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“Abstract”

Artificial Intelligence (Al) has become a pivotal driver of the digital economy, advancing green
economy objectives in renewable energy, precision agriculture, and resource-efficient operations
(Morand and Ligozat and Névéol, 2024; Xu et al., 2023). Yet, this narrative obscures a paradox:
the infrastructure underpinning large-scale Al models incurs significant environmental costs.
Training and inference require vast electricity, producing substantial CO- emissions (Liu and Yin,
2024), while workloads also generate notable water consumption, directly via data-centre cooling
and indirectly through water-intensive electricity generation (Jegham et al., 2025; Campbell, 2025;
MIT News, 2025).

This study employs a secondary research methodology, reviewing literature, technical reports, and
sustainability disclosures to evaluate Al’s operational footprint. The analysis prioritises CO2 and
energy while integrating water as a secondary dimension (Jegham et al., 2025; Murray, B. and
Difelice, M., 2025). Data harmonisation produces comparable metrics (kWh/workload and CO-e,
PUE, WUE), while scenario modelling estimates potential reductions through algorithmic
optimisation, renewable integration, and advanced cooling (Liu and Yin, 2024).
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1. Introduction

1.1 Background and context

The 21st century has been shaped by the dual imperatives of digital transformation and sustainable
development, with Al situated at the very heart of these trajectories. As a pivotal driver of the digital
economy, Al demonstrates significant potential to advance green economy objectives, including
renewable energy optimisation, precision agriculture, and resource-efficient industrial operations
(Morand and Ligozat and Névéol, 2024; Xu et al., 2023). Advocates highlight AI’s ability to
enhance efficiency, enable predictive insights, and support decarbonisation across energy-intensive
sectors. Yet, the optimistic narrative of Al as an unqualified enabler of sustainability overlooks
mounting evidence of its hidden environmental footprint.

1.2 Problem statement: the environmental paradox
Large-scale Al models, particularly generative and foundation systems, demand vast computational
resources for training and inference. These processes are associated with significant electricity



consumption, producing elevated CO: emissions (Liu and Yin, 2024). Simultaneously, Al-driven
infrastructures require substantial volumes of water — directly through data centre cooling systems
and indirectly through the water-intensive nature of electricity generation (Jegham et al., 2025;
Campbell, 2025). This environmental paradox complicates Al’s positioning within sustainability
discourse: technologies celebrated for supporting climate goals are simultaneously intensifying
carbon and water stress. The paradox is especially acute in water-scarce regions, where resource
competition intersects with questions of equity and justice (Murray, B. and Difelice, M., 2025).

1.3 Scope and relevance

Current debates on Al sustainability remain overwhelmingly carbon-centric, often neglecting the
water dimension (Morand and Ligozat and Névéol, 2024). While reducing emissions is vital, such
a narrow focus underestimates the full scope of AI’s environmental burden and obscures trade-offs
between carbon mitigation and water stewardship (Jegham et al., 2025). This study addresses that
gap by applying a dual-resource framework that accounts for both carbon and water in evaluating
AT’s footprint.

The scope of this research is operational, concentrating on AI’s resource intensities during model
training and deployment rather than upstream hardware manufacturing or downstream e-waste, a
limitation that aligns with common boundaries in existing sustainability assessments (Xu et al.,
2023). Its relevance extends beyond academia to industry stakeholders, who are increasingly
pressured by corporate sustainability reporting obligations (Google Environmental Report, 2023;
Microsoft Sustainability Report, 2024), and to policymakers tasked with reconciling Al innovation
with climate and water security (UN Water, 2024). The research is also timely for regions such as
the GCC, where Al adoption coincides with acute water scarcity and ambitious decarbonisation
agendas (IEA, 2025).

1.4 Aims and research questions

The aim of this paper is twofold. First, it seeks to investigate the environmental dilemmas
engendered by large-scale artificial intelligence, with particular emphasis on its dual-resource
footprint of carbon and water. Second, it aims to identify strategies that harmonise Al’s
technological promise with sustainability imperatives, ensuring that digital growth does not
undermine ecological resilience.

These objectives respond to recent scholarly calls for multi-metric evaluation frameworks that
move beyond carbon-only analyses to capture Al’s broader environmental impacts (Liu and Yin,
2024; MIT News, 2025). In line with this rationale, the study is guided by two central research
questions:

RQ1: What is Al’s operational environmental footprint in terms of energy, carbon, and water
consumption?

RQ2: What frameworks and strategies can embed resource efficiency into Al governance and
infrastructure planning?



1.5 Contribution of the study

This paper contributes both theoretically and practically to the discourse on Green Al
Theoretically, it advances a dual-resource sustainability framework, expanding the analytical lens
beyond carbon to systematically incorporate water use (Jegham et al., 2025). Practically, it provides
policymakers and industry leaders with a structured, evidence-based foundation for embedding
resource efficiency into Al infrastructure, aligning with emerging sustainability disclosure regimes
(Campbell, 2025; Microsoft Sustainability Report, 2024).

In doing so, it bridges a critical gap in the literature and underscores the need for integrated
governance frameworks that address the interdependencies between digital infrastructures, carbon
emissions, and water stewardship (UN Water, 2024; [EA, 2025).

2. Literature review

2.1 Al's promise for sustainability

Early research highlights AI’s capacity to accelerate decarbonisation by improving grid stability,
optimising renewable generation, and forecasting demand fluctuations (IEA, 2025). Applications
in precision agriculture reduce fertiliser and water inputs, minimising emissions and waste (FAO,
2022). In industrial contexts, Al enables predictive maintenance and process optimisation, lowering
energy intensity per unit output (WEF, 2025). These narratives frame Al as an indispensable lever
for achieving UN Sustainable Development Goals (SDGs), particularly SDG 7 (Affordable and
Clean Energy) and SDG 13 (Climate Action).

2.2 The environmental paradox of Al

Contrasting this optimism, scholars point to AI’s hidden resource costs. Training foundation
models such as GPT-class architectures require terawatt-hours of electricity, producing significant
CO:2 emissions (Liu and Yin, 2024). Jegham et al. (2025) show that even inference workloads,
scaled to billions of queries, rival the annual energy consumption of small nations. The
environmental impact is not confined to energy: Al also demands enormous water inputs for
cooling data centres and generating electricity. Business Insider (2025) documents how hyperscale
facilities have exacerbated water crises in arid U.S. states, while Food and Water Watch (2025)
links Al-driven demand to water insecurity in developing countries. The paradox emerges clearly:
Al designed to promote sustainability can simultaneously deepen environmental stresses.

2.3 Current measurement frameworks

A growing body of research attempts to quantify Al’s footprint through standardised metrics.
Energy consumption is typically measured in kilowatt-hours per training workload (Xu et al. and
2023). Carbon emissions are expressed in COz-equivalents, increasingly benchmarked against
lifecycle analyses of model training and deployment (Morand and Ligozat and Névéol, 2024).
Two key infrastructure-level measures dominate industry disclosures: Power Usage Effectiveness
(PUE), reflecting the efficiency of energy distribution within data centres, and Water Usage
Effectiveness (WUE), capturing litres of water consumed per kilowatt-hour of IT load (Google
Environmental Report, 2023). While these indicators allow for cross-facility comparisons, their
application to Al-specific workloads remains inconsistent. Scholars argue that most reporting



frameworks still underestimate the total lifecycle impact, neglecting upstream resource extraction
and downstream e-waste (Zewe, A., 2025).

2.4 Emerging strategies in literature

Proposed solutions cluster around three themes. First, algorithmic optimisation including model
pruning, parameter sharing, and low-precision training, promises efficiency gains without
sacrificing accuracy (Liu and Yin, 2024). Second, renewable energy integration is increasingly
emphasised; Microsoft and Google have pledged to power Al workloads entirely through wind and
solar, though operational intermittency remains a challenge (Microsoft Sustainability Report,
2024). Third, cooling innovation has attracted attention: immersion cooling and Al-optimised
thermal management are reported to reduce both energy and water demands significantly (IEA,
2025). These approaches represent incremental progress, yet their adoption is uneven and their
combined effectiveness remains underexplored.

2.5 Gaps in the literature

Despite growing interest, three gaps persist. First, the vast majority of studies adopt a carbon-centric
lens, marginalising the water dimension despite mounting evidence of its significance (Li et al.,
2023; Murray and Difelice, 2025). Second, limited empirical data constrains robust benchmarking;
corporate sustainability disclosures often lack granularity, hindering comparability across firms and
geographies. Third, there is a dearth of integrated frameworks that simultaneously account for
energy, carbon, and water, leaving policymakers without tools to navigate trade-offs. Scholars such
as Jegham et al. (2025) have begun calling for dual-resource approaches, yet systematic models
remain embryonic.

Taken together, these gaps highlight the paradox that while Al is celebrated for its role in advancing
sustainability, the frameworks for assessing its own environmental costs remain fragmented and
incomplete. Addressing this shortfall requires a dual-resource perspective that gives equal weight
to carbon and water, thereby establishing the conceptual foundation for the present study.

3. Methodology

3.1 Research design

This study adopts a qualitative secondary research design, drawing upon academic literature,
technical reports, and corporate sustainability disclosures. A secondary approach is suitable given
the emergent nature of research on AIl’s environmental impact and the difficulty of accessing
proprietary data on hyperscale Al operations (Snyder, 2019).

3.2 Research questions and objectives

The methodology is designed to address two guiding research questions. The first (RQ1) asks:
What is the operational environmental footprint of artificial intelligence in terms of energy, carbon,
and water consumption? The second (RQ2) examines: What frameworks and strategies can embed
resource efficiency into Al governance and infrastructure planning?

In line with these questions, the study pursues two primary objectives. The first is to evaluate Al’s
dual-resource footprint, systematically assessing both carbon and water dimensions of its operation.



The second is to identify pathways through which Al development can be harmonised with broader
sustainability imperatives, thereby offering both theoretical insight and practical guidance for
policymakers, industry leaders, and researchers.

3.3 Research approach

The research follows a systematic review methodology, employing structured keyword searches
across databases (Scopus and Web of Science, arXiv) and industry repositories (IEA and UN,
corporate sustainability reports). Following PRISMA guidelines, literature was screened for
relevance to Al energy use, carbon emissions, and water consumption (Page et al., 2021). The
philosophical orientation aligns with a constructivist epistemology, recognising that sustainability
impacts are socially constructed through industry reporting and policy discourses, as well as
materially measured through metrics.

3.4 Data collection and analysis

The study draws on a diverse set of secondary sources, including peer-reviewed academic research
on Al energy efficiency and carbon accounting (Xu et al., 2023; Liu and Yin, 2024), technical and
NGO reports that highlight water and sustainability concerns (Murray and Difelice, 2025;
Campbell, 2025), and corporate sustainability disclosures from major hyperscalers such as Google
(2023) and Microsoft (2024). These complementary sources provide both the empirical data and
contextual insights necessary for assessing Al’s environmental externalities.

Key variables were harmonised to enable comparability across datasets. Energy consumption was
standardised in kilowatt-hours (kWh) per workload, carbon emissions were converted into COa-
equivalent (COze) units, and operational efficiency was benchmarked using industry-standard
metrics of Power Usage Effectiveness (PUE) and Water Usage Effectiveness (WUE).

The data was analysed thematically, allowing patterns to be synthesised into four categories: carbon
intensity, water intensity, resource trade-offs, and mitigation strategies. This approach ensured that
findings could be systematically compared across academic, technical, and corporate domains,
thereby supporting the development of an integrated dual-resource sustainability framework.

3.5 Synthesis of findings

Findings from diverse sources were integrated using comparative synthesis, allowing identification
of convergence and divergence across datasets. Scenario modelling, based exclusively on published
data, was used to estimate potential reductions in footprint achievable through algorithmic
optimisation, renewable energy integration, and advanced cooling technologies (Jegham et al.,
2025).

3.6 Limitations

This study is constrained by its reliance on secondary data sources. While secondary research
provides valuable breadth and enables comparative synthesis, it is inherently limited by the quality
and transparency of the underlying datasets (Snyder, 2019). Corporate sustainability disclosures
often lack standardisation, with inconsistent reporting formats and selective metrics that constrain
the possibility of precise benchmarking across firms (Google, 2023; Microsoft, 2024). Similarly,
many academic studies in this area are simulation-based or rely on modelled scenarios rather than



empirical field data, raising questions about the extent to which their findings reflect real-world
operations (Xu et al.,2023; Liu and Yin, 2024).

A further limitation arises from the study’s scope, which is restricted to the operational phase of Al
systems namely, model training and inference. Upstream impacts, such as those associated with
semiconductor fabrication, and downstream impacts, including e-waste and recycling challenges,
remain outside the boundaries of this research. This narrow focus risks underestimating AI’s total
environmental footprint, given that hardware production and disposal are increasingly recognised
as significant contributors to digital sustainability debates (Masanet et al., 2020; Bender et al.,
2021). Future research would therefore benefit from adopting a full lifecycle perspective,
integrating both material and operational dimensions into environmental assessment frameworks.

3.7 Ethical considerations

As this study is based exclusively on secondary research, it does not involve human participants or
require formal ethical approval. Instead, ethical considerations are primarily concerned with
maintaining academic integrity, proper attribution of sources, and the avoidance of
misrepresentation. All data has been drawn from publicly available academic, corporate, and NGO
reports, which minimises risks related to confidentiality or privacy.

Nevertheless, reliance on secondary sources introduces the potential for interpretive bias,
particularly when corporate disclosures or advocacy reports reflect institutional interests. To
mitigate this risk, findings were systematically triangulated across academic research, industry
sustainability reports, and non-governmental analyses, thereby reducing the likelihood of one-sided
interpretation and enhancing overall credibility (Resnik, 2020; Bryman, 2016).

The study also adheres to best practices of transparency by clearly delineating scope, assumptions,
and limitations, ensuring that conclusions are presented proportionately to the strength of the
evidence. In this respect, the research aligns with broader ethical principles of responsibility and
justice in sustainability scholarship, where proportionality and accountability are emphasised as
key components of rigorous inquiry (Beauchamp, and Childress, 2019).

Ultimately, ethical responsibility in this context rests on rigorous scholarship, balanced
representation of competing perspectives, and the explicit acknowledgment of uncertainties. Such
practices are critical to maintaining trust in sustainability research and ensuring that results can
meaningfully inform both academic debate and policy decision-making.

4. Discussion

4.1 Carbon Intensity of Al

AlD’s carbon footprint remains the most extensively documented dimension of its environmental
impact. Training large-scale generative models such as GPT-class systems consume megawatt-
hours of electricity, often equivalent to the annual energy use of hundreds of households (Liu and
Yin, 2024). Xu et al. (2023) demonstrate that model architecture is a decisive variable in



determining efficiency: transformer-based systems exhibit exponential growth in energy demand
as parameter counts increase, reflecting diminishing returns in computational scaling.

This escalation is amplified by inference workloads, which, though less energy-intensive per
transaction, accumulate substantial aggregate demand when scaled across billions of daily queries.
Jegham et al. (2025) estimate that widespread deployment of large-language models could
approach the electricity consumption of small nations, underscoring the macro-level implications
of seemingly micro-scale digital interactions.

Corporate sustainability disclosures corroborate these findings. Google (2023) identifies Al
workloads as the fastest-growing contributor to its data-centre energy consumption, while
Microsoft (2024) reports that Al-driven cloud operations are materially inflating its emissions
profile despite pledges of 100 percent renewable energy by 2025. The persistence of these trends
reveals a widening gap between corporate decarbonisation rhetoric and the empirical trajectory of
operational emissions, signalling the need for externally verified carbon accounting within the Al
sector.

These trends are further
corroborated by  empirical
projections from the
International Energy Agency
(IEA). As illustrated in Figure 1,
global data centre -electricity
consumption is expected to

paioalolg

nearly quadruple between 2020
and 2030, with accelerated
servers, such as those supporting
— Al workloads, constituting the
fastest-growing  share.  This

I . ..
=T | trajectory underscores a critical
1 i i e T shift in the composition of digital
infrastructure energy use: by
2030, Al-specific computing
may dominate overall data centre
O Acceleratedservers ® Conventional servers © Other ITequipment @ Cooling demand, intensifying pressure on

O Other infrastructs : . :
ol i decarbonisation targets and grid

Fig. 1 Global data centre electricity consumption by equipment, Base Case, 2020-2030 stability (IEA, 2025)

Industry disclosures partially corroborate these findings. Google’s (2023) environmental report
indicates that Al workloads are the fastest-growing contributor to its data centre energy profile.
Microsoft (2024) similarly reports increasing emissions linked to Al cloud services, despite pledges
of 100% renewable energy by 2025. These realities underscore the gap between corporate
sustainability rhetoric and operational emissions trajectories.



4.2 Water Intensity of Al

Although less visible, AI’s water footprint constitutes a critical but under-researched aspect of
sustainability. Data centres depend on evaporative cooling systems that consume millions of litres
of freshwater annually to maintain thermal stability (Campbell, 2025). In arid regions such as the
U.S. Southwest and the Middle East, this reliance exacerbates water scarcity and fuels tension
between digital infrastructure expansion and local community needs.

Food and Water Watch (2025) documents how hyperscale data-centre proliferation intensifies
competition for limited water resources, diverting supplies from agriculture and domestic use.
Jegham et al. (2025) quantify this dependence through Water Usage Effectiveness (WUE),
revealing that each Al query entails a measurable, albeit hidden, water cost. These data expose the
paradox of “clean” digital technologies whose physical infrastructure is inseparable from water-
intensive processes.

Industry initiatives show early experimentation with alternative cooling solutions. Microsoft’s
submerged data-centre trials and Google’s investment in liquid- and immersion-cooling
technologies represent promising prototypes (Google, 2023; Microsoft, 2024). However, their
deployment remains limited, and transparency around actual WUE values is inconsistent. The
absence of standardised reporting frameworks inhibits systematic comparison and masks the true
hydrological burden of Al operations.

4.3 Trade-Offs and the Dual-Resource Paradox

Juxtaposing carbon and water intensities exposes an inherent dual-resource paradox: interventions
that mitigate one dimension often aggravate the other. Transitioning data centres to renewable
power can lower CO: emissions yet heighten water use where generation or cooling processes
depend on evaporative systems (IEA, 2025). Conversely, hydroelectric siting may cut carbon
intensity but tether Al scalability to fragile aquatic ecosystems.

This interplay underscores the limitations of carbon-exclusive sustainability metrics. As MIT News
(2025) observes, such narrow focus conceals cross-resource trade-offs that distort assessments of
net environmental benefit. The challenge is therefore not simply reducing emissions but managing
the energy - water nexus inherent in digital infrastructures.

In water-scarce geographies, most notably the GCC, this paradox acquires socio-political weight.
Ambitious Al adoption under national innovation agendas collides with chronic hydrological
vulnerability (UN Water, 2024). Without dual-resource governance, efforts to decarbonise through
Al may inadvertently erode water security, generating policy incoherence between climate
ambition and resource reality.

4.4 Scenario Modelling and Strategic Levers
Harmonised data analyses point to three principal levers for reducing AI’s environmental intensity:
algorithmic optimisation, renewable-energy integration, and advanced cooling technologies.

1. Algorithmic Optimisation: Efficiency techniques such as pruning, quantisation, and
architecture refinement can cut training-phase energy demand by up to 50 percent without
significant accuracy loss (Liu and Yin, 2024). The “Green AI” paradigm (Schwartz et al.,



2020) reframes progress in terms of performance-per-watt rather than raw accuracy, urging
a transition from model maximalism to computational sufficiency.

2. Renewable-Energy Integration: Major hyperscalers have committed to full renewable
sourcing within the decade. Scenario models suggest that synchronising Al workloads with
renewable availability could yield lifecycle emission reductions approaching 70 percent
(IEA, 2025). Yet, the intermittency of renewables and the spatial mismatch between data-
centre locations and renewable corridors demand innovations in energy storage, grid
flexibility, and transnational power exchange.

3. Advanced Cooling and Water Efficiency: Shifting from evaporative to liquid-immersion
cooling can reduce water consumption by as much as 95 percent (Google, 2023). Locating
facilities in cooler climates such as the Nordics or Canada offers additional gains in both
carbon and water efficiency, though it raises strategic questions about digital sovereignty
and geopolitical dependency (Masanet et al., 2020).

Comparative synthesis shows that no single intervention is sufficient. Only a portfolio approach,
integrating algorithmic, infrastructural, and geographic strategies, can deliver meaningful
reductions across both resource axes and reconcile Al expansion with sustainability imperatives.

4.5 Towards a Dual-Resource Framework
Building on these insights, this study advances a dual-resource sustainability framework composed
of three interdependent pillars:

1. Measurement: Establishing standardised reporting of COe, kWh, PUE, and WUE at the
workload level to enable transparent benchmarking and evidence-based governance.

2. Governance: Mandating disclosure of both carbon and water footprints within regulatory
and corporate accountability regimes, ensuring verifiable compliance and cross-sector
comparability (IEA, 2025; Morand, Ligozat and Névéol, 2024).

3. Strategy: Promoting integrated mitigation that aligns carbon and water management,
embedding resource-efficiency principles into model design, data-centre siting, and
infrastructure planning (Jegham et al., 2025; Liu and Yin, 2024).

This framework extends theoretical discourse beyond carbon-centric paradigms and provides a
pragmatic scaffold for policy and industry. By institutionalising dual-resource accountability, it
offers a structured pathway through which Al development can genuinely reinforce, rather than
undermine, the objectives of the green economy.

In sum, the discussion demonstrates that AI’s sustainability challenge lies not in technology alone
but in managing the interdependence of energy and water. The dual-resource framework proposed
here reframes this issue as one of systemic governance rather than isolated optimisation. The
following section synthesises these findings into key conclusions and actionable recommendations,
translating analytical insights into policy and industry relevance.



5. Conclusions and recommendations

5.1 Recap and contextualisation

This study has explored the paradoxical role of Artificial Intelligence (AI) in the pursuit of
sustainable development. While Al has been hailed as a catalyst for the digital and green economy,
particularly through applications in renewable energy optimisation, precision agriculture, and
industrial efficiency, it simultaneously carries a substantial environmental footprint. The analysis
confirms that training and deploying large-scale Al systems requires vast amounts of electricity
and water, leading to significant CO- emissions and freshwater withdrawals. These impacts
undermine the dominant narrative of Al as an inherently “green” technology and necessitate a more
balanced appraisal of its sustainability credentials (Liu and Yin, 2024; Jegham et al., 2025).

5.2 Key findings

The discussion chapters yield several important insights into the environmental externalities of
Artificial Intelligence. First, the carbon intensity of Al models is both substantial and rapidly
escalating. Training foundation models consumes megawatt-hours of energy, often equating to the
annual electricity use of hundreds of households. Jegham et al. (2025) note that while inference
workloads are less energy-intensive on a per-query basis, their sheer scale, billions of queries across
global user bases, translates into nation-scale electricity demand. This trend is reinforced by
Morand, Ligozat and Névéol (2024), who argue that while efficiency improvements in hardware
and algorithms have tempered some growth, overall emissions continue to rise due to the expansion
of model size and adoption. Liu and Yin (2024) similarly highlight that mitigation strategies for Al
training remain unevenly implemented, with industry self-regulation proving insufficient to curb
aggregate emissions.

Second, the findings underscore that water use remains an overlooked but critical dimension of
Al’s environmental footprint. Al data centres rely heavily on evaporative cooling, which is acutely
water-intensive. Each Al query thus carries a hidden water cost, one largely invisible to end-users.
Recent reports have emphasised this issue: Li et al. (2023) estimate that training GPT-3 consumed
approximately 700,000 litres of freshwater, while Business Insider (2025) and MIT News (2025)
note that rapid expansion of generative Al workloads is now materially increasing water stress in
local communities near hyperscale facilities. Despite the significance of this impact, corporate
disclosures on water usage remain sparse and inconsistent, falling far behind the more developed
frameworks for carbon reporting (Murray and Difelice, 2025).

Third, it is clear that dual-resource trade-offs are increasingly unavoidable. Strategies aimed at
reducing carbon intensity such as locating data centres in regions rich in renewable energy, can
inadvertently increase water demand, especially where renewable siting relies on evaporative
cooling (IEA, 2025). This creates a governance dilemma: policies that narrowly focus on carbon
mitigation risk aggravating water scarcity, particularly in already vulnerable regions such as the
GCC. Xu et al. (2023) reinforce that environmental trade-offs must be assessed in tandem rather
than isolation, emphasising the need for multi-dimensional sustainability metrics.

Finally, while mitigation strategies are available, they remain fragmented and lack systemic
integration. Algorithmic optimisation, renewable energy integration, and advanced cooling



technologies have each demonstrated potential to reduce environmental intensity. Jegham et al.
(2025) suggest that efficient inference and lightweight models could cut emissions by up to 30 -
40%, while Liu and Yin (2024) highlight the promising role of renewable integration in
decarbonising training runs. Yet, as the evidence indicates, these approaches remain piecemeal,
and without a portfolio strategy that integrates technical, infrastructural, and governance solutions,
reductions will remain insufficient. Only through coordinated action can AI’s growing
environmental footprint be addressed credibly and at scale.

5.3 Contributions of the study

This study advances both theoretical and practical contributions to the discourse on sustainable
artificial intelligence. From a theoretical perspective, it introduces a dual-resource sustainability
framework that explicitly integrates carbon and water metrics. Whereas previous scholarship has
tended to privilege carbon as the dominant dimension of AI’s environmental cost, this framework
recognises water as an equally material factor, thereby offering a more holistic and multi-
dimensional approach to assessing AI’s environmental footprint (Morand and Ligozat and Névéol,
2024). By positioning carbon and water in tandem, the study fills a critical gap in the literature and
lays the groundwork for a more comprehensive research agenda.

In terms of practical contribution, the study provides policymakers and industry leaders with a
structured evidence base to embed dual-resource accountability into Al governance. This aligns
with the evolving architecture of global sustainability disclosure regimes, such as those articulated
in Microsoft’s (2024) and Google’s (2023) sustainability reports, and it resonates with the broader
ambitions of the United Nations Sustainable Development Goals. The framework articulated here
therefore not only extends academic inquiry but also provides an actionable tool for practitioners
charged with reconciling Al innovation with ecological responsibility.

5.4 Implications

The findings of this study carry significant implications across policy, industry, and research. From
a policy perspective, governments must expand beyond carbon-centric Al regulations to include
water metrics within sustainability frameworks. In water-scarce regions such as the Gulf
Cooperation Council (GCC) and the U.S. Southwest, dual-resource impact assessments should be
mandated for Al projects, ensuring that both carbon and water footprints are systematically
accounted for (IEA and 2023; Morand, Ligozat and Névéol, 2024).

For industry, the evidence highlights the necessity of greater transparency. Firms should report both
Power Usage Effectiveness (PUE) and Water Usage Effectiveness (WUE) to provide a
comprehensive picture of operational sustainability. Beyond disclosure, Al developers must
prioritise resource-efficient design by favouring smaller, task-specific models over large, general-
purpose systems that impose disproportionately high environmental costs (Schwartz et al., 2020;
Patterson et al., 2021). This shift would align corporate practices with emerging global disclosure
regimes and sustainability expectations (Microsoft, 2024; Google, 2023).

Finally, research implications are clear. There is an urgent need for empirical and longitudinal
studies that systematically quantify Al’s water footprint across different geographies and cooling
technologies (Jegham et al., 2025; Li et al., 2023). Such work should be complemented by
interdisciplinary research that bridges computer science, environmental economics, and



governance, thereby refining dual-resource frameworks into more holistic sustainability
assessments (Xu et al., 2023; Liu and Yin, 2024). In doing so, scholarship can contribute both
conceptual clarity and practical evidence to guide the responsible integration of Al into the green
economy.

5.5 Recommendations for future research

Building upon this study, several research trajectories can be identified to advance understanding
of AI’s environmental externalities. The first concerns the empirical benchmarking of water use in
Al training and inference. While recent work has begun to highlight the hidden water costs of large
models (Jegham et al., 2025; MIT News, 2025), measurement remains fragmented, with few
comparative studies across climates and cooling technologies. A rigorous programme of empirical
benchmarking would allow scholars and practitioners to distinguish between direct and indirect
water consumption, quantify differences between evaporative, chilled-water, and liquid-immersion
systems, and develop a Global AI Water Index capable of tracking and comparing usage across
geographies and workloads. Such an index could parallel existing carbon accounting frameworks,
providing a reference point for both policymakers and corporate actors (Murray and Difelice, 2025;
Campbell, 2025).

A second trajectory relates to regional and contextualised studies, particularly in areas where Al
adoption collides with acute water scarcity. In the Gulf Cooperation Council (GCC) states, the dual
challenge of decarbonisation and water security creates a particularly sharp dilemma (IEA, 2023).

Context-sensitive case studies could provide valuable insights by examining how siting decisions,
cooling technologies, and grid composition shape Al’s environmental footprint in water-stressed
contexts, compared to water-abundant regions such as the Nordics. Xu et al. (2023) emphasise that
performance-efficiency trade-offs in neural network training vary by both hardware and operational
context, suggesting that regional variation must be built into any comparative framework.

Finally, there is a pressing need to expand integrated sustainability frameworks beyond dual-
resource models of carbon and water. Future research should pursue the inclusion of additional
dimensions such as e-waste and mineral extraction, which are critical given the intensive material
demands of Al hardware. As Morand, Ligozat and Névéol (2024) argue, only by embedding
environmental considerations across the entire lifecycle of machine learning systems, from material
extraction through operation to end-of-life, can the full sustainability implications of Al be
understood. Moreover, reflexive approaches are needed to examine how Al itself can be leveraged
to reduce its own footprint, for example through optimisation algorithms that minimise compute
and cooling demand. Schwartz et al. (2020) call this paradigm “Green Al,” while more recent
literature has advanced the idea of “Al for sustainable AL” highlighting the potential for self-
reinforcing cycles of efficiency improvement (Liu and Yin, 2024).

In sum, future research must move decisively towards empirically grounded, context-sensitive, and
integrative approaches. Such directions would not only enrich academic understanding but also
provide policymakers, industry stakeholders, and civil society with robust evidence to inform
governance and operational strategies.



5.6 Final reflections

In sum, future research must move decisively towards empirically grounded, context-sensitive, and
integrative approaches. Such directions will not only enrich academic understanding but also
provide policymakers, industry stakeholders, and civil society with robust evidence to inform
governance and operational strategies. Yet research alone is not enough, Al is neither inherently
sustainable nor unsustainable. Its impact is contingent on how it is developed, deployed, and
governed. By embedding dual-resource accountability, recognising that data carries a carbon cost
and intelligence carries a water cost, into both policy and practice, societies can shape Al’s
trajectory towards supporting rather than undermining the goals of a just and green economy. As
Morand, Ligozat and Névéol (2024) note, sustainability outcomes depend on structural governance
as much as on technological efficiency. Jegham et al. (2025) further highlight that transparent
benchmarking of energy and water across workloads is essential to avoid fragmented
accountability, while Food and Water Watch (2025) underscore the risks of overlooking water in
favour of carbon-centric frameworks. Only by acknowledging the physical underpinnings of the
digital economy can we ensure that future research translates into actionable frameworks that
balance innovation with ecological responsibility.
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