

“DEVELOPING AN EFFECTIVE ROADMAP TO EMISSIONS REDUCTION IN THE ENERGY SECTOR: STRATEGIES, CHALLENGES, AND OPPORTUNITIES”

Research Paper

Dr Anna Provodnikova, Swiss School of Business and Management (SSBM), Geneva,
Switzerland, anna@ssbm.ch

Dr Aissam Bouadjel, Swiss School of Business and Management (SSBM), Geneva,
Switzerland, Aissam.Bouadjel@gmail.com

“Abstract”

Emissions control frameworks in the fossil fuel process plants often fail to deliver meaningful environmental outcomes due to a combination of technical, organizational, and geopolitical factors. Many initiatives remain reactive, driven by short-term compliance rather than integrated into long-term sustainability strategies. Weak regulatory enforcement, lack of leadership commitment, and absence of clear roadmaps result in fragmented implementation and poor accountability. Political conflicts, market volatility, and shifting energy priorities further disrupt continuity, forcing companies to prioritize production and energy security over emissions reduction. Environmental risks are frequently undervalued in corporate risk assessments, treated as external or reputational concerns rather than core operational threats. Additionally, slow advancement and limited adoption of technologies such as vapor recovery systems, carbon capture, and emissions reuse hinder progress. Overcoming these failures requires strong leadership, risk-based planning, and strategic alignment between regulators, operators, and technology providers to achieve sustainable and measurable emissions control.

Keywords: Fossil Fuel, Emissions, RoadMap, Risk, MOC.

1. Introduction

Modern civilization relied mainly on fossil fuel as source of the energy and these sources has been instrumental in shaping modern civilization, providing essential energy for industries, households, and transportation. Without it, many conveniences, such as electricity, mobility, and consumer goods, would not be as accessible or affordable (Matutinović, 2011). These resources fuel over 80% of the world's energy supply, driving economic growth, industrialization, and technological advancement (StatsSA, 2020, p. 1) (Refer Figure 1.).

Fossil fuel operations are responsible for about 90% of the world's carbon emissions (Andrew, 2020). As a result, the industry is widely recognized as a major contributor to global warming and faces mounting pressure to comply with stringent environmental regulations and societal expectations (Jeon et al., 2023). In response, operators have been striving to implement strategies and technologies to mitigate emissions and minimize environmental impact (Lu et al., 2019). However, despite these efforts, the industry continues to struggle in balancing the growing global demand for energy with the urgent need to reduce emissions and achieve long-term sustainability, many of these initiatives fail to deliver measurable, sustainable results (Loh and Bellam, 2024). The root causes of failure often stem not from the absence of technology, but from weak strategy integration, poor change management, and inadequate performance monitoring frameworks (Geden et al., 2018).

This paper presents a framework for implementing emissions control through a realistic and practical approach integrated with a robust Management of Change (MOC) process. It also examines common causes of failure in emissions control roadmaps and proposes practical measures to overcome them, ensuring that emissions reduction efforts are both effective and sustainable.

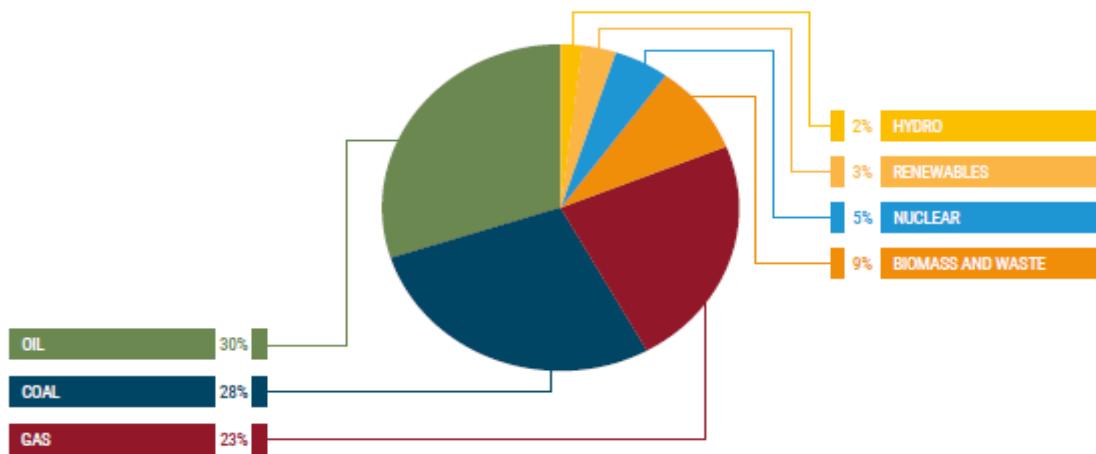


Figure 1.: Trading status of businesses—(Source: StatsSA, 2020, p. 1)

2. Main Emissions from Fossil Fuel Process Plants

Fossil fuel processing plants emit substantial quantities of volatile organic compounds (VOCs), greenhouse gases (GHGs), particulate matter (PM), and other hazardous air pollutants (HAPs). These emissions include VOCs like benzene, toluene, and xylenes, and GHGs such as methane (CH₄) and carbon dioxide (CO₂), which are major drivers of global warming. Other pollutants, including sulfur dioxide (SO₂) and nitrogen oxides (NO_x), contribute to acid rain, smog formation, and climate change,

posing serious risks to human health and the environment (Murphy, 2024),(Jaramillo and Muller, 2016).

3. Common Sources of Emissions in Fossil Fuel Process Plants

Emissions from fossil fuel processing facilities originate from multiple interconnected sources across the plant's operational systems. These emissions are typically the result of routine operations, maintenance activities, or unplanned releases that occur during processing, storage, and combustion (Refer Figure 2.).

The following are key emission sources:

- Process vents and flares from unplanned releases or inefficient combustion.
- Fugitive emissions from valves, pumps, compressors, and piping connections.
- Storage tanks and loading operations, emitting VOCs due to vapor losses.
- Combustion units such as boilers, heaters, and turbines with incomplete fuel burn.
- Catalytic cracking and reforming units, generating CO₂ and NO_x as by-products

While each source is well understood, control efforts often fail due to gaps in system integration, monitoring, and lifecycle management (Johnson et al., 2023).

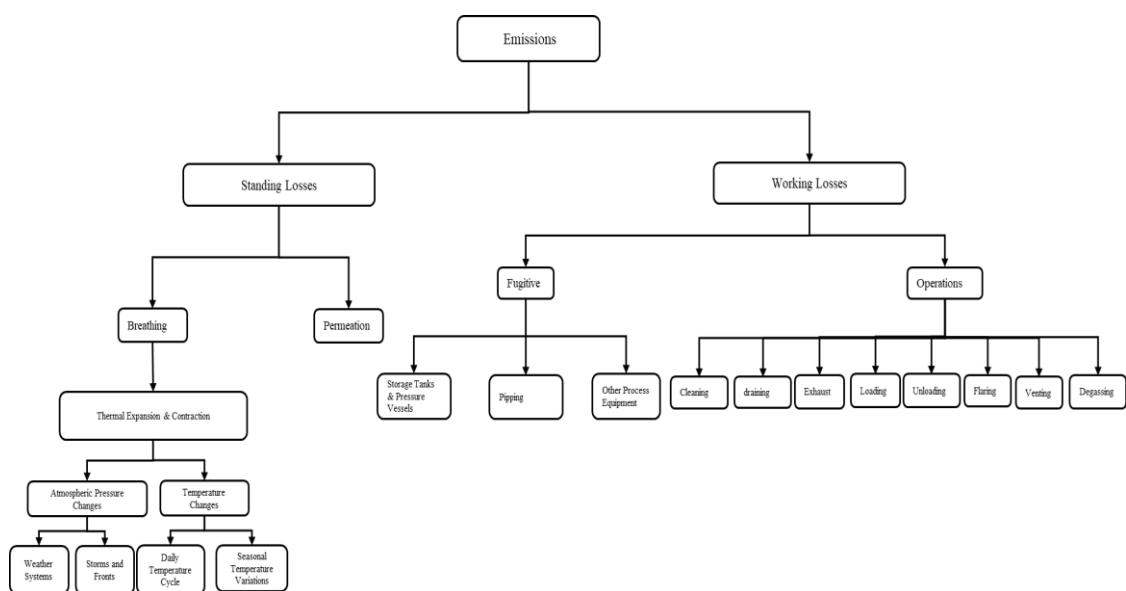


Figure 2.: Sources of emissions in fossil fuel process plants facilities—Source: developed by the author.

4. Root Causes of Emission Reduction Projects' Failures

4.1. Social and political barriers to emissions reduction

Emissions reduction in the fossil fuel process plants sector faces significant social and political obstacles (Piggot, 2017). Conspiracy theories and misinformation around climate change and energy policies have fueled skepticism among certain stakeholders, undermining trust in regulatory frameworks and emissions initiatives (Lewandowsky, 2020). Positions within the sector are often fragmented, with environmentalists demanding rapid decarbonization while operators emphasize energy security, economic feasibility, and the practical limitations of aging infrastructure. This lack of alignment and trust, combined with the slow progress of renewable energy initiatives and their current inability to fully replace fossil fuels, further complicates the issue (Healy et al., 2018). Political conflicts and wars exacerbate the problem; for instance, energy security concerns in European countries, driven by geopolitical instability, have caused some nations to delay or scale back previous climate commitments to meet urgent population and industrial energy demands (Depledge, 2023), and the U.S. scaling back support for the Paris Agreement has added further uncertainty. This combination of mistrust, competing priorities, and geopolitical pressures significantly slows the implementation of coherent, effective emissions reduction strategies, leaving operators and decision-makers reluctant to take decisive action, often adopting a “we'll act only if everyone else does” approach. As a result, emissions reduction is often not fully integrated into operational visions and strategies, becoming more of a marketing or image-driven initiative with limited solid execution plans. These abrupt changes often disrupt planned emissions reduction programs, delay technology deployment, and undermine previously set targets (Selby, 2018).

4.2. Lack of clear expectations and targets from regulatory bodies

Another significant factor contributing to the failure of emissions reduction initiatives in fossil fuel process plants is the absence of clear, consistent, and enforceable regulatory expectations. In many regions, existing regulatory frameworks provide broad guidance on emissions reduction but often lack specific, measurable targets, defined timelines, and standardized compliance methodologies. This ambiguity creates operational uncertainty, making it difficult for companies to prioritize actions, allocate budgets, or develop coherent long-term strategies aligned with national or international climate objectives (Green and Li, 2011).

4.3. Organizational context and societal culture

Emissions reduction in fossil fuel process plants often fails due to challenges embedded in organizational context and the broader societal culture in which the company operates. Within

organizations, a culture that prioritizes short-term production targets, cost reduction, or regulatory compliance over long-term sustainability can undermine emissions initiatives. Employees may perceive emissions reduction as an external obligation rather than an integral part of their work, resulting in low engagement, lack of ownership, and minimal initiative to innovate or improve performance. Societal culture also plays a significant role. In communities or countries where environmental awareness, regulatory enforcement, or public pressure is weak, organizations face little incentive to implement robust emissions reduction programs. Conversely, societies with high expectations for environmental stewardship may create pressure for rapid decarbonization (Issa and In'airat, 2023).

4.4. Lack of solid Company vision and frequent changes in strategies

In the absence of a long-term company vision for sustainability that embeds emissions monitoring and control within the organization's core strategy. Many companies adopt a reactive approach, responding only to short-term regulatory pressures or public concerns such as odor complaints instead of proactively integrating emissions management into their operational and business objectives. This lack of strategic foresight results in fragmented actions, shifting priorities, and limited accountability. Without a cohesive, forward-looking vision, emissions initiatives remain disconnected from broader organizational goals, undermining their effectiveness and long-term environmental impact (Mahapatra et al., 2021).

4.5. Lack of leadership commitment and accountability

Emissions reduction efforts often fail when leadership treats them as peripheral environmental tasks rather than strategic imperatives. Without visible commitment through clear communication, dedicated resources, and personal involvement initiatives lose direction and fade into routine compliance. Weak accountability structures, unclear roles, and absence of measurable Key Performance Indicators (KPIs) further dilute ownership and responsibility. When boards and executives prioritize short-term financial results over sustainability goals, emissions management becomes symbolic rather than transformative, leading to fragmented implementation, poor coordination, and minimal long-term impact on emissions performance (Mahapatra et al., 2021).

4.6. Lack of workforce education and competency development

Emissions control initiatives often fail due to insufficient workforce education and competence in emissions risks and reduction strategies. Training is typically compliance-driven, focusing on regulations rather than building practical understanding of emissions processes and mitigation methods. Limited awareness among supervisors and managers weakens ownership and accountability.

Without an informed and skilled workforce, even advanced technologies and frameworks fail to deliver meaningful results, reducing the overall effectiveness of emissions control efforts (Cordero et al., 2020).

4.7. Environmental risks not being assessed as high risks and excluded from core risk studies

A major cause of emissions reduction failure in fossil fuel process plants is the systemic undervaluation of environmental risks within organizational risk frameworks. Emissions-related risks are often viewed as external or reputational issues rather than core operational and strategic threats affecting business continuity and asset integrity. Environmental impact assessments and emissions monitoring are typically treated as compliance exercises instead of tools for proactive, risk-based decision-making. As a result, facilities miss opportunities to identify emission hotspots, prevent chronic leaks, and implement effective abatement measures, weakening overall environmental performance (Vora et al., 2021).

4.8. Lack of a step-by-step soadmap and neglect of low-hanging fruits

Emissions reduction in fossil fuel process plants often fails due to the absence of a structured, phased roadmap. Organizations sometimes focus on large-scale, high-cost projects like carbon capture or advanced flare recovery while neglecting “low-hanging fruits” such as leak detection, operational optimization, energy efficiency, and basic maintenance. These smaller measures are faster, lower-cost, and provide tangible early results. Without a prioritized approach that balances quick wins with long-term initiatives, programs become fragmented and reactive. Delays or failures in complex projects erode stakeholder confidence, reduce engagement, and undermine the likelihood of sustained, measurable emissions reductions (Smit, 2025).

4.9. Lack of quantification of emissions reduction benefits and risk-based management of change (MOC)

Emissions reduction often fails when organizations cannot quantify environmental, operational, safety, and economic benefits, including reduced fire or explosion risk, product loss, and reputational gains. Establishing a reliable emissions baseline, continuous monitoring, and standardized reporting enables prioritization, investment justification, and measurement of progress. Equally critical is integrating emissions projects into a risk-based Management of Change (MOC) framework, ensuring that modifications to processes, equipment, or operations are reviewed for safety, reliability, and environmental impact (Smit, 2025).

4.10. Lack of clear baseline and data integrity

Many facilities launch emissions reduction programs without an accurate baseline of their existing emissions profile. Inconsistent data collection methods, limited instrumentation, and poor calibration lead to unreliable baselines. Without accurate data, it becomes impossible to quantify progress or justify investments in reduction technologies (Bui et al., 2021).

4.11. Weak integration with process safety and reliability systems

Emissions control is often treated as an environmental initiative rather than an integral part of process safety and reliability. Modifications to equipment or operating conditions may inadvertently compromise safety systems, leading to operational upsets or increased flaring. Without a robust Management of Change (MOC) framework, emissions projects risk introducing new hazards or inefficiencies (Log and Pedersen, 2019).

4.12. Technology-driven rather than strategy-driven approach

Facilities often adopt new technologies such as vapor recovery, flare gas recovery, or carbon capture without a cohesive strategy aligned with operational realities. Technology alone cannot solve emissions challenges if business processes, maintenance culture, and staff competencies remain unchanged (Somerville, 2020).

4.13. Poor change management and organizational misalignment

Sustainable emissions reduction requires alignment between engineering, operations, maintenance, and management. Many projects fail due to lack of ownership, unclear roles, or insufficient training. When emission control responsibilities are siloed within the environmental department, frontline operators may not fully engage with the process (Sroufe, 2017).

4.14. Inadequate maintenance and asset integrity management programs

Aging infrastructure, corroded pipelines, leaking valves, and poor preventive maintenance directly contribute to fugitive emissions. Inadequate inspection frequency, lack of predictive maintenance, and poor spare parts management further degrade performance. Maintenance backlogs often lead to equipment failure and increased unplanned releases (Fabozzi and Focardi, 2025).

4.15. Ineffective monitoring and reporting systems

Many facilities rely on periodic manual measurements rather than continuous emissions monitoring systems (CEMS). The absence of real-time data prevents early detection of emission spikes and delays corrective actions. Moreover, inconsistent reporting methodologies lead to regulatory non-compliance and reputational risks (Somerville, 2020).

4.16. Slow advancement of technology related to emissions recovery, reuse, and storage

A critical barrier to effective emissions reduction in fossil fuel process plants is the slow advancement, adoption, and integration of technologies designed for emissions recovery, reuse, and storage. While the industry has made progress in developing and piloting innovative solutions such as vapor recovery systems (VRS), carbon capture and storage (CCS), carbon capture utilization (CCU), and flare gas recovery units (FGRU), the overall rate of implementation remains significantly behind what is needed to achieve meaningful and sustained reductions.

This slow technological progress stems from a combination of technical, financial, organizational, and regulatory challenges. Many facilities continue to operate with aging infrastructure, designed decades ago with minimal consideration for emissions recovery or carbon management. Retrofitting these legacy systems is often seen as costly, complex, and disruptive to operations. As a result, companies postpone or limit investments in advanced emission control technologies, opting instead for short-term compliance solutions such as emission offsets or partial containment systems (Zhang et al., 2021).

5. Failure-to-Solutions Matrix

The table.1 presents key recommendations to address the failure causes identified in Section 4, which highlights organizational, technical, and regulatory challenges that impede effective emissions reduction in fossil fuel process plants. Its purpose is to provide a structured approach for identifying and overcoming barriers across cultural, operational, and technological dimensions. By linking specific failure causes to practical mitigation strategies, the table serves as a guiding framework for leadership teams, policymakers, and engineers to design and implement sustainable, data-driven emissions management programs that align with long-term environmental and operational excellence objectives.

Failure Cause	Mitigation Strategy
Social and Political Barriers to Emissions Reduction	Engage with policymakers and communities through transparent communication and partnerships; align initiatives with local and international sustainability goals and incentives.
Lack of Clear Expectations and Targets from Regulatory Bodies	Collaborate with regulators to co-develop clear performance standards and timelines; adopt international benchmarks
Organizational Context and Societal Culture	Foster an internal culture of environmental responsibility through leadership modeling, communication campaigns, training and reward systems.
Lack of Solid Company Vision and Frequent Changes in Strategies	Establish a stable, long-term emissions reduction vision embedded in the corporate sustainability framework; ensure leadership continuity and alignment.
Lack of Leadership Commitment and Accountability	Integrate emissions KPIs into executive scorecards; require visible leadership engagement and periodic performance reviews.
Lack of Workforce Education and Competency Development	Develop competency-based training focused on emissions processes, monitoring, and mitigation; integrate into technical and safety curricula.
Environmental Risks Not Being Assessed as High Risks and Excluded from Core Risk Studies	Incorporate environmental risks into enterprise risk assessments registers; elevate them to the same priority level as safety and reliability.
Lack of a Step-by-Step Roadmap and Neglect of Low-Hanging Fruits	Create a structured emissions reduction roadmap prioritizing quick wins and scalable projects; review progress regularly.
Lack of Quantification of Emissions Reduction Benefits and Risk-Based Management of Change (MOC)	Implement quantitative tools for cost-benefit and emissions impact analysis; integrate emissions criteria into the MOC process.
Lack of Clear Baseline and Data Integrity	Establish robust data governance; validate baseline data using calibrated instruments and softwares and third-party audits.
Weak Integration with Process Safety and Reliability Systems	Embed emissions management into process safety reviews, maintenance strategies, and reliability KPIs.
Technology-Driven Rather Than Strategy-Driven Approach	Align technology adoption with strategic goals; evaluate technologies based on business case, integration potential, and sustainability impact.
Poor Change Management and Organizational Misalignment	Implement structured change management frameworks ensure stakeholder alignment before execution.
Inadequate Maintenance and Asset Integrity Management Programs	Strengthen preventive maintenance and integrity programs; use predictive analytics to minimize leaks and process inefficiencies.

Ineffective Monitoring and Reporting Systems	Deploy integrated digital monitoring systems, standardize reporting and ensure transparency in performance data.
Slow Advancement of Technology Related to Emissions Recovery, Reuse, and Storage	Invest in Research and Development (R&D) partnerships and pilot programs; collaborate with technology providers and academia to accelerate innovation.

Table 1.: Failure-to-solutions matrix – Source: developed by the author.

6. Framework for Success

Overcomes these challenges, fossil fuel process plants must implement a structured and integrated emissions management framework that drives consistency, accountability, and measurable results across all operational levels. The framework is built around three main steps, each addressing a critical success dimension as illustrated in Figure 3:

6.1. Cultural Transformation and Organizational Alignment

This stage establishes the foundation for successful emissions reduction by embedding environmental responsibility into the organization's vision, leadership, and culture. It emphasizes that emissions management is not merely a technical issue but a strategic and ethical commitment driven from the top.

Key elements include integrating emissions control into the corporate vision, integrating it with enterprise risk management, and promoting transparency and stakeholder engagement. Leadership plays a central role through visible commitment, ethical governance, and resource allocation, while workforce competency and engagement ensure that environmental awareness becomes part of the organizational DNA. This cultural realignment creates a shared sense of ownership and accountability for emissions performance across all levels of the organization.

6.2. Emissions Inventory and Assessment

Once alignment is achieved, organizations must develop a comprehensive understanding of their emissions profile. This phase focuses on systematically identifying, quantifying, and prioritizing emission sources through robust data collection, digital monitoring, and analytical tools. It incorporates risk assessment and benefit quantification, linking emissions to health, safety, and operational performance. By treating emissions as an integral part of enterprise risk, organizations can prioritize actions based on impact, cost, feasibility, and safety, while aligning with regulatory requirements. The development of accurate baselines and quantifiable indicators ensures that decisions are data-driven, enabling effective measurement of progress and outcomes.

6.3. Emissions Control Strategy Implementation

This stage translates strategy into action and measurable impact. It begins with pilot projects and risk-based Management of Change (MoC) reviews to test technical and operational feasibility before full-scale implementation.

Through structured project design, performance monitoring, and evaluation, organizations can validate results, quantify benefits, and develop recommendations for scale-up. The process culminates in full integration of emissions control into operations, supported by continuous monitoring, economic alignment, and improvement mechanisms. By embedding learning, benchmarking, and innovation, this phase ensures that emissions reduction becomes a sustained organizational practice, not a one-time initiative.

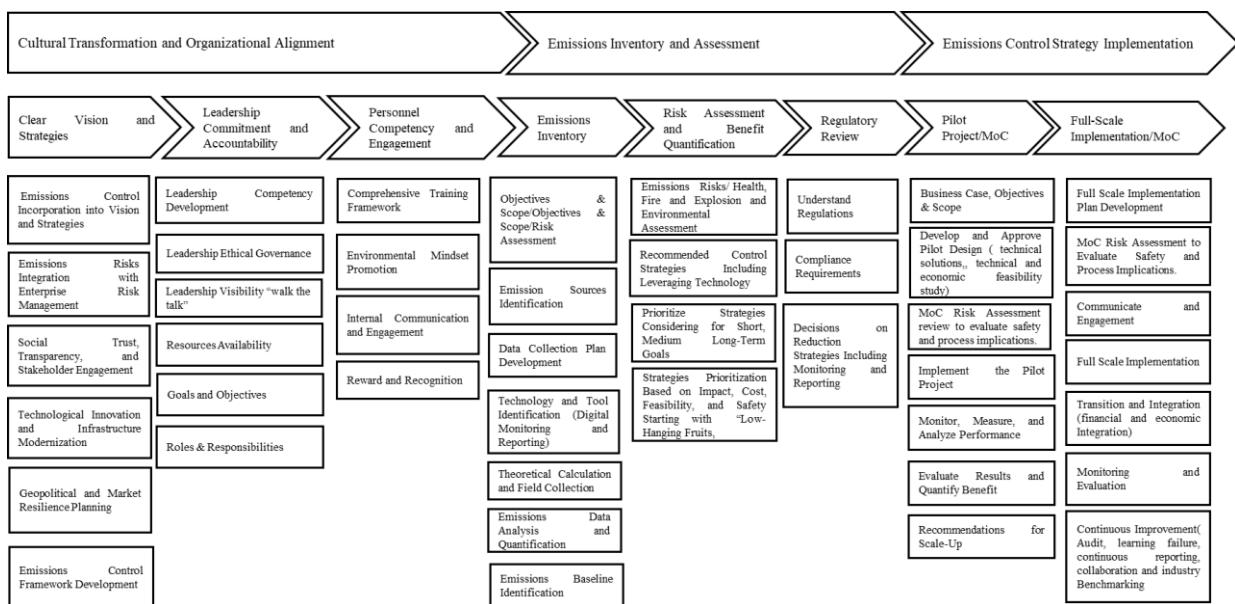


Figure 3.: Emission Reduction – Road Map for Success – Source: Developed by the author.

References

Andrew, R. M. (2020) 'A comparison of estimates of global carbon dioxide emissions from fossil carbon sources'. *Earth System Science Data*, 12(2), 1437–1465. <https://doi.org/10.5194/essd-12-1437-2020>

Bui, B., Houqe, M. N., and Zaman, M. (2021) 'Climate change mitigation: Carbon assurance and reporting integrity'. *Business Strategy and the Environment*, 30(8), 3839–3853. <https://doi.org/10.1002/bse.2843>

Cordero, E. C., Centeno, D., and Todd, A. M. (2020) 'The role of climate change education on individual lifetime carbon emissions'. *PLoS ONE*, 15(2), e0206266. <https://doi.org/10.1371/journal.pone.0206266>

Depledge, D. (2023) 'Low-carbon warfare: climate change, net zero and military operations'. *International Affairs*, 99(2), 667–685. <https://doi.org/10.1093/ia/iaad001>

Fabozzi, F., and Focardi, S. (2025) 'Integrating Sustainability into Asset Management: Challenges and Opportunities'. *The Journal of Portfolio Management Novel Risks 2025*, 51 (7) 95 - 116 <https://www.pm-research.com/content/ijpormgmt/51/7/95>

Geden, O., Scott, V., and Palmer, J. (2018) 'Integrating carbon dioxide removal into EU climate policy: Prospects for a paradigm shift'. *Wiley Interdisciplinary Reviews Climate Change*, 9(4). <https://doi.org/10.1002/wcc.521>

Green, W., and Li, Q. (2011) 'Evidence of an expectation gap for greenhouse gas emissions assurance'. *Accounting Auditing & Accountability Journal*, 25(1), 146–173. <https://doi.org/10.1108/09513571211191789>

Healy, N., Stephens, J. C., and Malin, S. A. (2018) 'Embodied energy injustices: Unveiling and politicizing the transboundary harms of fossil fuel extractivism and fossil fuel supply chains'. *Energy Research & Social Science*, 48, 219–234. <https://doi.org/10.1016/j.erss.2018.09.016>

Jaramillo, P., and Muller, N. Z. (2016) 'Air pollution emissions and damages from energy production in the U.S.: 2002–2011'. *Energy Policy*, 90, 202–211. <https://doi.org/10.1016/j.enpol.2015.12.035>

Jeon, S., Roh, M., Kim, M., and Kim, S. (2023) 'Bridging national and provincial targets: Quantitative evidence for emissions reduction accountability in Korean provinces'. *Energy Strategy Reviews*, 49, 101190. <https://doi.org/10.1016/j.esr.2023.101190>

Johnson, M. R., Tyner, D. R., and Conrad, B. M. (2023) 'Origins of oil and gas sector methane emissions: On-Site Investigations of aerial measured sources'. *Environmental Science & Technology*, 57(6), 2484–2494. <https://doi.org/10.1021/acs.est.2c07318>

Lewandowsky, S. (2020) 'Climate change, disinformation, and how to combat it'. *SSRN Electronic Journal*. <https://doi.org/10.2139/ssrn.3693773>

Log, T., and Pedersen, W. B. (2019) 'A common risk classification concept for safety related gas leaks and fugitive emissions?' *Energies*, 12(21), 4063. <https://doi.org/10.3390/en12214063>

Loh, J. R., and Bellam, S. (2024) 'Towards net zero: Evaluating energy security in Singapore using system dynamics modelling'. *Applied Energy*, 358, 122537. <https://doi.org/10.1016/j.apenergy.2023.122537>

Lu, H., Guo, L., and Zhang, Y. (2019) 'Oil and gas companies' low-carbon emission transition to integrated energy companies'. *The Science of the Total Environment*, 686, 1202–1209. <https://doi.org/10.1016/j.scitotenv.2019.06.014>

Mahapatra, S. K., Schoenherr, T., and Jayaram, J. (2021) 'An assessment of factors contributing to firms' carbon footprint reduction efforts'. *International Journal of Production Economics*, 235, 108073. <https://doi.org/10.1016/j.ijpe.2021.108073>

Matutinović, I. (2011) Oil at 150\$ 'The tipping point for changing course of civilizations?' *Futures*, 43(10), 1129–1141. <https://doi.org/10.1016/j.futures.2011.07.011>

Murphy, R. (2024) 'What is undermining climate change mitigation? How fossil-fuelled practices challenge low-carbon transitions'. *Energy Research & Social Science*, 108, 103390. <https://doi.org/10.1016/j.erss.2023.103390>

Selby, J. (2018) 'The Trump presidency, climate change, and the prospect of a disorderly energy transition'. *Review of International Studies*, 45(3), 471–490. <https://doi.org/10.1017/s0260210518000165>

Smit, H. (2025) 'Megaprojects sustainability real options'. In *The Regents of the University of California, California Management Review* (pp. 55–85) [Journal-article]. <https://doi.org/10.1177/00081256251331264>

Somerville, P. (2020) 'The continuing failure of UK climate change mitigation policy'. *Critical Social Policy*, 41(4), 628–650. <https://doi.org/10.1177/0261018320961762>

Somerville, P. (2020) 'The continuing failure of UK climate change mitigation policy'. *Critical Social Policy*, 41(4), 628–650. <https://doi.org/10.1177/0261018320961762>

Sroufe, R. (2017) 'Integration and organizational change towards sustainability'. *Journal of Cleaner Production*, 162, 315–329. <https://doi.org/10.1016/j.jclepro.2017.05.180>

Vora, M., Sanni, S., and Flage, R. (2021) 'An environmental risk assessment framework for enhanced oil recovery solutions from offshore oil and gas industry'. *Environmental Impact Assessment Review*, 88, 106512. <https://doi.org/10.1016/j.eiar.2020.106512>

Zhang, W., Li, G., Yin, H., Zhao, K., Zhao, H., and An, T. (2021) 'Adsorption and desorption mechanism of aromatic VOCs onto porous carbon adsorbents for emission control and resource recovery: recent progress and challenges'. *Environmental Science Nano*, 9(1), 81–104. <https://doi.org/10.1039/d1en00929j>