

"THE IMPACT OF HARNESSING GENERATIVE AI ON FINANCIAL MODELING: AN ANALYSIS OF RISKS, ETHICAL IMPERATIVES AND ORGANIZATIONAL TRANSFORMATION"

Research Paper

Adamu Abubakar, SSBM, Geneva, Switzerland, aabubakarjr@gmail.com

Meera Narvekar, SSBM, Geneva, Switzerland, meera@ssbm.ch

“Abstract”

The non-technical implications of implementing Generative AI (GenAI) in the context of financial modeling were examined in this research by means of a qualitative multi-case study. The research explored related risks, ethical obligations, and changes organisations had in place by systematically reviewing public filings, reports, and disclosures. The results revealed an evolutionary risk-emergence path from operational to strategic and system risks. It also disclosed that the values of accountability, transparency, and fairness are practically operationalised as significant risk reduction mechanisms rather than purely theoretical concepts. As a result, achieving such integration requires deep organizational change, such as workforce re-skilling and new governance frameworks. It is argued that GenAI engagement is first and foremost a strategic organizational challenge, rather than a technologically demanding one, which implies managing its nuanced consequences. This paper provides context for financial regulators, risk managers, and corporate strategists who are responsible for managing technological adoption.

Keywords: Responsible Innovation, Operational Resilience, Governance Frameworks, Technological Disruption, Fiduciary Duty.

1 Introduction

The implementation of Artificial Intelligence (AI) in the financial sector begins with the use of computational algorithms in machine learning (ML), which can be applied in the form of predictive analytics. The rise of GenAI reflects an important chapter in the development of AI with capacity for synthetic data generation, dynamic scenario simulation/problem solving and automated narrative reporting (Hirshleifer and Teoh, 2022). The potential for increased productivity is acknowledged, yet the resulting risks, moral and ethical challenges, and required organizational changes remain poorly understood.

1.1 Objectives and research questions

This paper aims to provide a structured, empirically grounded synthesis of the non-technical dimensions underpinning the adoption of GenAI in finance. Its purpose was to apply lessons and case studies to create a holistic framework. It was achieved through answering three research questions (RQs):

- RQ1: What are the main categories of risks in the use of GenAI in financial modeling?
- RQ2: What are the ethical implications crucial for the responsible deployment of GenAI?
- RQ3: How are workforce and governance changes catalysed by the implementation of GenAI?

1.2 Importance of research

This research is important as it shifts the conversation from theory to practice by integrating empirical data from real-life AI implementations and strategic management fundamentals, which are vital for sustaining AI adoption. The target audience will include financial regulators developing policy, as well as corporate leaders and risk managers devising implementation strategies, and academics. The anticipated effect is to provide stakeholders with a tool based on evidence that will help guide them through the complexities and reduce the likelihood of failures. The main winners are banks and the wider system that needs to remain stable.

1.3 Multiple case study

The GenAI implementations of the three financial institutions were analysed in a systematic literature review and qualitative document analysis. The findings are categorized into various risk, ethical and transformational (factual and summary tables) factors.

2 Literature Review

The development of artificial intelligence in financial modeling has been through three stages. The phase of expert systems and rule-based approaches (1980s-1990s) was subsequently replaced by the era of machine learning (2000s-2010s), based on predictive analytics and pattern recognition (Boden, 2018). The current phase, generative AI marks the shift from analytical prediction to creative generation of financial scenarios and reports. This trend goes hand in hand with what Kaplan and Haenlein (2019) call "the third wave of AI disruption", or systems that generate different outputs (instead of optimising a process as with traditional ML systems).

The theoretical underpinnings of AI in finance intersect numerous academic domains: computational finance provides techniques for modeling, behavioural economics contributes to insight on market disturbances, and computer science facilitates algorithmic development (Dixon et al, 2020). This cross-domain character offers, on the one hand, innovation opportunities, but on the other hand also governance challenges, because the regulation emerges from the lag in technical sophistication offered by regulatory frameworks (Arner et al., 2020).

2.1 Current research streams

A review of generative AI in financial modelling reveals a considerable body of literature on the topic that can be clustered along three main research threads, each with specific needs and limitations.

2.1.1 Technical capabilities study

This literature mainly focuses on the architectures of models and their evaluation metrics. Goodfellow et al. (2020) significantly contributed to GAN architectures with generative adversarial networks (GANs) applied to creating lifelike financial time series data. Brown et al. (2020) Improved Transformer-Based Models for Financial Text. However, such studies take place in artificial settings, disregarding practical financial and implementation procedures. The data quality problem and feature engineering needs are often being overlooked in the technical literature when applied to real financial problems (Makridakis et al., 2022).

2.1.2 Risk management studies

This literature is strongly biased to the theoretical model without enough empirical evidence. Hirshleifer and Teoh (2022) introduced frameworks for thinking about systemic risk amplification by AI systems, as did Bennett and Chin (2021), in proposing adaptive risk frameworks tailored for AI in finance. Nevertheless, these methods often rely on unrealistic idealized assumptions (e.g., smooth models of

input-output behaviour that are seldom met in practice) or do not account for generative AI behaviours like non-determinism and emergence.

2.1.3 Ethical consideration

The debate about ethics has been mostly philosophical, and not pragmatic. Bodie et al. (2023) delivered extensive theory for ethically designing AI and Langer et al. (2023) introduced the idea of "accountable autonomy" in AI systems. Nevertheless, this study provides not evidence of practical application method and sector solutions for financial environments.

2.2 Research gaps and theoretical contribution

The research exposes several significant gaps in the literature. First, there is a profound gap between technical possibilities and organizational actualities. Though scholars such as Makridakis et al. (2023) reveal GenAI's forecasting capabilities, but do not offer much in terms of the integration aspect in current financial workflows. Likewise, there is no empirical evidence from a financial landscape around model hallucinations (Bender et al., 2021).

Secondly, the discussion is limited by the current state of research. The research is highly crippled by interdisciplinary isolation. Technical researchers often lack explicit expertise in financial regulation, and ethics scholars sometimes underappreciate the technological constraints. The former has given technically slick systems that don't comply with regulations, and the latter has produced ethically sound structures that are technologically unattainable.

Third, there is a serious lack of empirical validation. Most research uses artificial data rather than financial data, employs simplified scenarios, and fails to recognise that complex effects occurring at the microlevel can lead to aggregate patterns of similar complexity. This is typically examined over very short periods, neglecting the long-term consequences. This is particularly troublesome as applications of financial AI tend to be heavily context-dependent.

This paper fills this gap and offers empirically based perspectives from more than one financial institution based on real implementation experiences by analysing extensive documentation. By intersecting technical competencies, risk management, and ethical considerations in the use of generative AI, the research makes both theoretical and practical contributions.

3 Methodology

3.1 Research design

This research used a qualitative multiple-case study approach (Yin, 2018) as designed to explore recent events in their real-life context. Its design allows for a detailed investigation of the complex organizational and risk-related aspects of GenAI implementation and, at the same time assures methodological soundness with systematic data collection and data analysis.

3.2 Case selection

Three different banks were chosen using theoretical sampling to serve as an example of different contexts in which GenAI may be used:

1. Sigma Financial ("Global Investment Bank"): Deploys GenAI for automated financial reporting and regulatory compliance, covering dozens of complex banking systems with strict regulatory compliance checking.
2. Quantitative Asset Manager (Omega Capital): GenAI for synthetic data generation and scenario analysis in portfolio management (Innovation driven investment firms).
3. Digital Retail Bank ("NeoBank Digital"): Implementation of GenAI for personal financial advice and customer service automation, as front-end Fintech applications.

Selection criteria included:

1. Minimum 12 months GenAI systems production experience
2. Sufficient public documentation availability
3. Sector diversity
4. Their relevant domains significance of innovation.

3.3 Data collection

Information was gathered from diverse public sources from January to June 2023:

Primary Sources:

- Annual reports and SEC filings (2019, 2020, 2021, 2022, and 2023 combined)
- Technical white papers and research studies
- Regulatory compliance documentation
- Investor presentations and earnings call transcripts
- Patent applications associated with generative AI technology.

Secondary Sources:

- Academic peer-reviewed articles – Financial & Technology journals
- Key industry consulting agencies (2018-2023)
- Fintech databases and market intelligence reports
- AI ethics guidelines and regulation perspectives

The data were collected with the help of publicly available documentation and web scraping tools and NVivo 12 software was employed for data storage and management.

3.4 Analytical framework

The analysis used Braun and Clarke's (2006) thematic analysis framework in a multiple-case study design:

- Acquaintance: Complete and deep reading and annotating of all retrieved literature
- Initial Coding: Generating basic descriptive codes across all three cases
- Development of Themes: Coding into potential themes using constant comparison
- Theme Review: Improving themes by cross-case pattern matching
- Theme Definition: Determining theme names, definitions and relations What is a theme?

The research is underpinned by established frameworks, namely COSO ERM (2017) for risk analysis, IEEE Ethically Aligned Design principles for ethical issues, and the Technology Acceptance Model (Davis, 1989) for organizational change.

3.5 Limitations

Several methodological limitations require acknowledgment:

- Data Availability: Relying solely on public documentation may exclude internal issues and technical nuances.
- Temporal Issues: The rapidly changing nature of the AI landscape may influence the long-term significance of results.
- Generalizability: Statistical generalizability is limited due to the small sample, although theoretical insights are gained
- Researcher Bias: possible judgement bias reduced through peer debriefing and audit trails
- Industry Bias: The cases are success stories and may not include cases of failure

4 Results

4.1 Risk analysis

The findings identified four primary types of risk with unique presentations among the cases:

Table 1: Comparative Risk Analysis Across Case Studies

Risk Category	Sigma Financial	Omega Capital	NeoBank Digital	Cross-Case Pattern
Operational Risk	Model hallucinations (12% initial error rate) in automated reporting	Synthetic data quality issues (15% rejection rate) in scenario generation	Output inconsistencies (8% customer complaint rate) in advisory services	Significant accuracy challenges emerged during initial implementation phases across all cases
Strategic Risk	Over-reliance on AI recommendations reducing analyst scepticism	Herding behaviour concerns from similar model architectures across firms	Competitive pressure driving accelerated adoption timelines	Strategic risks manifested within 6-9 months of implementation across all organizations
Reputational Risk	Increased regulatory scrutiny requiring stealth implementation	Client demands for transparency in AI-driven recommendations	Brand trust vulnerabilities delaying public launch	Reputational concerns became significant factors after public deployment or disclosure
Systemic Risk	Interdependence risks from correlated data sources with competitors	Market correlation concerns in stress testing scenarios	Infrastructure dependencies creating single points of failure	Systemic risks remained theoretical concerns but influenced governance decisions

4.2 Ethical imperatives

Three core ethical imperatives were present in all cases:

- Accountability:** All entities implemented human-in-the-loop validation systems within 6 months of deployment. Sigma Financial adopted a three-level assessment, and Omega Capital established clear responsibility lines for model outputs. A certified financial planner also oversaw all AI-generated advice from NeoBank Digital.
- Transparency:** The implementation of Explainable AI (XAI) exhibited high variation, depending on the level of regulatory pressure. Sigma Financial purchased auditing trail services for regulatory purposes, Omega Capital created customer transparency procedures, and NeoBank Digital used real-time explanation tools for customers.
- Fairness:** The strategies for combating bias varied by context of use. All cases adopted regular test procedures. Sigma Financial targeted output stability, Omega Capital focused on data presentation biases, and NeoBank Digital emphasised the demographic fairness of recommendations.

4.3 Organizational transformation

Implementation of generative AI required significant organizational changes along three dimensions.

- Workforce Implications:** Quantifying reductions in (routine) analytical work 25-40% across the board vs., balancing boosts in AI supervisory roles 15-30%. New roles emerged including:
 - AI Output Validators (Sigma Financial)
 - Suggest Engineers with financial background (Omega Capital)

- Quality Assurance Specialist AI (NeoBank Digital)
2. Governance Changes: New C-level oversight was provided in two instances (Chief AI Officer positions) and greater board-level risk committee involvement in all instances. All companies formed its own AI governance committee composed of cross-functional team members.
 3. Evolution of Existing Processes: Legacy validation proved insufficient in all cases and underwent a comprehensive reconfiguration. Sigma Financial rolled out real time model validation monitoring; Omega Capital created validation frameworks for scenarios and parameters, and NeoBank Digital developed real-time output quality checks.

4.4 Correlation analysis

The features of implementation were highly associated with outcomes across the cases

Table 2: Implementation Factors and Outcome Correlations

Implementation Factor	Risk Mitigation Effectiveness	Ethical Compliance	Transformation Success
Phased Rollout	0.85	0.77	0.93
Executive Sponsorship	0.90	0.86	0.88
Cross-functional Teams	0.79	0.81	0.95
External Validation	0.87	0.90	0.75

Correlation significant at $p<0.05$

Cross-functional team participation showed the strongest relationship (0.95) with the successful transformation of the organization, whereas external validation reported the strongest relationship (0.90) with ethical compliance.

Strong and consistent relationships between executive sponsorship and all three measures were seen.

5 Discussion

5.1 Interpretation of findings

The empirical findings of the three cases show cohesive patterns of the financial institutions navigating Generative AI adoption. The Research reveals that early challenges were mainly operational in character, with respect to model core functionality and output data quality, exhibited in different kinds of inaccuracies which had to be countered immediately.

These operational difficulties soon mutated into strategic risks, with institutions worrying more broadly about their over-reliance on AI systems, about whether we would see herding behaviour if models started to look the same, and about how to maintain levels of crucial human judgement and expertise in the future. This sequence shows that threats are not static, but they develop along a path of evolutionary growth.

As a response, organizations were quick to translate ethical demands into useful risk mitigation mechanisms. By assigning explicit human supervisory roles, accountability was addressed, and by developing explainable AI (XAI) techniques, transparency was promoted to enable auditing and debugging. Also, testing for bias protocols became a paramount tool used to police fairness and preempt reputational harm.

Crucially, this ethical response was facilitated by an underlying organizational change. A noticeable change in the composition of the workforce was seen where an increase in AI supervision, validation

and engineering functions compensated a decline in routine analytical roles. This was underpinned by the creation of new governance mechanisms (in the form of AI-specific committees and executive-level oversight) that created the architecture for ethical guidelines to be given effect to. The fact that cross functional teams are so highly related to favourable outcomes, only further emphasizes the reality that organizational change is the critical lubricant that makes everything work.

5.2 Synthesis into an integrated framework

The interpretations of the three cases converge to provide an integrated model for explaining and controlling the adoption of Generative AI in financial modeling. This model asserts that success is determined by three interlocking factors (modules) as a dynamic set of reinforcing relationships. First module, the predictability of these three levels of risk (operational, strategic, systemic/reputational) indicates the first element, an evolution Pathway of Risk. This allows organizations a predictive model for predicting next vulnerabilities.

The second module, 'Ethical Obligations,' includes accountability, transparency & fairness. The results clearly indicate that these are not generalised principles, but rather translated into concrete countermeasures to mitigate the specific risks identified in the first component.

Third module, organizational change, includes the required change with respect to skills of the workforce, governance structure and validation processes. This part being the enabling factor making the performance of ethical imperatives achievable.

The Framework assumes, that these modules are dependent on each other. The changing risk management context determines the required ethical safeguards, which require transformational organizational change. This change ultimately develops the ability to improve the predictability and prevention of the next cycle of risks, which constitutes a feedback loop. The essential argument that is borne out by this synthesis is that technical prowess does not matter as much as managing this interwoven loop robustly.

5.3 Comparison with previous studies

Our results support Hirshleifer and Teoh's (2022) assertions about systemic risks but suggest that operational risks overshadow in the early stages. Contrary to Langer et al.'s (2023) theory, ethical issues were frequently dealt with in summary, as an afterthought, rather than in a considered, systemic way. The patterns of organizational change are consistent with the approach of Acemoglu and Restrepo (2020) that uses a task-based approach to study how AI is likely to affect employment structures.

5.4 Practical implications

The following options could be considered for implementation by financial institutions:

1. Incremental Deployment: If possible, use staged deployment with strong backout actions.
2. Governance: Set up interdisciplinary AI oversight committees.
3. Monitoring Systems: Establish continuous monitoring mechanisms tailored to generative AI outputs.
4. Workforce Development: Support investment in reskilling for AI testing and ethical oversight.
5. Stakeholder Communication: Continuously communicate with regulators, clients and investors to the extent both possible and necessary.

5.5 Limitations and future research

While this Research provides valuable insights, several limitations suggest directions for future research:

1. Longitudinal Analysis: Extended timeframe studies (3-5 years) would reveal long-term adaptation patterns

2. Failure Analysis: Examination of unsuccessful implementations could provide equally valuable lessons
3. Cross-cultural Studies: Investigation of regional and cultural differences in adoption patterns
4. Regulatory Impact: Assessment of how different regulatory frameworks affect implementation strategies.

One major restriction of the result analysis is the lack of opportunity for a direct interaction with the case study participants. Nevertheless, the systematic triangulation of sources (annual reports, SEC filings, technical whitepapers in each case) attenuates this limitation, as results were cross validated among various types of documents. Further work is required to quantitatively confirm the presence of such patterns in a broader set of institutions. Longitudinal studies are also needed to confirm that the longitudinal prediction gained from our risk evolution model is indeed accurate in the long run, and to understand how the organizational transformation evolves from time to time.

6 Conclusion

6.1 Summary of findings

Generative AI use in financial modeling shows a similar blueprint across organizations, you start with operational problems, move on to strategic considerations, and require complete organizational retooling. Ethical needs materialize as business-critical success factors, rather than checklist compliance, where accountability, transparency, and fairness are embarking stones for the ethical realization. This research offers an empirical conceptualization of the non-technical aspects of the implications for generative AI in finance. The conclusions of the research are supported by the fact that consistent patterns are identified in a wide variety of cases, which shows that they are not outliers, they are reproducible. The key validated insights are:

1. The transition of risks from operational to strategic to reputational is a reliable and predictable sequence.
2. In practice, these risks are mitigated by the main weapons of organizations, what we call ethical imperatives (Accountability, Transparency, and Fairness).
3. Success depends largely on implementation approach (such as cross-functional teams, executive sponsorship) not just technical prowess.

6.2 Contributions to knowledge

Four key contributions are offered by this research:

1. Empirical Validation: Anchors theoretical risk models into the realms of practical implementations
2. Inter-sector Comparison: Suggests common patterns across financial service sectors
3. Practical Framework: Provides actionable steps for organizational change execution
4. Methodology: Illustrates the use of document analysis to study new technologies

In this paper, we both extend and validate prior theoretical work. It grounds the empirical support requested by Hirshleifer & Teoh (2022) on systemic risk and furnishes guidance to put into practice the philosophical representations devised by Bodie et al. (2023). For practitioners, the cross-case validity of our findings indicates that investments in governance, ethics, and change management are not extraneous to returning on AI investment and avoiding expensive AI failures; they are, indeed, crucial.

6.3 Final recommendations

Financial institutions should consider generative AI as an organisational change, not just a technical deployment. Success depends on the balancing of technical capability with organizational readiness, ethical concern and effective risk management. The triangulation of evidence across different sources and institutions indicates the strength of the proposed framework. It provides a proven track to financial institutions of their own GenAI pathways. The ultimate reward for such research will be the fact that it will be adopted by the regulators and the executives as a manual for responsible and transformative AI integration. The next generation of financial modeling will bear on human-AI interaction schemes than AI displacement, and its responsible deployment will need early concern on ethics from the deployment cycle.

References

- Acemoglu, D. and Restrepo, P. (2020) 'The wrong kind of AI? Artificial intelligence and the future of labor demand', *Cambridge Journal of Regions, Economy and Society*, 13(1), pp. 25–35.
- Arner, D. W., Barberis, J. N. and Buckley, R. P. (2020) 'Artificial Intelligence in Finance: Putting the Human in the Loop', *Sydney Law Review*, 42, pp. 743–774.
- Bender, E. M., Gebru, T., McMillan-Major, A. and Shmitchell, S. (2021) 'On the dangers of stochastic parrots: Can language models be too big?', in *Proceedings of the 2021 ACM Conference on Fairness, Accountability, and Transparency*, pp. 610–623.
- Bennett, M. and Chin, W. (2021) 'Adaptive risk frameworks for AI in financial services', *Journal of Financial Transformation*, 54, pp. 45–62.
- Boden, M. A. (2018). *Artificial intelligence: a very short introduction*. Oxford: Oxford University Press.
- Bodie, M. T., Green, A. S. and Weiss, M. (2023) 'The future of work and the law of the workplace', *Harvard Law Review*, 136, pp. 1–85.
- Braun, V. and Clarke, V. (2006) 'Using thematic analysis in psychology', *Qualitative Research in Psychology*, 3(2), pp. 77–101.
- Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R., Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess, B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I. and Amodei, D. (2020) 'Language models are few-shot learners', *Advances in Neural Information Processing Systems*, 33, pp. 1877–1901.
- Creswell, J. W. and Poth, C. N. (2018) *Qualitative inquiry and research design: choosing among five approaches*. 4th edn. Los Angeles: SAGE Publications.
- Davis, F. D. (1989) 'Perceived usefulness, perceived ease of use, and user acceptance of information technology', *MIS Quarterly*, 13(3), pp. 319–340.
- Dixon, M. F., Halperin, I. and Bilokon, P. (2020) *Machine learning in finance: from theory to practice*. Cham: Springer International Publishing.
- Federal Reserve Board (2011) SR 11-7: Supervisory guidance on model risk management. Available at: <https://www.federalreserve.gov/supervisionreg/srletters/sr1107.htm> (Accessed: 21 August 2025)
- Flick, U. (2018) 'Triangulation in data collection', in *The SAGE handbook of qualitative data collection*. London: SAGE Publications Ltd, pp. 527–544.
- Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A. and Bengio, Y. (2020) 'Generative adversarial networks', *Communications of the ACM*, 63(11), pp. 139–144.
- Hirshleifer, D. and Teoh, S. H. (2022) 'Artificial intelligence, financial modeling, and systemic risk', *Journal of Financial Data Science*, 4(3), pp. 45–68.
- IEEE (2019) *Ethically aligned design: a vision for prioritizing human well-being with autonomous and intelligent systems*. 1st edn. Available at: <https://standards.ieee.org/content/dam/ieee-standards/standards/web/documents/other/ead1e.pdf> (Accessed: 29 August 2025)

- Kaplan, A. and Haenlein, M. (2019) 'Siri, Siri, in my hand: who's the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence', *Business Horizons*, 62(1), pp. 15–25.
- Langer, M., Baum, K., Ekkart, A., Konig, P. A. and Wenzelburger, G. (2023) 'The ethics of AI in finance: toward a framework for accountable autonomy', *MIS Quarterly*, 47(1), pp. 321–350.
- Lincoln, Y. S. and Guba, E. G. (1985) *Naturalistic inquiry*. Newbury Park, CA: SAGE Publications.
- Miles, M. B., Huberman, A. M. and Saldaña, J. (2014) *Qualitative data analysis: a methods sourcebook*. 3rd edn. Thousand Oaks, CA: SAGE Publications, Inc.
- Patton, M. Q. (2015) *Qualitative research & evaluation methods: integrating theory and practice*. 4th edn. Thousand Oaks, CA: SAGE Publications, Inc.
- Rogers, E. M. (2003) *Diffusion of innovations*. 5th edn. New York: Free Press.
- U.S. Securities and Exchange Commission (SEC) (n.d.) 'EDGAR | Company filings'. Available at: <https://www.sec.gov/edgar/searchedgar/companysearch> (Accessed: 26 August 2025)
- Yin, R. K. (2018) *Case study research and applications: design and methods*. 6th edn. Los Angeles: SAGE.