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“Abstract”  

Artificial Intelligence (AI) has become a pivotal driver of the digital economy, advancing green 

economy objectives in renewable energy, precision agriculture, and resource-efficient operations 

(Morand and Ligozat and Névéol, 2024; Xu et al., 2023). Yet, this narrative obscures a paradox: 

the infrastructure underpinning large-scale AI models incurs significant environmental costs. 

Training and inference require vast electricity, producing substantial CO₂ emissions (Liu and Yin, 

2024), while workloads also generate notable water consumption, directly via data-centre cooling 

and indirectly through water-intensive electricity generation (Jegham et al., 2025; Campbell, 2025; 

MIT News, 2025). 

This study employs a secondary research methodology, reviewing literature, technical reports, and 

sustainability disclosures to evaluate AI’s operational footprint. The analysis prioritises CO₂ and 

energy while integrating water as a secondary dimension (Jegham et al., 2025; Murray, B. and 

Difelice, M., 2025). Data harmonisation produces comparable metrics (kWh/workload and CO₂e, 

PUE, WUE), while scenario modelling estimates potential reductions through algorithmic 

optimisation, renewable integration, and advanced cooling (Liu and Yin, 2024). 

Key words: Artificial Intelligence Sustainability; Carbon Footprint of AI; Water Footprint in 

Data Centres; Green Digital Economy 

1. Introduction 

1.1 Background and context 

The 21st century has been shaped by the dual imperatives of digital transformation and sustainable 

development, with AI situated at the very heart of these trajectories. As a pivotal driver of the digital 

economy, AI demonstrates significant potential to advance green economy objectives, including 

renewable energy optimisation, precision agriculture, and resource-efficient industrial operations 

(Morand and Ligozat and Névéol, 2024; Xu et al., 2023). Advocates highlight AI’s ability to 

enhance efficiency, enable predictive insights, and support decarbonisation across energy-intensive 

sectors. Yet, the optimistic narrative of AI as an unqualified enabler of sustainability overlooks 

mounting evidence of its hidden environmental footprint. 

1.2 Problem statement: the environmental paradox 

Large-scale AI models, particularly generative and foundation systems, demand vast computational 

resources for training and inference. These processes are associated with significant electricity 



consumption, producing elevated CO₂ emissions (Liu and Yin, 2024). Simultaneously, AI-driven 

infrastructures require substantial volumes of water — directly through data centre cooling systems 

and indirectly through the water-intensive nature of electricity generation (Jegham et al., 2025; 

Campbell, 2025). This environmental paradox complicates AI’s positioning within sustainability 

discourse: technologies celebrated for supporting climate goals are simultaneously intensifying 

carbon and water stress. The paradox is especially acute in water-scarce regions, where resource 

competition intersects with questions of equity and justice (Murray, B. and Difelice, M., 2025). 

1.3 Scope and relevance 

Current debates on AI sustainability remain overwhelmingly carbon-centric, often neglecting the 

water dimension (Morand and Ligozat and Névéol, 2024). While reducing emissions is vital, such 

a narrow focus underestimates the full scope of AI’s environmental burden and obscures trade-offs 

between carbon mitigation and water stewardship (Jegham et al., 2025). This study addresses that 

gap by applying a dual-resource framework that accounts for both carbon and water in evaluating 

AI’s footprint. 

The scope of this research is operational, concentrating on AI’s resource intensities during model 

training and deployment rather than upstream hardware manufacturing or downstream e-waste, a 

limitation that aligns with common boundaries in existing sustainability assessments (Xu et al., 

2023). Its relevance extends beyond academia to industry stakeholders, who are increasingly 

pressured by corporate sustainability reporting obligations (Google Environmental Report, 2023; 

Microsoft Sustainability Report, 2024), and to policymakers tasked with reconciling AI innovation 

with climate and water security (UN Water, 2024). The research is also timely for regions such as 

the GCC, where AI adoption coincides with acute water scarcity and ambitious decarbonisation 

agendas (IEA, 2025). 

1.4 Aims and research questions 

The aim of this paper is twofold. First, it seeks to investigate the environmental dilemmas 

engendered by large-scale artificial intelligence, with particular emphasis on its dual-resource 

footprint of carbon and water. Second, it aims to identify strategies that harmonise AI’s 

technological promise with sustainability imperatives, ensuring that digital growth does not 

undermine ecological resilience. 

These objectives respond to recent scholarly calls for multi-metric evaluation frameworks that 

move beyond carbon-only analyses to capture AI’s broader environmental impacts (Liu and Yin, 

2024; MIT News, 2025). In line with this rationale, the study is guided by two central research 

questions: 

RQ1: What is AI’s operational environmental footprint in terms of energy, carbon, and water 

consumption? 

RQ2: What frameworks and strategies can embed resource efficiency into AI governance and 

infrastructure planning? 



1.5 Contribution of the study 

This paper contributes both theoretically and practically to the discourse on Green AI. 

Theoretically, it advances a dual-resource sustainability framework, expanding the analytical lens 

beyond carbon to systematically incorporate water use (Jegham et al., 2025). Practically, it provides 

policymakers and industry leaders with a structured, evidence-based foundation for embedding 

resource efficiency into AI infrastructure, aligning with emerging sustainability disclosure regimes 

(Campbell, 2025; Microsoft Sustainability Report, 2024). 

In doing so, it bridges a critical gap in the literature and underscores the need for integrated 

governance frameworks that address the interdependencies between digital infrastructures, carbon 

emissions, and water stewardship (UN Water, 2024; IEA, 2025). 

2. Literature review 

2.1 AI’s promise for sustainability 

Early research highlights AI’s capacity to accelerate decarbonisation by improving grid stability, 

optimising renewable generation, and forecasting demand fluctuations (IEA, 2025). Applications 

in precision agriculture reduce fertiliser and water inputs, minimising emissions and waste (FAO, 

2022). In industrial contexts, AI enables predictive maintenance and process optimisation, lowering 

energy intensity per unit output (WEF, 2025). These narratives frame AI as an indispensable lever 

for achieving UN Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable and 

Clean Energy) and SDG 13 (Climate Action). 

2.2 The environmental paradox of AI 

Contrasting this optimism, scholars point to AI’s hidden resource costs. Training foundation 

models such as GPT-class architectures require terawatt-hours of electricity, producing significant 

CO₂ emissions (Liu and Yin, 2024). Jegham et al. (2025) show that even inference workloads, 

scaled to billions of queries, rival the annual energy consumption of small nations. The 

environmental impact is not confined to energy: AI also demands enormous water inputs for 

cooling data centres and generating electricity. Business Insider (2025) documents how hyperscale 

facilities have exacerbated water crises in arid U.S. states, while Food and Water Watch (2025) 

links AI-driven demand to water insecurity in developing countries. The paradox emerges clearly: 

AI designed to promote sustainability can simultaneously deepen environmental stresses. 

2.3 Current measurement frameworks 

A growing body of research attempts to quantify AI’s footprint through standardised metrics. 

Energy consumption is typically measured in kilowatt-hours per training workload (Xu et al. and 

2023). Carbon emissions are expressed in CO₂-equivalents, increasingly benchmarked against 

lifecycle analyses of model training and deployment (Morand and Ligozat and Névéol, 2024). 

Two key infrastructure-level measures dominate industry disclosures: Power Usage Effectiveness 

(PUE), reflecting the efficiency of energy distribution within data centres, and Water Usage 

Effectiveness (WUE), capturing litres of water consumed per kilowatt-hour of IT load (Google 

Environmental Report, 2023). While these indicators allow for cross-facility comparisons, their 

application to AI-specific workloads remains inconsistent. Scholars argue that most reporting 



frameworks still underestimate the total lifecycle impact, neglecting upstream resource extraction 

and downstream e-waste (Zewe, A., 2025). 

2.4 Emerging strategies in literature 

Proposed solutions cluster around three themes. First, algorithmic optimisation including model 

pruning, parameter sharing, and low-precision training, promises efficiency gains without 

sacrificing accuracy (Liu and Yin, 2024). Second, renewable energy integration is increasingly 

emphasised; Microsoft and Google have pledged to power AI workloads entirely through wind and 

solar, though operational intermittency remains a challenge (Microsoft Sustainability Report, 

2024). Third, cooling innovation has attracted attention: immersion cooling and AI-optimised 

thermal management are reported to reduce both energy and water demands significantly (IEA, 

2025). These approaches represent incremental progress, yet their adoption is uneven and their 

combined effectiveness remains underexplored. 

2.5 Gaps in the literature 

Despite growing interest, three gaps persist. First, the vast majority of studies adopt a carbon-centric 

lens, marginalising the water dimension despite mounting evidence of its significance (Li et al., 

2023; Murray and Difelice, 2025). Second, limited empirical data constrains robust benchmarking; 

corporate sustainability disclosures often lack granularity, hindering comparability across firms and 

geographies. Third, there is a dearth of integrated frameworks that simultaneously account for 

energy, carbon, and water, leaving policymakers without tools to navigate trade-offs. Scholars such 

as Jegham et al. (2025) have begun calling for dual-resource approaches, yet systematic models 

remain embryonic. 

Taken together, these gaps highlight the paradox that while AI is celebrated for its role in advancing 

sustainability, the frameworks for assessing its own environmental costs remain fragmented and 

incomplete. Addressing this shortfall requires a dual-resource perspective that gives equal weight 

to carbon and water, thereby establishing the conceptual foundation for the present study. 

3. Methodology 

3.1 Research design 

This study adopts a qualitative secondary research design, drawing upon academic literature, 

technical reports, and corporate sustainability disclosures. A secondary approach is suitable given 

the emergent nature of research on AI’s environmental impact and the difficulty of accessing 

proprietary data on hyperscale AI operations (Snyder, 2019). 

3.2 Research questions and objectives 

The methodology is designed to address two guiding research questions. The first (RQ1) asks: 

What is the operational environmental footprint of artificial intelligence in terms of energy, carbon, 

and water consumption? The second (RQ2) examines: What frameworks and strategies can embed 

resource efficiency into AI governance and infrastructure planning? 

In line with these questions, the study pursues two primary objectives. The first is to evaluate AI’s 

dual-resource footprint, systematically assessing both carbon and water dimensions of its operation. 



The second is to identify pathways through which AI development can be harmonised with broader 

sustainability imperatives, thereby offering both theoretical insight and practical guidance for 

policymakers, industry leaders, and researchers. 

3.3 Research approach 

The research follows a systematic review methodology, employing structured keyword searches 

across databases (Scopus and Web of Science, arXiv) and industry repositories (IEA and UN, 

corporate sustainability reports). Following PRISMA guidelines, literature was screened for 

relevance to AI energy use, carbon emissions, and water consumption (Page et al., 2021). The 

philosophical orientation aligns with a constructivist epistemology, recognising that sustainability 

impacts are socially constructed through industry reporting and policy discourses, as well as 

materially measured through metrics. 

3.4 Data collection and analysis 

The study draws on a diverse set of secondary sources, including peer-reviewed academic research 

on AI energy efficiency and carbon accounting (Xu et al., 2023; Liu and Yin, 2024), technical and 

NGO reports that highlight water and sustainability concerns (Murray and Difelice, 2025; 

Campbell, 2025), and corporate sustainability disclosures from major hyperscalers such as Google 

(2023) and Microsoft (2024). These complementary sources provide both the empirical data and 

contextual insights necessary for assessing AI’s environmental externalities. 

Key variables were harmonised to enable comparability across datasets. Energy consumption was 

standardised in kilowatt-hours (kWh) per workload, carbon emissions were converted into CO₂-

equivalent (CO₂e) units, and operational efficiency was benchmarked using industry-standard 

metrics of Power Usage Effectiveness (PUE) and Water Usage Effectiveness (WUE). 

The data was analysed thematically, allowing patterns to be synthesised into four categories: carbon 

intensity, water intensity, resource trade-offs, and mitigation strategies. This approach ensured that 

findings could be systematically compared across academic, technical, and corporate domains, 

thereby supporting the development of an integrated dual-resource sustainability framework. 

3.5 Synthesis of findings 

Findings from diverse sources were integrated using comparative synthesis, allowing identification 

of convergence and divergence across datasets. Scenario modelling, based exclusively on published 

data, was used to estimate potential reductions in footprint achievable through algorithmic 

optimisation, renewable energy integration, and advanced cooling technologies (Jegham et al., 

2025). 

3.6 Limitations 

This study is constrained by its reliance on secondary data sources. While secondary research 

provides valuable breadth and enables comparative synthesis, it is inherently limited by the quality 

and transparency of the underlying datasets (Snyder, 2019). Corporate sustainability disclosures 

often lack standardisation, with inconsistent reporting formats and selective metrics that constrain 

the possibility of precise benchmarking across firms (Google, 2023; Microsoft, 2024). Similarly, 

many academic studies in this area are simulation-based or rely on modelled scenarios rather than 



empirical field data, raising questions about the extent to which their findings reflect real-world 

operations (Xu et al.,2023; Liu and Yin, 2024). 

A further limitation arises from the study’s scope, which is restricted to the operational phase of AI 

systems namely, model training and inference. Upstream impacts, such as those associated with 

semiconductor fabrication, and downstream impacts, including e-waste and recycling challenges, 

remain outside the boundaries of this research. This narrow focus risks underestimating AI’s total 

environmental footprint, given that hardware production and disposal are increasingly recognised 

as significant contributors to digital sustainability debates (Masanet et al., 2020; Bender et al., 

2021). Future research would therefore benefit from adopting a full lifecycle perspective, 

integrating both material and operational dimensions into environmental assessment frameworks. 

 

3.7 Ethical considerations 

As this study is based exclusively on secondary research, it does not involve human participants or 

require formal ethical approval. Instead, ethical considerations are primarily concerned with 

maintaining academic integrity, proper attribution of sources, and the avoidance of 

misrepresentation. All data has been drawn from publicly available academic, corporate, and NGO 

reports, which minimises risks related to confidentiality or privacy. 

Nevertheless, reliance on secondary sources introduces the potential for interpretive bias, 

particularly when corporate disclosures or advocacy reports reflect institutional interests. To 

mitigate this risk, findings were systematically triangulated across academic research, industry 

sustainability reports, and non-governmental analyses, thereby reducing the likelihood of one-sided 

interpretation and enhancing overall credibility (Resnik, 2020; Bryman, 2016). 

The study also adheres to best practices of transparency by clearly delineating scope, assumptions, 

and limitations, ensuring that conclusions are presented proportionately to the strength of the 

evidence. In this respect, the research aligns with broader ethical principles of responsibility and 

justice in sustainability scholarship, where proportionality and accountability are emphasised as 

key components of rigorous inquiry (Beauchamp, and Childress, 2019). 

Ultimately, ethical responsibility in this context rests on rigorous scholarship, balanced 

representation of competing perspectives, and the explicit acknowledgment of uncertainties. Such 

practices are critical to maintaining trust in sustainability research and ensuring that results can 

meaningfully inform both academic debate and policy decision-making. 

4. Discussion 

4.1 Carbon Intensity of AI 

AI’s carbon footprint remains the most extensively documented dimension of its environmental 

impact. Training large-scale generative models such as GPT-class systems consume megawatt-

hours of electricity, often equivalent to the annual energy use of hundreds of households (Liu and 

Yin, 2024). Xu et al. (2023) demonstrate that model architecture is a decisive variable in 



determining efficiency: transformer-based systems exhibit exponential growth in energy demand 

as parameter counts increase, reflecting diminishing returns in computational scaling. 

 

This escalation is amplified by inference workloads, which, though less energy-intensive per 

transaction, accumulate substantial aggregate demand when scaled across billions of daily queries. 

Jegham et al. (2025) estimate that widespread deployment of large-language models could 

approach the electricity consumption of small nations, underscoring the macro-level implications 

of seemingly micro-scale digital interactions. 

 

Corporate sustainability disclosures corroborate these findings. Google (2023) identifies AI 

workloads as the fastest-growing contributor to its data-centre energy consumption, while 

Microsoft (2024) reports that AI-driven cloud operations are materially inflating its emissions 

profile despite pledges of 100 percent renewable energy by 2025. The persistence of these trends 

reveals a widening gap between corporate decarbonisation rhetoric and the empirical trajectory of 

operational emissions, signalling the need for externally verified carbon accounting within the AI 

sector. 

 

These trends are further 

corroborated by empirical 

projections from the 

International Energy Agency 

(IEA). As illustrated in Figure 1, 

global data centre electricity 

consumption is expected to 

nearly quadruple between 2020 

and 2030, with accelerated 

servers, such as those supporting 

AI workloads, constituting the 

fastest-growing share. This 

trajectory underscores a critical 

shift in the composition of digital 

infrastructure energy use: by 

2030, AI-specific computing 

may dominate overall data centre 

demand, intensifying pressure on 

decarbonisation targets and grid 

stability (IEA, 2025). 

Industry disclosures partially corroborate these findings. Google’s (2023) environmental report 

indicates that AI workloads are the fastest-growing contributor to its data centre energy profile. 

Microsoft (2024) similarly reports increasing emissions linked to AI cloud services, despite pledges 

of 100% renewable energy by 2025. These realities underscore the gap between corporate 

sustainability rhetoric and operational emissions trajectories. 

Fig. 1 Global data centre electricity consumption by equipment, Base Case, 2020–2030 

(IEA, 2025 

 



4.2 Water Intensity of AI 

Although less visible, AI’s water footprint constitutes a critical but under-researched aspect of 

sustainability. Data centres depend on evaporative cooling systems that consume millions of litres 

of freshwater annually to maintain thermal stability (Campbell, 2025). In arid regions such as the 

U.S. Southwest and the Middle East, this reliance exacerbates water scarcity and fuels tension 

between digital infrastructure expansion and local community needs. 

Food and Water Watch (2025) documents how hyperscale data-centre proliferation intensifies 

competition for limited water resources, diverting supplies from agriculture and domestic use. 

Jegham et al. (2025) quantify this dependence through Water Usage Effectiveness (WUE), 

revealing that each AI query entails a measurable, albeit hidden, water cost. These data expose the 

paradox of “clean” digital technologies whose physical infrastructure is inseparable from water-

intensive processes. 

Industry initiatives show early experimentation with alternative cooling solutions. Microsoft’s 

submerged data-centre trials and Google’s investment in liquid- and immersion-cooling 

technologies represent promising prototypes (Google, 2023; Microsoft, 2024). However, their 

deployment remains limited, and transparency around actual WUE values is inconsistent. The 

absence of standardised reporting frameworks inhibits systematic comparison and masks the true 

hydrological burden of AI operations. 

4.3 Trade-Offs and the Dual-Resource Paradox 

Juxtaposing carbon and water intensities exposes an inherent dual-resource paradox: interventions 

that mitigate one dimension often aggravate the other. Transitioning data centres to renewable 

power can lower CO₂ emissions yet heighten water use where generation or cooling processes 

depend on evaporative systems (IEA, 2025). Conversely, hydroelectric siting may cut carbon 

intensity but tether AI scalability to fragile aquatic ecosystems. 

 

This interplay underscores the limitations of carbon-exclusive sustainability metrics. As MIT News 

(2025) observes, such narrow focus conceals cross-resource trade-offs that distort assessments of 

net environmental benefit. The challenge is therefore not simply reducing emissions but managing 

the energy - water nexus inherent in digital infrastructures. 

 

In water-scarce geographies, most notably the GCC, this paradox acquires socio-political weight. 

Ambitious AI adoption under national innovation agendas collides with chronic hydrological 

vulnerability (UN Water, 2024). Without dual-resource governance, efforts to decarbonise through 

AI may inadvertently erode water security, generating policy incoherence between climate 

ambition and resource reality. 

4.4 Scenario Modelling and Strategic Levers 

Harmonised data analyses point to three principal levers for reducing AI’s environmental intensity: 

algorithmic optimisation, renewable-energy integration, and advanced cooling technologies. 

1. Algorithmic Optimisation: Efficiency techniques such as pruning, quantisation, and 

architecture refinement can cut training-phase energy demand by up to 50 percent without 

significant accuracy loss (Liu and Yin, 2024). The “Green AI” paradigm (Schwartz et al., 



2020) reframes progress in terms of performance-per-watt rather than raw accuracy, urging 

a transition from model maximalism to computational sufficiency. 

2. Renewable-Energy Integration: Major hyperscalers have committed to full renewable 

sourcing within the decade. Scenario models suggest that synchronising AI workloads with 

renewable availability could yield lifecycle emission reductions approaching 70 percent 

(IEA, 2025). Yet, the intermittency of renewables and the spatial mismatch between data-

centre locations and renewable corridors demand innovations in energy storage, grid 

flexibility, and transnational power exchange. 

3. Advanced Cooling and Water Efficiency: Shifting from evaporative to liquid-immersion 

cooling can reduce water consumption by as much as 95 percent (Google, 2023). Locating 

facilities in cooler climates such as the Nordics or Canada offers additional gains in both 

carbon and water efficiency, though it raises strategic questions about digital sovereignty 

and geopolitical dependency (Masanet et al., 2020). 

Comparative synthesis shows that no single intervention is sufficient. Only a portfolio approach, 

integrating algorithmic, infrastructural, and geographic strategies, can deliver meaningful 

reductions across both resource axes and reconcile AI expansion with sustainability imperatives. 

4.5 Towards a Dual-Resource Framework 

Building on these insights, this study advances a dual-resource sustainability framework composed 

of three interdependent pillars: 

1. Measurement: Establishing standardised reporting of CO₂e, kWh, PUE, and WUE at the 

workload level to enable transparent benchmarking and evidence-based governance. 

2. Governance: Mandating disclosure of both carbon and water footprints within regulatory 

and corporate accountability regimes, ensuring verifiable compliance and cross-sector 

comparability (IEA, 2025; Morand, Ligozat and Névéol, 2024). 

3. Strategy: Promoting integrated mitigation that aligns carbon and water management, 

embedding resource-efficiency principles into model design, data-centre siting, and 

infrastructure planning (Jegham et al., 2025; Liu and Yin, 2024). 

 
This framework extends theoretical discourse beyond carbon-centric paradigms and provides a 

pragmatic scaffold for policy and industry. By institutionalising dual-resource accountability, it 

offers a structured pathway through which AI development can genuinely reinforce, rather than 

undermine, the objectives of the green economy. 

In sum, the discussion demonstrates that AI’s sustainability challenge lies not in technology alone 

but in managing the interdependence of energy and water. The dual-resource framework proposed 

here reframes this issue as one of systemic governance rather than isolated optimisation. The 

following section synthesises these findings into key conclusions and actionable recommendations, 

translating analytical insights into policy and industry relevance. 



5. Conclusions and recommendations 

5.1 Recap and contextualisation 

This study has explored the paradoxical role of Artificial Intelligence (AI) in the pursuit of 

sustainable development. While AI has been hailed as a catalyst for the digital and green economy, 

particularly through applications in renewable energy optimisation, precision agriculture, and 

industrial efficiency, it simultaneously carries a substantial environmental footprint. The analysis 

confirms that training and deploying large-scale AI systems requires vast amounts of electricity 

and water, leading to significant CO₂ emissions and freshwater withdrawals. These impacts 

undermine the dominant narrative of AI as an inherently “green” technology and necessitate a more 

balanced appraisal of its sustainability credentials (Liu and Yin, 2024; Jegham et al., 2025). 

5.2 Key findings 

The discussion chapters yield several important insights into the environmental externalities of 

Artificial Intelligence. First, the carbon intensity of AI models is both substantial and rapidly 

escalating. Training foundation models consumes megawatt-hours of energy, often equating to the 

annual electricity use of hundreds of households. Jegham et al. (2025) note that while inference 

workloads are less energy-intensive on a per-query basis, their sheer scale, billions of queries across 

global user bases, translates into nation-scale electricity demand. This trend is reinforced by 

Morand, Ligozat and Névéol (2024), who argue that while efficiency improvements in hardware 

and algorithms have tempered some growth, overall emissions continue to rise due to the expansion 

of model size and adoption. Liu and Yin (2024) similarly highlight that mitigation strategies for AI 

training remain unevenly implemented, with industry self-regulation proving insufficient to curb 

aggregate emissions. 

Second, the findings underscore that water use remains an overlooked but critical dimension of 

AI’s environmental footprint. AI data centres rely heavily on evaporative cooling, which is acutely 

water-intensive. Each AI query thus carries a hidden water cost, one largely invisible to end-users. 

Recent reports have emphasised this issue: Li et al. (2023) estimate that training GPT-3 consumed 

approximately 700,000 litres of freshwater, while Business Insider (2025) and MIT News (2025) 

note that rapid expansion of generative AI workloads is now materially increasing water stress in 

local communities near hyperscale facilities. Despite the significance of this impact, corporate 

disclosures on water usage remain sparse and inconsistent, falling far behind the more developed 

frameworks for carbon reporting (Murray and Difelice, 2025). 

Third, it is clear that dual-resource trade-offs are increasingly unavoidable. Strategies aimed at 

reducing carbon intensity such as locating data centres in regions rich in renewable energy, can 

inadvertently increase water demand, especially where renewable siting relies on evaporative 

cooling (IEA, 2025). This creates a governance dilemma: policies that narrowly focus on carbon 

mitigation risk aggravating water scarcity, particularly in already vulnerable regions such as the 

GCC. Xu et al. (2023) reinforce that environmental trade-offs must be assessed in tandem rather 

than isolation, emphasising the need for multi-dimensional sustainability metrics. 

Finally, while mitigation strategies are available, they remain fragmented and lack systemic 

integration. Algorithmic optimisation, renewable energy integration, and advanced cooling 



technologies have each demonstrated potential to reduce environmental intensity. Jegham et al. 

(2025) suggest that efficient inference and lightweight models could cut emissions by up to 30 -

40%, while Liu and Yin (2024) highlight the promising role of renewable integration in 

decarbonising training runs. Yet, as the evidence indicates, these approaches remain piecemeal, 

and without a portfolio strategy that integrates technical, infrastructural, and governance solutions, 

reductions will remain insufficient. Only through coordinated action can AI’s growing 

environmental footprint be addressed credibly and at scale. 

5.3 Contributions of the study 

This study advances both theoretical and practical contributions to the discourse on sustainable 

artificial intelligence. From a theoretical perspective, it introduces a dual-resource sustainability 

framework that explicitly integrates carbon and water metrics. Whereas previous scholarship has 

tended to privilege carbon as the dominant dimension of AI’s environmental cost, this framework 

recognises water as an equally material factor, thereby offering a more holistic and multi-

dimensional approach to assessing AI’s environmental footprint (Morand and Ligozat and Névéol, 

2024). By positioning carbon and water in tandem, the study fills a critical gap in the literature and 

lays the groundwork for a more comprehensive research agenda. 

In terms of practical contribution, the study provides policymakers and industry leaders with a 

structured evidence base to embed dual-resource accountability into AI governance. This aligns 

with the evolving architecture of global sustainability disclosure regimes, such as those articulated 

in Microsoft’s (2024) and Google’s (2023) sustainability reports, and it resonates with the broader 

ambitions of the United Nations Sustainable Development Goals. The framework articulated here 

therefore not only extends academic inquiry but also provides an actionable tool for practitioners 

charged with reconciling AI innovation with ecological responsibility. 

5.4 Implications 

The findings of this study carry significant implications across policy, industry, and research. From 

a policy perspective, governments must expand beyond carbon-centric AI regulations to include 

water metrics within sustainability frameworks. In water-scarce regions such as the Gulf 

Cooperation Council (GCC) and the U.S. Southwest, dual-resource impact assessments should be 

mandated for AI projects, ensuring that both carbon and water footprints are systematically 

accounted for (IEA and 2023; Morand, Ligozat and Névéol, 2024). 

For industry, the evidence highlights the necessity of greater transparency. Firms should report both 

Power Usage Effectiveness (PUE) and Water Usage Effectiveness (WUE) to provide a 

comprehensive picture of operational sustainability. Beyond disclosure, AI developers must 

prioritise resource-efficient design by favouring smaller, task-specific models over large, general-

purpose systems that impose disproportionately high environmental costs (Schwartz et al., 2020; 

Patterson et al., 2021). This shift would align corporate practices with emerging global disclosure 

regimes and sustainability expectations (Microsoft, 2024; Google, 2023). 

Finally, research implications are clear. There is an urgent need for empirical and longitudinal 

studies that systematically quantify AI’s water footprint across different geographies and cooling 

technologies (Jegham et al., 2025; Li et al., 2023). Such work should be complemented by 

interdisciplinary research that bridges computer science, environmental economics, and 



governance, thereby refining dual-resource frameworks into more holistic sustainability 

assessments (Xu et al., 2023; Liu and Yin, 2024). In doing so, scholarship can contribute both 

conceptual clarity and practical evidence to guide the responsible integration of AI into the green 

economy. 

5.5 Recommendations for future research 

Building upon this study, several research trajectories can be identified to advance understanding 

of AI’s environmental externalities. The first concerns the empirical benchmarking of water use in 

AI training and inference. While recent work has begun to highlight the hidden water costs of large 

models (Jegham et al., 2025; MIT News, 2025), measurement remains fragmented, with few 

comparative studies across climates and cooling technologies. A rigorous programme of empirical 

benchmarking would allow scholars and practitioners to distinguish between direct and indirect 

water consumption, quantify differences between evaporative, chilled-water, and liquid-immersion 

systems, and develop a Global AI Water Index capable of tracking and comparing usage across 

geographies and workloads. Such an index could parallel existing carbon accounting frameworks, 

providing a reference point for both policymakers and corporate actors (Murray and Difelice, 2025; 

Campbell, 2025). 

A second trajectory relates to regional and contextualised studies, particularly in areas where AI 

adoption collides with acute water scarcity. In the Gulf Cooperation Council (GCC) states, the dual 

challenge of decarbonisation and water security creates a particularly sharp dilemma (IEA, 2023).  

Context-sensitive case studies could provide valuable insights by examining how siting decisions, 

cooling technologies, and grid composition shape AI’s environmental footprint in water-stressed 

contexts, compared to water-abundant regions such as the Nordics. Xu et al. (2023) emphasise that 

performance-efficiency trade-offs in neural network training vary by both hardware and operational 

context, suggesting that regional variation must be built into any comparative framework. 

Finally, there is a pressing need to expand integrated sustainability frameworks beyond dual-

resource models of carbon and water. Future research should pursue the inclusion of additional 

dimensions such as e-waste and mineral extraction, which are critical given the intensive material 

demands of AI hardware. As Morand, Ligozat and Névéol (2024) argue, only by embedding 

environmental considerations across the entire lifecycle of machine learning systems, from material 

extraction through operation to end-of-life, can the full sustainability implications of AI be 

understood. Moreover, reflexive approaches are needed to examine how AI itself can be leveraged 

to reduce its own footprint, for example through optimisation algorithms that minimise compute 

and cooling demand. Schwartz et al. (2020) call this paradigm “Green AI,” while more recent 

literature has advanced the idea of “AI for sustainable AI,” highlighting the potential for self-

reinforcing cycles of efficiency improvement (Liu and Yin, 2024). 

In sum, future research must move decisively towards empirically grounded, context-sensitive, and 

integrative approaches. Such directions would not only enrich academic understanding but also 

provide policymakers, industry stakeholders, and civil society with robust evidence to inform 

governance and operational strategies. 



5.6 Final reflections 

In sum, future research must move decisively towards empirically grounded, context-sensitive, and 

integrative approaches. Such directions will not only enrich academic understanding but also 

provide policymakers, industry stakeholders, and civil society with robust evidence to inform 

governance and operational strategies. Yet research alone is not enough, AI is neither inherently 

sustainable nor unsustainable. Its impact is contingent on how it is developed, deployed, and 

governed. By embedding dual-resource accountability, recognising that data carries a carbon cost 

and intelligence carries a water cost, into both policy and practice, societies can shape AI’s 

trajectory towards supporting rather than undermining the goals of a just and green economy. As 

Morand, Ligozat and Névéol (2024) note, sustainability outcomes depend on structural governance 

as much as on technological efficiency. Jegham et al. (2025) further highlight that transparent 

benchmarking of energy and water across workloads is essential to avoid fragmented 

accountability, while Food and Water Watch (2025) underscore the risks of overlooking water in 

favour of carbon-centric frameworks. Only by acknowledging the physical underpinnings of the 

digital economy can we ensure that future research translates into actionable frameworks that 

balance innovation with ecological responsibility. 
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