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Abstract  
Vehicle counting is very essential for the urban policymaker especially for traffic signal management, 
infrastructure development, and assessing the need of various road facilities. Vehicle counting 
through Deep learning on road images is very promising and can provide various others information 
like traffic categories, speed, etc. We have used two state-of-the-art deep learning-based vehicle 
detection frameworks including YOLOv4 and Faster-RCNN with the use of ResBlock, we have 
modified the original YOLOv4 to get real- time vehicle count from traffic stream, while Inception-
ResNet- v2 is used as the backbone of the Faster-RCNN to get the highly accurate count but offline. 
Both models are trained on the UA- DETRAC dataset. Modified-YOLOv4 has achieved around 89% 
accuracy, while Faster-RCNN has around 95%. 
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1 Introduction 
Vehicle counting from a traffic video stream is a very essential part of the modern-day transport system, 

such vehicle analytics offers valuable insight regarding the traffic flow which can help policymakers to 
manage the traffic efficiently. In the urban environment, traffic congestion is a growing issue that leads to 
wastage of long working hours, consumption of extra fuel that leads to carbon emissions, delay in food and 
business deliveries, and impacts various other social, environmental, and economic aspects [1]. Traffic flow 
analytics at a traffic interaction is also used to make the traffic control robust through dynamic signal timing 
[2] that can manage the traffic flow efficiently and eventually bring significant economic benefits through the 
reduction of fuel usage and lesser carbon emission. 

Conventional vehicle analytics approaches use various special-purpose sensors such as microwave, 
magnetic coil, or ultrasonic detectors are the main component for vehicle counting. Although these sensors are 
very good at counting performance, higher installation costs and lack of various other information about the 
traffic flow such as traffic density, vehicle speed, and vehicle types. Vehicle detection is the first and core step in 
obtaining the traffic flow information and eventually take decisions to manage the traffic and other policy-
making measures [3]. Object detection includes classification and localization of the objects from an image, 
and object counting is performed based on the detected bounding boxes. Traditional object detection involves 
motion and handcrafted features to detect vehicles directly from an image. These approaches usually relied on 
handcrafted features such as HOG [4], Haar-like [5], and SIFT [6], then these extracted features are feed into 
the classifier, such as Support Vector Machine (SVM), Decision Tree, Adaboost, etc. Deformable model for 
object detection using built that trained SVM classifier through HOG features. This model performs better-
provided object has some deformation or various in scale, but is unable to perform good enough in the 
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presence of rotations lacks stability, and is pretty slow in detection. 

In recent times, Convolutional Neural Networks (CNNs) have obtained fabulous performance in 
object classification, segmentation, and detection. Deep learning-based object detection frameworks 
have given a huge boost to accuracy compared with the conventional detection methods. However, 
vehicle detection in the complex environment when vehicles need to detect on the road intersection. 
Region-based object detection framework, RCNN, used selective search to extract all the potential 
regions, this method was very slow [ 7]. Fast- RCNN included bounding box regressor and multi-task 
loss function [8]. Faster-RCNN has greatly improved the accuracy and efficiency compared to previous 
region-based object detection methods, and remains state of the art as of now, but pretty slow and hard 
to optimize due to complex pipeline [ 9]. YOLO [10] framework is an end-to-end object detector 
having a single pipeline that makes it very efficient and simple to optimize. YOLOv3 [11] and YOLOv4 
[12] are state-of-the- art in the YOLO family. YOLOv4 is designed in the context of deployment that 
also provides flexibility in the backbone and head part of the detection pipeline. This paper used two 
state-of-the-art detection frameworks Faster-RCNN and YOLOv4 and proposed some changes to 
make them more accurate and efficient. This is for two use cases, 1st is to obtain a highly great count 
with Faster-RCNN but offline because it is not for real-time detection, and 2nd is to get a real-time 
vehicle count with good accuracy but less as compared to Faster-RCNN. After detection, vehicles are 
counted by defining a reference point in the traffic stream. We have made the reference point by 
making a line on the streaming video, and a count will be made when a detected vehicle’s bounding 
box will touch the reference line. 

Our main contributions are as follows: 
1. Real-time vehicle counting the inclusion of ResBlock-D modules in the YOLOv4 

2. Accuracy improvement in the Faster-RCNN through the use of Inception-Resnet-v2 
network. 

In the next section, we have described the different proposed approaches for object detection. Relating 
to the problem in previous approaches, we have explained our object detection in 3rd section. In the 4th 
section, we have elaborated on the dataset, training setup, and evolution of both object detectors. 
Lastly, the 5th section summarizes our work conclusion and feeds the future course. 
 

2 Literature review 
From general to domain-specific object detection, deep learning models have been immensely 
adopted in the whole field of Computer Vision. For the feature extraction from the image, the 
backbone of advanced object detection networks is based on Deep learning [13]. Conventional Neural 
Network (CNN) is the baseline network for building the different deep learning models [14]. Layers of CNN act 
as a feature extractor and generate feature maps as output where feature maps are summarized representative of 
different features of objects. The output of the input layer is a matrix containing intensity values of different 
colour channels (e.g., RGB). The feature map of different internal layers is a multichannel version of the input 
image, where each “pixel” refers to a specific feature. Neurons form a connected network where a neuron in the 
successive layer relates to multiple neurons of the preceding layer. Transformational operations [15], [16], [17] 
are used to build feature maps, and commonly used transformations are convolution and pooling. Convolution 
(filtering) operation involves linear multiplications of a filter matrix with the values of a receptive field of the 
feature map and introduces nonlinearity (like as sigmoid [18]. To make the single value representative of 
different features, different Pooling techniques, such as average pooling, max pooling, and local contrast 
normalization [19] which summarizes the output of the feature map. 
 
Object detection involves localization and classification of objects where localization refers to show 
the presence of the object through bounding box and classification aims to assign category labels 
against each detected object. The object detection approaches are broadly coupled into two types. One 
is based on generating region proposals and classification of generated proposals, while the other type 
takes detection as a regression task where a single unified network is responsible for localization and 
classification. The region proposal-based methods mainly include R-CNN [7], spatial pyramid pooling 
(SPP)-net [20], Fast R-CNN [8], Faster R-CNN [9], region- based fully convolutional, Mask R-CNN 
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[17], network (R- FCN) [21], and feature pyramid networks [16]. The methods based on 
regression/classification mainly include AttentionNet [22], MultiBox [23], G-CNN [24], but YOLO 
[10], Single Shot MultiBox Detector (SSD) [22], and YOLOv3 [11] are state-of-the-art and widely 
used methods. 
 

Faster-RCNN is selected due to its accuracy, and this is accuracy is due to Deep learning-based 
region proposal network called RPN. This kind of state-of-the region proposal network is missing 
another detector. Although, SSD is a single pipeline model, but it has issues with scale variability of 
the objects, whereas YOLOv4 takes the anchor boxes through clustering and perform very fast due to 
single YOLOv3 for vehicle detection which mitigates the false positives during autonomous driving 
which can end up in fatal accidents and hinder safe and efficient driving. Based on he region proposal 
concept, Hu et al [27] proposed a Faster R-CNN method for vehicle detection and Long Short-term 
Memory networks for more accurate long-term motion extrapolation. Cao et al [28] have used the 
Single-shot multi- box detector which combines the anchor mechanism and feature pyramid structure 
of the Faster R-CNN with the regression idea of YOLO and formulates a single end-to-end pipeline 
for the detection of multiple objects. The proposed model is capable of drawing multiple bounding 
boxes with classification labels. 
 

3 Methodology 

3.1 Yolov4 Base Vehicle Detection 
YOLOv4-tiny [29] object detector is a light version of YOLOv4 [12] which enhances the detection speed. 

With this light version, YOLOv4 can attain around 370 frames per second (FPS) with very good accuracy 
on a GPU-enabled machine having 1080Ti GPU. The YOLOv4-tiny includes Cross-stage-Partial-
connections (CSP) Darket53-tiny as a backbone feature extractor instead of CSPDarket53 that was used in 
the original YOLOv4. YOLOv4-tiny network uses cross-stage partial block as a residual block which 
enhances the accuracy but increases the model complexity and eventually decreases the FPS rate. To 
proceed with object detection in real-time on embedded devices with a better accuracy tradeoff, an 
improved version of YOLOv4-tiny is proposed. 

To enhance the processing speed, we have used the Residual block (ResBlock instead of two CSPBlock as in 
YOLOv4-tiny [1]. ResBlock unit uses two direct paths network handle input representation map. In this two-
path network, the path T network has three 1 x 1 and 3 x 3 convolutional (Conv) layers with stride 2 
followed by another 1 x1 Conv layer. Another network, Path B, has two 3 x 3 max Pooling with stride 3 
followed by 1 x Conv layer. Compared with CSPBlock used on the original YOLOv4-tiny [29], our 
ResBlock (Fig. 1) removes the first 3 x 3 Conv in CSPBlock, and replaces the consequent 3 x 3 Conv layers 
with 1 x 1 Conv layers in the Path T network to make the detection network efficient. The proposed 
ResBlock unit adds pooling and Conv in the Path B network, but this extra computation overhead is very 
small as compared to reduce in computation in the Path T network. The floating-point operations (FLOPs) are 
analyzed to determine the computational complexity of the CSPBlock and proposed ResBlock. FLOPs can 
be described as follow: 

 
 

           (1) 

 
 

pipeline. 
To achieve higher accuracy, region proposal networks like Faster R-CNN [9] are used, while 
regression/classification methods are impressive at efficiency. Higher accuracy with real-time detection is very 
critical for safety and real-time control in driver assistance systems and autonomous vehicles. YOLOv4 has 
come up with a great equilibrium between accuracy and efficiency and seemed a good fit for real-time 
scenarios. 
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3.2 Vehicle Detection 

Recent work using CNNs is very effective for vehicle detection on-road scenarios [25]. Choi et al [26] have 
used Here S is the sum of all the Conv layers, 〖 Mₗ 〗^2 is the output feature vector of the corresponding lth 
layer, 〖Fₗ〗^2  is the filter size, while Cₗ and Cₗ₋₁ refer to output and input channel count, respectively. For 
comparison, suppose an input 
of 224x 244 with 64 channels, and using (1), FLOPs of ResBlock used in the proposed detection model: 
 

 (2) 
 

 (3) 
 

 
                                                          

Figure 1.ResBlock-D Modules 
 

The FLOPs of CSPBlock used in 
YOLOv4-tiny [1] against the same 
image: 
 

 (4) 

                                                 

                                                      (5) 
 
 
From (2) and (3), we can determine that 1:10 is the computation in terms of FLOPs in ResBlock and 
CSPBlock. FLOPs comparison shows that ResBlock is much less complex than CSPBlock. 

 
Although the inclusion of ResBlock in the YOLOv4-tiny detector makes it much faster than CSPBlock, 
however, it affects the object detection accuracy. To get a better tradeoff between efficiency and accuracy, two 
auxiliary residual blocks are also built and included in the ResBlock unit. The proposed backbone network is 
shown in figure 2. 

 
The output representation of ResBlock is fused with a shallow representation of the backbone model through 
element-wise sum operation, and this fused representation is used as input to successive layers of the backbone 
model. The fusing process of representation of ResBlock and backbone model can be expressed as: 

 

               (6) 
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      Here i is the index of the layers,  is the fusion function between the input and output in the ith layer 
network,  refers to i-1th layer’s output and i th layer’s input, and  is the output of the proposed 
ResBlock. This fusion catalyzes the convergence between deep and shallow networks. With the fusion 
mechanism, the network tends to learn more information to enhance the accuracy, while preventing the large 
step-size increase of calculation. 
 

In the backbone of YOLOv4-tiny [29], the Residual network module uses 3 x 3 filters for feature 
extraction. 
 
Although 3 x 3 receptive fields can extract more localize information while losing global contextual 
information and eventually reduces the detection accuracy. We have compensated this loss of global 
representations by using two consecutive 3 x Conv layers to get the receptive field of size 5 x 5 in the 
auxiliary ResBlock. This auxiliary model passes on the obtained global representation to the backbone 
network. Then backbone network joins the local contextual information extracted from the smaller (3 x 3) 
receptive field and global representation extracted from the bigger (5 x 5) receptive field that gives extra 
information about the object. This combining of global and local information not only enhances the network 
depth but also, advances the semantic information. The attention mechanism can process and transmit the 
crucial feature and eliminate the invalid features through channel suppression. To extract more effective 
feature representations, we have introduced spatial and channel attention modules in the auxiliary network. 
The channel attention module emphasizes the interpretation of the informative part of the given input image 
and sees what is meaning in it, whereas, the spatial attention module emphasizes the spatial location of the 
informative part of the input, supportive to the channel attention. To simultaneously realize spatial and 
channel attention, we have used the Convolutional Block Attention Module (CBAM) [3]. The used CBAM 
can be described as: 

 
 (7) 

 

                           (8) 
 

Here  is the input feature map, “ʘ" refers to element-wise multiple, 𝐹𝐹𝑐𝑐 and 𝐹𝐹𝑠𝑠 are the output 
feature maps, 𝑀𝑀𝑐𝑐 and 𝑀𝑀𝑠𝑠 are the channel and spatial attention functions, respectively. The channel attention 
function 𝑀𝑀𝑐𝑐 (𝐹𝐹𝑖𝑖) and spatial attention function 𝑀𝑀𝑠𝑠 (𝐹𝐹𝑐𝑐) are expressed as: 
 

        (9) 

 

 
 (10) 

 

Here  is the sigmoid function, MLP () is the multi-layer perceptron, and is the convolutional 
operation having a filter size of 5 x 5. Max Pooling and average pooling operations in spatial attention function 
are combined through concatenation which is referred to as ‘:’. 
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Figure 2.Proposed backbone network 
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Fig. 3 shows the proposed auxiliary network having two Conv layers to obtain the global contextual 
information, and channel and spatial attention to getting more effective information. Output representation of 
first Conv layer output received from spatial attention operating are concatenated to combine both outputs 
which is the output of the auxiliary network. Then the final output of the auxiliary network is combined with 
the output of the Residual network of the backbone network and used as input of the next residual network 
there. This joining of both outputs enhances the backbone network to extract local and global information of 
the object and increases the accuracy of the detection network. 

The architecture of the whole YOLOv4-tiny object detector is shown in Fig. 4 where the proposed network 
is distinguished with blue color. Compared to YOLOv4-tiny [29], the proposed object detector has replaced 
both CSPBlock units with two ResBlock. Moreover, the auxiliary network is also designed by using two 3 x 3 
Conv layers, channel attention module spatial attention module, and concatenation operation to obtained 
global information. Finally, auxiliary and backbone networks are combined to make a feature extractor. 

 

 

 
 

 
Figure 3.Auxiliary Residual Network 
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Figure 4.YOLOv4-tiny architecture with proposed changes in blue colour [36] 
 

3.3 Faster-RCNN based vehicle detection 
Faster-RCNN [12] uses region proposal algorithms to generate potential objects containing sub-part of the 
image. Fig.5 shows the detection pipeline of the Faster-RCNN. It consists of a region proposal network (RPN) 
and a Faster- RCNN detector head to classify the proposed regions. RPN is used to obtain the object locations. 
RPN shared layers with the detector specially to extract the region proposal by injecting a small network on 
the top of the shared conventional of the feature map. This added network extracts lower-dimensional 
representation from the representation map. In the end, the classification head estimates the objectness in the 
proposed regions and the regression head to predict the bounding box coordinates. 

To enhance the performance of Faster-RCNN, two kinds of approaches are used. 1st approach is to increase the 
horizontal and vertical length of the original feature extractor without altering the base architecture. This 
approach is required to have more and more as the network becomes deeper and deeper. 2nd method is to 
change the architecture of the backbone of the detection pipeline using state-of-the-art feature extraction 
networks such as ResNet, Inception, and VGG, etc.). This approach improves the detection performance more 
as compared to the first and more favorable because of the performance of the recent classification network. 
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Inception-Resnet-v2 [30] is a combined form of Inception [31] and Residual network [32]. It replaces the 
concatenation block in the Inception with the Residual block. This improves the detection performance of the 
Faster-RCNN due to residual connections without compromising the efficiency of the network. Fig. 6 shows 
the standard layer structure of an Inception-Resnet-v2 network. This feature extract has shown promising 
results in the ILSVRC-2012 validation set. The use of inception extracts multi-scale features that help to 
detect the moving vehicles. 

 
Figure 5.Faster-RCNN model for vehicle detection [9] 
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Figure 6.The standard structure of the Inception-Resnet-v2 layer [30] 

 
 

Inspired by [12], we have followed the same strategy to train our Faster-RCNN model. Region proposal 
network (RPN) is trained separately, and backbone CNN was find- tunned on the MS COCO [33] dataset for 
the region proposal task. To handle the scale and aspect ratio variations, anchors of the bounding box are used 
in the region proposal network,  and when the Intersection of Union (IoU) and rate of overlap between the 
ground truth box and the anchor box is greater than 0.75, the anchor box set to be positive and kept as negative 
in case of overlapping rate is less than 0.25. The ratio between the number of positive and negative samples is 
kept at 1:1, which will reduce the number of negative samples. Faster-RCNN is trained on the region proposed 
by the RPN. Faster-RCNN is pre-trained on MS COCO, then by fixing the shared layer of the Faster-RCNN 
and RPN, unique layers of the RPN are fine-tuned with Faster-RCNN. Then, unique layers of the Faster-
RCNN are fine-tuned by keeping the shared layers fixed. Training of the deep learning model like Faster-
RCNN requires to have millions of images, so we have used transfer learning to fine-tune the model on a 
specialized task like vehicle counting in our case. So, the network is trained on the MS COCO dataset and 
fine-tunned on the UA-DETRAC dataset. 

 

4 EXPERIMENTS AND RESULTS 
This section demonstrates the effectiveness of our methodology. First, we have explained the used 

datasets for both modules including object detection. Next, training methodology along with training setup 
and implementation details are described. Lastly, training and testing results are explained. 

 

4.1 Dataset 
All our modules are pre-trained on the MS COCO dataset. To train for the specialized task of our detection 
modules, we have used the UA-DETRAC dataset having approximately 83,000 images for training and 
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validation this dataset, while the test set having around 15,000 images are used to validate the counting 
performance of both vehicle detectors. It consists of videos captured at 24 different locations at Beijing and 
Tianjin in China. Both models are trained and validated on the same training and validation set. 

4.2 Training Setup 
For both the YOLO model, the network is trained for 1,000 epochs, with a batch size of 16, over the UA-
DETRAC dataset [34]. To minimize the error, SGD-momentum was used with a learning rate of 0.02, the 
momentum of 0.8, and weight decay of 0.0002. This Network is trained for 2,000 epochs with batch size 16 For 
the training of the Faster- RCNN model, Adam optimizer is used having learning rate and weight decay equal to 
0.0001. This network is trained for 1, 500 epochs with batch size 16. Xavier initializer was used to initialize the 
parameters of both models. Both networks were implemented using TensorFlow and Keras on a machine having 
16 GB RAM, and an Nvidia 1080Ti GPU. Python 3.7, TensorFlow 1.8, Keras 2.08 and OpenCV 4 are used for 
the implementation. 

4.3 Evaluation 
Both models have been evaluated qualitatively, and detection results of the YOLO object detector are also 
compared with the performance of the Faster-RCNN on the same validation dataset. Loss and accuracy 
graphs of both models’ modules are also given. Fig. 7 is showing some outputs on frame sequence on YOLO 
and Faster RCNN. Here count is based on the number of vehicles that crossed the marked line. 

 
Figure 7.Results on Yolov4 
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Figure 8. Results on Faster RCNN 

 
We have used pre-trained the YOLOv4 and Faster-RCNN on MS COCO, and the whole network is fine-tuned 
on the UA-DETRAC dataset having 83k images. Modified- YOLOv4 is trained for 1500 epochs, while the 
Faster-RCNN model is trained for 2000 epochs and the dataset is divided into training and validation sets with 
80%, 20% ratios respectively. From Fig. 9, the Modified-YOLOv4 module also faced overfitting as there is a 
difference between the training and validation accuracy where validation accuracy remained lower than 
training accuracy. At the end of the last epoch, training and validation accuracy ended at 95.1% and 89.9% 
respectively. Training loss (Fig. 9) started reducing from 9.2 approximately, but training loss went to 0.11, and 
validation loss started from 9.8 ended up at 0.22 at the final epoch. Validation loss went lower to training loss 
at some epoch but remained high most of the training time. 

 

 
Figure 9.Training and validation accuracy graph of Modified- YOLOv4 
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Figure 10.Training and validation loss graph of Modified-YOLOv4 
 
 

Fig. 10. shows the Faster-RCNN accuracy graph, From the gap of training and validation accuracy, it can 
be concluded that the model is slightly overfitting the training data which is a curse associated with deep 
learning models. Training accuracy of Modified-YOLOv4 is 97.2%, while validation accuracy is 94.21%. 
Faster-RCNN loss for training is started decreasing from 8.6 and lowered to 0.19, while validation loss 
is reduced from 8.7 to 0.25 after 1500 epochs. A graph in Fig 12 is showing the loss journey of Faster- 
RCNN throughout training. 

 
Both Networks are overfitted due to different images distribution of dataset for training and validation. 

With the inclusion of more images of variational image distribution. Moreover, deep learning models are 
usually very complex due to millions of parameters, so these models have an overfitting effect by nature. 

 

 
 

Figure 11.Training and validation Accuracy graph of Faster- RCNN 
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Figure 12.Training and validation Loss graph of Faster-RCNN 

 
Table. 1 gives the breakdown and compares the results of various segment types of the UA-DETRAC 

dataset. For the SpotNet [35] and both model hard is same having Intel i7 CPU with 32GB RAM and 
GTX1080 Ti Nvidia GPU. SpotNet [35] has achieved the highest accuracy on the UA- DETRAC dataset. Both 
models surpass the SpotNet [35] in terms of accuracy among all the dataset segments including hard and 
cloudy, however, our Faster-RCNN model is very slow as compared to SpotNet. Modified-YOLOv4 is almost 
2x faster than SpotNet 

 
Table 1. Accuracy breakdown and comparison on various segments of the dataset. 

 
Model Overall Easy Medium Hard Cloudy Night Rainy Sunny Speed 

SpotNet [35] 86.80% 97.58% 92.57% 76.58% 89.38% 89.53% 80.93% 91.42% 14 fps 

Modified- YOLOv4 89.9 % 94.15% 92% 89.14% 91.2% 87.14% 88.21% 87.74% 25 fps 

Modified- Faster-RCNN 94.21 % 98.12% 95.14% 93.77% 93.21% 94.12% 92.47% 93.2% 9 fps 

 

5 DISCUSSION 
Original YOLOv4-tiny is using cross-stage partial block as a residual block that is compromising the model 
efficiency while increasing accuracy. To detect the real-time vehicles, a Residual block is used instead of two 
CSPBlock as in YOLOv4-tiny [1]. This block uses two direct paths network handle input representation map. 
Compared with CSPBlock used on the original YOLOv4-tiny [29], our ResBlock (Fig. 
1) removes the first 3 x 3 Conv in CSPBlock and replaces the consequent 3 x 3 Conv layers with 1 x 1 Conv 
layers in the Path T network to make the detection network efficient. The proposed ResBlock unit adds pooling 
and Conv in the Path B network, but this extra computation overhead is very small as compared to reduce in 
computation in the Path T network. To enhance the CNN performance, two kinds of approaches are used, one 
is to increase the complexity of the original network by adding more layers, and the other is to change the 
backbone feature extractor. This approach improves the detection performance more as compared to the first 
and is more favorable because of the performance of the recent classification network. Inception-Resnet-v2 
[30] is a combined form of Inception [31] and Residual network [32]. It replaces the concatenation block in 
the Inception with the Residual block. This improves the detection performance of the Faster-RCNN due to 
residual connections without compromising the efficiency of the network. 

 
For the development of this system, work was started on the Google Colab, but the dataset was huge and great 
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to train, but the free Instance of the Google Colab has the time limitation. Moreover, Google Colab does not 
offer a user interface to draw the virtual line. Colab was taking so much time to load the dataset that it was 
very difficult to debug the error, at every error whole dataset was required to reload in the Colab memory. 

 
As the current family of deep learning detection models are designed against fixed resources, so for example 
Faster- RCNN can give 14 to 17 frames per second. When more and more resources are available, this model 
will still give 14 to 17 frames per second processing. Moreover, training and testing are required to have only 
Nvidia GPU enable machine, otherwise, training will take months to complete. Moreover, GPU needs to have 
memory at least 8 GB to optimally model training. RAM of the machine is also very important because trained 
is processed in the form of batches of the training dataset. For the batch size, the machine needs to have 16GB 
RAM. 

For the commercial usage of this system, it will be required to have a machine GPU with much more 
memory and RAM for the training. Moreover, used models will be required to have the ability to scale up on 
the availability of extra resources. Continual learning will also be required so that system can accommodate 
vehicles with new shapes. The system will give better performance if the camera would be a better resolution. 

 

6 CONCLUSION 
We have used two state-of-the-art object detectors for vehicle counting. YOLOv4 is modified by introducing 
a Residual Block to make real-time vehicle detection, while Faster- RCNN is modified to vehicle highly 
accurate vehicle by adding the Inception-ResNet-2v as the backbone. For the Real-time vehicle analytics 
Modified- YOLOv4is proposed, while for the highly accurate offline analytics Modified Faster-RCNN is 
proposed. Both detectors are tested on the UA-DETRAC dataset. Modified-YOLOv4 and Faster- RCNN 
have achieved around 90%, and 95% accuracies respectively. Faster-RCNN is chosen because of its 
accuracy but as it is very slow, it is used to get the more accurate results offline. On the other hand, YOLOv4 
is chosen in the context of production. YOLOv4 is best suitable for real-time processing. 
This kind of vehicle analytics can help urban policymakers City Council, City Transport Infrastructure 
authority to manage traffic efficiently and they can take effective remediation decisions like building 
footpaths, introductions of one-way roads, construction of new fly overs, expansion of road lanes etc. In the 
city environment, traffic congestion is a growing issue that leads to wastage of long working hours, 
consumption of extra fuel that leads to carbon emissions, delay in food and business deliveries, and impacts 
various other social, environmental, and economic aspects. 
The proposed system does not have continual learning, so when a vehicle having a shape that was not part of 
the training process comes, the system fails to detect and eventually not includes in the counting. The 
proposed methodology is also designed for the fixed resource regime so when extra resources will be 
available, this system will be unable to scale up its optimal efficiency. 

 
In future, a model having continual learning and scaled ability concerning resources can be used, it will give 
real-time processing on any platform independent of the physical hardware. The used UA-DETRAC dataset 
has certain limitations, it contained specified vehicle categories that operate in the China in a certain traffic 
conditions , trained model will only be able to detect those kinds of vehicles and with associated traffic 
conditions. e.g. in the dataset don’t have much data like traffics in Roundabout, Overpass and Tunnels, our 
trained model may not perform well in this traffic conditions ,But to make a flexible model that can adopt new 
vehicles and traffic conditions without retraining the model from scratch, continual learning will give this 
ability. 
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