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“Abstract” 

This study introduces an Artificial Intelligence (AI)-enhanced framework for Monitoring, Evaluation, 

and Learning (MEL) in fragile immunization contexts, using Cameroon as a case study. Drawing on 

routine service delivery and community-level data, we trained a Random Forest model to predict zero-

dose hotspots and assess the drivers of immunization gaps. The predictive features included geographic 

accessibility, security risks, community engagement, and health system capacity. The results highlight 

that the distance to vaccination posts, community leader involvement, and availability of cold-chain 

infrastructure are key determinants of coverage. The model demonstrated a strong classification 

performance, offering actionable insights for targeted interventions. While this approach reduces 

reliance on manual triangulation and enhances real-time decision-making, it requires careful handling 

of data quality and contextual constraints. This research provides a practical framework for applying 

AI to improve equity, efficiency, and planning in fragile immunization systems. 
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1 Introduction 

Artificial Intelligence (AI) is increasingly being recognized as a transformative force in strategic 

decision-making across various industries (Rashid and Kausik, 2024; Seremeti and Anastasiadou, 2025), 

although its adoption remains uneven, with most activity concentrated in large organizations. Although 

artificial intelligence has gained significant attention in healthcare literature, critical ethical concerns 

remain underexplored, limiting its responsible advancement (Bangad et al., 2024). As Rashid and 

Kausik (2024) highlight, the ongoing evolution of AI capabilities demands sustained, rigorous 

investigation. According to Panteli et al (2025), AI can handle large-scale and intricate datasets, offering 

customized insights and improving the performance of tasks involving data analysis, image recognition, 

and textual processing in healthcare settings. 

This research focuses on integrating AI into the monitoring, evaluation, and learning (MEL) systems of 

immunization programs in fragile and humanitarian contexts—specifically in Cameroon. It aims to 

address persistent challenges related to the identification of zero-dose and under-immunized children, 

strategic service planning, and resource optimization in hard-to-reach areas. By harnessing AI-driven 
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analytics, the study seeks to strengthen data use for equitable coverage and informed decision-making 

across immunization systems. 

1.1 Problem statement 

While not specifically focused on conflict-affected regions, Njei et al. (2023) highlight that AI adoption 

across African health systems is still in its infancy, presenting unique challenges in resource-constrained 

contexts. Panteli et al. (2025) suggest AI can enhance public health functions by supporting surveillance, 

epidemiological research, effective communication, and resource management. However, challenges 

such as fragmented data systems, limited infrastructure, and misaligned stakeholders often hinder its 

effective implementation and scalability. Cameroon continues to experience disparities in immunization 

coverage, especially in conflict-affected regions such as the Northwest and Southwest Regions of 

Cameroon. Traditional monitoring systems struggle with fragmented data sources (Khalique, Khan and 

Nosheen, 2019), limited real-time analytics (Paganelli et al., 2022), and low community feedback 

integration (Egbosimba, 2023; Sharp et al., 2024), resulting in recurring measles outbreaks and low 

outreach in conflict-affected zones. 

1.2 Personal motivation and practical relevance 

Drawing on our experience with the Cameroon Baptist Convention Health Services (CBCHS)—

specifically in vaccination and HIV-Free programs—we have directly observed the complexities of 

decision-making in constrained public health settings. Implementing AI tools such as decision trees and 

Python-based analytics was a practical response to challenges like inconsistent data and fragmented 

communication. These interventions resulted in about a 15% increase in program reach and about a 25% 

reduction in data errors. This study aims to bridge the gap between theoretical frameworks (Bangad et 

al., 2024) and the practical realities of AI application in low-resource settings. Scaling AI-driven 

efficiencies in public health is not merely academic—it is a pressing operational need informed by lived 

experience. 

1.3 Purpose, scope, and significance 

This study investigates how AI-driven decision-making can improve outcomes in public health 

programs operating under resource constraints. It specifically examines the strategic integration of AI 

within MEL frameworks to boost efficiency and stakeholder alignment in Cameroon’s vaccination 

initiatives. The research is novel in that it addresses a critical gap: while AI’s business applications have 

been widely explored in developed contexts, its strategic use in African public health remains under-

researched. The study contributes to industry practice by offering a practical framework for AI 

integration to enhance resource allocation and scalability, while also advancing strategic management 

literature by positioning AI as an innovation tool in turbulent environments. Our work seeks to deliver 

actionable insights using tools like Python and machine learning. 

2 Literature Review 

2.1 The potential of AI in public health decision-making 

AI has gained traction as a transformative tool in public health, capable of analysing large, complex 

datasets and generating data-driven insights (Balakrishna and Solanki, 2024). Panteli et al. (2025) argue 

that AI supports epidemiology, public health surveillance, and resource allocation, significantly 

enhancing productivity in everyday public health operations. Kumar and Joshi (2022) also note that 

while AI has been widely discussed in healthcare, its practical implementation is still limited, largely 

due to insufficient empirical studies exploring its full potential. 
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Recent scholarship further highlights the breadth of AI’s applications in public health. Shah (2024) 

emphasize that AI enables predictive modelling and risk stratification, both of which are crucial for 

disease surveillance and outbreak prediction. 

2.2 Strategic applications of AI in resource-constrained settings 

In low-resource environments, where healthcare systems are often overburdened, AI presents 

opportunities to support strategic decision-making. Gökalp (2024) introduces a novel AI-enhanced 

model that integrates the Analytic Hierarchy Process (AHP) with fuzzy logic to prioritize public health 

strategies effectively. This model enables the weighting of expert opinions by qualification, improving 

decision accuracy in constrained settings. Findings from Gökalp’s study indicate that accessibility, 

vaccination, and preventive services are among the most critical strategies to improve public health 

outcomes. Despite its potential, the application of AI in public health initiatives across sub-Saharan 

Africa—Cameroon included—has yet to see widespread adoption. Although Njei et al. (2023) do not 

highlight conflict zones directly, their findings imply that weak collaboration and infrastructural gaps—

common in such contexts—limit the potential of AI to support essential health functions like 

communication and resource planning. 

Complementing these insights, Ouma et al. (2025) demonstrate how machine learning algorithms and 

predictive analytics can optimize resource allocation and usage—an essential function in environments 

characterized by chronic shortages and logistical barriers. Such methods hold particular promise for 

ensuring equitable vaccine distribution and timely delivery of essential supplies in fragile contexts. 

2.3 Barriers to adoption and implementation 

The widespread use of AI in public health is hindered by several systemic and infrastructural barriers. 

Panteli et al. (2025) identify critical challenges including inequitable access, lack of data privacy 

protocols, insufficient digital infrastructure, and skill gaps in the workforce. These challenges are 

especially pronounced in resource-constrained settings, where public health systems often lack the 

foundational elements needed to support AI technologies. Although not explicitly addressing emerging 

economies, the slow uptake of AI described by Kumar and Joshi (2022) reflects broader research and 

implementation gaps in less-resourced contexts. The absence of large-scale, context-specific studies 

makes it difficult to assess the feasibility and impact of AI applications in such settings. 

Beyond infrastructural weaknesses, ethical concerns have also slowed adoption. Issues related to patient 

privacy, data security, and algorithmic bias highlight the need for transparent and explainable AI, 

particularly in high-stakes healthcare contexts (Hedayet and Haseen, 2024). These considerations are 

critical in fragile environments, where vulnerable populations may already face mistrust of health 

systems and where misapplied AI solutions could deepen inequities rather than reduce them. 

2.4 Ethical and governance considerations 

The ethical implications of AI deployment in healthcare must not be overlooked. Lysaght et al. (2019) 

apply the deliberative balancing approach from the Ethics Framework for Big Data in Health and 

Research to address concerns about transparency, algorithmic bias, and professional integrity. They 

argue that ethical principles must guide the development and deployment of AI-based decision support 

systems. Panteli et al. (2025) support this view, noting the importance of robust ethical and regulatory 

frameworks that prioritize human rights and the public good. They recommend that public health 

institutions invest in secure data infrastructure and foster ethical AI adoption by training staff and 

promoting equity-driven design and implementation strategies. Scholars have recently emphasized that 

ethical considerations must also address biases in AI models, ensure strict data privacy, and maintain 

human oversight in high-stakes applications (Bavli and Galea, 2024; Shah, 2024) 
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2.5 Research gaps and opportunities 

While the transformative potential of AI is well recognized, significant gaps remain in understanding 

how it can be operationalized in low-resource public health contexts. A large portion of current literature 

remains exploratory. There is a need for applied research that tests scalable, context-appropriate AI 

solutions. In summary, while AI offers substantial potential to transform public health—particularly 

through its capacity to enhance data-driven decision-making—its application within African contexts 

remains constrained by infrastructural limitations, insufficient research, and ethical complexities. This 

study aims to address these challenges by exploring how AI can be strategically integrated into MEL 

frameworks to improve decision-making, operational efficiency, and stakeholder coordination in 

Cameroon’s vaccination programs. 

3 Methodology 

The research adopted a mixed-methods design, originally incorporating both qualitative and quantitative 

components, to investigate how an AI-enhanced MEL system can support immunization in fragile 

contexts. Semi-structured interview questions were developed to gather insights on AI adoption barriers 

and strategic needs from MEL officers, community health workers, and program leaders. However, due 

to limited stakeholder response within the project timeline, the qualitative component has been deferred 

to a subsequent study. 

The article therefore focuses on the quantitative analysis. The study utilized a rich dataset from the 

CBCHS Immunization Program’s database, which captured vaccination session data, humanitarian 

assistance, and key community characteristics. These data were used to train and evaluate machine 

learning models for predicting zero-dose hotspots and exploring equity-sensitive patterns in 

immunization coverage. 

3.1 Data sources and preparation 

The quantitative analysis was based on two primary datasets that were consolidated to create a single 

analytical file. The first dataset contained service delivery information, including vaccine uptake, 

screening for malnutrition, records of adverse events following immunization (AEFI), humanitarian 

assistance provided, and the number of engaged community leaders. The second dataset provided 

contextual information, such as the distance from fixed vaccination posts, security risk levels, and the 

specific vaccination strategies employed. 

To prepare the consolidated dataset for analysis, the following steps were performed using Python: 

(i) Missing Value Imputation: Missing values in the columns List Humanitarian Actors and 

the services they provide and Specify strategy (Door to door, quick in and out….) were 

imputed with a "Not Reported" category to retain all available records. 

(ii) Target Variable Definition: A binary target variable, is_zero_dose_hotspot, was created 

to classify communities. A community was labelled as a hotspot (1) if at least one zero-dose 

child between the ages of 12 and 59 months was vaccinated during the reporting period, 

using data from the column Number of ZDCs 12-59m vaccinated. Otherwise, it was 

classified as a non-hotspot (0). 

3.2 Data preprocessing and feature engineering 

The dataset required preprocessing due to complex column names and inconsistent data entries. This 

was managed directly within the code by using the exact original column headers to reference variables. 

This method ensured data integrity and prevented errors related to name changes. 
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A comprehensive set of features was selected to represent the key contextual factors of the study, using 

their exact column names as follows: Distance from fixed vaccination post in kilometres, Security risk 

and safe access level, Advocacy activities, Demand creation activities, and others. These variables were 

chosen because they directly relate to the factors in the research model. 

All categorical features were converted to a numerical format using one-hot encoding, which is a 

necessary step for machine learning algorithms. 

3.3 AI modelling and simulation 

The prepared data was split into training (70%) and testing (30%) sets using a stratified sampling 

approach to maintain the balance of hotspot and non-hotspot cases in both subsets. 

A Random Forest Classifier model was chosen for its robustness, ability to handle high-dimensional 

data, and its capacity to provide feature importance scores. The model was trained with 100 estimators 

and included a class_weight='balanced' parameter to account for any potential class imbalance. The 

model's performance was then evaluated on the unseen testing set. 

3.4 Evaluation 

The Random Forest model was evaluated using a stratified 70/30 train-test split to preserve class balance 

between hotspot and non-hotspot areas. Performance was assessed through standard classification 

metrics, including accuracy, precision, recall, and F1-score. A confusion matrix was generated to 

visualize misclassifications, while feature importance analysis identified the most influential predictors 

of zero-dose risk. Class weights were applied during training to mitigate bias arising from class 

imbalance. 

4 Results and Discussions 

An AI model was developed and trained on the dataset to predict zero-dose hotspots in fragile contexts. 

The model used contextual, logistical, and social factors to identify communities where a high number 

of zero-dose children are being reached. The primary research question was: What contextual factors in 

a fragile setting are most predictive of an area being a zero-dose hotspot? We present the analysis, 

including the model's performance and key findings: 

4.1 Model performance 

A Random Forest Classifier was trained to predict if a community is a "zero-dose hotspot" (defined as 

having vaccinated one or more zero-dose children aged 12-59 months). The model achieved a notable 

overall accuracy of 76.3% on the test data. 

The detailed performance metrics are as follows: 
Class Precision Recall F1-Score Support 

Not Hotspot (0) 0.82 0.72 0.76 102 

Hotspot (1) 0.71 0.82 0.76 88 

Accuracy   0.76 190 

Macro Avg 0.77 0.77 0.76 190 

Weighted Avg 0.77 0.76 0.76 190 

Table 1. Classification report for the AI model used. 

The model shows a balanced performance in predicting both classes, with a slightly higher recall (0.82) 

for hotspots, meaning it's quite good at identifying most of the actual hotspot communities. However, 



Fanka and Provodnikova /AI in Public Health MEL 

Global Journal of Business and Integral Security 6 

its precision (0.71) for hotspots is lower, indicating that it sometimes incorrectly flags non-hotspots as 

hotspots. 

4.2 Confusion matrix 

 

Figure 1. Confusion matrix for zero-dose hotspot prediction (Source: Author’s analysis based on 

internal CBCHS immunization database, 2025, generated using python). 

The confusion matrix (figure 1) served as a vital analytical tool for evaluating the performance of our 

machine learning model in identifying zero-dose hotspots. Moving beyond a simplistic accuracy metric, 

it provided a granular view of the model's predictive successes and failures, which is crucial for 

informing targeted public health interventions. 

The model correctly identified 187 True Positives, representing the areas accurately classified as 

hotspots. This high number demonstrates the model's significant value as an early-warning system, 

enabling health organizations to proactively allocate resources, such as vaccines, mobile teams, and 

community engagement personnel, to these vulnerable populations. Concurrently, the 234 True 

Negatives indicate communities correctly identified as not being hotspots. This is equally important, as 

it validates resource efficiency by preventing the misdirection of scarce assets to areas already meeting 

vaccination targets. 

However, the matrix also reveals two types of misclassifications, each with distinct implications for the 

strategic implementation of an AI-enhanced monitoring and evaluation system. The model produced 80 

False Positives, or areas incorrectly flagged as hotspots. While these false alarms may lead to a minor 

misallocation of resources, they carry a relatively low risk in a public health context. The operational 

cost of investigating a potential hotspot that turns out to be a false positive is generally outweighed by 

the benefit of ensuring no actual hotspot is overlooked. 

More critically, the model generated 85 False Negatives. These represent actual zero-dose hotspots that 

the model failed to detect. This is a significant finding that demands further attention. From a 

humanitarian perspective, these are the communities most at risk of being left behind and require 

immediate strategic focus. The existence of these false negatives highlights a key area for future model 

improvement, such as by incorporating additional features, applying more advanced algorithms, or 

recalibrating the model to be more sensitive to a wider range of hotspot characteristics. 

In conclusion, the confusion matrix underscores both the utility and the limitations of our predictive 

model. While it effectively identifies a majority of hotspots and non-hotspots, the presence of false 

negatives necessitates a continued human-in-the-loop approach. The AI system can serve as a powerful 

first-pass filter, but final decisions on resource allocation should be informed by a comprehensive review 
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that includes both the model's output and qualitative field data, thereby creating a truly robust AI-

enhanced MEL framework. 

4.3 Key predictive factors 

The most significant finding of this analysis is the identification of the features that are most predictive 

of a zero-dose hotspot. The model's feature importance scores revealed the following top 10 factors: 
Rank Feature Importance Score 

1 Number of Community Leaders Engaged                                 0.109857 

2 Number of Educational Talks                                         0.104459 

3 Number of Religious Leaders Engaged                                 0.090711 

4 Number of Traditional Leaders Engaged                               0.083568 

5 Moderate Malnutrition                                               0.074071 

6 Distance from Fixed Vaccination Post in Kilometres             0.067638 

7 Specify Strategy (Door to Door, Quick in and out) _Door to Door 0.059785 

8 Specify Strategy (Door to Door, Quick in and out) _Not Door to Door 0.035040 

9 Total Humanitarian Items                                            0.032125 

10 Functional Refrigerator _Yes                                         0.026470 

Table 2. Top 10 feature importances 

Based on the feature importance scores, the most predictive factors for zero-dose hotspots are related to 

community engagement and local leadership. The model shows that direct engagement with community, 

religious, and traditional leaders, along with educational talks, are the most influential factors. 

Community Engagement: The top four features are all related to community-level engagement. The 

number of community leaders engaged has the highest importance score, followed closely by 

educational talks, and then the engagement of religious and traditional leaders. This suggests that 

proactive, on-the-ground communication and gaining the support of trusted local figures are the most 

critical elements in predicting whether a community will have zero-dose hotspots. 

Distance to Vaccination Posts: The distance from fixed vaccination posts is also a significant predictor. 

This makes intuitive sense, as communities located further away from health centres are more difficult 

to reach and may face greater barriers to accessing vaccination services. This highlights the importance 

of mobile and outreach strategies. 

Specific Vaccination Strategy: The model also finds that the specific vaccination strategy, such as 

door-to-door quick-in-and-out, is a notable factor. This shows that the method of vaccine delivery is an 

important part of a successful campaign. 

Malnutrition and Resources: Features like moderate malnutrition and the total number of 

humanitarian items are also predictive, although with lower importance scores. This suggests that the 

general health and resource levels of a community are connected to vaccination outcomes. 

5 Conclusion 

This study demonstrates the feasibility and added value of integrating AI into MEL systems within 

fragile immunization contexts. Using real-world data from the CBCHS, we developed a predictive 

model that identified key contextual factors associated with zero-dose hotspots. The findings indicate 

that community engagement—particularly the involvement of local leaders and educational talks—

remains the most powerful determinant of reaching under-immunized children. Structural barriers, such 

as distance from fixed vaccination posts and security-related access challenges, further emphasize the 

importance of adaptable service delivery strategies like door-to-door campaigns. 
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While the Random Forest model achieved balanced accuracy and provided useful feature importance 

insights, it also revealed limitations. The presence of false negatives underscores the risk of over-reliance 

on automated systems without human oversight. These results affirm that AI models should complement 

rather than replace traditional MEL functions. Integrating field feedback, qualitative insights, and 

participatory community approaches will remain essential to ensure equity and trust in data-driven 

decision-making. 

The study contributes both conceptually and practically. Conceptually, it offers a framework for 

embedding AI tools into MEL processes in fragile contexts. Practically, it demonstrates how program 

managers can use predictive analytics to optimize scarce resources, improve targeting, and reduce 

missed opportunities for immunization. Ethical and governance considerations—including 

transparency, bias mitigation, and data protection—are equally critical and must guide future scaling. 

In conclusion, AI-enhanced MEL systems can serve as an early-warning mechanism for identifying 

zero-dose hotspots and enabling proactive responses. By combining advanced analytics with 

community-centred approaches, fragile health systems like Cameroon’s can make meaningful strides 

toward closing immunization gaps. Future research should validate these findings with broader datasets 

and incorporate qualitative evidence on adoption feasibility, ensuring that digital innovation translates 

into sustainable public health impact. 

6 Limitations and Future Work 

This study provides valuable insights into the application of AI-enhanced MEL systems for 

immunization in fragile settings; however, several limitations should be noted. First, the dataset used 

was restricted to project-supported health areas under CBCHS, which may limit the generalizability of 

findings to other regions of Cameroon or different country contexts. Second, although extensive 

cleaning and feature engineering were applied, reporting inconsistencies and missing values in routine 

health data may have introduced bias into the model. Third, the analysis was limited to quantitative data; 

qualitative perspectives from MEL officers, health workers, and program managers—essential for 

understanding the acceptability and feasibility of AI solutions—were not incorporated due to delays in 

data collection. 

From a methodological standpoint, the Random Forest model achieved strong performance, but the risk 

of overfitting cannot be fully excluded, particularly given the relatively small number of hotspots 

compared to non-hotspot communities. In addition, contextual factors such as sudden security 

deterioration, migration flows, or temporary supply chain disruptions are difficult to capture with static 

datasets but have a profound effect on immunization coverage. 

Future work will build on these findings by incorporating mixed-methods analysis, including qualitative 

interviews, to triangulate model predictions with lived experiences from the field. Broader datasets 

covering multiple years and regions will be used to validate the robustness of the AI framework. 

Additional modelling approaches, such as gradient boosting, temporal forecasting, and geospatial 

clustering, will also be explored to capture dynamic trends in coverage and zero-dose hotspots. Finally, 

operational pilots of the AI-supported MEL system are recommended to assess real-world usability, 

ethical considerations, and integration into national health information systems. 
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