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“Abstract”

This study introduces an Artificial Intelligence (Al)-enhanced framework for Monitoring, Evaluation,
and Learning (MEL) in fragile immunization contexts, using Cameroon as a case study. Drawing on
routine service delivery and community-level data, we trained a Random Forest model to predict zero-
dose hotspots and assess the drivers of immunization gaps. The predictive features included geographic
accessibility, security risks, community engagement, and health system capacity. The results highlight
that the distance to vaccination posts, community leader involvement, and availability of cold-chain
infrastructure are key determinants of coverage. The model demonstrated a strong classification
performance, offering actionable insights for targeted interventions. While this approach reduces
reliance on manual triangulation and enhances real-time decision-making, it requires careful handling
of data quality and contextual constraints. This research provides a practical framework for applying
Al to improve equity, efficiency, and planning in fragile immunization systems.
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1 Introduction

Artificial Intelligence (Al) is increasingly being recognized as a transformative force in strategic
decision-making across various industries (Rashid and Kausik, 2024; Seremeti and Anastasiadou, 2025),
although its adoption remains uneven, with most activity concentrated in large organizations. Although
artificial intelligence has gained significant attention in healthcare literature, critical ethical concerns
remain underexplored, limiting its responsible advancement (Bangad et al., 2024). As Rashid and
Kausik (2024) highlight, the ongoing evolution of Al capabilities demands sustained, rigorous
investigation. According to Panteli et al (2025), Al can handle large-scale and intricate datasets, offering
customized insights and improving the performance of tasks involving data analysis, image recognition,
and textual processing in healthcare settings.

This research focuses on integrating Al into the monitoring, evaluation, and learning (MEL) systems of
immunization programs in fragile and humanitarian contexts—specifically in Cameroon. It aims to
address persistent challenges related to the identification of zero-dose and under-immunized children,
strategic service planning, and resource optimization in hard-to-reach areas. By harnessing Al-driven
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analytics, the study seeks to strengthen data use for equitable coverage and informed decision-making
across immunization systems.

1.1 Problem statement

While not specifically focused on conflict-affected regions, Njei et al. (2023) highlight that Al adoption
across African health systems is still in its infancy, presenting unique challenges in resource-constrained
contexts. Panteli et al. (2025) suggest Al can enhance public health functions by supporting surveillance,
epidemiological research, effective communication, and resource management. However, challenges
such as fragmented data systems, limited infrastructure, and misaligned stakeholders often hinder its
effective implementation and scalability. Cameroon continues to experience disparities in immunization
coverage, especially in conflict-affected regions such as the Northwest and Southwest Regions of
Cameroon. Traditional monitoring systems struggle with fragmented data sources (Khalique, Khan and
Nosheen, 2019), limited real-time analytics (Paganelli et al., 2022), and low community feedback
integration (Egbosimba, 2023; Sharp et al., 2024), resulting in recurring measles outbreaks and low
outreach in conflict-affected zones.

1.2 Personal motivation and practical relevance

Drawing on our experience with the Cameroon Baptist Convention Health Services (CBCHS)—
specifically in vaccination and HIV-Free programs—we have directly observed the complexities of
decision-making in constrained public health settings. Implementing Al tools such as decision trees and
Python-based analytics was a practical response to challenges like inconsistent data and fragmented
communication. These interventions resulted in about a 15% increase in program reach and about a 25%
reduction in data errors. This study aims to bridge the gap between theoretical frameworks (Bangad et
al., 2024) and the practical realities of Al application in low-resource settings. Scaling Al-driven
efficiencies in public health is not merely academic—it is a pressing operational need informed by lived
experience.

1.3 Purpose, scope, and significance

This study investigates how Al-driven decision-making can improve outcomes in public health
programs operating under resource constraints. It specifically examines the strategic integration of Al
within MEL frameworks to boost efficiency and stakeholder alignment in Cameroon’s vaccination
initiatives. The research is novel in that it addresses a critical gap: while AI’s business applications have
been widely explored in developed contexts, its strategic use in African public health remains under-
researched. The study contributes to industry practice by offering a practical framework for Al
integration to enhance resource allocation and scalability, while also advancing strategic management
literature by positioning Al as an innovation tool in turbulent environments. Our work seeks to deliver
actionable insights using tools like Python and machine learning.

2 Literature Review

21 The potential of Al in public health decision-making

Al has gained traction as a transformative tool in public health, capable of analysing large, complex
datasets and generating data-driven insights (Balakrishna and Solanki, 2024). Panteli et al. (2025) argue
that Al supports epidemiology, public health surveillance, and resource allocation, significantly
enhancing productivity in everyday public health operations. Kumar and Joshi (2022) also note that
while AI has been widely discussed in healthcare, its practical implementation is still limited, largely
due to insufficient empirical studies exploring its full potential.
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Recent scholarship further highlights the breadth of Al’s applications in public health. Shah (2024)
emphasize that Al enables predictive modelling and risk stratification, both of which are crucial for
disease surveillance and outbreak prediction.

2.2 Strategic applications of Al in resource-constrained settings

In low-resource environments, where healthcare systems are often overburdened, Al presents
opportunities to support strategic decision-making. Gokalp (2024) introduces a novel Al-enhanced
model that integrates the Analytic Hierarchy Process (AHP) with fuzzy logic to prioritize public health
strategies effectively. This model enables the weighting of expert opinions by qualification, improving
decision accuracy in constrained settings. Findings from Gokalp’s study indicate that accessibility,
vaccination, and preventive services are among the most critical strategies to improve public health
outcomes. Despite its potential, the application of Al in public health initiatives across sub-Saharan
Africa—Cameroon included—has yet to see widespread adoption. Although Njei et al. (2023) do not
highlight conflict zones directly, their findings imply that weak collaboration and infrastructural gaps—
common in such contexts—Ilimit the potential of Al to support essential health functions like
communication and resource planning.

Complementing these insights, Ouma et al. (2025) demonstrate how machine learning algorithms and
predictive analytics can optimize resource allocation and usage—an essential function in environments
characterized by chronic shortages and logistical barriers. Such methods hold particular promise for
ensuring equitable vaccine distribution and timely delivery of essential supplies in fragile contexts.

2.3 Barriers to adoption and implementation

The widespread use of Al in public health is hindered by several systemic and infrastructural barriers.
Panteli et al. (2025) identify critical challenges including inequitable access, lack of data privacy
protocols, insufficient digital infrastructure, and skill gaps in the workforce. These challenges are
especially pronounced in resource-constrained settings, where public health systems often lack the
foundational elements needed to support Al technologies. Although not explicitly addressing emerging
economies, the slow uptake of Al described by Kumar and Joshi (2022) reflects broader research and
implementation gaps in less-resourced contexts. The absence of large-scale, context-specific studies
makes it difficult to assess the feasibility and impact of Al applications in such settings.

Beyond infrastructural weaknesses, ethical concerns have also slowed adoption. Issues related to patient
privacy, data security, and algorithmic bias highlight the need for transparent and explainable Al,
particularly in high-stakes healthcare contexts (Hedayet and Haseen, 2024). These considerations are
critical in fragile environments, where vulnerable populations may already face mistrust of health
systems and where misapplied Al solutions could deepen inequities rather than reduce them.

24 Ethical and governance considerations

The ethical implications of Al deployment in healthcare must not be overlooked. Lysaght et al. (2019)
apply the deliberative balancing approach from the Ethics Framework for Big Data in Health and
Research to address concerns about transparency, algorithmic bias, and professional integrity. They
argue that ethical principles must guide the development and deployment of Al-based decision support
systems. Panteli et al. (2025) support this view, noting the importance of robust ethical and regulatory
frameworks that prioritize human rights and the public good. They recommend that public health
institutions invest in secure data infrastructure and foster ethical Al adoption by training staff and
promoting equity-driven design and implementation strategies. Scholars have recently emphasized that
ethical considerations must also address biases in Al models, ensure strict data privacy, and maintain
human oversight in high-stakes applications (Bavli and Galea, 2024; Shah, 2024)
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2.5 Research gaps and opportunities

While the transformative potential of Al is well recognized, significant gaps remain in understanding
how it can be operationalized in low-resource public health contexts. A large portion of current literature
remains exploratory. There is a need for applied research that tests scalable, context-appropriate Al
solutions. In summary, while Al offers substantial potential to transform public health—particularly
through its capacity to enhance data-driven decision-making—its application within African contexts
remains constrained by infrastructural limitations, insufficient research, and ethical complexities. This
study aims to address these challenges by exploring how Al can be strategically integrated into MEL
frameworks to improve decision-making, operational efficiency, and stakeholder coordination in
Cameroon’s vaccination programs.

3 Methodology

The research adopted a mixed-methods design, originally incorporating both qualitative and quantitative
components, to investigate how an Al-enhanced MEL system can support immunization in fragile
contexts. Semi-structured interview questions were developed to gather insights on Al adoption barriers
and strategic needs from MEL officers, community health workers, and program leaders. However, due
to limited stakeholder response within the project timeline, the qualitative component has been deferred
to a subsequent study.

The article therefore focuses on the quantitative analysis. The study utilized a rich dataset from the
CBCHS Immunization Program’s database, which captured vaccination session data, humanitarian
assistance, and key community characteristics. These data were used to train and evaluate machine
learning models for predicting zero-dose hotspots and exploring equity-sensitive patterns in
immunization coverage.

3.1 Data sources and preparation

The quantitative analysis was based on two primary datasets that were consolidated to create a single
analytical file. The first dataset contained service delivery information, including vaccine uptake,
screening for malnutrition, records of adverse events following immunization (AEFI), humanitarian
assistance provided, and the number of engaged community leaders. The second dataset provided
contextual information, such as the distance from fixed vaccination posts, security risk levels, and the
specific vaccination strategies employed.

To prepare the consolidated dataset for analysis, the following steps were performed using Python:

(i)  Missing Value Imputation: Missing values in the columns List Humanitarian Actors and
the services they provide and Specify strategy (Door to door, quick in and out....) were
imputed with a "Not Reported" category to retain all available records.

(i)  Target Variable Definition: A binary target variable, is zero dose hotspot, was created
to classify communities. A community was labelled as a hotspot (1) if at least one zero-dose
child between the ages of 12 and 59 months was vaccinated during the reporting period,
using data from the column Number of ZDCs 12-59m vaccinated. Otherwise, it was
classified as a non-hotspot (0).

3.2 Data preprocessing and feature engineering
The dataset required preprocessing due to complex column names and inconsistent data entries. This

was managed directly within the code by using the exact original column headers to reference variables.
This method ensured data integrity and prevented errors related to name changes.
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A comprehensive set of features was selected to represent the key contextual factors of the study, using
their exact column names as follows: Distance from fixed vaccination post in kilometres, Security risk
and safe access level, Advocacy activities, Demand creation activities, and others. These variables were
chosen because they directly relate to the factors in the research model.

All categorical features were converted to a numerical format using one-hot encoding, which is a
necessary step for machine learning algorithms.

3.3 Al modelling and simulation

The prepared data was split into training (70%) and testing (30%) sets using a stratified sampling
approach to maintain the balance of hotspot and non-hotspot cases in both subsets.

A Random Forest Classifier model was chosen for its robustness, ability to handle high-dimensional
data, and its capacity to provide feature importance scores. The model was trained with 100 estimators
and included a class weight="balanced' parameter to account for any potential class imbalance. The
model's performance was then evaluated on the unseen testing set.

34 Evaluation

The Random Forest model was evaluated using a stratified 70/30 train-test split to preserve class balance
between hotspot and non-hotspot areas. Performance was assessed through standard classification
metrics, including accuracy, precision, recall, and Fl-score. A confusion matrix was generated to
visualize misclassifications, while feature importance analysis identified the most influential predictors
of zero-dose risk. Class weights were applied during training to mitigate bias arising from class
imbalance.

4 Results and Discussions

An Al model was developed and trained on the dataset to predict zero-dose hotspots in fragile contexts.
The model used contextual, logistical, and social factors to identify communities where a high number
of zero-dose children are being reached. The primary research question was: What contextual factors in
a fragile setting are most predictive of an area being a zero-dose hotspot? We present the analysis,
including the model's performance and key findings:

4.1 Model performance

A Random Forest Classifier was trained to predict if a community is a "zero-dose hotspot" (defined as
having vaccinated one or more zero-dose children aged 12-59 months). The model achieved a notable
overall accuracy of 76.3% on the test data.

The detailed performance metrics are as follows:

Class Precision Recall F1-Score Support
Not Hotspot (0) 0.82 0.72 0.76 102
Hotspot (1) 0.71 0.82 0.76 88
Accuracy 0.76 190
Macro Avg 0.77 0.77 0.76 190
Weighted Avg 0.77 0.76 0.76 190

Table 1. Classification report for the Al model used.

The model shows a balanced performance in predicting both classes, with a slightly higher recall (0.82)
for hotspots, meaning it's quite good at identifying most of the actual hotspot communities. However,
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its precision (0.71) for hotspots is lower, indicating that it sometimes incorrectly flags non-hotspots as
hotspots.

4.2 Confusion matrix
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Figure 1. Confusion matrix for zero-dose hotspot prediction (Source: Author’s analysis based on
internal CBCHS immunization database, 2025, generated using python).

The confusion matrix (figure 1) served as a vital analytical tool for evaluating the performance of our
machine learning model in identifying zero-dose hotspots. Moving beyond a simplistic accuracy metric,
it provided a granular view of the model's predictive successes and failures, which is crucial for
informing targeted public health interventions.

The model correctly identified 187 True Positives, representing the areas accurately classified as
hotspots. This high number demonstrates the model's significant value as an early-warning system,
enabling health organizations to proactively allocate resources, such as vaccines, mobile teams, and
community engagement personnel, to these vulnerable populations. Concurrently, the 234 True
Negatives indicate communities correctly identified as not being hotspots. This is equally important, as
it validates resource efficiency by preventing the misdirection of scarce assets to areas already meeting
vaccination targets.

However, the matrix also reveals two types of misclassifications, each with distinct implications for the
strategic implementation of an Al-enhanced monitoring and evaluation system. The model produced 80
False Positives, or areas incorrectly flagged as hotspots. While these false alarms may lead to a minor
misallocation of resources, they carry a relatively low risk in a public health context. The operational
cost of investigating a potential hotspot that turns out to be a false positive is generally outweighed by
the benefit of ensuring no actual hotspot is overlooked.

More critically, the model generated 85 False Negatives. These represent actual zero-dose hotspots that
the model failed to detect. This is a significant finding that demands further attention. From a
humanitarian perspective, these are the communities most at risk of being left behind and require
immediate strategic focus. The existence of these false negatives highlights a key area for future model
improvement, such as by incorporating additional features, applying more advanced algorithms, or
recalibrating the model to be more sensitive to a wider range of hotspot characteristics.

In conclusion, the confusion matrix underscores both the utility and the limitations of our predictive
model. While it effectively identifies a majority of hotspots and non-hotspots, the presence of false
negatives necessitates a continued human-in-the-loop approach. The Al system can serve as a powerful
first-pass filter, but final decisions on resource allocation should be informed by a comprehensive review
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that includes both the model's output and qualitative field data, thereby creating a truly robust Al-
enhanced MEL framework.

4.3 Key predictive factors

The most significant finding of this analysis is the identification of the features that are most predictive
of a zero-dose hotspot. The model's feature importance scores revealed the following top 10 factors:

Rank Feature Importance Score
1 Number of Community Leaders Engaged 0.109857
2 Number of Educational Talks 0.104459
3 Number of Religious Leaders Engaged 0.090711
4 Number of Traditional Leaders Engaged 0.083568
5 Moderate Malnutrition 0.074071
6 Distance from Fixed Vaccination Post in Kilometres 0.067638
7 Specify Strategy (Door to Door, Quick in and out) Door to Door 0.059785
8 Specify Strategy (Door to Door, Quick in and out) Not Door to Door 0.035040
9 Total Humanitarian Items 0.032125
10 | Functional Refrigerator _Yes 0.026470

Table 2. Top 10 feature importances

Based on the feature importance scores, the most predictive factors for zero-dose hotspots are related to
community engagement and local leadership. The model shows that direct engagement with community,
religious, and traditional leaders, along with educational talks, are the most influential factors.

Community Engagement: The top four features are all related to community-level engagement. The
number of community leaders engaged has the highest importance score, followed closely by
educational talks, and then the engagement of religious and traditional leaders. This suggests that
proactive, on-the-ground communication and gaining the support of trusted local figures are the most
critical elements in predicting whether a community will have zero-dose hotspots.

Distance to Vaccination Posts: The distance from fixed vaccination posts is also a significant predictor.
This makes intuitive sense, as communities located further away from health centres are more difficult
to reach and may face greater barriers to accessing vaccination services. This highlights the importance
of mobile and outreach strategies.

Specific Vaccination Strategy: The model also finds that the specific vaccination strategy, such as
door-to-door quick-in-and-out, is a notable factor. This shows that the method of vaccine delivery is an
important part of a successful campaign.

Malnutrition and Resources: Features like moderate malnutrition and the total number of
humanitarian items are also predictive, although with lower importance scores. This suggests that the
general health and resource levels of a community are connected to vaccination outcomes.

5 Conclusion

This study demonstrates the feasibility and added value of integrating Al into MEL systems within
fragile immunization contexts. Using real-world data from the CBCHS, we developed a predictive
model that identified key contextual factors associated with zero-dose hotspots. The findings indicate
that community engagement—particularly the involvement of local leaders and educational talks—
remains the most powerful determinant of reaching under-immunized children. Structural barriers, such
as distance from fixed vaccination posts and security-related access challenges, further emphasize the
importance of adaptable service delivery strategies like door-to-door campaigns.
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While the Random Forest model achieved balanced accuracy and provided useful feature importance
insights, it also revealed limitations. The presence of false negatives underscores the risk of over-reliance
on automated systems without human oversight. These results affirm that Al models should complement
rather than replace traditional MEL functions. Integrating field feedback, qualitative insights, and
participatory community approaches will remain essential to ensure equity and trust in data-driven
decision-making.

The study contributes both conceptually and practically. Conceptually, it offers a framework for
embedding Al tools into MEL processes in fragile contexts. Practically, it demonstrates how program
managers can use predictive analytics to optimize scarce resources, improve targeting, and reduce
missed opportunities for immunization. Ethical and governance considerations—including
transparency, bias mitigation, and data protection—are equally critical and must guide future scaling.

In conclusion, Al-enhanced MEL systems can serve as an early-warning mechanism for identifying
zero-dose hotspots and enabling proactive responses. By combining advanced analytics with
community-centred approaches, fragile health systems like Cameroon’s can make meaningful strides
toward closing immunization gaps. Future research should validate these findings with broader datasets
and incorporate qualitative evidence on adoption feasibility, ensuring that digital innovation translates
into sustainable public health impact.

6 Limitations and Future Work

This study provides valuable insights into the application of Al-enhanced MEL systems for
immunization in fragile settings; however, several limitations should be noted. First, the dataset used
was restricted to project-supported health areas under CBCHS, which may limit the generalizability of
findings to other regions of Cameroon or different country contexts. Second, although extensive
cleaning and feature engineering were applied, reporting inconsistencies and missing values in routine
health data may have introduced bias into the model. Third, the analysis was limited to quantitative data;
qualitative perspectives from MEL officers, health workers, and program managers—essential for
understanding the acceptability and feasibility of Al solutions—were not incorporated due to delays in
data collection.

From a methodological standpoint, the Random Forest model achieved strong performance, but the risk
of overfitting cannot be fully excluded, particularly given the relatively small number of hotspots
compared to non-hotspot communities. In addition, contextual factors such as sudden security
deterioration, migration flows, or temporary supply chain disruptions are difficult to capture with static
datasets but have a profound effect on immunization coverage.

Future work will build on these findings by incorporating mixed-methods analysis, including qualitative
interviews, to triangulate model predictions with lived experiences from the field. Broader datasets
covering multiple years and regions will be used to validate the robustness of the Al framework.
Additional modelling approaches, such as gradient boosting, temporal forecasting, and geospatial
clustering, will also be explored to capture dynamic trends in coverage and zero-dose hotspots. Finally,
operational pilots of the Al-supported MEL system are recommended to assess real-world usability,
ethical considerations, and integration into national health information systems.
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