Framework 3.5 19-11-2007 09-01-2029 

.NET Framework 3.5 SP1 18-11-2008 09-01-2029 

.NET Framework 4.0 12-04-2010 12-01-2016 

.NET Framework 4.5 15-08-2012 12-01-2016 

.NET Framework 4.5.1 17-10-2013 12-01-2016 

.NET Framework 4.5.2 05-05-2014 26-04-2023 

.NET Framework 4.6 20-07-2015 26-04-2023 

.NET Framework 4.6.1 30-11-2015 26-04-2023 

.NET Framework 4.6.2 02-08-2016 12-01-2027 

.NET Framework 4.7 05-04-2017 12-01-2027 

.NET Framework 4.7.1 17-10-2017 12-01-2027 

.NET Framework 4.7.2 30-04-2018 09-01-2029 

.NET Framework 4.8 18-04-2019 09-01-2029 

.NET Framework 4.8.1 09-08-2022 09-01-2029 

MySQL 4.1 05-10-2004 31-12-2009 

MySQL 5 19-10-2005 31-12-2012 

MySQL 5.1 14-11-2008 31-12-2013 

MySQL 5.5 03-12-2010 03-12-2018 



48 

 

 

 

MySQL 5.6 05-02-2013 05-02-2021 

MySQL 5.7 21-10-2015 21-10-2023 

MySQL 8 19-04-2018 2026-04-01 (tentative) 

 

4.4 Tracking open defects and resolution time 

JIRA can be used to track work for the features, defects and security vulnerabilities. The 

open defects and security vulnerabilities with a software library version can be retrieved 

from the publicly available Bug database, collated as below.  

Software 

Version 
Open Issue 

Python 3.6 Issue 12345: Memory leak in dict implementation 

Python 3.6 Issue 12346: Crash on exit with threading  

Python 3.7 Issue 22345: Incorrect behavior in asyncio  

Python 3.7 Issue 22346: Race condition in subprocess module  

Python 3.8 Issue 32345: Deprecation warning in urllib  

Python 3.8 Issue 32346: Performance regression in json module  

Python 3.9 Issue 42345: Error handling in importlib  

Python 3.9 Issue 42346: Incorrect exception chaining  

Python 3.10 Issue 52345: Bug in pattern matching  

Python 3.10 
Issue 52346: Type hinting issues with new 

annotations 

Python 3.11 Issue 62345: Crash in new PEG parser  

Python 3.11 Issue 62346: Regression in multiprocessing module  

Java 8 JDK-123456: Issue with Stream API 

Java 8 JDK-654321: Memory leak in lambda expressions 

Java 11 JDK-112233: Performance regression in G1 GC 

Java 11 JDK-332211: NullPointerException in Optional API 

Java 17 JDK-445566: Incorrect behavior in Pattern Matching 

Java 17 
JDK-665544: Bug in Foreign Function & Memory 

API 

.NET Core 

2.1 
Issue 12345: Memory leak in HttpClient 

.NET Core 

2.1 
Issue 12346: Incorrect behavior in LINQ  

.NET Core 

3.1 
Issue 22345: Crash on exit with async/await  

https://github.com/python/cpython/issues/12345
https://github.com/python/cpython/issues/12346
https://github.com/python/cpython/issues/22345
https://github.com/python/cpython/issues/22346
https://github.com/python/cpython/issues/32345
https://github.com/python/cpython/issues/32346
https://github.com/python/cpython/issues/42345
https://github.com/python/cpython/issues/42346
https://github.com/python/cpython/issues/52345
https://github.com/python/cpython/issues/52346
https://github.com/python/cpython/issues/52346
https://github.com/python/cpython/issues/62345
https://github.com/python/cpython/issues/62346
https://github.com/dotnet/runtime/issues/12345
https://github.com/dotnet/runtime/issues/12346
https://github.com/dotnet/runtime/issues/22345


49 

 

 

 

.NET Core 

3.1 

Issue 22346: Performance regression in JSON 

serialization 

.NET 5 Issue 32345: Deprecation warning in EF Core  

.NET 5 Issue 32346: Bug in Blazor WASM 

.NET 6 Issue 42345: Error handling in SignalR  

.NET 6 Issue 42346: Incorrect exception in HttpClient  

.NET 7 Issue 52345: Crash in new minimal API 

.NET 7 Issue 52346: Bug in MAUI project  

Oracle 11g Bug 123456: Performance degradation in PL/SQL  

Oracle 11g Bug 654321: Incorrect index usage in optimizer 

Oracle 12c Bug 234567: Data corruption in RAC environment 

Oracle 12c Bug 765432: Memory leak in shared pool  

Oracle 18c Bug 345678: Issues with JSON functions 

Oracle 18c Bug 876543: Deadlock detected in ASM  

Oracle 19c Bug 456789: Problems with Data Guard sync  

Oracle 19c Bug 987654: SQL execution plan instability 

Oracle 21c Bug 567890: Issues with new JSON Data Type  

Oracle 21c Bug 098765: RAC node eviction under load  

4.5 Track security vulnerabilties and resolution time 

OWASP website can be referred for any critical security vulenrabilities while 

NVD and Snyk systems can be integrated with code repositories (Git) to identify security 

vulnerabilities during code build and security scan phases. This helps resolving 

prioritizing and tracking issue resolution. 

4.6 Knowing software service level objectives pass and fail 

Software performance metrics need to be tracked periodically on the runtime health 

check and errors if any.This helps in documenting service level objective and outages. To 

identify service level objective misses, continuous checks are needed on the system asset 

activities every week usually includes software installations, upgrades, patches, system 

reboots , health check monitoring etc. 

  

https://github.com/dotnet/runtime/issues/22346
https://github.com/dotnet/runtime/issues/22346
https://github.com/dotnet/efcore/issues/32345
https://github.com/dotnet/aspnetcore/issues/32346
https://github.com/dotnet/aspnetcore/issues/42345
https://github.com/dotnet/runtime/issues/42346
https://github.com/dotnet/aspnetcore/issues/52345
https://github.com/dotnet/maui/issues/52346
https://support.oracle.com/epmos/faces/BugDisplay?id=123456
https://support.oracle.com/epmos/faces/BugDisplay?id=654321
https://support.oracle.com/epmos/faces/BugDisplay?id=234567
https://support.oracle.com/epmos/faces/BugDisplay?id=765432
https://support.oracle.com/epmos/faces/BugDisplay?id=345678
https://support.oracle.com/epmos/faces/BugDisplay?id=876543
https://support.oracle.com/epmos/faces/BugDisplay?id=456789
https://support.oracle.com/epmos/faces/BugDisplay?id=987654
https://support.oracle.com/epmos/faces/BugDisplay?id=567890
https://support.oracle.com/epmos/faces/BugDisplay?id=098765


50 

 

 

 

 

4.7 Be aware of software version functionality and features 

Functional features, capabilities supported by specific software version will be part of the 

release documentation. 

4.8 Knowing the right time for software upgrade or decommission 

Below is the comprehensive checklist every application support team goes through 

manually, to evaluate the right time for the software upgradation or replacement. This is a 

complex exercise that takes a lot of time and effort. 

- Software performance needs to be monitored if any performance degradation after 

applying patches on the hardware.  

- Number of defects need to be tracked for each release. 

- Software Cost and additional Hardware or firmware update cost need to be 

calculated for each release or upgrade. 

- Check IT and Business requirements needed for Digital transformation.   

- Check version compatibility with other software and hardware and if there are any 

open defects. 

- Check end of life of the software, associated hardware and operating system. If 

there is any end-of-life component, need to check possible options including – cost, 

time and effort required for replacement software. If feasible, time to upgrade. If 

not feasible, evaluate the risk and cost for the replacement software, setup and 

configure, test and deploy, then remove the old software version from the system 

configuration. Once this is done, it is time to decommission the old software from 

the System. 

All the above mentioned becomes even more complex due to heterogenous input data that 

changes based on critical decisioning and not capturing the right System statistics. This 

needs systematic data analysis, hence the need of an automated systems data integration 

and monitoring system.  



51 

 

 

 

4.9 Cost Optimization with a Business Use Case: 

Consider a business use case where an application is using MySQL DB 4.1 and Oracle 11g 

databases running on JDK 7 version. The Java 7 needs upgrade to JDK 8 due to the 

criticality of security vulnerabilities. There are MySQL DB compatibility issues with JDK 

7 hence a decision is needed whether to upgrade MySQL DB or not. Since JDK 8 upgrade 

is required in this scenario, Oracle 11g also needs an upgrade to 12C, to avoid version 

compatibility issues. 

Here comes the need of cost comparison. Below are details captured as part of this research. 

Software  Dependent Compatible to  Software 

Version Software Dependent software Upgrade possible 

  Version     

Oracle 11g Java JDK 7 No No 

Oracle 12C Java JDK 8 Yes Yes 

Mysqldb 

4.1 
Java 8, 11, 17 Yes Yes 

Mysqldb 

4.1 
Oracle 7 No No 

Oracle pricing reference: 

https://www.oracle.com/in/autonomous-database/upgrade-standard-edition-

byol/compare-tco/  

MySQL pricing reference: https://www.oracle.com/in/mysql/pricing/ 

 On-premises Oracle 11g database costs: 

o (C11I) install (1 instance) =$46,398 

o  (C11O) operate (renewal of 1 instance) =$11,550 per year 

 On-premises MySQL 8 database costs: 

o MySQL median cost (1 instance) =$1425.4 x 12 =$17,104.8 

 Software Engineering Wages: 

Let “a” be the cost incurred per year in fixing defects/security vulnerabilities 

 On-premises Oracle 12c database cost: 

o (C12I) install i.e., upgrade from 11g to 12C=$4,350 

https://www.oracle.com/in/autonomous-database/upgrade-standard-edition-byol/compare-tco/
https://www.oracle.com/in/autonomous-database/upgrade-standard-edition-byol/compare-tco/
https://www.oracle.com/in/mysql/pricing/


52 

 

 

 

o (C12O) operate=$15,000per year 

 Time Horizon =5years 

Step 1: Calculating Total Costs between Oracle lower and higher versions: 

C11total=46,398+(11,550×5) + (ax5) =$(1,04,148+a5) 

C12total=4,350+(15,550×5) =$(59,100) 

Step 2: Compute Cost Savings 

Cost Savings=C11total−C12total=$(1,04,148+a5) − $(59,100) > $45,000 

Step 3: Calculating Total Costs between Oracle and MySQL higher versions: 

M11total = (17,104.8×5) =$(85,524) 

C12total (calculated value from Step.1) => $(59,100) < $(85,524) 

Hence, Oracle Database upgrade to 12C is cheaper even after considering data migration 

from MySQL to Oracle DB. 

Inference 

The above details prove MySQL DB can be decommissioned after migrating data to Oracle 

12C besides upgrading Oracle11g to Oracle12C. 

Note: Data migration can be done with SQL Developer tool with no additional cost. 

Software Engineering cost to update Java code pointing to MySQL is very minimal. 

 

  



53 

 

 

 

Below is the relational data modeling on the input data sets. 

System Asset Master Data  

(surrogate keys are not defined) 

Column Description Relation 

System_asset_name Software or hardware system 

component name 

One to one with 

software or hardware 

system 

Asset_Version Version of the software or 

hardware system asset 

One to one with 

system asset 

Asset_EOL_date This is software or hardware 

expiry date 

One to one with 

system asset 

Supported_platform This denotes operating system, 

on-premises or cloud 

specification 

One to one with 

system asset 

System Asset Mapping Data  

(surrogate keys are not defined) 

Column Description Relation 

System_asset_name Software or hardware system 

component name 

One to one with 

software or hardware 

system 

Dependent_asset_name This denotes the dependent 

software, hardware, or 

operating system (on-premises 

or cloud) specification 

One to one with 

system asset 

System Budget Master Data  

(surrogate keys are not defined) 



54 

 

 

 

 

 

 

Column Description Relation 

System_version Software or hardware system 

component version 

Many to one with 

software or hardware 

system asset 

License_name Specification of license i.e., 

enterprise single user, multiuser, 

single instance, multi instance, 

operating system association 

etc. 

One to one with 

software or hardware 

system version 

Planned_cost This is software or hardware 

version cost when purchased, 

deployed 

One to one with 

software or hardware 

system version 

Actual_cost This is software or hardware 

version cost when 

accrued/invoiced 

One to one with 

software or hardware 

system version 

Operation_cost This is software or hardware 

version cost when 

accrued/invoiced year on year 

or at periodic intervals as 

applicable 

One to one with 

software or hardware 

system version 

Upgrade_cost This is software or hardware 

version upgrade when 

accrued/invoiced year on year 

One to one with 

software or hardware 

system version 



55 

 

 

 

or at periodic intervals as 

applicable 

Decommission_cost This is software or hardware 

version decommission cost 

when accrued/invoiced year on 

year or at periodic intervals as 

applicable 

One to one with 

software or hardware 

system version 

System Activity Master Data  

(surrogate keys are not defined) 

Column Description Relation 

System_version Software or hardware system 

component version 

Many to one with 

software or hardware 

system asset 

Activity_date This is software or hardware 

version used 

Many to one with 

software or hardware 

system version 

Activity_code Activity code description like 

PATCH UPDATE, 

RESTART/REBOOT, 

DOWNTIME etc. 

Many to one with 

activity date 

Activity time Time taken for the maintenance 

task as mentioned in the activity 

code 

Many to one with 

activity date 

Upgraded_version Version info of the system if 

upgraded 

Many to one with 

activity date 



56 

 

 

 

Next_activity_date Next maintenance activity date 

of the software or hardware 

version 

one to one with 

activity date 

System_asset_sla_passed 1 or 0 representing pass or 

failed 

one to one with 

activity date 

Additional_cost_incurred Additional cost incurred if any 

software or hardware failures 

and replaced with other 

recommended software or 

hardware entities 

one to one with 

activity date 

Known_issue_count This is collected from the 

system errors, warnings or 

defects encountered from 

previous activities, or from day-

to-day operations tracker 

one to one with 

software or hardware 

version 

System State Metrics 

(surrogate keys are not defined) 

Column Description Relation 

System_name Software or hardware system 

component name 

One to one with 

software or hardware 

system 

system_version This is software or hardware 

version used 

One to many with 

software or hardware 

system 

dep_sw_cnt Software count on which a 

software is dependent on 

One to many with 

software version 



57 

 

 

 

dep_hw_cnt Hardware count on which a 

software is dependent on 

One to many with 

software version 

eol_hw_cnt End of life hardware count 

associated to software 

Many to one with 

software entity 

eol_sw_cnt End of life software count 

associated to hardware 

Many to one with 

hardware entity 

sw_eol_upg_cost_reqd This is boolean flag 

representing if additional cost 

needed to upgrade the end-of-

life software 

Many to one with 

software entity 

hw_eol_upg_cost_reqd This is boolean flag 

representing if additional cost 

needed to upgrade the end-of-

life hardware 

Many to one with 

hardware entity 

hw_maint_cost_reqd This is boolean flag 

representing if additional cost 

needed to maintain/ operate the 

end-of-life hardware 

Many to one with 

hardware entity 

sw_maint_cost_reqd This is boolean flag 

representing if additional cost 

needed to maintain/ operate the 

end-of-life hardware 

Many to one with 

hardware entity 

sw_defects_cnt The defects count with software 

version used 

Many to one with 

software version  

hw_defects_cnt The defects count with 

hardware version used 

Many to one with 

hardware version  



58 

 

 

 

hw_min_sla Minimum service level 

agreement time in milli seconds 

for the hardware availability 

(up and running) 

One to one with 

hardware entity 

sw_min_sla Minimum service level 

agreement time in milli seconds 

for the software availability (up 

and running) 

One to one with 

software entity 

hw_upg_recommend Boolean flag to represent if 

hardware upgrade needed 

One to one with 

hardware entity 

hw_decom_recommend Boolean flag to represent if 

hardware decommission is 

needed 

One to one with 

hardware entity 

sw_upg_recommend Boolean flag to represent if 

software upgrade needed 

One to one with 

software entity 

sw_decom_recommend Boolean flag to represent if 

software decommission is 

needed 

One to one with 

software entity 

 

 

Application and Results of Machine Learning Models applied on this research data 

sets. 

 

How K-NN Classifier Works 

K-Nearest Neighbors (K-NN) is a supervised learning algorithm used mainly for 

classification tasks. It works on the principle that data points close to each other are likely 

to belong to the same category or class. The algorithm classifies a new data point based 

on the "k" closest labeled data points in the dataset. 



59 

 

 

 

Key Steps of the K-NN Algorithm: 

1. Choose the value of K: 

o Select the number of neighbors (k). This is typically an odd number to 

avoid ties, and the performance of the classifier heavily depends on this 

parameter. 

2. Compute the distance: 

o For each data point in the training set, calculate the distance between the 

new data point and the existing data points using a distance metric like 

Euclidean distance or Manhattan distance. 

3. Find the K-nearest neighbors: 

o After calculating the distances, sort the data points and pick the k closest 

ones to the new data point. 

4. Assign the label: 

o Look at the most common class or category among the k nearest 

neighbors. The class with the most votes becomes the prediction for the 

new data point. 

5. Classify the data point: 

o The algorithm assigns the new data point to the class based on the 

majority vote from its neighbors. 



60 

 

 

 

Example of K-NN in Action: 

To apply, we have a dataset of software with features like current version, risk. We want 

to classify a new software version based on these features. The data contains two classes: 

Upgrade and Decommission. 

Dataset Example: 

Software Risk Next Version Label 

Oracle 10g Medium 11 Upgrade 

Oracle 9i High  Decommission 

.NET 4.1 High  Decommission 

.NET 4.5 Medium 4.8 Upgrade 

JDK 11 Low 17 Upgrade 

 

K-NN Process: 

1. We choose k = 3, meaning we will consider the 3 nearest software. 

2. Calculate the Euclidean distance between the new software version and each 

software version in the dataset. 

3. Identify the 2 nearest neighbours based on distance. 

4. Let's say the nearest neighbours include two upgrade and one decommission 

5. Based on the majority (2 votes for upgrade, 1 vote for decommission), we classify 

the new software version as upgrade. 

In summary, K-NN classifies data points by looking at the most common class among its 

nearest neighbours, making it an intuitive, easy-to-understand algorithm for classification 

tasks. However, it can be computationally expensive with large datasets. 

 

  



61 

 

 

 

How Decision Trees Work 

A Decision Tree is a supervised machine learning algorithm used for both 

classification and regression tasks. It uses a tree-like model of decisions, where data is 

split recursively based on certain conditions. The aim is to break down a dataset into 

smaller and smaller subsets while incrementally developing a tree structure with decision 

nodes and leaf nodes. 

 Decision Nodes: These represent conditions on a feature. 

 Leaf Nodes: These represent the final output or decision (the class label or value). 

Each internal node of the tree corresponds to a feature of the dataset, and each branch 

represents a decision rule. The final leaf node represents the outcome or class label. 

Key Concepts: 

1. Root Node: This is the first decision node, representing the best feature to split 

the data on. 

2. Splitting: Dividing the dataset into subsets based on the values of a feature. 

3. Decision Rule: At each decision node, a rule is applied (like "Is next software 

version is compatible to current dependent software version?"). 

4. Leaf Node: After repeated splits, the tree will eventually reach a point where 

further splitting doesn’t add value. This is the final output (classification or 

regression value). 

The model makes decisions by traversing the tree from the root to the leaf node, 

following the conditions laid out in the decision nodes. 

Example: Decision Tree for Classification 

Let's say we have a dataset to classify software upgrade based on its version, end of life 

date, compatibility with next version of dependent software. 

Dataset Example: 

Software  

Version 

Dependent 

Software 

Version 

Compatible to  

Dependent software 

Software 

Upgrade? 

Oracle 7 Java JDK 8 No No 

Oracle 8 Java JDK 11 Yes Yes 



62 

 

 

 

Software  

Version 

Dependent 

Software 

Version 

Compatible to  

Dependent software 

Software 

Upgrade? 

Mysqldb 

4.1 
Windows 11 Yes Yes 

Mysqldb 

4.1 
Windows 10 No No 

 

Decision Tree Process: 

1. Select the Root Node: 

o The algorithm evaluates each feature (e.g., version, dependent version, 

compatibility) to find the best split. It typically uses metrics like Gini 

Impurity or Information Gain (based on entropy) to measure how well a 

feature splits the data. 

o For example, if "software version" splits the data into more homogeneous 

groups (i.e., "Software Upgrade?" is mostly the same for any other minor 

version following major version), and “Software version” will be chosen 

as the root node. 

2. Split the Data: 

o The dataset is divided into subsets based on the root node’s decision. 

o Example split based on Software Version: 

 If Version is major i.e., 4.0, then subset is software of this version 

and any other minor versions i.e., 4.x, can be upgraded. 

 If Version is not compatible i.e., 4.0, then subset is software needs 

replacement and decommission. 

3. Continue Splitting: 

o For each subset, the algorithm continues to split based on the remaining 

features (like "other dependent version" or "dependent software 

compatibility"). 

o Example split based on other software compatibility: 

 If other software version compatibility= Yes, then split further. 



63 

 

 

 

 If other software version compatibility = No, split further or decide 

on replacement with decommissioning the software. 

4. Reach the Leaf Nodes: 

o Once further splitting does not add any significant benefit or the subset is 

pure (i.e., all members of the subset have the same outcome), the process 

stops. 

o Leaf nodes now represent whether a software is upgradeable or ready for 

replacement followed by decommissioning. 

Example Decision Tree Structure: 

 Root: 

o Is Oracle DB ≤ 9? 

 Yes: 

 Is dependent software Java JDK >= 8? 

 Yes: Upgrade (Leaf Node = Yes) 

 No: Decommission (Leaf Node = No) 

 No: 

 Is dependent software Java JDK <= 8? 

 No: Decommission (Leaf Node = Yes) 

 Yes: Upgrade (Leaf Node = No) 

Key Considerations: 

 Overfitting: Decision trees can be prone to overfitting, especially with deep trees 

that perfectly classify the training data but perform poorly on unseen data. 

Pruning methods are often used to combat this. 

 Pruning: This is a technique used to reduce the complexity of the tree by 

trimming parts of the tree that have little importance. 

Summary: 

A Decision Tree classifies data by splitting it into branches based on feature values. The 

tree grows until it reaches a decision at the leaf nodes. The goal is to create a tree that 

makes accurate predictions by finding the best splits at each node 

  



64 

 

 

 

 

How Support Vector Machine (SVM) Works 

 

Support Vector Machine (SVM) is a supervised learning algorithm primarily used for 

classification, but it can also be used for regression tasks. The goal of an SVM is to find 

the best boundary or hyperplane that separates the data points of different classes as 

distinctly as possible. 

SVM is based on the concept of finding a hyperplane that maximally separates two 

classes of data points. The best hyperplane is the one that leaves the maximum margin 

between the data points of both classes. This boundary is referred to as the maximum 

margin hyperplane. 

Key Concepts: 

1. Hyperplane: 

o A hyperplane in an n-dimensional space (n being the number of features) 

is a decision boundary that separates data points. For example, in a 2D 

space, the hyperplane is a line, while in a 3D space, it's a plane. 

2. Support Vectors: 

o These are the data points that lie closest to the hyperplane. They are 

crucial because the position of the hyperplane is determined by them. The 

goal of SVM is to maximize the margin between the hyperplane and these 

support vectors. 

3. Margin: 

o The margin is the distance between the hyperplane and the nearest data 

points from each class. The larger the margin, the better the classifier 

generalizes to unseen data. 

4. Linear vs. Non-Linear SVM: 

o If the data is linearly separable, SVM finds a linear hyperplane that 

divides the two classes. 

o If the data is non-linearly separable, SVM uses a technique called the 

kernel trick to map the data into a higher-dimensional space where a 

hyperplane can separate the classes. 

Example of SVM for Classification: 

Let’s consider a binary classification task where we want to classify software upgrade 

and software decommissions based on their version and compatibility information. 



65 

 

 

 

Dataset Example: 

Software  

Version 

Dependent 

Software 

Version 

Compatible to  

Dependent software 

Software 

Upgrade? 

Oracle 7 Java JDK 8 No No 

Oracle 8 Java JDK 11 Yes Yes 

Mysqldb 

4.1 
Windows 11 Yes Yes 

Mysqldb 

4.1 
Windows 10 No No 

 

SVM Process: 

1. Find the Hyperplane: 

o In a 2D space (features: software version and dependent software version), 

the SVM tries to find a line (hyperplane) that separates software upgrade 

need from software decommission need. 

2. Identify Support Vectors: 

o The closest software upgrades and decommissions to the separating line 

are identified as support vectors. These data points are critical because 

they define the margin. 

3. Maximize the Margin: 

o SVM maximizes the distance (margin) between the hyperplane and the 

support vectors. The larger the margin, the better the classification. 

4. Classification: 

o Once the hyperplane is determined, new software can be classified based 

on their position relative to this boundary. 

Example Visualization: 

If you plot software version on the x-axis and dependent software version on the y-

axis, the SVM will draw a line that best separates the software upgrade needed from the 

software decommission needed, ensuring that the nearest upgrade versions and 



66 

 

 

 

decommission versions (support vectors) are as far away from the line as possible. The 

equation of this line is the hyperplane. 

If Data is Linearly Separable: 

 SVM draws a straight line (hyperplane) that separates the upgradeable versions 

and decommission versions perfectly. 

If Data is Non-Linearly Separable: 

 Sometimes, it's impossible to separate the data points with a straight line. In such 

cases, SVM uses a kernel function (like the RBF kernel) to map the data into a 

higher-dimensional space where it becomes linearly separable. This allows the 

SVM to classify more complex datasets. 

Example: Non-Linearly Separable Data 

Imagine that the software versions in the dataset have common features i.e., overlapping 

features, and a straight line cannot perfectly separate apples and oranges. In this case, 

SVM uses the kernel trick to transform the data into a higher dimension. In this new 

dimension, it becomes possible to draw a linear hyperplane that separates the two classes. 

Kernel Functions: 

 Linear Kernel: Used when the data is linearly separable. 

 Polynomial Kernel: Maps the data to a higher degree polynomial space. 

 Radial Basis Function (RBF) Kernel: Used for non-linearly separable data. It 

creates decision boundaries in complex, curved shapes. 

Summary: 

 Support Vector Machines (SVM) classify data by finding the hyperplane that 

best separates the classes with the maximum margin between the nearest data 

points (support vectors) of each class. 

 If the data is not linearly separable, SVM uses the kernel trick to map the data to 

a higher-dimensional space where it can be separated by a hyperplane. 

SVM is widely used in applications such as image classification, bioinformatics, and text 

categorization, where clear decision boundaries are required. 

 

How Linear Regression Works 

Linear Regression is a supervised learning algorithm primarily used for regression 

tasks. The goal of linear regression is to model the relationship between a dependent 

variable (also called the response or target variable) and one or more independent 



67 

 

 

 

variables (also known as predictors or features). This relationship is represented by a 

straight line that best fits the data points. 

In simple terms, linear regression predicts the value of the target variable based on the 

values of the predictors, assuming a linear relationship between them. 

Types of Linear Regression: 

1. Simple Linear Regression: There is only one independent variable (predictor). 

2. Multiple Linear Regression: There are two or more independent variables 

(predictors). 

The Linear Equation: 

For simple linear regression, the relationship between the dependent variable (Y) and 

the independent variable (X) is expressed as: Y=β0+β1X+ϵY = \beta_0 + \beta_1X + 

\epsilonY=β0+β1X+ϵ 

 YYY = Dependent variable (predicted outcome) 

 XXX = Independent variable (predictor) 

 β0\beta_0β0 = Y-intercept (the value of Y when X = 0) 

 β1\beta_1β1 = Slope (rate of change in Y for a unit change in X) 

 ϵ\epsilonϵ = Error term (captures the deviation from the true relationship) 

In multiple linear regression, the equation becomes: Y=β0+β1X1+β2X2+...+βnXn+ϵY 

= \beta_0 + \beta_1X_1 + \beta_2X_2 + ... + \beta_nX_n + \epsilonY=β0+β1X1+β2X2

+...+βnXn+ϵ where X1,X2,...,XnX_1, X_2, ..., X_nX1,X2,...,Xn are the multiple 

predictors. 

Key Steps in Linear Regression: 

1. Fit a Line: 

o Linear regression finds the line (in simple linear regression) or hyperplane 

(in multiple linear regression) that best fits the data points by minimizing 

the error. 

2. Calculate the Best Fit: 

o The method used to find the best-fitting line is called Ordinary Least 

Squares (OLS), which minimizes the sum of the squared differences 

between the actual and predicted values. 

3. Prediction: 

o Once the model is trained, the linear regression equation can be used to 

make predictions for new data points. 



68 

 

 

 

Example of Simple Linear Regression: 

Here we are predicting the software upgrade based on risk of the software version used. 

Dataset Example: 

Software  Current Version Risk Target Version 

Oracle Database 10g High 12 

Java JDK 8 High 11 

Java JDK 11 Low 17 

.NET 4.1 High 4.8 

 

Linear Regression Process: 

1. Visualize the Data: 

o Plot the data points on a graph, where the x-axis represents the current 

version, and the y-axis represents the target version. 

o The data points might look like a scatter plot. 

2. Fit a Line to the Data: 

o The algorithm will fit a line to the data points such that the error between 

the actual target version and the predicted target version is minimized. 

3. Make Predictions: 

o Using the fitted line, we can now predict the target version of software for 

any given software. 

Residuals (Error Terms): 

The difference between the target version and the predicted target version for each data 

point is called a residual. Linear regression aims to minimize the sum of the squared 

residuals. 

Key Assumptions of Linear Regression: 

1. Linearity: The relationship between the dependent and independent variables is 

linear. 

2. Homoscedasticity: The variance of residuals (errors) is constant across all values 

of the independent variables. 

3. Independence: Observations are independent of each other. 



69 

 

 

 

4. Normality of Residuals: The residuals (errors) are normally distributed. 

Example Visualization: 

Imagine a plot with software version on the x-axis and target versions on the y-axis. 

The data points form a scatter plot, and the linear regression model fits a straight line 

through these points. This line represents the predicted price for each square footage. 

Multiple Linear Regression Example: 

Let’s say we extend the software target version prediction model by including more 

predictors, such as: 

 Dependent software version 

 Dependent software version compatibility 

 Operating cost 

In this case, we use multiple linear regression. The equation might look like this: Target 

Version cost=operating cost × number of target software version - operating cost x 

number of dependent software version 

Here, the coefficients represent the impact of each feature on the price: 

 For each target software version chosen, the operating cost may increase or 

decrease when compared to dependent software version cost 

 For each current software version, the overall operating cost of current software 

may increase or decrease when compared to dependent software version cost. 

Summary: 

 Linear Regression models the relationship between dependent and independent 

variables using a straight line. 

 In simple linear regression, there is one independent variable, while in multiple 

linear regression, there are multiple predictors. 

 The algorithm fits the best line to the data points by minimizing the error and then 

uses this line to make predictions for unseen data. 

Linear regression is widely used in fields such as finance, economics, real estate, and 

engineering, where there is a need to predict continuous outcomes based on input 

variables. 

  



70 

 

 

 

 

How Time Series Prediction Works 

 

Time series prediction is a type of supervised learning where the model analyzes past 

data points, which are recorded over time, to predict future values. In a time series, data is 

sequential, meaning the order of data points matters, unlike in typical regression or 

classification tasks where the order of data points is irrelevant. 

Time series prediction can be applied in various fields such as finance (stock prices), 

weather forecasting, sales forecasting, and more. The key goal is to understand the 

underlying patterns, trends, and seasonality in the data to make accurate predictions. 

Key Components of Time Series Data: 

1. Trend: The long-term upward or downward movement in the data. 

2. Seasonality: Regular patterns that repeat over a fixed period, such as daily, 

monthly, or yearly cycles. 

3. Noise: Random fluctuations in the data that don't follow any identifiable pattern. 

4. Cyclic Patterns: Irregular, non-fixed cycles influenced by external factors, such 

as economic cycles. 

Time Series Models: 

Several models are commonly used for time series forecasting, including: 

1. ARIMA (Auto Regressive Integrated Moving Average) 

2. Exponential Smoothing (ETS) 

3. Long Short-Term Memory (LSTM) Networks 

4. Facebook Prophet 

Each of these models has its own strengths and applications, depending on the 

characteristics of the data. 

1. ARIMA Model (Auto Regressive Integrated Moving Average): 

ARIMA is one of the most popular models for time series forecasting, particularly for 

short-term predictions. It combines three components: 

 AutoRegression (AR): A model that uses the dependency between an 

observation and a number of previous observations. 



71 

 

 

 

 Integrated (I): Differencing the raw observations (subtracting an observation 

from the previous observation) to make the time series stationary (i.e., having 

constant mean and variance). 

 Moving Average (MA): A model that uses the dependency between an 

observation and a residual error from a moving average model applied to lagged 

observations. 

Example of ARIMA for Time Series Forecasting: 

Let’s say you have a dataset that contains count of critical issue pending resolution for 

a given software over the last 2-3 years (considered every month), and you want to 

forecast software version defects for the next couple of quarters. 

Dataset Example: 

Year and Month Defects pending resolution 

Jan 2022 100 

Feb 2022 120 

Mar 2022 130 

... ... 

Dec 2024 200 

The steps for forecasting with ARIMA are as follows: 

1. Make the Series Stationary: 

o Check if the data has a trend and make it stationary by removing the trend 

or applying differencing. 

For example, if the defects pending resolution are increasing over time, you might apply 

a differencing step: Differenced DefectCount=DefectCount (time) −DefectCount (time-1) 

2. Identify AR, I, and MA Terms: 

o Use tools like the ACF (Auto Correlation Function) and PACF (Partial 

Auto Correlation Function) plots to identify the lag terms for AR and 

MA. 

o ARIMA (p, d, q) represents the order of AR, I, and MA terms, where: 

 p: Number of lag observations for the AR term. 

 d: Degree of differencing applied to make the series stationary. 



72 

 

 

 

 q: Number of lagged forecast errors in the prediction equation for 

the MA term. 

3. Fit the ARIMA Model: 

o Train the ARIMA model using historical sales data. 

4. Make Predictions: 

o Once the model is trained, use it to forecast future defect pending 

resolution count for the next couple of quarters  

For example, ARIMA might predict the defect count which are pending resolution for 

January 2025 to be around 210 based on the past trends and patterns. 

2. Exponential Smoothing (ETS): 

Exponential Smoothing models apply smoothing coefficients to past data points to 

predict future values. The more recent the data, the higher the weight assigned to it. ETS 

models are good for data with trends and seasonality. 

Example: 

Using Holt-Winters Exponential Smoothing, you can model the trend and seasonality 

in sales data. 

1. Level: The current state of the series. 

2. Trend: The slope (growth or decline) of the series over time. 

3. Seasonality: Cyclical patterns repeating every year, quarter, month, etc. 

3. Long Short-Term Memory (LSTM) Neural Networks: 

LSTM is a type of recurrent neural network (RNN) specifically designed for sequence 

data like time series. Unlike ARIMA or ETS, which are classical statistical models, 

LSTM is a deep learning model. 

 How it Works: LSTM networks maintain a "memory" of past observations and 

learn long-term dependencies. They are capable of learning both short- and long-

term patterns in the data. 

Example of LSTM for Time Series Prediction: 

Let’s take monthly software patch activity data and its service level objective (SLO) 

data over the last 10 years, and you want to compare the expected SLO and actual SLO 

for the next couple of months i.e., finding missed SLO in the software version patch 

activity. The reasons in SLO miss could be errors during patching, more system restarts 

than expected and firmware errors etc. 

 



73 

 

 

 

Steps: 

1. Preprocess the Data: Split the time series data into smaller sequences (e.g., the 

last 3 months) and predict the next month SLO miss values. 

2. Train the LSTM Model: Feed these sequences into the LSTM network. The 

LSTM learns both short-term and long-term dependencies in the data. 

3. Predict Future Values: Use the trained LSTM model to predict the next couple 

of months SLO misses. 

4. Facebook Prophet: 

Prophet is an open-source forecasting tool developed by Facebook. It is specifically 

designed for time series data that has strong seasonality and trends. It is easy to use and 

can automatically detect seasonal patterns, holidays, and special events that may affect 

predictions. 

Example of Prophet for Time Series Prediction: 

Let’s consider forecasting software version defects. With time, if software is not 

upgraded, that software version will have more security vulnerabilities with dependent 

software defects and compatibility issues. 

Steps: 

1. Model Setup: Prophet requires a data frame with two columns: the date (ds) and 

the value to forecast (y), which is unresolved software version defects in this case. 

Ds y 

2022-01-01 1000 

2022-02-01 1500 

... ... 

2024-11-01 3000 

2. Fit the Prophet Model: Train Prophet to capture the trend and monthly defect 

count (unresolved) with specific software version. 

3. Predict Future Traffic: After training, Prophet predicts software defects for the 

next few months, considering the data trend. 

Summary: 

 Time series prediction involves analysing sequential data to forecast future 

values based on past observations. 



74 

 

 

 

 Classical models like ARIMA and ETS are effective for short-term, trend-based, 

and seasonal data. 

 LSTM networks excel at capturing long-term dependencies in more complex, 

non-linear data. 

 Prophet is a user-friendly, robust tool that handles trends, seasonality, and special 

events. 

Time series forecasting is widely used in banking, finance, economics, business, and 

environmental science to predict sales, stock prices, weather and more. 

 

Software quality data – fault predictions 

The comparison below outlines the strengths and weaknesses of each model when 

applied to software fault prediction: 

Model 
Use in Software 

Fault Prediction 
Strengths Weaknesses 

Best Use Case in 

Software Fault 

Prediction 

Time Series 

Models 

Time series models 

like ARIMA are 

useful when software 

faults are highly 

dependent on time, 

e.g., predicting 

software failures at 

specific stages of the 

software life cycle 

(e.g., testing phase). 

- Captures 

time-

dependent 

trends and 

software 

versions 

- Effective for 

forecasting 

based on 

historical data 

- Requires data 

with clear time-

based patterns 

- Not suited for 

non-sequential 

data 

Predicting the 

frequency of 

bugs or defects 

during software 

releases over 

time. 

K-Nearest 

Neighbours 

(K-NN) 

K-NN can be used to 

predict software faults 

based on the 

similarity of new 

code to previous code 

segments. It looks for 

similar patterns in 

software metrics like 

complexity, code 

churn, etc. 

- Simple, 

interpretable 

- non-

parametric 

- Good for 

small datasets 

- No training 

phase 

required 

- 

Computationally 

expensive with 

large datasets 

- Sensitive to 

irrelevant or 

noisy features 

When you have 

non-time-

dependent 

software metrics 

and want to 

predict faults 

based on 

historical code 

churn. 



75 

 

 

 

Model 
Use in Software 

Fault Prediction 
Strengths Weaknesses 

Best Use Case in 

Software Fault 

Prediction 

Decision 

Trees 

Decision trees 

classify software 

components based on 

features like version 

dependency, 

complexity, open 

defects, learning 

decision rules to 

predict whether a 

software module is 

prone to failure. 

- Easy to 

interpret 

- Handles 

non-linear 

relationships 

- Works with 

categorical 

and 

continuous 

data 

- Prone to 

overfitting 

- Sensitive to 

data variation and 

noise 

When the 

relationships 

between features 

and faults are 

non-linear, and 

explainability is 

important. 

Linear 

Regression 

Linear regression 

models are used to 

predict software faults 

as a linear 

combination of 

software metrics such 

as length of the code, 

code changes to 

resolve defects, and 

dependency with 

other software. 

- Simple and 

interpretable 

- Effective for 

linear 

relationships 

- Assumes a 

linear 

relationship 

- Not suitable for 

non-linear data 

- Can be 

influenced by 

outliers 

When the 

relationship 

between software 

metrics and 

faults is expected 

to be linear, such 

as predicting 

fault density. 

Support 

Vector 

Machines 

(SVM) 

SVM classifies 

software modules as 

fault-prone or non-

fault-prone by finding 

the optimal 

hyperplane that 

separates the two 

classes based on 

software metrics (e.g., 

code complexity, 

code churn, other 

software 

dependencies). 

- Good for 

both linear 

and non-

linear data 

- Effective 

with high-

dimensional 

data 

- Robust to 

outliers 

- 

Computationally 

expensive 

- Difficult to 

interpret 

- Requires careful 

tuning of 

hyperparameters 

When the 

relationship 

between features 

and software 

faults is 

complex, non-

linear, or when 

the dataset is 

high-

dimensional. 

 



76 

 

 

 

 

1. Time Series Models: 

 How They Work: Time series models like ARIMA or LSTM capture patterns 

and trends over time. In software fault prediction, they can model fault 

occurrences over time (e.g., during development or testing phases). 

 Use Case: Useful in software systems with time-based patterns of failures, such 

as periodic software updates or recurring defects. 

Example: Predicting when future software faults will occur based on the history of faults 

during previous testing cycles. 

2. K-Nearest Neighbours (K-NN): 

 How It Works: K-NN is a lazy learning method that makes predictions by 

finding the most similar past software components based on metrics like 

complexity, past bug reports, etc. 

 Use Case: Useful when fault prediction is based on the similarity between current 

and past software metrics. 

Example: Predicting whether a new software module will have defects based on how 

similar it is to past modules with known fault statuses. 

3. Decision Trees: 

 How They Work: Decision trees split data based on feature values, learning rules 

that classify software modules as fault-prone or non-fault-prone. 

 Use Case: Good for explaining which software metrics (e.g., complexity, lines of 

code, previous bug density) contribute to fault prediction. 

Example: A decision tree may learn that "modules with more than 500 lines of code and 

high complexity are prone to failure," making it easy to interpret and act on. 

4. Linear Regression: 

 How It Works: Linear regression fits a linear equation to predict the number of 

software faults based on input features like code complexity or bug history. 

 Use Case: Suitable when the relationship between software metrics and faults is 

expected to be linear. 

Example: Predicting the number of faults in a software module as a function of lines of 

code, where an increase in the number of lines increases the fault probability linearly. 

  



77 

 

 

 

5. Support Vector Machines (SVM): 

 How It Works: SVM finds the optimal hyperplane that separates fault-prone and 

non-fault-prone software components based on features. 

 Use Case: Effective when the relationship between metrics and faults is non-

linear, or when there are many features (high-dimensional data). 

Example: Predicting whether a software module will have faults based on a combination 

of features like code complexity and past defect history, even if the data has non-linear 

patterns. 

 

  



78 

 

 

 

CHAPTER VI:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

5.1 Summary 

This research identified the data required for decision making in software 

upgrades or decommissioning process, proposes integrating all such data on a weekly 

basis so this can be loaded as relational data sets. The data sets are analyzed on a weekly 

basis applying Data Mining techniques such as association, classification and prediction 

by training and testing with Machine Learning models such as K-NN Classifier, Decision 

Trees, Support Vector Machine, Linear Regression and Time Series prediction. This 

research proposes all this as software upgrades and decommission life cycle which is a 

continuous process that keeps generating recommendations in a timely manner for 

stakeholders to review and take appropriate decisions proactively. 

 

ML Model Definition Example Software/Library used 

K-NN 

Classifier 

K-Nearest Neighbors 

(K-NN) is a supervised 

learning algorithm used 

for classification tasks. 

It classifies new data 

points based on their 

proximity to existing 

labeled data points. 

Scikit-learn: Python library that includes 

K-NN as part of its neighbors module 

(sklearn.neighbors.KNeighborsClassifier) 



79 

 

 

 

Decision 

Trees 

Decision Trees are 

supervised learning 

models that split data 

into branches to reach a 

decision. The decision-

making is structured in 

a tree format, where 

each node represents a 

feature, and each 

branch represents a 

decision or rule. 

Scikit-learn: Python's 

tree.DecisionTreeClassifier is used for 

classification, and 

DecisionTreeRegressor for regression 

tasks. 

Support 

Vector 

Machine 

(SVM) 

SVM is a supervised 

learning model used for 

both classification and 

regression tasks. It 

finds a hyperplane in 

an N-dimensional 

space that distinctly 

classifies the data 

points. 

LibSVM: Integrated in various platforms 

like Scikit-learn (sklearn.svm.SVC for 

classification, SVR for regression) 

Linear 

Regression 

Linear Regression is a 

supervised learning 

technique that models 

the relationship 

between a dependent 

variable and one or 

more independent 

variables using a linear 

approach. 

Scikit-learn: Python library offering 

sklearn. linear_model.LinearRegression 

for performing linear regression tasks. 

Time 

Series 

Prediction 

Time series prediction 

refers to analysing 

time-dependent data to 

predict future points. 

Common techniques 

include ARIMA, 

LSTM, and Prophet for 

forecasting trends 

based on past values. 

Facebook Prophet: Open-source 

forecasting tool for time series data. 

Statsmodels: Python package that 

supports ARIMA and other time series 

models. 

 



80 

 

 

 

Conclusion: 

 Time Series Models are best for predicting faults when there are clear, time-

based patterns in software failure history. 

 K-NN is simple but effective when the dataset is small, and predictions are based 

on similarity to past software components. 

 Decision Trees provide interpretable rules for fault classification but are prone to 

overfitting. 

 Linear Regression is suited to fault prediction when the relationship between 

faults and software metrics is linear. 

 SVM is highly effective in complex, high-dimensional, or non-linear software 

fault prediction tasks. 

In general, the choice of the model depends on the nature of the software fault data (time-

based, linear/non-linear, feature-rich, etc.) and the interpretability required by 

stakeholders. 

5.2 Implications 

Time, Effort and Complexity in the decision making of software upgrades and 

decommissions is one common challenge faced by Organizations in the Information 

Technology industry today. The proposed findings, idea and prototype solution as part of 

this research can be adopted to address the problem statement and can be enhanced for 

any further use cases. This research work can provide great foundational framework in 

building a software as a service product with automation of use cases. 

5.3 Recommendations for Future Research 

With evolution and adoption of Generative Artificial Intelligence, Organizations 

may identify new data sets in terms of gathering evidence documentation on successful 

software upgrades, root cause analysis on version upgrade issues, decommissions time 

and effort etc. This research can be expanded further for building recommendation 

systems for such use cases supporting private Large Language Models which provides 

capabilities such as Chat bots on the Organizational data considering data privacy. The 

overall idea and concept remain the same. 

  



81 

 

 

 

5.4 Conclusion 

The prototype solution is built in Python programming language which is capable 

of data integrations and executing machine learning models. The proposed result of 

process execution is depicted below, showing recommended action on a given 

software/library. 

 

 

 

While experimenting, the recommendation percentage produced by Support Vector 

Machine, Random Forest and Decision Tree performed better out of all the models, 

giving the lowest testing MSE (Mean Squared Error) value. 

 

 

 

 

 

 

 

  



82 

 

 

 

REFERENCES 

 

Bachwani R., et al (2012) ‘Recommendation system for software upgrades’, 

ResearchGate publication [online]. Available at 

https://www.researchgate.net/publication/234128761_Mojave_A_Recommendation_Syst

em_for_Software_Upgrades 

Iqbal M., Khalid M. and Khan M.N.A. (2013) ‘A Distinctive Suite of Performance 

Metrics for Software Design’, ResearchGate publication [online]. Available at 

https://www.researchgate.net/publication/270526905_A_Distinctive_Suite_of_Performan

ce_Metrics_for_Software_Design 

Kumar K. and Kaur K. (2022) ‘Recommendation of Regression Techniques for Software 

Maintainability Prediction with Multi-Criteria Decision-Making’, ResearchGate 

publication [online]. Available at 

https://www.researchgate.net/publication/362917558_Recommendation_of_regression_te

chniques_for_software_maintainability_prediction_with_multi-criteria_decision_making  

Nouh F. (2016) ‘SAM Software Asset Management’, ResearchGate publication [online]. 

Available at 

https://www.researchgate.net/publication/291818013_SAM_Software_Asset_Manageme

nt 

Ortiz-Ochoa M. (2016) ‘Identifying and Prioritizing Modernization of Legacy Systems’, 

ResearchGate publication [online]. Available at 

https://www.researchgate.net/publication/294874894_A_Practical_Approach_to_Identify

ing_and_Prioritizing_Modernization_of_Legacy_Systems 

Pombriant D. (2021) ‘Do you have the right software for your digital transformation’, 

Harvard Business Review, 2021(8). Available at https://hbr.org/2021/08/do-you-have-

the-right-software-for-your-digital-transformation  

Saarela M., et al (2017) ‘Measuring Software Security from the Design of Software’, 

ResearchGate publication [online]. Available at  

https://www.researchgate.net/publication/321140241_Measuring_Software_Security_fro

m_the_Design_of_Software 

https://www.researchgate.net/publication/234128761_Mojave_A_Recommendation_System_for_Software_Upgrades
https://www.researchgate.net/publication/234128761_Mojave_A_Recommendation_System_for_Software_Upgrades
https://www.researchgate.net/publication/270526905_A_Distinctive_Suite_of_Performance_Metrics_for_Software_Design
https://www.researchgate.net/publication/270526905_A_Distinctive_Suite_of_Performance_Metrics_for_Software_Design
https://www.researchgate.net/publication/362917558_Recommendation_of_regression_techniques_for_software_maintainability_prediction_with_multi-criteria_decision_making
https://www.researchgate.net/publication/362917558_Recommendation_of_regression_techniques_for_software_maintainability_prediction_with_multi-criteria_decision_making
https://www.researchgate.net/publication/291818013_SAM_Software_Asset_Management
https://www.researchgate.net/publication/291818013_SAM_Software_Asset_Management
https://www.researchgate.net/profile/Mauricio-Ortiz-Ochoa?_sg%5B0%5D=Pna1R3akYXIRFxgIo8dvY-Owp4QQotHTIO2uoyvOVIJlIVqDzFP4MIXMVquiAHgJVbwgKLY.DHa_FSO1t1ekL1nKMaePggJb0VyCk7GIvINg3RQMGIj1ajpxvYKSfDtW1sQVraETifLHjOS00BeUTs0_APEnBg&_sg%5B1%5D=qibAwa30Bkrz6QZcKR7tXjH9pKy5g7ON8zLvyoZudazNhdG-F9cCzHyTjbBrlFwn13voIFk.ZOU4Z_l5Dcq4uLdTQy6Q23-OLsIGlxSRMi1Ohkl4VzNg1FDdC5wzcuTFubFY99TQMwhZw6dcwhYEG81bbVZhAg
https://www.researchgate.net/publication/294874894_A_Practical_Approach_to_Identifying_and_Prioritizing_Modernization_of_Legacy_Systems
https://www.researchgate.net/publication/294874894_A_Practical_Approach_to_Identifying_and_Prioritizing_Modernization_of_Legacy_Systems
https://hbr.org/2021/08/do-you-have-the-right-software-for-your-digital-transformation
https://hbr.org/2021/08/do-you-have-the-right-software-for-your-digital-transformation
https://www.researchgate.net/publication/321140241_Measuring_Software_Security_from_the_Design_of_Software
https://www.researchgate.net/publication/321140241_Measuring_Software_Security_from_the_Design_of_Software


83 

 

 

 

Singh M. and Chabbra J.K. (2021) ‘Software Fault Prediction Using Machine Learning 

Models and Comparative Analysis’, ResearchGate publication [online]. Available at 

https://www.researchgate.net/publication/350490953_Software_Fault_Prediction_Using_

Machine_Learning_Models_and_Comparative_Analysis 

Zijden S.V.D. (2022) ‘Three key tasks needed to decommission applications’, Computer 

Weekly article, [online]. Available at https://www.computerweekly.com/opinion/Gartner-

Three-key-tasks-needed-to-decommission-applications . 

 

 

 

  

https://www.researchgate.net/publication/350490953_Software_Fault_Prediction_Using_Machine_Learning_Models_and_Comparative_Analysis
https://www.researchgate.net/publication/350490953_Software_Fault_Prediction_Using_Machine_Learning_Models_and_Comparative_Analysis
https://www.computerweekly.com/opinion/Gartner-Three-key-tasks-needed-to-decommission-applications
https://www.computerweekly.com/opinion/Gartner-Three-key-tasks-needed-to-decommission-applications


84 

 

 

 

APPENDIX 

 

As part of this research, one paper is submitted for GBIS 2024 and below papers are 

published in the international journals – IOSR and IIJSRT, links below. Also, a patent 

has been filed. 

 

1. Below paper was submitted for GBIS 2024 

GENERATING RECOMMENDATION INSIGHTS AS PART OF THE SOFTWARE 

UPGRADE AND DECOMMISSIONS LIFE CYCLE IN INFORMATION 

TECHNOLOGY INDUSTRY 

 

 

 



85 

 

 

 

 

 

 

 

  



86 

 

 

 

 

2. Papers published: 

(a) 

https://www.iosrjournals.org/iosr-jce/pages/26(2)Series-3.html   

(b) 

https://www.ijisrt.com/decision-making-on-a-software-upgrade-or-decommission-with-

data-mining-and-machine-learning-techniques-in-information-technology-industry 

 

 
 

https://www.iosrjournals.org/iosr-jce/pages/26(2)Series-3.html
https://www.ijisrt.com/decision-making-on-a-software-upgrade-or-decommission-with-data-mining-and-machine-learning-techniques-in-information-technology-industry
https://www.ijisrt.com/decision-making-on-a-software-upgrade-or-decommission-with-data-mining-and-machine-learning-techniques-in-information-technology-industry


87 

 

 

 

 
 

 
 

3. Patent details: 

 Patent Application number: 202441042345   

 Invention title: A recommendation tool for software upgradation or decommission 

and its method thereof 

 Type of application: Complete application 

 Complete application filing date: 31st May 2024 

FORM 2 

The Patent Act 1970 

(39 of 1970) 

& 



88 

 

 

 

The Patent Rules, 2005 

(See Section 10 and Rule 13) 

 

  



89 

 

 

 

COMPLETE SPECIFICATION 

TITLE OF THE INVENTION 

A recommendation tool for software upgradation or decommission and its 

method thereof 

Name and address of the applicant: 

Name:   Ravikanth Kowdeed 

Nationality:  Indian 

Address: 4-48/23, Lane 2, Pratap nagar, Kismatpur, Rajendra Nagar, Hyderabad, 

Telangana, Pin code:  500086 

  



90 

 

 

 

PREAMBLE OF THE INVENTION 

The following complete specification particularly describes the invention and the 

way it is performed: 

FIELD OF INVENTION 

[001]  The present invention relates to a recommendation tool that recommends a 

software upgradation or decommission that is both data and model driven. 

BACKGROUND 

[002]  Many organizations are investing more in Technology and Infrastructure 

that includes software upgrades, software renewals, software replacements, 

platform migrations and so on apart from its further investment in Business, 

People, and Processes. In this context, it is not an easy task for stakeholders to 

decide whether to go for a software upgrade or to replace it with another software. 

[003]  The patent document US10585773 discloses a method to manage 

economics and operational dynamics of various information technology (IT) 

systems wherein a computer collects data indicative of operation of a plurality of 

hardware components and collects data indicative of operation of a plurality of 

software components. The computer creates a first qualitative value representing a 

hardware status of the plurality of the hardware components and a second 

qualitative value representing a software status of the plurality of the software 

components. The first and second qualitative values are displayed in graphical 

form for evaluation by a system operator, and the computer computes a 

probability of life expectancy for the plurality of hardware components and the 

plurality of software components based on said first and second qualitative values 

and utilizing cognitive and artificial intelligence-based calculations to determine 

the probability. 

[004]  The document IN202341044600 describes a 5G network life cycle 

management system using machine learning techniques has a data service module 



91 

 

 

 

(200), a data supervision module (201), a management module (202) and a cloud 

server (203). The data service module (200) connected with 5G network (204) for 

obtaining service data. The data supervision module (201) configured with the 

data service module (200) for monitoring 5G network data. The management 

module (202) for managing a plurality of business data comprising of hospital, 

financial, school and office business data and the cloud server (203) comprising 

of an Supplier Lifecycle (SLC) manager module (205), a cloud orchestrator 

module (206), and an Software Defined Networking (SDN) controller module 

(207) managing 5G network life cycle and generate a graph for sending to user 

device. 

[005]  However, in the aforementioned documents, recommendation to upgrade 

or decommission a software by collecting data and training machine learning 

models is not disclosed. There is no unified approach or solution to consolidate 

data and relationships of Information Technology Assets, Software Upgrades, 

Software costs, Software defects, Software Performance Metrics, Security issues, 

IT system versions, service level objectives etc. Due to this, the decision making 

of software upgrades and software decommissioning is a tedious process and 

takes more time and effort.   

[006]  Therefore, there is a need to build a solution that can integrate and validate 

the collected data from different variables for fault prediction using Data Mining 

and Machine Learning techniques and recommend for software upgradation and 

decommission. 

OBJECT OF THE INVENTION 

[007]  The principal object of the invention is to provide a recommendation tool 

for software upgradation or decommission using data mining and machine 

learning models. 



92 

 

 

 

[008]  Another object of the invention is to provide various components of the 

tool comprising an user interface, an application interface and a database wherein 

the user interface provides navigation pages that depicts visual representation of 

the options selected by the user and outputs that are generated by the application 

interface, and the database stores all the reports of the application interface. 

[009]  Another object of the invention is to disclose the variables that are used by 

the application interface including software version, hardware version, end of life 

for software, end of life for hardware, additional costs to upgrade and/or maintain 

associated software and hardware, respective defect density and availability of 

minimum service level agreement time for hardware and software, respectively. 

[0010]  Another object of the invention is to utilize time series analysis by 

decision tree and SVTM to train the collected data for a decision making process 

by the application interface. 

[0011]  Another object of the invention is to provide a process of working of the 

recommendation tool including the steps of data collection by the input module, 

machine learning model selection, train and evaluate the machine learning models 

by the processing module, data analysis by data mining and machine learning 

models, automated recommendation, iterative improvements, generation of 

reports and storing in the database. 

[0012]  These and other objects and characteristics of the present invention will 

become apparent from the further disclosure to be made in the detailed description 

given below.  

SUMMARY OF THE INVENTION 

[0013]  This summary is provided to introduce a selection of concepts in a 

simplified form that are further described below in the Detailed Description. This 

summary is not intended to identify key features or essential features of the 



93 

 

 

 

claimed subject matter, nor is it intended to be used as an aid in determining the 

scope of the claimed subject matter. 

[0014]  The invention discloses a recommendation tool that recommends for 

software upgradation or decommission using data mining and machine learning 

models and its method thereof. 

[0015]  It is one aspect of the present invention to disclose various components of 

the tool comprising an user interface, an application interface and a database 

wherein the user interface provides visual representation of the reports and 

outputs that are generated by the application interface, and the database stores all 

the reports of the application interface. 

[0016]  It is another aspect of the present invention to disclose the variables that 

are used to collect data by the application interface including software version, 

hardware version, end of life for software, end of life for hardware, additional 

costs to upgrade and/or maintain associated software and hardware, respective 

defect density and availability of minimum service level agreement time for 

hardware and software, respectively. 

[0017]  It is other aspect of the present invention to utilize time series model and 

decision tree to train the collected data for a decision making process in the 

application interface. 

[0018]  It is yet other aspect of the present invention to provide a process of 

working of the recommendation tool including the steps of data collection by the 

input module, machine learning model selection, train and evaluate the machine 

learning models by the processing module, data analysis by data mining and 

machine learning models, automated recommendation, iterative improvements, 

generation of reports and storing in the database.  

[0019]  These together with other objects of the invention, along with the various 

features of novelty which characterize the invention, are pointed out with 



94 

 

 

 

particularity in the disclosure. For a better understanding of the invention, its 

operating advantages and the specific objects attained by its uses, reference 

should be had to the accompanying drawings and descriptive matter in which 

there are illustrated preferred embodiments of the invention. 

 

BRIEF DESCRIPTION OF DRAWINGS 

[0020]  The foregoing and other features of embodiments will become more 

apparent from the following detailed description of embodiments when read in 

conjunction with the accompanying drawings. In the drawings, like reference 

numerals refer to like elements. 

[0021]  In the following description, for the purposes of explanation, numerous 

specific details are set forth in order to provide a thorough understanding of the 

embodiments of the invention. It is apparent, however, to one skilled in the art 

that the embodiments of the invention may be practiced without these specific 

details or with an equivalent arrangement. In other instances, well-known 

structures and devices are shown in block diagram form in order to avoid 

unnecessarily obscuring the embodiments of the invention.  

[0022]  FIG. 1 (in this document) illustrates a block diagram that represents all the 

essential components of the recommendation tool. 

[0023]  FIG. 2 (in this document) illustrates a process of automated 

recommendation for software upgrades or decommission by the recommendation 

tool. 

DETAILED DESCRIPTION OF INVENTION 

[0024]  The embodiments herein and the various features and advantageous details 

thereof are explained more fully with reference to the non-limiting embodiments 

that are illustrated in the accompanying drawings and / or detailed in the 

following description. Descriptions of well-known components and processing 



95 

 

 

 

techniques are omitted to not unnecessarily obscure the embodiments herein. The 

examples used herein are intended merely to facilitate an understanding of ways 

in which the embodiments herein may be practised and to further enable those of 

skill in the art to practice the embodiments herein. Accordingly, the examples 

should not be construed as limiting the scope of the embodiments herein. 

[0025]  Reference in this specification to “one embodiment” or “an embodiment” 

means that a particular feature, structure, or characteristic described in connection 

with the embodiment is included in at least one embodiment of the present 

disclosure. The appearance of the phrase “in an embodiment” in various places in 

the specification are not necessarily all referring to the same embodiment, nor are 

separate or alternative embodiments mutually exclusive of other embodiments. 

Moreover, various features are described which may be exhibited by some 

embodiments and not by others. Similarly, various requirements are described 

which may be requirements for some embodiments but not for other 

embodiments. 

[0026]  Moreover, although the following description contains many specifics for 

the purposes of illustration, anyone skilled in the art will appreciate that many 

variations and/or alterations to said details are within the scope of the present 

disclosure. Similarly, although many of the features of the present disclosure are 

described in terms of each other, or in conjunction with each other, one skilled in 

the art will appreciate that many of these features can be provided independently 

of other features. Accordingly, this description of the present disclosure is set 

forth without any loss of generality to, and without imposing limitations upon the 

present disclosure. 

[0027]  The term “recommendation tool” or “tool” are interchangeably used in the 

Specification where all these terms have same context and meaning as it describes 



96 

 

 

 

a recommendation tool for software upgradation or decommission of the 

invention. 

[0028]  The invention disclosed herein provides a recommendation tool (100) for 

software upgradation or decommission using data mining and machine learning 

models. 

[0029]  FIG. 1 illustrates a block diagram that represents all the essential 

components of the recommendation tool (100) including an user interface (101), 

an application interface (102) and a database (103).  

[0030]  In an embodiment, the user interface (101) is accessed through a login 

page wherein each restricted user is provided with a unique login id and 

password. After logging in the tool, the user interface is configured to display all 

the available options for the user. The options include a home page, a dashboard 

page, inventory, hardware, software, licenses, reports, technology spend and so 

on. Technically, the user interface provides visual representation of the reports 

and outputs that are generated by the application interface. 

[0031]  The dashboard provides a consolidated data on the total annual spend on 

the software and hardware tools, apps and devices, total number of managed 

applications, total number of managed licences and details of underutilized 

accounts, application usage by individual users including active and inactive 

users, and divisional spends by individual departments. It also provides details on 

the upcoming renewal of software and hardware assets for the next one year.  

[0032]  The managed applications include a list of all software and hardware 

application, their respective annual spend, licenses details, assigned users and 

active users of each applications and their respective departments. This also 

includes a filter option to shortlist the details. On selecting a specific application, 

the page navigates to another page which represents activity status of the selected 

application by all the users in the organization. It also provides integrated status of 



97 

 

 

 

each application with that of other applications. The activity status includes date 

and time at which each users used the specific application.   

[0033]  The inventory option in the user interface aids the user to initiate 

discovery of all software and hardware tools, apps and devices when it is logged 

in by the designated user. The technology spend option provides purchase and 

spend details of all the existing software and hardware tools that is used in any 

organization or industry. The details include the list of vendors and their 

respective cost analysis including purchase and its respective maintenance. 

[0034]  Similarly, the hardware, software, and licenses navigation pages also 

provides consolidated details of the existing hardware, software apps and tools 

with their respective licenses. All the navigation pages in the user interface are 

integrated with the application interface of the recommendation tool such that 

different types of reports are generated according to the user’s requirement. The 

reports are exported in either csv or xlsx for documentation purpose. 

[0035]  In another embodiments, the application interface (102) includes an input 

module (104), a processing module (105) and an output module (106). The input 

module (104) further comprises data collection tier and pre-processing tier that 

collects and pre-processes data from sinks, data APIs and files including csv, pdfs 

and documents, and ETL connectors. The processing module (105) analyses and 

processes the data collected by the input module (104) using data mining and 

machine learning models.  

[0036]  The data collection tier in the input module (104) collects data from the 

public web sites, software release documentation, organization case studies and 

feedback surveys conducted in the communities of practice and communities of 

technology interest groups that is related to software requirements, software 

budget, system asset metadata, software issues, and execution metrics whereas the 



98 

 

 

 

pre-process tier ensures consistency, completeness, and accuracy that involve 

cleaning, formatting, and standardizing the data.  

[0037]  The ETL connectors in the input module (104) extract and integrate data 

from different systems including System logs through Platform level files or 

shared data stores, Defects, Cost considerations, Ethics or Security or Data 

Privacy dictionaries, Business needs, and through APIs and load the integrated 

data to the database. 

[0038]  After data collection by the input module (104), data analysis is performed 

by the processing module (105). The machine learning models in the processing 

module (105) performs time series analysis using decision tree and support vector 

models; sentimental analysis using XGBoost; anomaly detection using isolation 

forest time series and sequential data analysis using long short term memory 

(LSTM). The processing module (105) fuses data from different sources and 

analyses using machine learning models to identify patterns, trends, and 

anomalies.  

[0039]  Based on the insights gathered from data analysis, the processing module 

(105) generates automated recommendations for software upgrades or 

decommission that are presented in the output module. The output module (106) 

is integrated with the user interface (101) to provide output based on the options 

selected by the user in the form of both visual representation and recommendation 

reports. 

[0040]  The database (103) in the recommendation tool (100) serves two purposes 

including gathering the input data from the input module (104) to generate the 

desired data needed for machine learning models in the processing module (105), 

and store all the gathered data and the automated recommendation for software 

upgrades or decommission. 



99 

 

 

 

[0041]  In yet another embodiment, the process of automated recommendation for 

software upgrades or decommission by the recommendation tool (100) is 

disclosed as shown in FIG 2. The steps in the process of automated 

recommendation for software upgrades or decommission by the recommendation 

tool (100) includes: 

(a) Data collection: The input module (104) gathers weekly data from various 

source of data by the ETL connectors including software requirements, software budget, 

system asset metadata, software issues, and execution metrics and consolidates the 

collected metrics every month wherein  

the data on software requirements includes functional, non-functional and domain 

requirements;  

the data on software budget includes component version of the software, 

specification of license, cost of software version when purchased or deployed and 

accrued or invoiced, upgrade and/or decommission cost at periodic intervals;  

the data on system asset metadata on premises or cloud includes component 

name, version and expiry date of the software system, its respective supporting operating 

system, and its dependent hardware assets;  

the data on software issues includes data collected from the system errors, 

warnings or defects encountered from previous activities, or from day-to-day operations 

tracker; and  

the data on execution metrics includes component name and version of the 

software and its associated hardware, count and its respective end of life of each software 

and its associated hardware, additional cost to upgrade or maintain the end of life 

software and its associated hardware, and minimum service level agreement time in milli 

seconds for the software availability and its associated hardware; 

(b) Machine learning Model selection: The models that are selected in the 

processing module (105) include decision tree and support vector models for time series 



100 

 

 

 

analysis, XGBoost for sentimental analysis, long short term memory (LSTM) for 

sequential data analysis and isolation forest time series for anomaly detection;  

(c) Train and evaluation of the models in the processing module: The input data is 

split into training and validation sets to evaluate model performance wherein the training 

set is used as input to train the selected machine learning models and the validation set is 

used to assess their performance in predicting software requirements, costs, asset 

metadata, issues, and execution metrics. Metrics such as accuracy, precision, recall, and 

F1-score are measured depending on the specific tasks and objectives. 

(d) Data analysis by data mining and machine learning models: The data analysis 

by the processing module (105) includes predictive maintenance analysis, cost benefit 

analysis and user feedback integrations; 

wherein the predictive maintenance analysis anticipate potential issues and 

performance degradation in the software system by analysing historical data on software 

execution metrics and system asset metadata such that the trained models in the 

processing module (105) can predict when software components are likely to reach end-

of-life or experience compatibility issues with other software or hardware;  

wherein the cost and benefit analysis evaluate the potential costs and benefits of 

proposed software updates by considering factors such as installation costs, renewal fees, 

upgrade expenses, and decommissioning costs such that the trained models in the 

processing module recommend updates that provide the greatest value to the organization 

while minimizing operational expenses.  

wherein the models in the processing module (105) integrates user feedback into 

the update recommendation process, allowing stakeholders to provide input and prioritize 

features or fixes based on user preferences and pain points, and ensures that updates are 

tailored to meet the needs of end-users and improve overall satisfaction with the software. 

(e) Automated recommendation: Based on the insights gathered from data 

analysis, the processing module (105) generates automated recommendations for 



101 

 

 

 

software upgrades or decommission by taking into account factors such as business 

objectives, system needs, hardware specifications, and cloud vs non-cloud infrastructure 

support, ensuring that updates are aligned with organizational goals and technical 

requirements. 

(f) Iterative improvement: The machine learning models in the recommendation 

tool (!00) continuously learns and adapts based on feedback and performance metrics by 

iteratively refining its models and algorithms such that the tool (100) can improve the 

accuracy and relevance of its recommendations over time, leading to more effective 

software upgrade or decommission decisions.  

(g) Generation of report: The automated recommendations for software upgrades 

or decommission are generated as reports by the processing module (105) and is sent to 

the output module (106) that is further represented in the user interface (101). 

(h) Storing of data: The gathered input data from the input module (104) and the 

recommendations by the processing module (105) are stored in the database (103) for 

future references. 

[0042]  The upgrade success is determined using all the above input data and 

monthly data mining by applying The Pareto principle wherein 80 percent of the 

output from a given situation or system is determined by 20 percent of the input. 

Based on this principle, the recommendation on typical distribution and likelihood 

of software upgrade or decommission is decided by the recommendation tool. 

[0043]  In an example embodiment, Let us take the mysqldb library used in the 

Python program behind an online application saving orders to MySQL database. 

Input data collected on a weekly basis for the recommendation process includes 

system performance metrics, connectivity errors in the logs, result of windows 

server updates, result of .net patch updates, security defects/vulnerabilities, 

MySQL database patches, python updates, application downtime, SLA misses if 

any and so on. The Output by the recommendation tool is a recommendation 



102 

 

 

 

report with data insights including software, software version, platform, platform 

version, recommended for upgrade (y/n), and recommended for decommission 

(y/n) as shown in Table 1 below: 

 

Table 1 Recommendation output for a specific software using the tool 

Software Software 

version 

Platform Platform 

version 

Recommended 

for upgrade 

(y/n) 

Recommended 

for 

decommission 

(y/n) 

mysqldb 

lib 

4.1 Windows 11 Y N 

mysql 

client 

4.0 Windows 11 Y N 

 

[0044]  Industrial applicability: By implementing the software upgrade or 

decommission recommendation tool disclosed herein, organizations can 

streamline the update process, reduce manual effort, and make more informed 

decisions based on data-driven insights. This concept represents a novel approach 

to software maintenance and enhancement, leveraging machine learning to 

optimize the software development lifecycle. 

[0045]  The present software upgrade or decommission recommendation tool can 

also be applied for: 

(a) Executive reporting systems can use the above process as part of Data 

Analytics. 

(b) Applications like Cyber Security Audit reports and Privately setup GenAI 

systems can be benefitted. 



103 

 

 

 

(c) The tool has potential to be built as SaaS product and can be used by IT 

Organizations users, particularly Executive body members 

[0046]  The foregoing description of the specific embodiments will so fully reveal 

the general nature of the embodiments herein that others can, by applying current 

knowledge, readily modify and/or adapt for various applications such specific 

embodiments without departing from the generic concept, and, therefore, such 

adaptations and modifications should and are intended to be comprehended within 

the meaning and range of equivalents of the disclosed embodiments. It is to be 

understood that the phraseology or terminology employed herein is for the 

purpose of description and not of limitation. Therefore, while the embodiments 

herein have been described in terms of preferred embodiments, those skilled in 

the art will recognize that the embodiments herein can be practiced with 

modification within the spirit and scope of the embodiments as described herein. 

 

  



104 

 

 

 

Claims: 

I claim: 

1. A recommendation tool (100) for software upgradation or decommission, 

comprising:  

an user interface (101),  

an application interface (102), and  

a database (103); 

wherein the user interface (101) is configured to display all the available options 

for the user; 

wherein the application interface (102) includes an input module (104) 

comprising data collection tier and pre-processing tier that collects and pre-processes data 

from sinks, data APIs and files including csv, pdfs and documents, and ETL connectors, a 

processing module (105) containing machine learning models to process the collected 

data and an output module (106) that is integrated with the user interface (101) to provide 

output based on the options selected by the user in the form of both visual representation 

and recommendation reports; 

wherein the ETL connectors extract and integrate data from different data source 

and load the integrated data to the database (103); and 

wherein the database (103) gathers the input data from the input module (104) to 

generate the desired data needed for machine learning models in the processing module 

(105), and store all the gathered data and the automated recommendation for software 

upgrades or decommission. 

 

2. The recommendation tool for software upgradation or decommission as 

claimed in claim 1, wherein the machine learning models include decision tree, support 

vector machine model, XGBoost, LSTM and isolation forest time series. 



105 

 

 

 

3. The recommendation tool for software upgradation or decommission as 

claimed in claim 1, wherein the user interface (101) is accessed by the registered users 

by logging in with their respective credentials. 

4. The process of automated recommendation for software upgrades or 

decommission by the recommendation tool (100) comprising the steps of: 

(a) Data collection wherein the input module (104) gathers weekly data from 

various source of data by the ETL connectors including software requirements, software 

budget, system asset metadata, software issues, and execution metrics and consolidates 

the collected metrics every month wherein the data on software requirements includes 

functional, non-functional and domain requirements;  

the data on software budget includes component version of the software, 

specification of license, cost of software version when purchased or deployed and 

accrued or invoiced, upgrade and/or decommission cost at periodic intervals;  

the data on system asset metadata on premises or cloud includes component 

name, version and expiry date of the software system, its respective supporting operating 

system, and its dependent hardware assets; the data on software issues includes data 

collected from the system errors, warnings or defects encountered from previous 

activities, or from day-to-day operations tracker; and the data on execution metrics 

includes component name and version of the software and its associated hardware, count 

and its respective end of life of each software and its associated hardware, additional cost 

to upgrade or maintain the end-of-life software and its associated hardware, and 

minimum service level agreement time in milli seconds for the software availability and 

its associated hardware; (b) Machine learning Model selection wherein the models that 

are selected in the processing module (105) include decision tree and support vector 

models for time series analysis, XGBoost for sentimental analysis, isolation forest time 

series for anomaly detection and long short-term memory (LSTM) for sequential data 

analysis;  



106 

 

 

 

(c) Train and evaluation of the models in the processing module wherein the input 

data is split into training and validation sets to evaluate model performance, wherein the 

training set is used as input to train the selected machine learning models and the 

validation set is used to assess their performance in predicting software requirements, 

costs, asset metadata, issues, and execution metrics, wherein metrics such as accuracy, 

precision, recall, and F1-score are measured depending on the specific tasks and 

objectives. 

(d) Data analysis by data mining and machine learning models wherein the data 

analysis by the processing module (105) includes predictive maintenance analysis, cost 

benefit analysis and user feedback integrations; wherein the predictive maintenance 

analysis anticipates potential issues and performance degradation in the software system 

by analysing historical data on software execution metrics and system asset metadata 

such that the trained models in the processing module (105) can predict when software 

components are likely to reach end-of-life or experience compatibility issues with other 

software or hardware;  

wherein the cost and benefit analysis evaluate the potential costs and benefits of 

proposed software updates by considering factors such as installation costs, renewal fees, 

upgrade expenses, and decommissioning costs such that the trained models in the 

processing module recommend updates that provide the greatest value to the organization 

while minimizing operational expenses.  

wherein the models in the processing module (105) integrates user feedback into 

the update recommendation process, allowing stakeholders to provide input and prioritize 

features or fixes based on user preferences and pain points, and ensures that updates are 

tailored to meet the needs of end-users and improve overall satisfaction with the software. 

(e) Automated recommendation based on the insights gathered from data analysis, 

wherein the processing module (105) generates automated recommendations for software 

upgrades or decommission by considering factors such as business objectives, system 



107 

 

 

 

needs, hardware specifications, and cloud vs non-cloud infrastructure support, ensuring 

that updates are aligned with organizational goals and technical requirements. 

(f) Iterative improvement wherein the machine learning models in the 

recommendation tool (100) continuously learns and adapts based on feedback and 

performance metrics by iteratively refining its models and algorithms such that the tool 

(100) can improve the accuracy and relevance of its recommendations over time, leading 

to more effective software upgrade or decommission decisions.  

(g) Generation of report wherein the automated recommendations for software 

upgrades or decommission are generated as reports by the processing module (105) and is 

sent to the output module (106) that is further represented in the user interface (101). 

(h) Storing of data wherein the gathered input data from the input module (104) 

and the recommendations by the processing module (105) are stored in the database (103) 

for future references. 

 

[0047]  The invention provides an automated recommendation tool (100) for 

software upgradation or decommission comprising an user interface (101), an 

application interface (102), and a database (103) wherein the application interface 

(102) includes an input module (104) comprising data collection tier and pre-

processing tier along with ETL connectors, a processing module (105) containing 

machine learning models to be trained and process the collected data and an 

output module (106) that is integrated with the user interface (101) to provide 

recommendation output. A process of automated recommendation for software 

upgrades or decommission by the recommendation tool (100) comprises the steps 

of data collection by the input module (104), machine learning model selection, 

training and evaluation of the machine learning models by the processing module 

(105), data analysis by data mining and machine learning models, automated 



108 

 

 

 

recommendation, iterative improvements, generation of reports and storing in the 

database (103). 

(published in FIG. 1 in this document)                                                                

 

Below is the description of the Software Asset Life Cycle along with information on 

products and their features in today's market involves elaborating on the life cycle stages, 

key concepts, and various tools available. 

 

1. Introduction to Software Asset Life Cycle 

 Definition of software asset management (SAM) and software asset life cycle. 

 Importance of managing software assets in organizations. 

 Overview of stages in the software asset life cycle. 

2. Stages of Software Asset Life Cycle 

2.1 Planning and Procurement 

 Description: Planning involves identifying the need for software, understanding 

requirements, budgeting, and establishing policies around software acquisition. 

 Key Products: 

o Flexera: Helps optimize software procurement and ensure compliance. 

o ServiceNow IT Asset Management: Manages software purchases and 

ensures optimized usage. 

 Features: License tracking, budget control, vendor management. 

2.2 Acquisition 

 Description: Acquiring the software through purchase, subscription, or licensing. 

Understanding licensing agreements and models. 

 Key Products: 

o Snow Software: Automates license acquisition and helps track usage 

rights. 

o Ivanti Asset Manager: Manages software purchases and entitlements. 

 Features: Contract management, vendor negotiation support, usage tracking. 

2.3 Deployment and Installation 



109 

 

 

 

 Description: The process of installing and deploying software on various devices 

or servers. Ensuring that it is correctly installed according to licenses. 

 Key Products: 

o Microsoft SCCM (System Center Configuration Manager): Helps 

deploy software across large enterprises. 

o ManageEngine Desktop Central: Provides remote software installation 

and patching. 

 Features: Remote installation, automation of software deployment, patch 

management. 

3. Use and Management of Software Assets 

3.1 Usage Monitoring and Optimization 

 Description: Tracking how the software is being used to ensure it is in line with 

license agreements and to identify underutilized assets. 

 Key Products: 

o Flexera One: Tracks software usage and helps optimize usage based on 

real needs. 

o Certero for Cloud: Monitors SaaS and cloud-based software usage. 

 Features: License usage monitoring, software optimization recommendations, 

real-time insights. 

3.2 Maintenance and Updates 

 Description: Keeping the software up to date with patches, upgrades, and security 

updates. 

 Key Products: 

o Kaseya VSA: Manages patching and updates for both on-premises and 

cloud-based software. 

o Patch My PC: A simple tool for automating updates. 

 Features: Automatic patching, vulnerability scanning, update notifications. 

 

4. Auditing and Compliance 

 Description: Ensuring that the organization complies with the licensing 

agreements and preparing for software audits. 

 Key Products: 



110 

 

 

 

o Snow License Manager: Tracks license usage and ensures compliance. 

o Flexera Compliance Manager: Helps organizations stay compliant with 

software licensing. 

 Features: License compliance reporting, audit readiness, automated license 

reconciliation. 

5. Retirement and Disposal 

 Description: When software is no longer needed or outdated, it needs to be 

decommissioned or retired from active use while ensuring proper documentation 

and compliance. 

 Key Products: 

o Ivanti IT Asset Management Suite: Helps in retiring software assets and 

ensures proper license recovery. 

o ServiceNow SAM: Automates the retirement and reallocation of software 

assets. 

 Features: License recovery, decommissioning automation, data wiping. 

6. Challenges in Managing Software Asset Life Cycle 

 Complex Licensing: The growing complexity of software licenses and 

subscriptions, such as hybrid on-premises and SaaS solutions. 

 Shadow IT: Use of unsanctioned software by employees leading to compliance 

risks. 

 Cloud and SaaS Management: Transitioning from traditional software to cloud-

based and SaaS models requires different management approaches. 

 Compliance and Legal Issues: Staying compliant with licensing terms to avoid 

costly penalties during audits. 

7. Market Trends in Software Asset Management 

 AI and Automation in SAM: AI-driven tools that automatically detect and 

optimize software assets. 

 Cloud-Based SAM Solutions: The rise of cloud-native software asset 

management platforms. 

 SaaS and Hybrid Models: Managing SaaS subscriptions alongside traditional 

software licenses. 

 Integration with ITSM (IT Service Management): SAM solutions that 

integrate with IT service management platforms for holistic IT governance. 



111 

 

 

 

8. Detailed Review of Popular Software Asset Management Tools 

8.1 Flexera One 

 Overview: A comprehensive SAM platform designed to optimize software and 

cloud costs while ensuring compliance. 

 Features: License optimization, cloud cost management, audit readiness, SaaS 

management. 

8.2 Snow Software 

 Overview: Focuses on managing software licenses and cloud resources across a 

range of environments. 

 Features: Software discovery, compliance auditing, SaaS and IaaS management, 

mobile app integration. 

8.3 ServiceNow Software Asset Management (SAM) 

 Overview: A powerful SAM tool integrated with the broader ServiceNow ITSM 

platform. 

 Features: Software license management, software request automation, audit 

management, usage tracking. 

8.4 Ivanti IT Asset Management 

 Overview: Ivanti's solution integrates hardware and software asset management, 

offering strong automation capabilities. 

 Features: License reconciliation, software usage monitoring, automated software 

retirement. 

8.5 ManageEngine AssetExplorer 

 Overview: An IT asset management tool that helps track and manage software 

licenses and assets throughout their life cycle. 

 Features: License compliance tracking, asset discovery, asset retirement, contract 

management. 

9. Case Studies and Use Cases 

 Real-world examples of how organizations use SAM tools to streamline their 

software management, reduce costs, and ensure compliance. 

10. Future of Software Asset Management 

 AI and Machine Learning: Use of AI in predicting software usage patterns, 

license optimization, and compliance risks. 



112 

 

 

 

 Blockchain in SAM: The potential of blockchain technology for tracking 

software usage and licensing agreements in a transparent and secure way. 

 SaaS and Hybrid Licensing Models: The rise of hybrid software usage models 

combining on-premises and cloud-based software. 

In Software Asset Management (SAM), various technologies are employed to optimize 

the management of software assets, ensure compliance with licensing agreements, reduce 

costs, and manage software usage throughout its life cycle. These technologies facilitate 

tracking, procurement, deployment, monitoring, auditing, and decommissioning of 

software in organizations. 

Key Technologies in Software Asset Management 

1. Software Discovery Tools 

 Technology Overview: Software discovery tools are used to automatically scan 

and identify software installed on endpoints across the organization. These tools 

help in creating an inventory of all software assets, including their versions, 

licensing status, and usage. 

 Common Technologies: 

o Agent-Based Discovery: Small software agents installed on endpoints 

collect data about installed software. 

o Agentless Discovery: Scans are conducted remotely to discover software 

without installing any agent on the endpoint. 

 Examples: 

o Flexera: Provides discovery tools that identify installed software and track 

its usage. 

o ServiceNow Discovery: Integrated with its ITSM platform, ServiceNow 

Discovery automates the identification of software and hardware assets. 

2. License Management Tools 

 Technology Overview: License management tools track software licenses to 

ensure compliance with licensing agreements and optimize license usage. These 

tools monitor license usage across the organization, helping organizations avoid 

over-provisioning or under-utilization. 

 Common Technologies: 

o License Reconciliation Engines: Compares actual software usage with 

purchased licenses to identify discrepancies. 



113 

 

 

 

o License Harvesting: Automatically reclaims unused or underused 

software licenses and reallocates them to other users. 

 Examples: 

o Snow License Manager: Tracks software license usage and provides 

compliance reports. 

o Ivanti IT Asset Management: Offers automated license management and 

license harvesting. 

3. Cloud and SaaS Management 

 Technology Overview: As organizations adopt more cloud-based software and 

Software-as-a-Service (SaaS) solutions, cloud and SaaS management tools 

become essential to track usage and costs. These tools help manage subscriptions, 

control shadow IT, and optimize cloud costs. 

 Common Technologies: 

o SaaS Subscription Management: Monitors the number of SaaS 

subscriptions and tracks their usage to avoid redundant subscriptions. 

o Cloud Cost Optimization: Tracks the cost and usage of cloud-based 

software and infrastructure. 

 Examples: 

o Certero for Cloud: Manages SaaS and IaaS (Infrastructure-as-a-Service) 

applications, providing visibility into usage and costs. 

o Flexera One Cloud Cost Optimization: Optimizes cloud costs by 

identifying underused or idle cloud resources. 

4. Artificial Intelligence and Machine Learning 

 Technology Overview: AI and machine learning technologies are increasingly 

being used in SAM to predict software usage patterns, optimize license 

management, and detect compliance risks. AI helps in automating routine SAM 

tasks like identifying under-utilized licenses or predicting the need for future 

software purchases. 

 Common Technologies: 

o Predictive Analytics: Machine learning algorithms analyze past software 

usage patterns to predict future software demand. 

o Anomaly Detection: AI-powered anomaly detection identifies unusual or 

risky software usage that may violate compliance rules. 

 Examples: 



114 

 

 

 

o Flexera AI-Powered License Optimization: Uses AI to recommend 

optimized licensing strategies based on usage patterns. 

o Snow Software: Employs machine learning to forecast software 

consumption and potential license compliance issues. 

5. Blockchain for Software License Management 

 Technology Overview: Blockchain technology, with its immutable and 

transparent ledger, is emerging as a potential solution for managing software 

licenses. Blockchain can provide a secure and transparent record of license 

ownership and usage, ensuring that all parties have an accurate and tamper-proof 

record of software agreements. 

 Common Technologies: 

o Decentralized License Management: Blockchain allows organizations to 

manage software licenses in a decentralized manner, reducing reliance on 

centralized entities for license verification. 

o Smart Contracts: Automatically enforce license agreements and trigger 

actions like renewals or deactivation when conditions are met. 

 Examples: 

o Chronicled: Uses blockchain for secure software licensing management 

and automated compliance. 

o IBM Blockchain: Explores blockchain solutions for managing software 

licenses and ensuring compliance. 

6. Automation and Orchestration Tools 

 Technology Overview: Automation and orchestration tools help streamline and 

automate various SAM processes, from software deployment and patching to 

license tracking and retirement. Automation ensures that software is deployed, 

updated, and removed in a controlled and compliant manner. 

 Common Technologies: 

o Robotic Process Automation (RPA): Automates repetitive tasks like 

license renewals, software deployment, or report generation. 

o IT Orchestration: Integrates SAM tools with other IT management 

platforms, such as IT service management (ITSM) and configuration 

management databases (CMDBs). 

 Examples: 



115 

 

 

 

o ServiceNow ITAM: Provides workflow automation to manage software 

throughout its lifecycle, from procurement to retirement. 

o Ivanti Neurons: Offers automation capabilities for patch management, 

software deployment, and license management. 

7. Software Metering 

 Technology Overview: Software metering tools help organizations track the 

usage of specific software applications in real time, providing insights into which 

software is being used and how frequently. This data can be used to optimize 

licensing and reduce costs by eliminating unused or underused software. 

 Common Technologies: 

o Real-Time Usage Monitoring: Monitors software usage across the 

organization to track how often each software product is used. 

o Application Control: Ensures that only authorized users have access to 

certain software applications based on metering data. 

 Examples: 

o ManageEngine Desktop Central: Provides software metering 

capabilities to track software usage and control access. 

o Flexera Software Metering: Monitors software usage across the 

enterprise and provides reports on under-utilized software. 

8. Cloud Licensing Management 

 Technology Overview: As more organizations transition to cloud-based software, 

cloud licensing management tools are needed to handle the complexities of 

cloud licensing agreements, such as pay-as-you-go models, subscription-based 

licenses, and dynamic resource allocation. 

 Common Technologies: 

o Pay-As-You-Go License Management: Tracks software licenses based 

on consumption in cloud environments, ensuring compliance with 

dynamic billing models. 

o Hybrid Licensing: Manages both traditional on-premises licenses and 

cloud-based licenses within the same system. 

 Examples: 

o Zylo: Provides cloud-based license management for SaaS applications, 

ensuring cost optimization and compliance. 



116 

 

 

 

o Flexera Cloud Cost Management: Tracks cloud licensing and manages 

dynamic licensing agreements in cloud environments. 

9. Patch Management and Security Technologies 

 Technology Overview: Patch management is essential for keeping software up 

to date and ensuring that vulnerabilities are addressed. Security technologies 

integrated with SAM tools help monitor software for security threats and ensure 

that all installed software is regularly patched. 

 Common Technologies: 

o Automated Patching: Automatically deploys security patches and 

updates to all installed software. 

o Vulnerability Management: Scans installed software for known 

vulnerabilities and ensures they are patched or mitigated. 

 Examples: 

o Microsoft SCCM (System Center Configuration Manager): Manages 

patching and updates for large software deployments. 

 

Software Decommissioning Process: A Detailed Guide 

The software decommissioning process involves systematically retiring software 

applications or systems that are no longer in use or are being replaced by newer 

technologies. Decommissioning software ensures that an organization avoids unnecessary 

costs associated with unused licenses, reduces security risks, and maintains compliance 

with regulatory requirements. Properly decommissioning software also ensures that 

valuable data is either archived or securely deleted. 

This five-page documentation outlines the key steps involved in the software 

decommissioning process, ensuring that all important considerations, such as data 

retention, security, and compliance, are addressed. 

1. Introduction to Software Decommissioning 

1.1 Definition 

Software decommissioning is the process of removing or retiring software applications 

from active use within an organization. This includes removing the software from active 

servers or workstations, terminating licenses, managing data retention, and ensuring that 

security risks associated with unused software are mitigated. 

1.2 Importance of Software Decommissioning 

Properly decommissioning software provides several benefits: 



117 

 

 

 

 Cost Savings: Organizations can eliminate the costs associated with maintaining 

licenses, hardware, and support for unused software. 

 Security: Reduces the attack surface by removing outdated software that may 

have security vulnerabilities. 

 Compliance: Helps organizations comply with data retention policies and 

software license agreements. 

 Optimization: Frees up resources, such as storage and IT personnel, allowing 

them to focus on active systems and new technology deployments. 

1.3 Key Stakeholders 

 IT and Operations Teams: Responsible for uninstalling and retiring the 

software. 

 Legal and Compliance Teams: Ensure that decommissioning meets regulatory 

and contractual obligations. 

 Finance Teams: Manage the cancellation of licenses and subscriptions to reduce 

ongoing costs. 

 Security Teams: Ensure that data associated with decommissioned software is 

securely archived or destroyed. 

2. Steps in the Software Decommissioning Process 

2.1 Step 1: Planning and Assessment 

Before decommissioning software, a thorough planning and assessment phase is 

necessary to determine which software needs to be decommissioned and how it will 

impact the organization. 

 Inventory and Assessment: Identify all software applications to be 

decommissioned. Assess the usage, business impact, and interdependencies with 

other systems. 

o Tools such as Flexera or ServiceNow can help with inventory 

management and determining software usage. 

 Stakeholder Engagement: Engage relevant stakeholders, including end-users, 

IT, legal, and finance departments, to ensure that the decision to decommission is 

well-understood and agreed upon. 

 Data Retention Requirements: Assess data retention policies to determine what 

data must be retained from the software (e.g., customer records, transaction data, 

compliance-related information) and what can be securely deleted. 



118 

 

 

 

 Compliance Check: Ensure that the software decommissioning complies with 

legal, regulatory, and contractual requirements, such as data privacy laws (e.g., 

GDPR) and software licensing agreements. 

2.2 Step 2: Data Backup and Archiving 

One of the most critical steps in decommissioning software is ensuring that any valuable 

data is properly handled. Data associated with the software may need to be archived for 

future reference, especially for regulatory or compliance purposes. 

 Identify Critical Data: Determine which data needs to be retained, and for how 

long, based on organizational policies and regulatory requirements. 

 Backup and Archive: Use appropriate data backup solutions (e.g., Veeam, 

Acronis) to securely archive critical data. Ensure that backups are stored in a 

secure and accessible location. 

o Metadata Documentation: Document the metadata related to the 

archived data, including what the data represents, its origin, and the 

retention duration. 

 Data Retention Policy: Establish a data retention schedule to ensure that 

archived data is stored for the required duration and securely disposed of once it is 

no longer needed. 

2.3 Step 3: License Management and Termination 

Managing software licenses is a critical part of the decommissioning process, as 

organizations must ensure that they terminate unused licenses to avoid unnecessary costs. 

 License Inventory: Use SAM tools (e.g., Snow License Manager, Ivanti Asset 

Manager) to create an inventory of licenses associated with the software. 

 Contractual Obligations: Review software licensing contracts to identify any 

obligations related to decommissioning, such as early termination fees or contract 

expiration terms. 

 Terminate Subscriptions: For SaaS applications, notify the vendor of the 

intention to terminate the subscription, and ensure that automatic renewals are 

cancelled. 

 Reclaim Unused Licenses: If the software being decommissioned is still under 

active use in other parts of the organization, reassign or repurpose the licenses. 

2.4 Step 4: Uninstallation and Removal 

Once data has been secured and licenses have been managed, the next step is the 

technical process of uninstalling and removing the software from the organization’s 

infrastructure. 



119 

 

 

 

 Uninstallation Plan: Create a plan for uninstalling the software across all 

relevant devices (servers, desktops, etc.). Ensure that any dependencies or 

integrations with other systems are considered. 

 Use Automation Tools: Leverage automation tools (e.g., Microsoft SCCM, 

ManageEngine Desktop Central) to remotely uninstall software across multiple 

endpoints. 

 Verify Software Removal: After uninstallation, perform scans to verify that all 

instances of the software have been completely removed. This includes checking 

for any residual files, libraries, or configurations left behind. 

 Security Risks: Ensure that any remaining components or vulnerabilities 

associated with the decommissioned software are patched or mitigated. 

2.5 Step 5: Post-Decommission Audit and Reporting 

After the software has been successfully decommissioned, it is important to audit the 

process to ensure that it was completed in compliance with organizational policies and 

industry regulations. 

 Audit Documentation: Document the entire decommissioning process, including 

steps taken for data backup, license termination, and software removal. 

o Include information on the software version, the number of instances 

removed, licenses terminated, and the fate of associated data. 

 Compliance Reporting: Prepare compliance reports as needed for legal or 

regulatory bodies, showing that the decommissioning was handled securely and in 

accordance with applicable laws (e.g., GDPR, HIPAA). 

 Stakeholder Sign-off: Obtain sign-offs from all relevant stakeholders, including 

IT, legal, compliance, and finance teams, confirming that the software 

decommissioning was carried out correctly. 

 Security and Risk Review: Conduct a final security review to ensure that there 

are no remaining vulnerabilities or risks associated with the decommissioned 

software. 

3. Considerations for Software Decommissioning 

3.1 Data Privacy and Security 

 Ensure that any data associated with the decommissioned software is handled 

according to the organization’s data privacy policies. 

 For highly sensitive data, such as personal customer information, consider using 

encryption and secure deletion methods to ensure data is not recoverable. 

3.2 Cost Management 



120 

 

 

 

 Proper decommissioning helps reduce ongoing costs associated with unused 

software, such as licensing fees and maintenance support. 

 Consider renegotiating licensing contracts with vendors to minimize early 

termination fees. 

3.3 Legal and Regulatory Compliance 

 Comply with all legal and regulatory obligations when decommissioning 

software. This includes maintaining data records for required durations and 

properly disposing of software and associated data when necessary. 

 Work closely with the legal team to ensure all decommissioning actions are 

compliant with local and international laws, such as data privacy regulations. 

4. Tools for Supporting the Decommissioning Process 

Several tools can help organizations streamline the software decommissioning process, 

including: 

 ServiceNow IT Asset Management (ITAM): Helps manage the lifecycle of 

software assets, including decommissioning, by tracking inventory, licenses, and 

contracts. 

 Flexera: Provides tools for software license management, compliance monitoring, 

and decommissioning of software assets. 

 Ivanti Asset Manager: Assists in automating the software decommissioning 

process, reclaiming unused licenses, and ensuring compliance. 

 Microsoft SCCM: Enables centralized management of software uninstallation 

across multiple devices in an organization. 

5. Summary on Software Decommissioning 

Properly decommissioning software is a crucial part of software asset management. It 

ensures that organizations are not burdened by unnecessary costs, reduces security risks, 

and helps maintain compliance with legal and regulatory obligations. By following the 

steps outlined in this document—planning and assessment, data backup, license 

management, uninstallation, and post-decommission audits—organizations can 

effectively manage the end-of-life for their software assets. 

Effective decommissioning not only protects the organization from financial and security 

risks but also optimizes its IT infrastructure, making it leaner and more efficient. 

  



121 

 

 

 

Private Large Language Models: Key Details 

Large Language Models (LLMs) like GPT, BERT, and others have demonstrated 

extraordinary capabilities in natural language understanding, generation, and processing. 

While most prominent LLMs (e.g., OpenAI’s GPT-4 or Google’s Bard) are cloud-based 

and proprietary, a growing interest has emerged in building and deploying private large 

language models (LLMs). These are models owned, controlled, and used internally by 

organizations or individuals, offering unique advantages and trade-offs. Below, we delve 

into critical details across development, deployment, applications, and challenges. 

What are Private LLMs? 

Private LLMs are artificial intelligence models developed, fine-tuned, or deployed 

for exclusive use within an organization or private context. Unlike public APIs provided 

by OpenAI or Google, private models are hosted on local infrastructure or private cloud 

environments, ensuring greater control, security, and customization. 

Categories of Private LLMs: 

In-House Developed Models: 

Organizations with technical expertise build LLMs from scratch, often leveraging 

open-source frameworks like TensorFlow, PyTorch, or Hugging Face. 

Fine-Tuned Pre-trained Models: 

Organizations customize pre-trained, open-source LLMs like OpenLLaMA, 

Falcon, or GPT-NeoX using domain-specific data. 

Licensed Commercial Models: 

Enterprises deploy vendor-hosted LLMs on private infrastructure under strict 

data-use agreements. 

 

  



122 

 

 

 

Advantages of Private LLMs 

Data Privacy and Security: 

Data processed by private models never leaves the organization's infrastructure, 

minimizing risks of leaks or exposure to third parties. 

This is particularly crucial for industries handling sensitive information, like banking and 

finance (GDPR adherence), or government agencies. 

Customization: 

Models can be fine-tuned on proprietary datasets, ensuring better performance on 

domain-specific tasks. For example, a software firm might fine-tune a model to generate 

software case study documentation and research documentation. 

Cost Efficiency for Scale: 

For organizations with substantial usage, hosting a private LLM can be cheaper 

than API-based services with per-request billing. 

Control and Governance: 

Organizations have full control over model updates, training, and usage policies. 

Internal models reduce reliance on third-party vendors, offering resilience against API 

outages or policy changes. 

Technological Foundation and Development 

Model Architecture: 

Modern LLMs are based on transformer architectures, which excel in processing 

sequential data. The popular frameworks for development include Hugging Face 

Transformers, LangChain, and libraries from Meta’s PyTorch ecosystem. 

Training Considerations: 

Data Requirements: Building LLMs requires vast, high-quality datasets. Public 

corpora (e.g., Common Crawl, Wikipedia) and proprietary data are combined for training. 

Computing Power: High-performance GPUs or TPUs (e.g., NVIDIA A100 or 

Google TPU v4) are essential for training models with billions of parameters. 



123 

 

 

 

Pretraining vs. Fine-Tuning: Organizations often rely on pre-trained open-source models 

(e.g., GPT-J or LLaMA) and focus resources on fine-tuning for their specific needs. 

Deployment: 

Deployment options include on-premises servers, private cloud environments, or 

edge devices, depending on latency, cost, and security requirements. Tools like Docker, 

Kubernetes, and Ray serve as critical infrastructure for scaling. 

Use Cases of Private LLMs 

Enterprise Productivity: 

 Automating document generation, summarization, and customer support. 

Enhancing search within proprietary databases (e.g., semantic search for research papers). 

Healthcare and Life Sciences: 

 Private LLMs can process patient records, suggest treatments, and summarize 

medical literature while adhering to data protection laws. 

Government and Defense: 

Governments use private LLMs for intelligence analysis, secure communication, 

and policy drafting. 

Education and Research: 

Universities and research institutions fine-tune models to aid in research, grant 

writing, or customized learning platforms. 

  



124 

 

 

 

 

Challenges of Private LLMs 

Resource Intensity: 

Training large models demands significant computational resources, making it 

prohibitively expensive for smaller organizations. For instance, GPT-3 required tens of 

millions of dollars to train on 175 billion parameters. 

Data and Bias: 

Ensuring data quality is critical. Private models risk inheriting biases present in 

training datasets. Organizations must implement thorough validation and bias mitigation 

strategies. 

Expertise Requirements: 

Building and maintaining private LLMs necessitates advanced expertise in 

machine learning, software engineering, and data science. Many companies struggle to 

hire and retain such talent. 

Maintenance and Updates: 

Continuous updates to adapt to evolving language trends and data are resource 

intensive. Model “drift” can occur if not retrained periodically. 

Future Trends in Private LLMs 

Decentralized and Efficient Training: 

Emerging technologies like model distillation and parameter-efficient tuning (e.g., 

LoRA) make it feasible to train smaller, task-specific models with less computing power. 

b. Federated Learning 

Federated learning allows multiple organizations to collaboratively train models 

without sharing raw data, preserving privacy. 

  



125 

 

 

 

Open-Source Expansion: 

Initiatives like EleutherAI and Meta’s LLaMA contribute to the open-source 

ecosystem, enabling more organizations to develop private LLMs. 

Specialized Models: 

The focus is shifting toward domain-specific LLMs, which outperform general-

purpose models in niche applications. 

Summary 

Private large language models represent a transformative technology for 

organizations that prioritize security, customization, and scalability. While resource-

intensive, advances in open-source tools and training methodologies are lowering 

barriers, making private LLMs more accessible. Organizations should carefully evaluate 

their needs, infrastructure, and expertise before embarking on the journey of private LLM 

development or deployment. 

 


