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                                                      ABSTRACT 

COMPUTER-AIDED MEDICAL DIAGNOSTIC SYSTEM 
ON VISUAL QUESTION-ANSER USING DEEP LEARNING 

by 

 

Nihar Ranjan Behera 

2023 

 

Dissertation Chair:  

Co-Chair:  

 
 

Medical-VQA can enhance the capabilities of computer-aided diagnosis that can not only 

bridge the imbalance in the current state of medical resources in the healthcare sector but 

also reduce the cost for both the hospitals as well as for the patients. Medical images are 

rapidly being used in medical diagnosis, however, VQA systems are lacking behind due 

to capabilities of the domain transfer of general VQA model to medical-VQA as there is 

a huge gap between the nature and complexity of general domain and medical domain 

datasets. Moreover, medical-VQA datasets are also not very big which also enhances the 

need for such a VQA system that can learn from the lesser data and can be generalized to 

diversify medical imaging. In this proposal, a multimodal Transformer based VQA system 

is suggested. The suggested system incorporates the interaction among input images, 

question and answer text. 
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CHAPTER 1.  

INTRODUCTION 

6.1 Introduction  

 

Artificial intelligence (AI) is not only making our lives uncomplicated by automating a 

tedious and time-consuming task, but it also has various uses in medical health care to 

diagnose people. One of our primary immediate concerns has always been health. So far, 

there have been few simple methods for finding out about our physical conditions without 

expert help. Imaging, as a non-invasive approach to creating images of the internal aspects 

of the body, is an essential tool for doctors in clinical diagnosis and evaluation. Numerous 

patients have unanswered questions about surgical procedures and medical diagnoses and 

the majority of these questions go unanswered because due to the limited number of 

medical experts who are frequently overburdened with academic and clinical work, their 

chances of finding a health professional to confirm their doubts are slim (Bates & 

Gawande, 2000). Many desktop techniques (“Computer-Assisted Surgery,” n.d.)(Rogers 

et al., n.d.) and simulators (Kneebone, 2003; Sarker et al., 2007) have been proposed to 

help students improve their surgical skills. 

 

Even though the systems help students to improve their abilities and minimize the 

workloads of academic professionals, they do not attempt to respond to students' 

questions. Whereas students have already been known to learn by observing recorded 

surgical techniques, it is still the responsibility of medical experts to answer their 
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questions. In such situations, a computer-assisted system that can perform both 

questionnaires and medical data and provide accurate answers that would benefit the pre-

screening process greatly while minimizing the workload of the medical expert 

(Seenivasan et al., 2022).  

 

Proposed medical-VQA systems (Zhan et al., 2020; Abacha et al., 2018; Eslami, de Melo, 

and Meinel, 2021) are based on transfer learning (Pan, data and 2009) and exploiting the 

existing Deep learning based VQA system by fine-tuning the pre-trained models on the 

comparatively smaller medical dataset that are pre-trained on the general datasets. 

However, there is a very gap between the general and medical domains, both in terms of 

image structure as well as the language of question-answer pairs (Eslami, de Melo, and 

Meinel, 2021). So, the transfer of domain knowledge from the general to the medical 

domain through transfer learning (Pan, data and 2009, no date) and fine-tuning is not 

sufficient enough to address the medical questions. In this research, I am to build a Visual 

question answering for medical images that will answer the asked medical queries, both 

close-ended and open-ended, through analyzing the radiology images.  A trilinear 

interactive attention-based method proposes in this study to improve each individual 

modality depiction by combining other modalities (TrI-Att). Furthermore, while self-

attention cannot fuse various modalities, it can improve their interaction (Yu et al., 2019). 

The input image will be supplied into Efficient Net, while the questions and answers will 

be gone through a pre-trained BERT to create an image and text embedding, respectively. 

The embedding then is processed using trilinear attention to concatenate multimodal 
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input. Individual and combined inputs are gone through the residual MLP layers, followed 

by self-attention layers. The last residual MLP output is fed to the Transformer encoder 

and then to the output layer to predict the answer. On inference, the proposed VQA 

receives the question and image and generates an answer. 

 

Surgical scenes are enhanced with data that the system can use to answer questionnaires 

about defective tissue, surgical tool conversation, and surgical procedures. With the ability 

to extract various types of data from a simple image feature simply by changing the 

question, the computer vision field has recently seen an influx of vision and NLP models 

for medical-VQA systems (L. Li et al., n.d.; Z. Wang et al., n.d.). These models are based 

on either the long short-term memory (LSTM) (Barra et al., n.d.; Himanshu Sharma & 

Jalal, 2021)or attention methods (Seenivasan et al., 2022; H Sharma et al., n.d.). 

 

Different doctors may obtain different information from medical images. Deep learning, 

as an efficient information processing method, is becoming more important in health 

informatics (Justin Ker; Lipo Wang; Jai Rao; Tchoyoson Lim, 2017). In contrast to the 

computer vision field, which is frequently supplemented with massive, 

annotated datasets, the medical field lacks a sufficient amount of annotated data, reducing 

medical VQA exploration. Because of the unavailability of domain-specific clinical terms, 

The transfer learning methods alone cannot be sufficient to modify pre-trained computer-

vision VQA systems for clinical applications. While some work on medical-VQA 
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(Seenivasan et al., 2022) for clinical diagnosis has recently been reported, VQA for 

surgical images remains largely unknown.  

 

In the medical profession, a good deep learning-based VQA model can automatically 

retrieve information from medical images and aid in clinical diagnosis. Meanwhile, the 

medical VQA model can assist patients in gaining a basic understanding of their physical 

state, which can then be used to select a more focused medical treatment strategy. In 

general, implementing the medical VQA model can help to alleviate the problems created 

by the imbalanced distribution of healthcare resources. In past years, the use of computer-

aided diagnosis (CAD) techniques for processing medical data has grown in popularity 

(graphics & 2007, n.d.). However, many CADs focus on histopathologic diagnosis or 

segmentation of a specific type of medical image, including tumor tracking (R. Wang et 

al., n.d.). Some CADs use medical records to estimate risks (Ren et al., n.d.) but the 

majority of CAD processes are designed to diagnose a single disease, such as breast cancer 

(Bardou et al., n.d.), or lung disease (C. Li et al., n.d.). Figure. 1 shows the medical-VQA 

scheme. 
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 Figure 1:Close-ended and Open-ended samples of VQA input and output. 

 
There is, however, less work being carried out to combine NLP with medical image 

processes, including medical image captioning (Eickhoff et al., n.d.) and medical VQA 

(Hasan et al., 2018). VQA-RAD (Lau et al., 2018), which includes 315 medical images, 

is an example. This dataset contains a collection of questions ranging from simple to 

complex. Tremendous questions concern the severity of the disease or the diagnosis. This 

dataset contains a wide variety of healthcare images and question-answer pairs 

representative of the real-world medical environment. 

 

As per recent studies, the medical VQA has been directed to various "jobs." The first is 

the diagnosing radiologist, who consults with the referring physician as an expert. 

According to a workload analysis (McDonald et al., n.d.), the average radiologist must 

perceive one CT or MRI image in 2 to 4 minutes. A radiologist must answer 

approximately 27 phone calls every day from patients and physicians in addition to the 
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extensive queue of imaging studies (“The Voice of the Radiologist: Enabling Patients to 

Speak Directly to Radiologists,” n.d.), resulting in additional disruptions and 

inefficiencies in the workflow. A medical VQA system has the potential to answer 

physicians' questions, alleviate the burden on the healthcare system, and improve the 

efficiency of medical professionals. 

 

Another use for VQA is to respond as pathologists, examining body tissues and assisting 

other healthcare professionals in making diagnoses (He et al., 2020). In addition to the 

role of a healthcare professional, the medical-VQA system can act like a knowledgeable 

assistant. For instance, the "second opinion" from the medical-VQA system can help 

clinicians interpret medical images while also lowering the risk of misdiagnosis. Finally, 

(Tschandl et al., n.d.) a fully developed and accomplished medical-VQA system can 

directly evaluate images of patients and answer relevant types of questions. A medical-

VQA system can provide equivalent consultation in some instances, such as completely 

automated health assessments, where medical professionals might not be accessible. Just 

after a hospital visit, patients look for additional information online. The search engine's 

misleading and irregular information may lead to wrong answers. A medical VQA can 

also be embedded through an online consultation process to provide accurate answers at 

any time and from anywhere. 

 

Medical VQA is more difficult than general-domain VQA due to the following factors. 

To begin, developing a large healthcare VQA dataset is difficult because professional 
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annotation is expensive due to the high level of professional knowledge required, and QA 

sets cannot be created directly from images. Second, answering questions focused on a 

medical image necessitates a unique design of the VQA model. Because a diagnosis is 

microscopic, the task must also concentrate on a fine-grained dimension. As a result, 

segmentation methods may be needed to precisely locate the region of interest. Ultimately, 

a question can be very skilled, requiring the model to be trained with medical expertise 

instead of a general language database. 

 

Medical imaging (MI) (Yuan et al., no date) is a domain of producing images of the 

internal vision of the patient's body and is a very significant tool for clinical diagnosis and 

disease analysis. MI helps the doctor to visualize and analyze the patient’s physical 

conditions to diagnose and assess the irregularities. However, the analysis and 

interpretation of different medical practitioners on the same medical images can be 

different. Deep Learning (Goodfellow, Bengio, and Courville, 2016) based models are 

very powerful to process complex data like medical images, and can greatly benefit the 

information processing in health informatics.  State-of-the-art deep learning methods are 

available to extract the desired information from visual or textual data. In the context of 

medical imaging, a good deep learning-based medical VQA mechanism can extract the 

desired information from the medical images to answer the asked question and help in the 

disease diagnosis. Moreover, patients can benefit from the VQA system by getting a 

preliminary understanding of their body condition which can guide them in choosing a 

more precise treatment plan. The examples of med-VQA are shown in Table 1. 
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Visual question-answering (VQA) (Wang et al., no date) has become a very prominent 

area of research in Deep Learning due to immense development in Natural Language 

Processing (NLP) and Computer Vision (CV). VQA is an amalgamation of NLP and CV 

to join to understand the knowledge representation between both domains by transferring 

and corresponding to the knowledge space. VQA aims to answer natural language queries 

by extracting and then corresponding to the relevant visual information. VQA techniques 

are applied to understand the scene setting in the image and then address the asked 

questions about that scene (Goyal et al., no date). Applying the VQA techniques to daily 

scenes, object detection, image classification, or attention mechanism can be effective 

(Antol et al., no date).  

 

In general, an effective medical VQA (Abacha et al., 2019; Abacha et al., no date; Lau et 

al., 2019) system can bridge the gap of the imbalanced distribution of medical resources. 

However, medical VQA lacks a giant labeled dataset that is the prerequisite for the 

training of deep learning models. Another challenging aspect is the medical-related 

vocabulary that usually contains very different words as compared to the daily life 

language. So, medical terminologies are difficult to interpret and formulate a meaningful 

query against which relevant visual information can be extracted to answer the asked 

question. 

 

 

Table 1:Examples from the dataset of VQA-Med2019, VQA-Med2020, Path-VQA, and VQA-RAD, 
respectively data having Images with QA pair. 
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Q: What modality is shown? 

A: CTA-CT angiography. 

Q: What imaging modality was 

used to take this image 

? 

A: CT with iv contrast. 

Q: What organ system is 

displayed in this ct scan? 

A: Skull and contents. 

 

  

Q: what is abnormal in the 

ultrasound? 

Q: what abnormality is seen 

n in the image? 

A: Aberrant right subclavii 

-an artery (ARSA). 

Q: what is most alarming about 

this ct scan? 

A: Medullary nephrocalcinosis. 
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A: Perihepatic fluid and fluid 

in the gallbladder as expected 

for the postoperative 

patient. 

 

 

 

Q: What does the sectioning of 

the ovary show? 

A: large endometriotic cyst 

with degenerated blood. 

Q: What does the mucosal 

surface show? 

A: Papillary tumor floating in 

the lumen. 

Q: What are inactive facto 

-rs? 

A: The red polypeptides. 
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Q: In what plane is this image 

taken? 

A: Axial. 

Q: Which plane is this image 

taken? 

A: PA. 

Q: How would you describe the 

abnormalities 

? 

A: Ring-enhancing lesions 

. 

 

In Table. 2, there are the details of medical image datasets that contain image and QA 

pair. These are the three most comprehensive radiology VQA dataset that involves 

multiple diseases and has almost all the most commonly asked types of questions by the 

medical fraternity. Table. 3 describes each included question type given for a better 

understanding of the scope of the suggested dataset. For this study, these three datasets 

can be combined to make a comprehensive dataset. Jointly, there will be 4436 images 

having around 17, 000 QA pairs. QA pairs include closed and open-ended questions. 

These images and QA pairs have great diversification in terms of various body organ 

images, and all the major asked questions by radiologists. 

 

Table 2:Details of the datasets used for the training and evaluation of the proposed medical-VQA 

        Dataset labeled 

images 

No of QA 

pairs 

Question type Answer 

types 
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VQA_RAD (Lau 

et al., 2018) 

315 2248 MODALITY 

PLANE 

ORGAN (Organ Syst 

-em) 

ABN (Abnormality) 

PRES 

(Object/Condition 

Presence) 

POS (Positional Reaso 

-ning) 

COLOR 

SIZE 

ATTRIB (Attribute Ot 

-her) 

COUNT (Counting) 

Other 

Closed-ended 

Open-ended 
 

VQA-Med-2019 

(A. Abacha et al 

., 2019) 

3,200 

medical 

images 
 

12,792 Modality 

Plane 

Organ system 

Abnormality 

Closed-ended 

Open-ended 
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VQA-Med-2020 

(A. Abacha et al. 

, 2020) 

921 2,320 Modality 

Plane 

Organ system 

Abnormality 

Closed-ended 

Open-ended 

 

 Table 3: Details of the datasets used for the training and evaluation of the proposed medical-VQA 

Question Type Description 

Modality How an image is taken – CT, x-ray, T2 weighted MRI, etc. 
 

Plane Orientation of an image slicing through the body – axial, sagittal, 

coronal 

Organ System The categorization that connects anatomical structures with 

pathophysiology, diagnosis, and treatment – pulmonary, cardiac, 

musculoskeletal system 

Abnormality The normalcy of an image or object. For example, “is there 

something wrong with the image?” or “What is abnormal about the 

lung?”, “Does the liver look normal?” 
 

Object/Condition 

Presence 
 

Objects could be normal structures like organs or body parts but 

could also be abnormal objects such as masses or lesions. Clinicians 
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may refer to the presence of conditions in an image or patient – 

fractures, midline shift, infarction 

Positional reasoning Position or location of an object or organ, including what side of a 

patient, in respect to the image borders, or relative to other objects 

in the image 

Color Signal intensity including enhancement or opaqueness 

Size Measurement of the size of an object, e.g., enlargement, atrophy 
 

Attribute Other Other types of description questions 
 

Counting Focusing on several objects, e.g., the number of lesions 
 

Other Catch-all categorization for questions that do not fall into the 

previous categories 
 

 

Answering questions based on medical images need to have an understanding of vision 

processing, natural language processing, and medical knowledge base. To enhance the 

medical-VQA understanding, some models employ knowledge-based reasoning for VQA. 

VQA models based on computer vision, such as classification and object detection, are 

not required to extract and understand the image information fully but are insufficient to 

answer relatively complex questions and mostly do well on closed-ended questions only. 

When medical-VQA (Abacha et al., 2019; Abacha et al., no date) compared with the 



26 
 

 

general daily life images-based VQA system, medical VQAs (Abacha et al., 2019) 

(Abacha et al., no date) is a much more complex and riskier task because medical 

questions are difficult to contextualize with images, and also requires to answer the answer 

very accurately as the health and wellbeing of the patient depend on. Medical-VQA 

(Abacha et al., 2019; Abacha et al., no date) systems should have the ability to handle the 

complexity and highly accurate performance simultaneously.  

 

Visual perception-based medical-VQA (Abacha et al., 2019; Abacha et al., no date) tasks 

such as recognition of modality, localization of particular lesions, or determining the 

normality of a patient's organ, require extraction of high-level features that can provide 

the reasoning to address the question. To answer the medical questions accurately, 

reasoning ability and medical domain knowledge are the prerequisites. Another great 

problem is the lack of an accurately labeled medical-VQA (Abacha et al., 2019; Abacha 

et al., no date) dataset for the Deep Learning based model training because labeling the 

images by a medical expert is difficult due to his inability to understand how the Deep 

learning model works that’s why it’s very laborious and expensive to obtain high-quality 

annotations by medical experts. 

 

Our VQA system is useful for Business medical intelligence, in which the system is used 

to extract insights from medical images to improve the efficiency and profitability of 

healthcare organizations, such as identifying trends in patient conditions or detecting 

patterns in treatment outcomes, also can be used to provide interactive, multimedia-based 
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training and education for medical students and residents, allowing them to learn and 

practice diagnostic skills using real-world medical images and can be integrated into 

telemedicine platforms, allowing doctors to remotely diagnose and treat patients using 

medical images, which can be particularly useful for patients in remote or underserved 

areas. So, in this way, the system will not only save 100 to 500 dollars for the patient but 

also examine the patient's radiographic image for each potential medical problem.  

 

This research helps businesses in the following ways: 

o Improved Diagnostic Accuracy  

o Improvements in Efficiency and Productivity  

o Cost Reduction  

o Knowledge Sharing and Collaboration  

o Continuous Learning and Improvement  

o Competitive Advantage  

o Augmented Decision-Making  

o Enhanced Patient Care and Experience 
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6.2 Research Problem 

 

Medical VQA can be very beneficial both for the medical community as well as for the 

patient in terms of cost and time reduction. Medical experts have a “reading fee” that they 

are charged to examine and diagnose any potential abnormality appearing on the radiology 

image.  For example, a radiologist in California charges around $100 to $500 for the 

interpretation of an image. Radiology images are captured by a radiology machine 

technician who charged a heavy image reading fee. So, if we can build such a system that 

just takes the radiology image and answers the questions. Through such a VQA system, 

images will not be examined just for one medical problem but can be examined against 

all the usual questions related to a particular part of the patient's body. In more simple 

words, the radiology image will be examined against each of the given questions, and now 

the patient can be examined for all the medical problems that can be determined from the 

radiology image of that particular body part.  

6.3  Purpose of Research  

Such a system can also be beneficial for hospitals because medical imaging is the basis of 

modern-day medical diagnosis, and hospitals have specialist doctors that see the medical 

image and determine the disease. Specialist doctors are the major cost for the hospital, and 

many hospitals cannot even afford specialist doctors for each domain. For example, a 

radiologist usually takes 20, 000 dollars per month in the USA, and this amount is very 

huge for developing countries. Such VQA systems have a huge economic impact on 

patients as their costs are reduced due to the cost-cutting of hospitals. Such a system will 
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be a healthcare facility for the unprivileged. Medical VQA can be very beneficial both for 

the medical fraternity as well as for the patient in terms of cost and time reduction. Medical 

experts have a “reading fee” that they are charged to examine and diagnose any potential 

abnormality appearing on the radiology image.  For example, a radiologist in California 

charges around $100 to $500 for the interpretation of an image. Radiology images are 

captured by a radiology machine technician and a heavy image analyst. analyst. reading 

fee. So, if we can build such a system that just takes the radiology image and answers the 

questions. Through such a VQA system, images will not be examined just for one medical 

problem but can be examined against all the usual questions related to a particular part of 

the patient's body. In more simple words, the radiology image will be examined against 

each of the given questions, and now the patient can be examined for all the medical 

problems that can be determined from the radiology image of that particular body part. 

So, this system will not only save 100 to 500 dollars for the patient but also examine the 

patient's radiographic image for each potential medical problem. 

6.4 Significance of the Study  

Such a system can also be beneficial for hospitals because medical imaging is the basis of 

modern-day medical diagnosis, and hospitals have specialist doctors that see the medical 

image and determine the disease. Specialist doctors are the major cost for the hospital and 

many hospitals even cannot afford specialist doctors for medical diagnosis. For this 

purpose, A medical VQA system has been developed for medical diagnosis. 
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6.5 Research Objectives 

A system of this nature can also prove advantageous for hospitals, as medical imaging 

plays a crucial role in contemporary medical diagnosis, and hospitals often have 

specialists who examine medical images and diagnose conditions. Specialized physicians 

are a significant expense for hospitals, and some hospitals may not have the financial 

resources to hire specialists for every field.  

In particular, the study has the following sub-objectives: 

• Open-ended questions are those that allow for a wide range of possible answers 

and can be used to generate natural language responses for medical questions 

answers. Closed-ended questions, on the other hand, have a limited set of possible 

answers and can be used for tasks such as medical image classification, where the 

goal is to provide a specific answer or perform a specific action. These questions 

are useful for tasks where the system needs to identify specific information or 

perform a specific medical task. 

• Our VQA system incorporates a multimodal input interaction, which means that it 

can process and understand multiple types of input, such as text and visual data, at 

the same time. This allows the system to better understand the question and the 

context of the image, and to provide a more accurate and relevant answer. 
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CHAPTER 2.  

REVIEW OF LITERATURE 

 

2.1 Preliminary Literature Review Objectives 

General Visual Question Answering (VQA) is a multifaceted Artificial Intelligence (AI) 

research problem. This multidisciplinary field combines the domains of Computer Vision, 

Natural Language Processing, and Knowledge Representation & Reasoning.  VQA 

datasets are composed of real-world images and some open or closed-ended questions 

against them. So, in VQA, primarily the merger of CV and NLP is used to understand the 

knowledge representation between both domains by transferring and correlating the 

knowledge space. VQA aims to answer the queries by extracting and then correlating the 

relevant visual information.  

 

General VQA contains real-world scenarios with natural language questions, but in 

Medical Question Answering (MQA), we are provided with medical images of the internal 

structures of patients. Medical Imaging (MI) is the domain of producing images of the 

internal vision of the patient's body; it can benefit clinicians in disease diagnosis. The MI 

helps the doctor visualize and analyze the patient’s physical conditions to diagnose and 

assess the irregularities. Different medical practitioners may interpret the same medical 

image differently. 
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Deep Learning Models (Goyal et al., 2017) are used to process complex data like medical 

images. Deep learning methods are available to extract relevant information from visual 

or textual data. In the context of medical imaging, a deep learning-based medical VQA 

should have two parts: the first part that can process medical images and extract relevant 

information, and the second part that can understand the question and answer by extracting 

the relevant information from the image. Such a medical-VQA system can help doctors 

in diagnosis, while patients can benefit from the medical-VQA system by getting a 

preliminary understanding of their body condition, cost-effective diagnosis, and can guide 

in choosing a more precise treatment plan. 

 

When it comes to medical VQA, several aspects should be kept in mind. There are 

multiple types of images available in the medical domain. Different types of modalities 

exist for medical images like X-ray, Radiology, CT, MRI, etc. An image may contain two 

or more types of irregularities if it is diagnosed by different field experts. The 

unavailability of enough data samples for training deep learning models also poses a 

problem. Moreover, general VQA networks are fine-tuned on the medical images, but 

medical images possess a great amount of complexity as compared to daily life images 

that demand a specific VQA architecture. In addition to the dataset and VQA network 

problems, there is also a massive vocabulary difference between general and medical 

question answering.  
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Existing medical-VQA systems (Zhan et al., 2020; Abacha et al., 2018) are based on 

transfer learning and exploit the existing deep learning-based VQA system by fine-tuning 

the pre-trained models on the comparatively smaller medical datasets that are pre-trained-

on the general datasets. However, there is a very great gap between the general and 

medical domains, both in terms of image structuring as well as the language of question-

answer pairs (Litjens et al., 2017). We have reviewed the state-of-the-art medical VQA 

systems and identified the challenges faced by them. 

 

6.6 Medical-VQA 

In general, VQA's state-of-the-art deep learning model has been used but (Goyal et al., 

2017) duly pointed out that more models exploit the language priors and ignore the visual 

information in images. VQA models initially employ classification, object detection, and 

segmentation to extract the relevant information, and knowledge-based reasoning is used 

to answer the questions, but in medical VQA due to the high complexity of medical data 

and relatively complex questioning. Med VQA is also risky because a patient's medication 

or treatment depends on the results that demand highly accurate results. VGGNet, ResNet, 

and Inception are used to extract visual information from images, while question-answer 

pairs related to the image are processed via Recurrent Neural Networks (RNN) such as 

Long Short-Term Memory (LSTM) (Greff et al, 2016) and Gated Recurrent Units (GRU) 

(Chung et al., 2014) are employed to encode the text representation and output the answer. 

However, the answers produced by these models are not complete sentences. Therefore, 

pre-trained GPT-3 (Brown et al., 2020) and BERT (Devlin et al., 2018) are used to 
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construct proper sentences. Fusion of the self-attention mechanism and another feature 

extractor may be used due to the versatility of this domain.  

 

The parallel structures ResNet152 (K. He & Sun, n.d.; Kathiravan Srinivasan, Lalit Garg, 

Debajit Datta, Abdulellah A. Alaboudi, N. Z. Jhanjhi, Rishav Agarwal, 2021) and Gate 

Recurrent Unit (GRU) (Merri, 2013) were used to extract local features of the image. Its 

goal was to save spatial features from images in various dimensions. The basic three-

channel images were then converted to separate-channel grayscale images and fed into 

the stacked GRU network to maintain the images' sequence feature information. Finally, 

the features extracted out of each layer of ResNet152 as well as the output of the GRU 

network were convolved to form complete image features. Moreover, the accuracy of 

predicted answers was not ideal. Although the model achieved cutting-edge performance 

and the results were less impressive. 

 

(S. Liu et al., 2022) proposed an innovative bi-branched method for medical visual 

questionaries (BPI-MVQA) based on the parallel network and image retrieval that can be 

used in various classification methods for multiple types of training data for the VQA-

Med. The first branch uses a transformer model, classified in parallel (Furfari(tony), 2002) 

to extract Image features. The second branch employs a method that retrieves image 

similarity and outputs the labels of relevant images as text descriptions. The pre-trained 

VGG16 network (Simonyan & Zisserman, 2015) was used in a novel method that removes 

the fully connected layer to output the feature representation of the image and then selects 
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the answer labels of relevant images by calculating the covariance of feature matrices of 

two images. This method enhances the precision of a portion of the test set data. 

 

(Pan et al., 2021) proposed the MuVAM model, which effectively solves medical VQA 

tasks. It was divided into three modules. In the first module for feature extraction, two 

feature extraction methods were utilized to obtain input images as well as question 

representation. Second, this study suggested a multi-view attention module to maximize 

the implementation of semantic information. which included word-to-text (W2T) 

attention and image-to-question (I2Q) attention, which investigated the potential influence 

of the image and word on the question. Third, a compound loss module was proposed to 

train the model to improve MuVAM's accuracy. This research consisted of image-

question-complementary (IQC) loss and classification loss. It was worth noting that the 

IQC loss used image representation and text semantics to collectively direct the question 

of the significance of learning to enhance the role of resemblance and weakened the 

difference in visual-text cross-modal attributes. This study's experiment corrected and 

completed the VQA-RAD dataset and created an enhanced dataset called VQA-RADPh 

to improve data quality Their results on these two datasets showed that MuVAM 

outperforms the state-of-the-art methods. 

 

6.7 Datasets 

Domain-specific datasets for the VQA system including image and related questions-

answer pairs are the core for utilizing the deep learning-based computer vision and NLP 
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models. To the greatest of our knowledge, the following medical VQA datasets are 

currently available for public use:  VQA-RAD (Lau et al., 2018), VQA-MED-2018 

(Hasan et al., 2018), VQA-MED-2019 (Abacha, Datla, et al., n.d.), PathVQA (He et al., 

2020), RadVisDial (Kovaleva et al., 2020), VQA-MED-2020 (Abacha, Datla, et al., n.d.), 

VQA-MED-2021 (Abacha, Datla, et al., n.d.; Abacha, Datla, et al., n.d.; Pelka et al., 

2021), and  SLAKE (Liu et al., n.d.). The following sections give an overview of the QA 

sets collection. Table. 3 shows the samples of medical images and QP pairs of various 

datasets, while Table 4. provides the summary of different datasets 

Table 4: Samples of medical images and QP pairs of various datasets. 

VQA-Med-

2018  

 

Q: how was this image 

taken? 

A: Xr - plain film 

 

 

Q: what 

imaging 

modality was 

used to take 

this image?  

A:mr-t1w 

w/gadolinium 

VQA-Med-

2019  

 

Q: what abnormality is 

seen in the image? 

A: inguinal hernia 

involving bl. 

 

Q: what organ 

systems can be 

evaluated with 

this MRI? 
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A: skull and 

contents. 

PathVQA  

 

Q:  What is the end of the 

long bone expanded in? 

A: Region of epiphysis 

 

Q: What shows 

a large and tan 

mass while the 

rest of the 

kidney has a 

reniform 

contour? 

A: Upper pole 

of the kidney 

RadVisDial  

 

Q: Fracture?  

A: Not in the report. 

 

Q: 

Pneumonia?  

A: Yes 
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VQA-RAD  
 

 

Q: What is the organ 

system? 

A: Gastrointestinal 

 

Q: What is 

abnormal in the 

gastrointestinal 

image? 

A: Gastric 

Volvulus. 

SLAKE  

 

Q: What is the function of 

the rightmost organ in this 

picture?  

A: Breathe 

  

VQA-Med-

2020  

 

Q: What is most alarming 

about this MRI? 

A: focal nodular 

hyperplasia 

 

Q: What 

abnormality is 

seen in the 

image?  

A: Enhancing 

lesion right 

parietal lobe 

with 

surrounding 

edema 
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2.3.1. VQA-Med-2018 

VQA-Med-2018 (Hasan et al., 2018) is the first available public data source in the medical 

domain and was proposed in Image CLEF 20183. A semi-automatic method was used to 

generate the QA pairs from the captions. Initially, a rule-based question generation (QG) 

method generated potential QA pairs by simplifying sentences, identifying answer 

phrases, generating questions, and ranking candidate questions. The produced QA pairs 

were then manually checked by two trained human annotators in two passes. One pass 

guarantees semantic correctness, while the other makes sure of clinical relevance to 

related medical images. 

 

2.3.2. VQA-RAD 

VQA-RAD (Lau et al., 2018) is a radiology dataset that was introduced in 2018. The 

image dataset is balanced, with MedPix5 samples from the head, abdomen, and chest. The 

images proposed to healthcare professionals to collect unsupervised questions to start 

investigating the question in a realistic incident. Health professionals must create 

questions including both template and free-form structures. Following that, the QA pairs 

are manually validated and classified to analyze the diagnostic focus. There are two types 

of answers: open-ended and closed-ended.  Despite its small size, the VQA-RAD data 

contains critical information regarding what a medical VQA process should be capable of 

answering as just an AI radiologist. 
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2.3.3. VQA-Med-2019 

VQA-Med-2019 (Abacha, Hasan, et al., n.d.)  is VQAMed's second edition, released 

during the ImageCLEF 2019 challenge. VQA-Med-2019 was motivated by VQA-RAD 

(Lau et al., 2018) and addresses the four most common question groups: modality, organ 

system, plane, and abnormality. The questions in each group follow the trends of hundreds 

of normally asked and validated questions within VQA-RAD (Lau et al., 2018). The first 

three groups (modality, organ system, and plane) seem to be classification problems, 

whereas the fourth (abnormality) is an answer to the generation challenge. 

 

2.3.4. RadVisDial 

RadVisDial (Kovaleva et al., 2020) is an open-source dataset for visual discussion in 

radiology. The visual discussion, which includes several QA pairs, is thought to be a 

practical and challenging problem for a radiology AI system such as VQA. The images 

were chosen from MIMIC-CXR (Johnson et al., 2019) and offered a well-structured 

applicable report with annotations for fourteen labels for each image. The RadVisDial is 

composed of two datasets: gold-standard and silver-standard. The dialogues in the silver-

standard group are generated synthetically from the plain text reports connected with 

every image. Each dialogue includes five questions chosen at random from a pool of 

thirteen possible questions. 

 

Each dialogue includes five questions chosen at random from a pool of thirteen possible 

questions. The respective answer is extracted automatically from the data source and is 
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restricted to four options (maybe, not mentioned, yes, no). To maintain consistency, the 

gold-standard cluster collects dialogues from two experienced radiologists' discussions 

using detailed annotation standards. Only 100 images at random are labeled as the gold 

standard. The RadVisDial data source investigated a real-world AI scene task in the 

medical field. Furthermore, the group compared synthetical dialogue to real-world 

dialogue and did experiments to demonstrate the significance of contextual information. 

The patient's medical history was also introduced, which improved accuracy. 

 

2.3.5. PathVQA 

PathVQA (He et al., 2020) is a data source that investigates VQA in pathology. The 

images with annotations are retrieved from digital resources (online libraries and 

electronic textbooks). The author created a semi-automated pipeline to generate the 

annotations into QA pairs, which are then manually examined and revised. What, when, 

where, how, whose, how many/how much, and yes/no are the seven categories of 

questions. Open-ended questions make up 50.2% of overall questions. The answers to the 

closed-ended "yes/no" questions are balanced, with 8,145 "yes" as well as 8,189 "no".  

The questions are based on the American Board of Pathology's pathologist certification 

examination (ABP). As a result, it is an exam to validate the "AI Pathologist" through 

decision support. The PathVQA (He et al., 2020) dataset shows how medical VQA can be 

used in a variety of scenes. 
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2.3.6. SLAKE 

SLAKE (Liu et al., n.d.) is a large dataset that includes both a structural medical and 

semantic labels knowledge base. The images are drawn from three open-source data 

sources (Kavur et al., n.d.; X. Wang et al., n.d.; Kavur et al., n.d.) and annotated by doctors. 

For visual objects, semantic labels for images focus on providing bounding boxes 

(detection) and masks (segmentation). The medical expertise is presented as a knowledge 

graph. and manually reviewed after being retrieved from Own Think. They are presented 

in the pattern of triplets like (Heart, Function, and Enhance blood flow).  

There are 2,629 triplets in Chinese and 2,603 triplets in English in the dataset. The use of 

a knowledge graph enables exterior knowledge-based questions including disease 

prevention and organ function to be answered. The questions are gathered from medical 

experts and doctors by choosing pre-defined questions. The questions are then classified 

by type and balanced to prevent bias. 

 

2.3.7. VQA-Med-2020 

VQA-Med-2020 (Abacha, Datla, et al., n.d.)  is the third edition of the VQA Med and was 

released as part of the ImageCLEF 2020 challenge. The images were chosen with the 

restriction that the prognosis was made based on the image information. The inquiries are 

as follows: Actually, addressing abnormality. A collection of 330 abnormality problems 

is chosen, with each problem making an appearance at a minimum of ten times in the 

dataset. Patterns are used to generate the QA pairs. Visual question generation (VQG) is 

presented to the medical domain for the first time in VQA-Med-2020. The task of the 
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VQG is to create natural language questions about the image content. The medical VQG 

dataset contains 1,001 radiology images with 2,400 questions. The dataset questions are 

created using a rule-based approach and manually revised based on the image 

descriptions. 

 

2.3.8. VQA-Med-2021 

VQA-Med-2021 (Abacha, Datla, et al., n.d.) has been accepted into the ImageCLEF 2021 

problem. The VQA-Med-2021 is based on the same principles and training dataset as the 

VQA-Med-2020. The validation set and test set are completely new and have been 

manually examined by medical doctors. 

 

2.3.9. Summary of VQA datasets 

 Table 5:Summary of VQA datasets 

Datasets 
# of 

Images 

# of 

QA 

Pairs 

Source 
QA 

Creation 
Category Question 

VQA 2.0 

(Parikh§., 

2017)  

204k 614k COCO (T. Y. Lin et 

al., 2014) 

Selected 

Manually 

• Object 

• Sport 

• Color 

• Count 
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VQA-Med-

2018 

(Hasan et al., 

2018) 
 

2866 6413 PubMed Central 

Repository 

Synthetic • Yes\No 

Questions 

• Location 

• Finding 

• Other 

Questions 

VQA-RAD 

(Cheng et al., 

2022; Lau et 

al., 2018)  
 

315 3515 MRIs 

- Chest X-rays 

- Abdominal axial 

CTs 

MedPix Repository 

- Head axial single-

slice  
 

Natural • Plane  

• Modality  

• Organ System 

• Abnormality 

• Object/Condition 

Presence 

• Positional 

reasoning  

• Color   

• Size   

• Attribute Other 

• Counting  

• Other 
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VQA-Med-

2019 

(Abacha et al., 

n.d.) 

4200 15292 MedPix database: 

- 10 organ systems, 

16 

Planes and Various 

in 36 modalities. 

Synthetical • Organ 

System 

• Plane 

• Modality 

• Abnormality 

RadVisDial 

(Gold-

Standard) 

100 500 

 

 

  

MIMIC-CXR 

(Johnson et al., 

2019): 

-posterior-anterior 

(PA) view of chest 

X-ray. 

Natural • Abnormality 

RadVisDial 

(Silver-

Standard) 

91060 45530

0 

MIMIC-CXR 

(Johnson et al., 

2019): 

-posterior-anterior 

(PA) view for chest 

X-ray. 

Synthetical • Abnormality 

PathVQA 

(He et al., 

2020) 

4998 32799 Electronic 

pathology 

textbooks from 

Synthetical • Shape 

• Color 
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PEIR Digital 

Library 

• Appearance 

Location 

• Etc 

SLAKE 

(B. Liu et al., 

n.d.) 

642 14000 NIH Chest X-ray 

(Wang et al., n.d.), 

Medical 

Segmentation 

Decathlon(Simpson 

et al., 2019), 

CHAOS(Kavur et 

al., n.d.):  

- Neck CTs  

- Abdomen 

CTs/MRIs 

- Chest X-rays/CTs  

- Head CTs/MRIs 

- Pelvic cavity CTs 

Natural • Quality 

• Organ 

• Knowledge 

Graph 

• Position 

• Modality 

• Abnormality 

• Plane 

• Color 

• Shape 

• Size 
 

VQA-Med-

2020 

4k 4k MedPix Repository Synthetical • Abnormality 
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(Abacha, 

Datla, et al., 

n.d.) 
 

VQA-Med-

2021` 

(Abacha, 

Datla, et al., 

n.d.) 

5k 5k MedPix Repository Synthetical • Abnormality 

 

2.4. Feature fusion techniques 

 

Feature fusion is also significant for VQA tasks because of the combination of image and 

text to give the correct answer. Fusion techniques have evolved from hierarchical co-

attention models to bilinear pooling (BLP). Bilinear Pooling (BLP) is developed for 

feature fusion from modalities predominantly developed for VQA models. A bilinear 

(outer product) has outperformed simple vector operations (concatenation & element-wise 

addition/multiplication) on VQA benchmarks. These techniques work better alongside 

attention mechanisms (Winterbottom et al., 2020). 

 

Multimodal Compact Bilinear (MCB) pooling fused the visual features with the textual 

features and then used these features for question answering. (Fukui et al., 2016) used 
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MCB pooling twice to answer the question and worked on the Visual7W dataset and the 

VQA challenge. Multimodal Local Perception Bilinear Pooling is proposed by (Lao et al. 

(2018), a novel multimodal feature fusion approach that retains the second-order 

interactions between visual and textual features with limited learning parameters. MLPB 

utilizes local perception mechanisms, transforming two high-dimensional raw features 

into multiple low-dimensional part features. They have reduced the computational cost by 

sharing the learning parameters of each local bilinear pool. 

 

The fusing of the textual and visual features proves to be beneficial in VQA, but it leads 

to high computational complexity and reduces its applicability practically. (Yu et al., 

2017) explore feature fusion to mitigate this problem. They developed Multi-modal 

Factorized Bilinear (MFB) Pooling for an effective combination of these features with co-

attention mechanisms.  

 

2.5. Fine-Tuned VQA Model 

(Zhan et al., 2020) proposed a conditional reasoning framework for medical VQA where 

the conditional reasoning module learned a different set of reasoning skills for open-ended 

and closed-ended questions. However, the reasoning for open and closed-ended questions 

was learned through separate training, and open-ended answers also lacked reasoning 

ability. (Abacha et al., 2018) used Stacked Attention Network (SAN) and Multimodal 

Compact Bilinear Pooling (MCB). SAN performed relatively better in medical VQA. 

(Pan, data and 2009; Brown et al., 2020) explained how existing systems used pre-trained 
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models on a larger dataset and then fine-tuned them on a comparatively smaller medical 

image dataset. But there is a gap between general and medical images as well as the 

question-answering pairs (Litjens et al., 2017). These approaches are not sufficient enough 

in the medical domain. 

 

Gong et al. (2021) used hierarchical feature extraction to capture multi-scale features of 

medical images, and data augmentation to deal with data limitation with a curriculum 

learning paradigm being used with label smoothing and ensemble learning. Most of the 

fine-tuned medical VQA models use pre-trained feature extractors that are trained on 

general image datasets, but medical datasets have different content as compared to general 

datasets like ImageNet. Such VQA systems regard the task as classification only instead 

of mapping the corresponding information into image and QA. A slight shift in the data 

distribution of images can result in regarding the performance when using pre-trained 

feature extractors and weights from the general domain.  

 

To learn bi-level image features for medical VQA from limited data, (Li et al., 2022) 

possessed an effective model BiRL. It used sentence-level rationale to extract fine-grained 

representations (Pan et al., 2021) from input questions and images, and token-level 

rationale to build a fine-grained multi-model vector that guided the model to adaptively 

filter the insignificant semantic representations of coupled questions and images. The 

model learned fine-grained semantic features from a limited scale of medical VQA data 

after combining the two rationale modules.  
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Furthermore, this study introduced the LDSM loss, to minimize generalization errors, 

bonded by smoothly changed label-margin bound in long-tailed label dispersion in 

medical VQA data. Empirical evaluation results on basic benchmark datasets revealed 

that the model performed better than state-of-the-art models, based on the standard 

PathVQA dataset and the VQA-Rad dataset, the suggested model achieved 0.5434 and 

0.7605 in accuracy, as well as 0.5288 and 0.7741 on F1-score, outperformed the state-of-

the-art benchmark models. 

 

For visual questions answering from radiology images, the CNN model for visual feature 

extraction and the Bidirectional Long Short-Term Memory (BiLSTM) model for feature 

extraction for textual data are the better choices. (Y. I. Jinesh Melvin, 2022) suggested a 

method that solved image classification problems using CNN and text classification 

problems using BiLSTM. This system aided in the feature extraction from radiology 

images and provided users with suitable answers to their questions, which should be both 

objective and descriptive. 

 

A visualization method with greater accuracy projected the answers as a benchmark that 

demonstrated the corresponding area with different colors and enabled them to mention 

the answers together in the visual method for the relevant questions. The benefit of this 

study was that the answers were traced back for more precision and potential treatments. 

The method of BiLSTM is to assign suitable weights for the radiological image based on 

the similarity measures of the question-and-answer pair. 
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2.6. Attention-based models. 

Attention mechanisms including self-attention, co-attention, and multi-head attention are 

widely used in transformer models for various text and image analysis tasks, such as image 

captioning (Devlin et al., 2018) and natural language models such as GPT-3 and BERT 

(A. Ben Abacha et al., 2019). (Devlin et al., 2018) introduced a new language 

representation model, BERT. It is designed to pre-train deep bidirectional representations 

from the unlabeled text by joint conditioning on both left and right contexts in all layers. 

It is to be fine-tuned with minimal changes. (Alsentzer et al., 2019) have discussed 

currently available language models ELMo and BERT to solve many NLP problems in a 

general context, but in the clinical domain, no pre-trained model yet exists. Med-BERT 

has released BERT models for domain-specific problems, particularly in the clinical 

domain. Brown et al. (2020) worked on scaling up the language model, particularly GPT-

3, to achieve strong performances on the NLP dataset for question-answering, translation, 

etc. 

 

The Stacked Attention Network (SAM) (Yang et al., 2016) uses the question feature as a 

query to apply attention to rank the image regions that are relevant to the answer. Relevant 

answers are generated progressively with the incursive attention and multi-layer 

architecture that make the network capable of querying the image multiple times. Such a 

VQA mechanism cannot be effective where the answer cannot be formed progressively. 

This network lacks the joint learning of multi-model input that is required in the medical 
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VQA due to its complex nature and the accuracy required. MMBERT (Khare et al., 2021) 

uses multi-head attention and tries to learn semantic representations. QA images and QA 

text are created by applying the Vision-language model to the images having related 

captions for QA text, but this network lacks the joint learning of multi-model input. The 

Encoder-decoder network (Yan et al., 2019) used CNN and BERT to get the image and 

QA textual representations. Image and textual representations are fused by using a co-

attention and fed to the decoder for answer generation. The Hierarchical co-attention VGQ 

model (Lu et al., 2016) reasoned about the image and questioned attention jointly where 

interpretable image and question regions were co-attended to generate the answer. 

Bilinear attention networks (Kim, Jun, and Zhang, 2018) have formed two separate 

attention flows for each modality and ignore the multimodal inputs. Bilinear attention used 

the visual and textual information smoothly to predict the answer. 

 

State-of-the-art attention mechanism frameworks that perform well on various vision-

textual tasks, including Modular Co-attention Networks and Transformer (Vaswani et al., 

2017), are not explored much for the medical VQA. Such networks offer a nice way to 

learn the richer representation jointly for multi-modal and multi-channel inputs. Hence, 

the usage of attention mechanisms in medical VQA still has huge potential to design a 

robust medical VQA system. 

 

Due to the lack of medical professionals worldwide, the large number of cases causes 

mental and physical fatigue, resulting in human errors during diagnosis. In such cases, 
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getting an additional opinion can help to boost the decision maker's confidence. As a 

result, having a dependable visual question answering (VQA) system and providing a 

second opinion on medical fields becomes critical. Moreover, often these VQA systems 

in use today are designed to solve real-world problems and aren't specifically designed to 

handle medical images.  

 

(Sharma et al., n.d.) created MedFuseNet, an attention-based multimodal for VQA on 

medical images that take into account the associated challenges. Besides having broken 

the problem statement into simpler parts and predicting the answer, MedFuseNet aimed 

to maximize learning while minimizing complexity. MedFuseNet tackled answer 

prediction in two ways: generation and categorization. This study used a comprehensive 

set of both qualitative and quantitative analyses to assess the performance of MedFuseNet. 

Results of experiments demonstrated that MedFuseNet outperformed state-of-the-art 

VQA approaches, and visualization of captured attention demonstrated the predictability 

of the MedFuseNet model's expected results. 

 

Computer-aided diagnosis has the potential to alleviate some of the present states of 

medical resource imbalance, and medical images are increasingly being used in medically 

assisted prognosis. The CGMVQA was proposed by (Ren et al., 2020) for answering 

questions based on medical images, except for previous work, the model was not limited 

to a single disease and can be applied to a variety of medical images and different organs. 



54 
 

 

In particular, the ImageCLEF 2019 VQA-Med data was used and split into 5 groups to 

simplify the complex problem, and a comprehensive model, such as answer generation 

capabilities and classification, was proposed. Because of the limited availability of data, 

this study used data augmentation on images and tokenization on texts. A pre-trained 

ResNet152 model was used to extract feature representations, and a global average 

pooling approach was applied to unify the dimensions of such features. The segment and 

position embedding layers were added together to deal with texts. To avoid the warm-up 

optimizer, text, tokens, and image features were integrated as input to the model, which 

used the pre-layer-normalization multi-head self-attention transformer. To ensure that the 

model can be executed on a single GPU, the parameters were reduced, and the embedding 

weight was shared.  

 

Getting a Surgical-VQA system like a trusted "second opinion" could serve as a backup 

and relieve the burden on medical experts in answering these questions. The research of 

VQA for surgical processes has been limited due to the absence of annotated medical data 

and the involvement of domain-specific aspects. (Seenivasan et al., 2022) designed a 

Surgical-VQA that answers surgical procedure questionnaires based on the surgical scene. 

By introducing two Surgical-VQA data sources with classification and statement answers, 

which extend the MICCAI (Medical Image Computing and Computer Assisted 

Intervention) endoscopic vision challenging problem 2018 dataset. Surgical-VQ 

performed by vision-text transformer models and residual MLP-based VisualBert encoder 

used that imposes interaction among text and visual tokens, enhancing classification-
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based answered performance. By incorporating a cross-token sub-module, the VisualBert 

encoder surpasses the vision-text attention encoder model. The impact of the model's 

performance on the input image patches and the integration of temporal visual features 

are also discussed. During Surgical-VQA answers to the less-complex questionnaire; from 

an application perspective, this study allowed for the possibility of integrating open-ended 

questions in which the model was trained to respond to surgery-specific complex 

questions. In addition, study the impact of the input image patches and temporal visual 

attributes on model performance in classification and sentence-based answering. 

 

To train the VQA system, only images and questions were used, and they were categorized 

based on the results of the "[CLS]" position. Except for abnormality, the classification 

model applies to other categories. Data imbalance has an impact on this model. Answers 

to an abnormality category were generated using questions, images, and masked answers. 

By looping, the generative model predicted the sequence. The number of data limits the 

generative model's output.  Strict accuracy, semantic similarity, and inward matching were 

adopted as evaluation metrics. On ImageCLEF 2019 VQA-Med data, the proposed model 

produced state-of-the-art results with a 0.659 BLEU score, 0.640 accuracies, and a 0.678 

WBSS score.  

 

2.7. Summary of the proposed VQA systems 

Table 6 provides a summary of the proposed VQA systems. 
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Model Language 

Encoder 

Image 

Encode 

Fusion Attention Output Mode Language 

score 

Acc 

VQA-MED-2018 

FSST (Imane 

Allaouzi et 

al., n.d.) 

Bi-LSTM VGG16 Concatenation N0 Classification 0.054 
 

TU (Zhou, 

Kang, Notes), 

& 2018, n.d.) 

Bi-LSTM Inceptio

n-

Resnet-

v2 

Attention 

mechanism 

Yes Classification 0.135 
 

UMMS 

(Peng et al., 

n.d.) 

LSTM ResNet-

152 

MFB using 

Co-attention 

Yes Classification 0.162 
 

JUST 

(Talafha et 

al., n.d.) 

LSTM VGGNet Concatenation No Generation 

(LSTM) 

0.016 
 

Chakri 

(Ambati et 

al., n.d.) 

GRU VGG16 Element-wise 

multiplication 

No Generation 

(GRU) 

0.188 
 

NLM 

(Rajaraman 

et al., 2018) 

LSTM VGG16 SAN Yes Classification 0.121 
 



57 
 

 

VQA-MED-2019 

MedFuseNet 

(Sharma et 

al., n.d.) 

LSTM ResNet-

152 

MedFuseNet Yes Classification & 

Generation 

(LSTM) 

0.27 0.789 

UMMS  

(Shi et al., 

n.d.) 

Bi-LSTM ResNet-

152 

MFH with 

Co-attention 

Yes Classification 0.593 0.566 

Techno 

(Z. Lin et al., 

n.d.) 

LSTM VGG16 Concatenation No Classification 0.486 0.462 

IBM 

Research AI 

(Kornuta et 

al., n.d.) 

LSTM VGG16 Attention-

Mechanism 

Classification 

Yes Question 

Classifier 

0.582 0.558 

MMBERT 

(Kornuta et 

al., n.d.) 

Transfor

mer 

ResNet-

152 

Multi-Head-

Attention 

Yes Generation 

(Transformer) 

0.69 0.672 
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Hanlin (Al-

Sadi et al., 

n.d.) 
 

Transfor

mer 

VGG16 MFB with 

Co-attention 

Yes Classification 0.644 0.62 

JUST19 

(Al-Sadi et 

al., n.d.) 

LSTM VGG16 None No Classification/Ge

neration (LSTM) 

0.591 0.534 

KEML 

(Zheng et al., 

2020) 

Transfor

mer 

VGG16 Block No Classification 0.912 0.938 

TUAI (Zhou, 

Kang, Notes), 

& 2019, n.d.) 

Transfor

mer 

Inceptio

n-

Resnet-

v2 

QC-MLB Yes Classification 
 

0.603 

LIST (I 

Allaouzi et 

al., n.d.) 

LSTM DenseNe

t-121 

Concatenation No Generation 

(LSTM) 

0.583 0.556 

VQA-MED-2020 

NLM (Notes) 

& 2020, n.d.) 

None ResNet-

50 

None No Classification 0.441 0.4 
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kdevqa 

(Umada et al., 

n.d.) 

Transfor

mer 

VGG16 GLU No Classification 0.35 0.314 

Shengyan (S. 

Liu et al., 

n.d.)  

GRU VGG16 None No Generation 

(GRU) 

0.412 0.376 

HCP-MIC 

(Chen et al., 

n.d.) 

Transfor

mer 

BBN-

ResNeSt

-50 

None No Classification 0.462 0.426 

Bumjun_jung 

(Jung et al., 

n.d.) 

Transfor

mer 

VGG16 MFH with 

Co-attention 

Yes Classification 0.502 0.466 

VQA-MED-2021 

TAM  

(Y. Li et al., 

2021) 

LSTM  Modifie

d 

ResNet-

34 

MFB with co-

attention 

Yes Classification 0.255 0.222 

Lijie (J. Li et 

al., 2021) 

Transfor

mer 

VGG8 MFB with co-

attention 

Yes Classification 0.352 0.316 
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SYSU-HCP  

(Gong et al., 

2021) 

None ResNets, 

plus 

HAGAP

, and 

VGGNet

  

None No Classification 0.416 0.382 

Sheerin  

(Sitara et al., 

n.d.) 

LSTM VGGNet Element-wise-

Multiplication 

No Generation 

(LSTM) 

0.227  0.196 

IALab_PUC 

(Schilling et 

al., n.d.) 
 

None DenseNe

t-121 

None No Classification 0.276  0.236 

VQA-RAD 

MMQ (Do et 

al., 2021)  
 

LSTM MMQ BAN/SAN Yes Classification 
 

0.67 

HQS  

(Gupta et al., 

n.d.) 

Bi-LSTM Inceptio

nResnet-

v2 

Concatenation No Classification 0.411 
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CPRD  

(B. Liu et al., 

2021) 

LSTM ResNet-

8 

BAN Yes Classification 
 

0.727 

QCR  

(Zhan et al., 

2020) 
 

LSTM MEVF BAN/SAN Yes Classification 
 

0.716 

HQS (Gupta 

et al., n.d.) 

Bi-LSTM Inceptio

n-

Resnet-

v2 

Concatenation No Classification 0.411 
 

MEVF 

(Nguyen et 

al., 2019) 
 

LSTM MEVF BAN/SAN Yes Classification 
 

0.627 

SLAKE 

CPRD (B. 

Liu et al., 

2021) 
 

LSTM ResNet-

8 

BAN Yes Classification 
 

0.821 

PathVQA 
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2.8. Summary 

 

Most of the existing work is focused on general VQA and medical VQA is an emerging 

field so the system should be designed to particularly address the problems in these 

medical images. Transfer learning, or fine, is used extensively in deep learning. However, 

A change in data distribution can affect the performance when pre-trained weights. and 

feature extractors are trained on general image datasets like ImageNet and MS COCO. In 

addition to this, there is a greater co-occurrence diversification of words in both medical 

text and general domain text. These factors motivate the need for an attention-based model 

and a time-based transformer to learn effective representations. From the above details, 

we can conclude that medical VQA has huge potential in the medical domain. However, 

only transfer learning and fine-tuning of the deep learning models will not be enough 

given the complexity and life-critical nature of the domain.  

 

MMQ (Do et 

al., 2021) 
 

LSTM MMQ BAN/SAN Yes Classification 
 

0.488 

MedFuseNet 

(Sharma et 

al., n.d.) 
 

LSTM ResNet-

152 

MedFuseNet Yes Classification/ 

Generation 

(LSTM) 
 

0.605 
 

0.636 
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CHAPTER 3.  

METHODOLOGY 

 

3.1  Overview of the Research Problem 

 

Medical VQA can be very beneficial both for the medical community as well as for the 

patient in terms of cost and time reduction. Medical experts have a “reading fee” that they 

are charged to examine and diagnose any potential abnormality appearing on the radiology 

image.  For example, a radiologist in California charges around $100 to $500 for the 

interpretation of an image. Radiology images are captured by a radiology machine 

technician who charged a heavy image reading fee. So, if we can build such a system that 

just takes the radiology image and answers the questions. Through such a VQA system, 

images will not be examined just for one medical problem but can be examined against 

all the usual questions related to a particular part of the patient's body. In more simple 

words, the radiology image will be examined against each of the given questions, and now 

the patient can be examined for all the medical problems that can be determined from the 

radiology image of that particular body part. So, this system will not only save 100 to 500 

dollars for the patient but also examine the patient's radiographic image for each potential 

medical problem.  
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Such a system can also be beneficial for hospitals because medical imaging is the basis of 

modern-day medical diagnosis, and hospitals have specialist doctors that see the medical 

image and determine the disease. Specialist doctors are the major cost for the hospital, and 

many hospitals cannot even afford specialist doctors for each domain. For example, a 

radiologist usually takes 20, 000 dollars per month in the USA, and this amount is very 

huge for developing countries. Such VQA systems have a huge economic impact on 

patients as their costs are reduced due to the cost-cutting of hospitals. Such a system will 

be a healthcare facility for the unprivileged. Medical VQA can be very beneficial both for 

the medical fraternity as well as for the patient in terms of cost and time reduction. Medical 

experts have a “reading fee” that they are charged to examine and diagnose any potential 

abnormality appearing on the radiology image.  For example, a radiologist in California 

charges around $100 to $500 for the interpretation of an image. Radiology images are 

captured by a radiology machine technician and a heavy image analyst. analyst. reading 

fee. So, if we can build such a system that just takes the radiology image and answers the 

questions. Through such a VQA system, images will not be examined just for one medical 

problem but can be examined against all the usual questions related to a particular part of 

the patient's body. In more simple words, the radiology image will be examined against 

each of the given questions, and now the patient can be examined for all the medical 

problems that can be determined from the radiology image of that particular body part. 

So, this system will not only save 100 to 500 dollars for the patient but also examine the 

patient's radiographic image for each potential medical problem. 
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3.2 Methodology  

3.2.1. Multimodal Interaction through Transformers 

 

As shown in Figure 1, this study proposes a multimodal Transformer VQA model which 

is a composition of three modality forms including medical images and question-answer 

pairs input. EfficientNet is used as the feature extract to get the image embedding, while 

Bidirectional Encoder Representations from Transformers (BERT) is used to extract the 

text embedding from the question and answer. Multimodal representation interaction is 

performed with two transformers having multiple layers where one transformer is for 

inter-modality input representation and the other Transformer is for intra-modality input 

representations. Trilinear Interaction Attention (TrI-Att) fusion Transformer for the Inter-

modality representations interaction, while self-attention for the intra-modality 

representation interaction (Yu et al., 2019). Then a guided-attention is used to learn inter-

association between the question hyperedge and knowledge (image and answer modality) 

hyperedge. Finally, representations obtained from the attention layer are fed into a feed-

forward layer (FFL) to make a joint representation and that representation is fed to the 

answer predictor for producing the answer. Guided attention and self-attention blocks are 

used within the transformer encoder for the prediction of the answer with the answer 

predictor in an output layer. Figure 2 shows the inference stage of the proposed VQA 

network. 
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3.3  Embeddings Extraction of Single Modality 

3.3.1. Images Embeddings 

The image embedding is obtained from the regional visual features extractor called 

EfficientNet (Koonce, 2021). In respect of specifications, it generates the vector of the dv 

dimensions for every item. The embedding matrix V ∈ Rvxdv is used to represent an image 

 

2: Research methodology of Training VQA-System: Multimodal Transformer VQA model, the composition of three 
modality forms including medical images and question-answer pairs input. EfficientNet is used for feature extraction 
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to get the image embedding, while Bidirectional Encoder Representations from Transformers (BERT) is used to extract 
text embedding from question and answer. Trilinear Interaction Attention (TrI-Att) fusion Transformer for the Inter-
modality representations interaction, while self-attention for the intra-modality representation interaction. Then a 
guided-attention is used to learn inter-association between the question hyperedge and knowledge (image and answer) 
hyperedge. Representations obtained from the attention layer are fed into FFL to make joint representation and that 
representation is fed to the answer predictor for producing the answer. Guided attention and self-attention blocks are 
used within the transformer encoder for the prediction of the answer with the answer predictor in an output layer.  

of v objects. The EfficientNet is the convolution neural network design and scalability 

methodology that utilizes the compounded coefficient to adjust the depth, width, and 

resolution dimensions evenly. The Efficient Net scalability technique consistently 

increases network performance. breadth, depth, and resolution with a set of preset 

scalability coefficients contrasting with the standard practice of adjusting various 

parameters randomly (Tan et al., 2019). Figure 3 shows the layered architecture of 

EfficientNet. 

 

Figure 3: EfficientNet Architecture 

3.3.2 For embeddings of questions and answers 

The absence of sufficient training data is one of the main problems facing NLP. Although 

there is a vast quantity of text data available overall, we must divide it up into many 

different fields to build task-specific datasets. We only have a few thousand to a few 

hundred thousand human-labeled training examples after doing this. Unfortunately, deep 

learning-based NLP models need a lot more data to function well; they significantly 

improve when trained on millions or billions of annotated training instances. Researchers 
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have created a variety of methods for training general-purpose language representation 

models using massive amounts of unannotated content on the web to fill up this data gap 

(this is known as pre-training). When working with issues like the question.

 

Figure 4: Inference stage for testing VQA-System: In this section, the composition of two modality forms including 
medical images and question input. EfficientNet is used for feature extraction to get the image embedding, while 
Bidirectional Encoder Representations from Transformers (BERT) is used to extract text embedding from the question. 
Trilinear Interaction Attention (TrI-Att) fusion Transformer for the Inter-modality representations interaction, while 
self-attention for the intra-modality representation interaction. Representations obtained from the attention layer are 
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fed into FFL to make joint representation and that representation is fed to the answer predictor for producing the 
answer in an output layer. 

answering and sentiment analysis, for example, these general-purpose pre-trained models 

can subsequently be fine-tuned on smaller task-specific datasets. When compared to 

starting from zero and training on smaller task-specific datasets, this method significantly 

increases accuracy. In the deep learning field, BERT, a relatively new addition to these 

techniques for NLP pre-training, generated a stir because it demonstrated cutting-edge 

outcomes in a range of NLP tasks, including question answering. 

 

We use the BERT (Bidirectional Encoder Representations from Transformers), which is 

a state-of-the-art model used to deal with multiple NLP tasks. It was developed by Google 

(Devlin et al., 2018) to fine-tune our textual extraction. BERT is dependent on a 

Transformer (the attention mechanism that learns contextual relationships between words 

in a text). An encoder to read the text input and a decoder to create a prediction for the 

task make up a basic Transformer. Since the objective of BERT is to produce a language 

representation model, just the encoder portion is required. A series of tokens that are first 

transformed into vectors and then processed by the neural network make up the input to 

the BERT encoder. Specifically, the content is initially converted into Word Piece 

embedding. Each embedding is then projected onto Rdq  or Rda , for question and answer, 

respectively, by fine-tuning. The final representation of the question with a maximum 

length of q is Q ∊ Rq x dq, and the equivalent for the answers is A ∊ Ra x da. 
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Word embeddings are the representation of words in a machine-understandable numeric 

format. The simplest illustration is (Yes, No) expressed as (1, 0). But this may not be the 

most effective technique to represent words and sentences when working with vast texts 

and corpora. The co-occurrences of terms and their probabilities are crucial for huge 

corpora. Word Piece Embeddings of 30,000 token vocabularies are used by BERT. Every 

sequence always starts with a particular classification token as the first token ([CLS]). For 

classification tasks, the last hidden state matching this token is used as the aggregate 

sequence representation. A single sequence has several sentence pairings. Sentences are 

distinguished by a unique token ([SEP]), and each token is given a learned embedding 

indicating whether it belongs to sentence A or sentence B. The input representation for a 

particular token is built by adding the relevant token, segment, and position embeddings. 

These inputs are used to pre-train BERT for tasks like next-sentence prediction and 

masked language modeling. The architecture of BERT, however, makes it inappropriate 

for unsupervised tasks like clustering and information retrieval via semantic search as well 

as for tasks like semantic similarity search. BERT has revolutionized several NLP 

applications. 

 

3.4  Theoretical Procedure 

3.4.1. Inter-modality Representations with Trilinear Interaction Attention 

The visual questioning and answering attention method is a successful technique. And 

attention mapping for the trilinear inputs is calculated through PARALING 

deconstruction with respect to the trilinear feature fusion. Nevertheless, the outcome is 
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just a classification combined matrix. We proposed Trilinear Interactive Attention to 

improve every individual modality (image, question, and answer) depiction by merging 

other modalities (TrI-Att). Furthermore, while self-attention cannot fuse different 

modalities, it can improve the interaction between them (Yu et al., 2019). 

 

We design trilinear interaction. Attention to projecting the single-modality embeddings 

into an inter-modality improved environment for improved cross-modality data fusion as 

shown in Figure 3. The attention mechanism was influenced by how the human brain 

manages attention. Think of attending a party. Even if your name is lost in the background 

noise, you can still hear it being said on the other side of the room. Your brain can filter 

out all unimportant information and concentrate only on the things it deems significant. 

Queries, keys, and values aid in facilitating attention in transformers. A key is a label for 

a word that is used to identify one word from another. Query, look through all the keys 

that are offered, and choose the one that matches the best. It so signifies a live request for 

a specific piece of information. Value, key, and values are always presented in pairs. When 

a query matches a key, the word's value rather than the key itself spread. The knowledge 

that a word conveys is its value. 

 

Let S = V, Q, and A be the multimodal information collections from the previous section 

(single modality embedding extraction). To begin, we present the M ϵ Rvxqxa  attention map, 

which is primarily generated using matrix multiplication as well as sum-based down 

sampling. The following is a detailed calculating procedure: 
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                                               𝑴𝑴 = 𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔(∑𝒅𝒅𝒗𝒗∑𝒅𝒅𝒒𝒒∑𝒅𝒅𝒂𝒂𝒂𝒂⊗𝑸𝑸⊗𝑨𝑨
√𝒅𝒅

) 

 where d is the arithmetic mean of dv, dq, and da, and softmax is an operation that 

normalizes all of the elements in M. Second, the attention map f is combined with the 

fusion of preliminary single-modality as follows: 

                       𝒇𝒇𝒇𝒇 =  ∑𝒒𝒒  ∑𝒂𝒂 𝑴𝑴𝑴𝑴  =  𝑻𝑻𝑻𝑻𝑻𝑻 − 𝑨𝑨𝑨𝑨𝑨𝑨𝒗𝒗(𝑽𝑽,𝑸𝑸,𝑨𝑨) …… Eq. 1. 

Here, we use image representation V as an example (questions and answers are identical), 

and the fusion operation is comparable to Eq. 1. By adding a linear mapping with every 

single-modality representation, we further improve the robustness using the attention 

mechanism (Vaswani et al., 2017). In particular, the inter-modality fusion calculation is 

as follows: 

                                    fV = |iNh | TrI-AttVi (VWiv, QWiQ, AWiv) …… Eq. 2. 

where the multi-head linear mappings WVi, WQi, and WAi are shared by the three types of 

representations. The number of heads is Nh. The symbol | | denotes the concatenation of 

every multi-head. Likewise, the fusion representations of the questions and answers are 

as follows:         

                                 fQ = |iNh |TrI-AttQi (VWiv, QWiQ, AWiv) 

                                 fA = | iNh |TrI-AttAi (VWiv, QWiQ, AWiv) …… Eq. 3. 

The next step is a feed-forward network with a residual connection that is 

completely connected. 
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3.4.2.  Intra-modalities representation with Self-Attention 

To represent an intra-modality relationship, we would use the Transformers encoder 

(Vaswani et al., no date). The multi-head self-attention method is used, accompanied by the 

feed-forward network with the remaining link. We use the Transformer encoder (Vaswani 

et al., 2017) to record the intra-modality (relationships within the modalities). After 

deploying a feed-forward (FF) network with residual connection, we deploy a multi-head 

self-attention mechanism. With the input potential X ∈ R n x d, as a result of the multi-head 

self-attention works as, 

                              |iNh |Self-AttM(X)= |iNh | softmax (𝑿𝑿𝑿𝑿
𝑻𝑻

√𝒅𝒅
)XWiM …… Eq. 4. 

where the projection matrix for WiM ∈ Rn x dh a particular modality M inside its head This 

method can increase the reliance on long distances among the multiple modes while 

weakening the negative influence on the outcome to some extent. 

 

3.4.3. Self Attention 

Consider how the sequence of tokens is fed into the attention-pooling so that the same 

sequence of tokens serves as inquiries, keys, and responses. Every query, in particular, 

responds to every key-value pair and produces a single attention output. Self-attention (Lin 

et al., 2017), also known as intra-attention, is performed because the searches, keys, and 

values all originate from the same location. Figure. 4 shows the Connectionist scheme of 

self-attention.  
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The searches, keys, and values in the self-attention are all (n X d) matrices. Considering 

scaled dot-products attention, which multiplies the (n x d) matrix by the (d x n) matrix, 

then multiplies the resultant (n x n) matrix by the (n x d) matrix, as a consequence, the 

computational complexities of self-attention are O(n2d). Every token is immediately 

related to any other token via self-attention. As a result, parallel processing is possible 

with O (1) sequential operations, and the maximum path length is also O (1). 

 

Self-attention abandons sequential processes in favor of parallel computations by 

processing tokens of the sequence one by one on a regular basis. By introducing 

positioning encoding to input representations, we would inject absolutely or relatively 

positional information to leverage sequence order information. It is possible to learn and 

fix positional encodings. We would describe the fixed positional encodings based on the 

sine and cos functions in the following (Vaswani et al., n.d.). 

 

 

Figure 5: Self-Attention 
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Self-Attention enhances the semantics of the intermediate conceptions by allowing 

attention to the intra-modality and inter-modality aspects. It entails translating query 

vectors to weighted combinations of value-vectors, with the weights produced by 

multiplying the query and key vectors' dot product. In matrices Q, K, and V, query, key, 

and value vectors are all expressed simultaneously. The inversion of the dot-product of Q 

is dk, wherein dk is a dimension of the question and key vectors. Several self-attentions 

(multi-head attention) are performed simultaneously by an encoder, and the output is 

concatenated. By responding to multiple representation subspaces at various positions, 

multi-head attention improves representation. 

 

During this phase, the input image will be fed to Efficient Net, while questions and 

answers will be gone through pre-trained BERT to generate image and text embedding 

respectively. Then, embedding will be passed through trilinear attention to combining 

multimodal input. After that, individual and combined input will be passed through 

residual MLP followed by the self-attention layers. The output of the last residual MLP 

will be fed to the Transformer encoder and eventually to the output layer to predict the 

answer. During the interface, only images and questions will be fed as input, and answers 

will be output. 

 

3.4.4. Feed-Forward Network 

The feed-forward network (FFN) module implements a point-wise non-linear 

transformation on the extracted feature of the self-attention module using a two-layer 
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MLP model. The transformed features F ∈ Rn x d are extracted as follows from the input 

features X ∈ Rn x d:  

                          F = FFN(X) = ReLU (XWi+ b1)W2T + b2  …… Eq. 5. 

Here the W1, W2∈ RD×4D.  

A feed-forward neural network (Figure. 5) is a type of artificial neural network in which 

there is no cycle in the connections between the nodes. A recurrent neural network, in 

which particular paths are cycled, is the reverse of a feed-forward neural network. Since 

the input is only processed in one direction, the feed-forward model is the simplest type 

of neural network. Although the data may flow via several buried nodes, it always 

proceeds forward and never backward. A single-layer perceptron is a common example 

of a feed-forward neural network in its most basic configuration. Several inputs are 

introduced into the layer in this model and multiplied by the weights. The weighted input 

values are then summed together to produce a total. The value produced is frequently 1, 

and if the sum of the values is below the threshold, the output value is -1. The threshold 

is typically set at zero. In classification tasks, the single-layer perceptron is a crucial feed-

forward neural network model. Single-layer perceptron can also contain some features of 

artificial intelligence. 

 

The neural network may compare the outputs of its nodes with the desired values using a 

property known as the delta rule, which enables the network to train its weights to create 

more accurate output values. This learning and training procedure results in gradient 

descent. Although the process of updating weights in multi-layered perceptron is almost 



77 
 

 

comparable, it is more formally known as back-propagation. In these circumstances, the 

network's hidden layers are each changed in accordance with the output values generated 

by the output layer. 

 

                                Figure 6: Samples feed-forward network of Multi-Layer-Perceptron (MLP) 

 

3.4.5. Transformer Encoder 

 

Transformer is a revolutionary architecture that is introduced in the paper (Vaswani et al., 

n.d.) It employs the attention mechanism we already saw, as the title suggests. 

Transformer is an architecture for converting one sequence into another, much like LSTM. 

A novel guided and self-attention mechanism is used in this Transformer encoder network. 
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3.4.6. Guided Attention Blocks 

 

We first embed an answer hyperedge and a question hyperedge in the manner described 

below to understand inter-association among two hypergraphs: h[.] is a ϵ[.] hyperedge 

through and ek = Фk0 fk (hk)∈ Rd, while еq= Фq0 fq (hq)∈ Rd. Here, the linear projection 

function and the hyperedge embedding function are both present. We use a 

straightforward concatenation process of node representations inside a hyperedge as  f[.] 

even though the design and implementation of  f[.]  are not restricted (e.g., any pooling 

process or any trainable neural networks). The representations of the same hypergraph's 

hyperedges (such as ek and eq) are crammed into a matrix called Eq and Ek. 

As just a query and key-value pair, respectively, we describe the answer hyperedges Ek 

and the question hyperedges Eq. All representation matrices W[.]  R ddv are trainable 

parameters, so we set a query Qk= EKWQk, a key Eq= EqW kq, and a value Vq= EqWVq. 

When the query, key, and value have been used, the scaled dot product attention is 

calculated as Attention (Qk , Kq,Vq)= Vq softmax (𝑸𝑸𝒌𝒌 𝑲𝑲𝑲𝑲𝑻𝑻
�𝒅𝒅𝒗𝒗

) Vq, where dv is the dimension 

of the query and the key vector. Additionally, guided attention is decided to carry out 

correspondingly question hyperedges as the query and answer hyperedges as key-value 

pairs: (Qk , Kq,Vq). 

 

3.4.7. Self-Attention Blocks  

The only distinction between guided attention and self-attention is that during self-

attention, the same input is used for both the key-value query. As an illustration, we fixed 
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the query, key, and value based on the information hyperedges Ek, and Attention is used 

to perform the information hyperedges' self-attention (Qk , Kk,Vk). Self-attention is carried 

out similarly for question hyperedges Eq: (Qq , Kq, Vq). The self-attention block and the 

guided-attention block were constructed with the transformer's standard architecture, with 

each block consisting of a single FF layer, layer normalization, and each attention 

function. The representations of answer hyperedges and question hyperedges are modified 

and finally concatenated to a separate vector representation as zk ∈ Rdv and zq ∈ Rdv, 

respectively, by transferring the self-attention blocks and guided-attention blocks in order. 

 

3.4.8. Answer Predictor 

 

To make a combined representation z to predict the answer, we initially combine the 

representations zkand zq acquired from the attention blocks and feed them into a single 

FF layer (for example, R2dv ↦ Rw). Then, we take into account two different answer 

predictor types: the MLP and the answer predictor based on similarity. For visual 

question-and-answer challenges, the MLP, or p = ψ(z), is frequently used. 

For the answer based on similarity, we determine the dot product similarity p = zCT among 

the input z and the answer candidate set C ∈ R|A | X w w, here |A| is the total number of 

candidate answers and w is the representational dimension for every answer. The answer 

from answer candidates that most resemble the joint representation is chosen as the 

answer. We don't annotate the ground-truth logic paths during training; instead, we only 
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use supervision from QA sets. Cross-entropy in between prediction p and the ground truth 

t is used as a loss function to achieve this. 

 

3.5  Data Analysis 

Firstly, we have PathVQA (He et al., 2020). This dataset has a total of 4,998 images and 

32,799 pairs of question answers (QA pairs). All questions and answers are about color, 

location, appearance, and shape. The second source of datasets is the MedPix database, 

which contains head axial single-slice CTs, chest X-rays, and abdominal axial CTs. This 

dataset has 315 images with 3515 QA pairs. The nature of these question answers is 

natural, and it talks about the color size and position etc. (Abacha et al. 2019). The third 

source of datasets is the MedPix database, which contains 4,200 images and 15,292 QA 

pairs. The nature of this available dataset is synthetical, and it talks about the abnormality, 

plane, organ system, and modalities. (Abacha et al., 2019). The fourth source of datasets 

is the chest X-ray posterior-anterior (PA) view, which contains 91,160 images and 

455,800 QA pairs. The nature of this available dataset is synthetical, and it talks about the 

abnormality. (Kovaleva et al., 2019) The final source of datasets is the MedPix database, 

which contains 5000 images and 5000 QA pairs. The nature of this available dataset is 

synthetical, and it talks about the abnormality. (Abacha et al., 2019).  
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CHAPTER 4.  

RESULTS 

 

4.1 Experiments 

 

For the effective initialization of the proposed model, pre-training is carried out on the 

PathVQA and VQARAd datasets where the pre-training data format is a triple comprising 

the image, question, and answer for the trilinear model of the VQA system. While pre-

train of Trilinear Interaction Transformer on the PathVQA and VQARAd, the question-

and-answer pair is masked with a probability of 15%. In these masked tokens, sign 

[MASK] is substituted for 80% of them, 10% are preserved, and the remaining 10% are 

changed to random tokens. For the downstream task of VQA, the whole network is then 

trained on the med-VQA 2019 and Med-VQA 2022 datasets. 

 

4.2 Hardware Set-up 

 

In this study, we use PyTorch, which is an open-source machine learning library used to 

provide a dynamic computational graph, which allows users to change the graph on the 

fly during runtime, as opposed to a static computational graph. PyTorch also includes 

support for CUDA, which allows for the use of GPUs to accelerate computations to 

execute all of our experiments, so we are reliant on the API's available optimizations. We 

time the inference on three different hardware platforms, each of which corresponds to a 
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different use cases, to acquire more accurate timings: 

One NVIDIA 1080 Ti GPU with a peak performance of 12 TFLOP/s. This training 

accelerator is standard. 

A CPU with 64GB memory capacity and 9th generation Intel Core i7. This is a typical 

data center server that processes feature extraction on incoming image feeds. Using MKL 

and AVX2 instructions, PyTorch is well suited for this arrangement (16 vector registers 

of 256 bits each).  

 

To simulate typical use cases on the GPU, we run timings on big image batches. We fine-

tune to setting the parameters for the optimal performance on each GPU platform. We 

employ the largest strength batch size that resides in memory. To simulate a situation 

where multiple threads are processing various input image streams; we estimate inference 

time on CPU systems in a thread. Since it is challenging to separate the effects of the 

hardware and software, we test several network optimization techniques using common 

PyTorch tools (the just-in-time compiler, and various optimization profiles). 

 

4.3 Datasets and Evaluation Metrics           

4.3.1. Dataset:   

As we know in deep learning models, we need an ample amount of data to train our models 

and to get the accuracy and performance of the model. We have different datasets which 

are publicly available to address our problem. Firstly, we have PathVQA (He et al., 2020). 

This dataset has a total of 4,998 images and 32,799 pairs of question answers (QA pairs). 
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Electronic Pathology Textbooks PeIR Digital Library is the source of our dataset. We 

have synthetical questions and answers in nature. All questions and answers are about 

color, location, appearance, and shape. The second source of datasets is the MedPix 

database, which contains head axial single-slice CTs, chest X-rays, and abdominal axial 

CTs. This dataset has 315 images with 3515 QA pairs. The nature of these question 

answers is natural, and it talks about the color size and position etc. (Abacha et al. 2019). 

The third source of datasets is the MedPix database, which contains 4,200 images and 

15,292 QA pairs. The nature of this available dataset is synthetical, and it talks about 

abnormality, plane, organ system, and modalities. (Abacha et al., 2019). The fourth source 

of datasets is the chest X-ray posterior-anterior (PA) view, which contains 91,160 images 

and 455,800 QA pairs. The nature of this available dataset is synthetical, and it talks about 

the abnormality. (Kovaleva et al., 2019) The final source of datasets is the MedPix 

database, which contains 5000 images and 5000 QA pairs. The nature of this available 

dataset is synthetical, and it talks about the abnormality. (Abacha et al., 2019). All the 

above-mentioned datasets are available publicly and are very useful for our model for 

training. 

 

Then the whole is trained on VQA-Med-2019 and VQA-Med-2020 and the performance 

is evaluated on various evaluation metrics such as Bilingual evaluation understudy 

(BLEU), precision, recall, and accuracy. I employ a modified version of the accuracy 

metric from the broad domain VQA task that only takes into account exact matching 

between a question and answer. I determine the scores for each category of questions 
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along with the overall accuracy scores. The word overlap-based similarity between a 

model-generated answer and the ground truth response captured using BLEU (Janssens et 

al., n.d.), which makes up for the specificity of the accuracy metric. The BLEU metric's 

general methodology and available resources are roughly the same as the task from the 

previous year (Papineni et al., n.d.). 

   

4.4 VQA-Med-2019 

4.4.1. Question Patterns and Categories 

We focused on the Modality, Organ System, Plane, and Abnormality categories of 

questions from Med-VQA-2019 datasets. The category list and related question frequency 

in the VQA-Med-2019 dataset are given in Table 1. 

 4.4.1.1.  Modality 

 -Closed, Yes/No, and WH modalities. Examples: 

- Did the patient get GI contrast? 

- What method was employed to capture this image? 

- What does this image's MR weighting look like? 

- Is this a flair, t1 weighted, or t2 weighted image? 

4.4.1.2.  Organ System 

                WH questions for the organ system. Examples: 

                       - What organ does this MRI primarily show? 

                       - Which organ system does this X-ray show? 
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4.4.1.3.  Plane 

    WH queries. Examples: 

           - What kind of plane is this mammogram performed in? 

          - What is this MRI's plane? 

4.4.1.4.  Abnormality 

      what and Yes/No questions. Examples: 

          -Does this image appear to be normal? 

          - What is the image's main abnormality? 

          - Does this imaging of the gastrointestinal system show any anomalies? 

                      - What about this ultrasound is most concerning? 

4.4.1.5.  The Most Common Answers for Each Category in the VQA-Med-2019 

 

Table 7:The Most Common Answers for Each Category in the VQA-Med-2019 Training Set. 

Category No, of the most frequent questions 

Modality An angiography (78),  yes (552) no (554), flair (53), mr-t2 

weighted (56),ct w/contrast cta-ct angiography,(iv) 

(50),  xr-plain film (456), t2 (217),  t1 (137), contrast (107), 

noncontrast (102), us-ultrasound (183), and mr-flair (84). 

Organ System skull and its contents (1216), gastrointestinal (352), 

musculoskeletal (436), genitourinary (214), sinuses, face, 
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and neck (191), lymphatic and vascular (122), breast (65), 

and heart and major vessels (120),  

Plane sagittal (478), Axial (1558), coronal (389), pa (92), ap 

(197), lateral (151), transverse (76), frontal (120), and 

oblique (50) 

Abnormality no (48), yes (62), meningioma (30), pulmonary embolism 

(16), arteriovenous malformation (avm) (14), schwannoma 

(13), cerebral abscess, brain (12), fibrous dysplasia 

(12), ependymoma (12), diverticulitis (11), langerhan cell 

histiocytosis (11), multiple sclerosis (12), sarcoidosis (11), 

acute appendicitis (14), tuberous sclerosis (13), 

glioblastoma multiforme (28), arachnoid cyst (13), 
 

 

4.4.2.  Training and Validation sets for Med-VQA-2019 

3,200 images and 12,792 question-answer (QA) pairs contain 3–4 questions for each 

image making up the training set. The most frequent responses for each category are 

shown in Table 1. The validation set consists of 2,000 QA pairings and 500 diagnostic 

images. 
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4.4.3. Test Sets for Med-VQA-2019 

The test answers were manually double-validated by a physician and a radiologist. A total 

of 33 answers were changed, either by (I) introducing an optional component (8 answers), 

(ii) adding more potential responses (10 answers), or (iii) amending the automated 

response. 15 answers, or 3% of the total test answers, were modified. Abnormality 

(8/125), Plane (1/125), and Organ (6/125) are the categories to which the corrected 

responses belong. For questions involving abnormalities, the adjustment generally 

involved revising the diagnosis that is implied by the issue visible in the image. The error 

rate in the training and validation sets, which were produced with the same automatic data 

production technique, should be comparable. The tested set has 500 questions and 500 

medical images. 

 

4.5 Med-VQA-2020 

The training, validation, and test sets were automatically created by using several filters 

to choose relevant images and related annotations, and (ii) The questions and their answers 

are generated by establishing patterns. The test set was manually checked by two medical 

professionals.  The category list and related question frequency in the VQA-Med-2019 

dataset are given in Table 2. 

 

4.5.1.  Question Patterns and Categories 

We focused on the Modality, Organ System, Plane, and Abnormality categories of 

questions from Med-VQA-2020 datasets. 
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4.5.1.1.  Abnormality 

Medical problems (also with their frequency) examples for the Med-VQA-2020 data: 

          – acute appendicitis (109) 

– pulmonary embolism (114) 

– angiomyolipoma (68) 

– lung adenocarcinoma (60) 

– osteochondroma (63) 

      – sarcoidosis (58) 

Table 8: The Most Common Answers for Each Category in the VQA-Med-2020 Training Set for abnormality. 

Category No, of the most frequent questions 

Abnormality no (48), yes (62),  meningioma (30),  pulmonary embolism 

(16), arteriovenous malformation (avm) (14), schwannoma 

(13), cerebral abscess, brain (12), fibrous dysplasia 

(12),  ependymoma(12), diverticulitis (11), langerhan cell 

histiocytosis (11), multiple sclerosis (12),  sarcoidosis (11), 

acute appendicitis (14), tuberous sclerosis (13), glioblastoma 

multiforme (28), arachnoid cyst (13), – acute appendicitis 

(109), pulmonary embolism (114), angiomyolipoma (68), 

lung adenocarcinoma (60), osteochondroma (63) 
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4.5.2.  Training and Validation sets for Med-VQA-2020 

    

4,000 radiology images and 4,000 question-answer (QA) pairs contain 3-4 questions for 

each image making up the training set. The most frequent responses for the category were 

shown in Table 2. The validation set consists of 500 QA pairings and 500 diagnostic 

images. 

 

4.5.3.  Test Sets for Med-VQA-2020 

The test answers were manually double-validated by a physician and a radiologist. A total 

of 33 answers were changed, either by (I) introducing an optional component (8 answers), 

(ii) adding more potential responses (10 answers), or (iii) amending the automated 

response. 15 answers, or 3% of the total test answers, were modified. Abnormality (8/125) 

is the category to which the corrected responses belong. For questions involving 

abnormalities, the adjustment generally involved revising the diagnosis that is implied by 

the issue visible in the image. The error rate in the training and validation sets, which were 

produced with the same automatic data production technique, should be comparable. The 

tested set has 500 questions and 500 medical images. 

 

4.6  Evaluation Metrics 

4.6.1.  BLEU 

A common metric for assessing NLP systems that generate language, particularly Natural 

Language Generation (NLG) systems and machine translation (MT), is called BLEU. It is 
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a metric for evaluating a sentence that was generated against one that was provided. A 

score of 1.0 indicates perfect matching, whereas a score of 0.0 indicates perfect 

mismatching. The use of BLEU as an evaluation metric relies on the expectation that it 

correlates with and anticipates the real function of these systems, measured either 

externally (for example, by task performance) or by user satisfaction. BLEU itself simply 

computes word-based similarity with a gold-standard benchmark text. 

From this viewpoint, it is comparable to clinical medicine's use of "surrogate endpoints," 

such as measuring the effect of an AIDS drug on viral load rather than directly determining 

if it results in prolonged life. Therefore, using BLEU to examine NLP systems makes 

sense only when their BLEU scores connect with assessments of the direct effectiveness 

of the value of NLP systems. For the proposed VQA system BLEU score was computed 

To determine how closely the system-generated responses matched the actual answers on 

the Med-VQA-2019 and Med-VQA-2020 datasets. The mathematical equation of BLEU 

for the VQA system is given below. 

                                     BLEU = BP · exp(n = 1Nwn log pn) 

Here pn was the geometric average of the improved n-gram accuracy, BP was the brevity 

penalty, and  N-grams have positive weight wn= 1/N, and up to length N = 4. 

 

4.6.2. Accuracy 

For each model, we determined the accuracy, recall, precision, F1-score, specificity, and 

AUC value to determine performance. These statistical metrics are based on True 

Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). The 
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ratio of correctly detected answers is represented by TN and TP in this example, whereas 

FN and FP stand for incorrectly classified answers. The following 4 terms are the 

measures of other performance metrics. 

 

True Positives (TP): TP is a situation where "yes" is correctly predicted and the actual 

result is also "yes." 

True Negatives (TN): This occurs when "No" is predicted as "No" and the actual result 

is "No" as well. 

False Positives (FP): These occur when "yes" is predicted as a result when a no result 

occurred. 

False negatives (FN): This occurs when something is predicted to be negative but turns 

out to be positive. 

The accuracy scores indicate how frequently the models delivered the desired answers 

correctly. 

                                Accuracy = (TP+TN)/(TP+FN+FP+FN) 

 

4.6.3.  FI-Scores Metric 

These statistics also have an impact on the (F1) score, which is the harmonic mean of 

recall and precision. By taking into account the harmonic means of recall and precision, 

the F1-score combines a classifier's recall and accuracy into a singular statistic. 

 The F1 score is determined by the weighted average as follows: 

                        F1-Score = 2 (Precision * Recall) (Precision + Recall)   
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4.7 Trans-MedVQA Performance 

Figure 7-8 displays the accuracy and loss graph on Med-VQA-2019, it may be inferred 

from the discrepancy between training and validation accuracy that the model is somewhat 

overfitting the training data, a flaw common to deep learning models. Our model has 

achieved around 79. 6% training accuracy and 74.5% validation accuracy. The training 

loss decreased from 8.6 to 0.44 on the loss graph (Figure. 8), whereas the validation loss 

decreased from 9.3 to 0.25 after 40 iterations.  

 

                                                    Figure 7: Accuracy graph on Med-VQA-2019 
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                                                            Figure 8: Loss graph of Med-VQA-2019 

As can be seen from the accuracy and loss graph on Med-VQA-2020 in Figure. 8-9, the 

module also experienced overfitting since training accuracy differs from validation 

accuracy but was less than compared to performance on Med-VQA-2019, which stayed 

lower than training accuracy. Training and validation accuracy was at 64.1% and 62.1%, 

respectively, at the conclusion of the previous epoch. Validation loss (Figure. 9) started at 

13.5 and decreased to around 0.4 at the last epoch while training loss started at 0.13,4 and 

decreased to 0.33. At one epoch, validation loss became smaller than training loss, 

although it remained significant for the majority of the training period.  
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                                                   Figure 9: Accuracy graph of Med-VQA-2020 

 
                                                         Figure 10: Loss graph on Med-VQA-2020 
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4.8 Performance Comparison with state-of-the-art methods 

In this subsection, We compare our model's performance with other state-of-the-art VQA 

methods, such as (MLM) (Khare et al., n.d.), CGMVQA (Ren et al., 2020), BERT (Zhou 

et al., n.d.), IF-1C (Kornuta et al., n.d.-a), VisualBert ResMLP (Seenivasan et al., 2022), 

SFN (Kornuta et al., n.d.-a) and CGMVQA Ens. (Ren et al., 2020) on Med-VQA-19, 

while DenseNet-121 (Liao et al., 2020), VGG-16 with BioBERT (Jung et al., n.d.), NLM 

(Notes) & 2020, n.d.), LSTM-Encoder-Decoder (Verma et al., 2020), 

VGG16+GRU+seq2seq (S. Liu et al., n.d.) and Gated Linear Unit (GLU) (Umada et al., 

n.d.) on Med-VQA-20 dataset. 

 

Our models aimed to improve these state-of-the-art methods for enhancing the accuracy 

and efficiency of medical VQA. For this comparison, our best performing model, Trilinear 

Interaction Transformer, is compared with the other state-of-the-art model's performance, 

as shown below in Table. 5. All the models are pr- trained on the PathVQA and VQARAd 

datasets, and the results of other models are taken from their respective research articles. 

Our Trilinear Interaction Transformer outperforms the other research in terms of accuracy, 

F1-score, blue, and accuracy. What did our model achieved? accuracy? precision? recall? 

F1-score? blue and? meteor. While the other model’s performance accuracy is shown 

below in Table 9. 
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 Table 9:Performance comparison with previous state-of-the-art methods. 

Dataset Methods F1-Scores     Blue Acc. 

 

 

 

 

 

 

 

 

 

VQA-19 

Mask Language Modeling 

(Khare et al., n.d.) 

0.686 0.675 0.690 

CGMVQA (Ren et al., 

2020) 

61.612 0.655 0.640 

BERT (Zhou et al., n.d.)  0.594 0.638 0.601 

IF-1C (Kornuta et al., n.d.-

a) 

0.54 56.21 0.545 

VisualBert ResMLP 

(Seenivasan et al., 2022) 

0.601 61.21 0.736 

SFN (Kornuta et al., n.d.-

b) 

0.717 
 

0.710 

CGMVQA Ens. (Ren et 

al., 2020) 

0.637 65.9 0.640  

Our Tri–Transformer-

VQA 

0.724 0.784 0.746 
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VQA-20 

DenseNet-121 (Liao et al., 

2020) 

0.442 0.54 0.49 

VGG-16 with BioBERT 

(Jung et al., n.d.) 

0.532 0.550 0.562 

 NLM (Notes) & 2020, 

n.d.) 

0.425 0.448 0.405 

LSTM-Encoder-Decoder 

(Verma et al., 2020) 

0.426 0.4358 37.8 

VGG16+GRU+seq2seq 

(S. Liu et al., n.d.) 

0.3914 0.410` 0.375 

Gated Linear Unit (GLU) 

(Umada et al., n.d.) 

0.6536 0.31 0.357 

Our Tri–Transformer-

VQA 

0.624 0.639 0.621 
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CHAPTER 5.  

DISCUSSION 

 

5.1 Discussion of Results 

 

Nearly all human body organs are represented in the VQA data set, along with every type 

of medical imaging. The dataset sets general questions addressing what doctors should be 

aware of while interpreting medical images. The majority of deep learning models can 

simply produce classifications or answers. 

 

We design a Multimodal representation interaction Transformers model that is performed 

with two transformers having multiple layers where one transformer is for inter-modality 

input representation and the other Transformer is for intra-modality input representations, 

to answer questionnaires on medical imagining, their interactions, and surgical procedures 

based on our two-novel medicinal VQA datasets evolved from two public datasets. To 

perform classification and both closed and open sentence-based answering, vision-text 

attention-based transformer models are employed. Trilinear Interaction Attention (TrI-

Att) fusion Transformer for the Inter-modality representations interaction, while self-

attention for the intra-modality representation interaction (Yu et al., 2019).   

 

A BERT transformer encoder model is used to extract the text embedding from the 

question and answer, with lesser model parameters that marginally outperform the base 
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vision-text attention encoder model by incorporating a cross-token sub-module, while 

EfficientNet is used as the feature extract to get the image embedding.  The influence of 

the number of input image patches and the inclusion of temporal visual features on the 

model’s performance is also reported. Finally, representations obtained from a feed-

forward layer are fed to the answer predictor for producing the answer with the answer 

predictor in an output layer. 

 

While our Medical-VQA system task answers complex questions, from the application 

standpoint, it unfolds the possibility of incorporating open-ended questions where the 

model could be trained to answer medical-specific complex questionnaires. Because there 

were only a limited number of possible responses for each of these question categories, 

our VQA system did best when answering questions about modality and abnormity, then 

questions about planes and organs. from a model's perspective. The model has higher 

accuracy on the elementary questions and as well as can correctly answer complex 

questions, so it could be used for assisting in teaching beginning medical students or 

giving the answers to the elementary questions from the patients. Our system can also be 

beneficial for hospitals because medical imaging is the basis of modern-day medical 

diagnosis, and hospitals have specialist doctors that see the medical image and determine 

the disease.  Expanding the amount of data can make the model perform better. 
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5.2  Performance discussion of methods 

 

Our model aimed to improve state-of-the-art methods for enhancing the accuracy and 

efficiency of medical VQA systems. For this discussion, our best performing model, 

Trilinear Interaction Transformer, is compared with the other model’s performance, as 

shown above in Table. 5.  

 

5.2.1.  Med-VQA-19 performance discussion 

  

Our Trilinear Interaction Transformer outperforms the other research in terms of accuracy 

for the Med-VQA-19 dataset. The results given by Masked Language Modeling (MLM) 

and CGMVQA were 0.690 and 0.640 with accuracies because these systems only 

answered the less complex closed-ended questions in terms of modality category. But in 

the modality category with the largest number of classes, our model has an improvement 

rate of 6% in accuracy compared to the baseline MLM and CGMVQA methods. 

 

5.2.2.  Med-VQA-20 performance discussion 

 

Our Trilinear Interaction Transformer outperforms the other research in terms of accuracy 

for the Med-VQA-20 dataset. The results given by DenseNet-121 and LSTM-Encoder-

Decoder were 0.49 and 0.37 because Open-ended abnormality is difficult to achieve high 

accuracy. The answers predicted by these methods in the generative mode were phrases 
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such as ‘‘glioblastoma multiforme’’. These words were related to the type of images and 

the word frequency in the training set. So, our model has an improvement rate of 13% in 

accuracy compared to the baseline DenseNet-121 and LSTM-Encoder-Decoder methods. 

 

5.2.3.  Med-VQA-19 and Med-VQA-20 performance discussion 

 

As our Trilinear Interaction Transformer model outperforms the previous methods on both 

VQA-19 and VQA-20 datasets.  For this discussion, on comparison between our model’s 

results, our best method is performing on VQA-19 data with 0.746 accuracy, as compared 

to VQA-20 with 0.621 accuracy. Because VQA-19 data has less closed-ended question 

answer categories and with question variations and did not answer the complex questions 

as VQA0-20. So, our model is 10% less accurate for VQA-20 in terms of accuracy. 

Because VQA-20 data has a large number of open-ended questions answers it makes them 

complex to predict an answer for more complex questions correctly with a high accuracy 

rate. 
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CHAPTER 6.   

CONCLUSION, IMPLICATIONS, AND RECOMMENDATIONS 

 

6.8  Conclusion 

 

Systems that answer visual questions about medical imagery can be quite beneficial for 

giving doctors a second view. We proposed the Trilinear Interaction Transformer model 

in this research, which is a multi-head-attention-based multimodal model for VQA 

systems on medical images. In order to effectively respond to concerns about medical 

images and the Trilinear Interaction Transformer model was specifically developed for 

managing them. On two real-world medical VQA datasets, VQA-19 and VQA-20, a 

detailed quantitative and qualitative investigation of the performance of the Trilinear 

Interaction model was conducted for the tasks of answer generation and answer 

classification in order to produce new state-of-the-art results. Our model improves state-

of-the-art methods for enhancing the accuracy and efficiency of the medical VQA system. 

 

6.9  Recommendations for Future Research 

 Future studies could consider further investigating Multimodal fusion techniques as 

medical diagnosis often involves multiple types of data, such as images and text. Future 

studies could explore ways to fuse these different modalities within a deep learning model 

to improve diagnostic accuracy. Also, another possible avenue for research could be 

Explainable AI, medical professionals need to understand how diagnostic decisions are 
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being made by computer-aided systems. Hence, developing explainable AI techniques to 

interpret and visualize the deep learning model's internal workings can improve the trust 

and adoption of these systems in clinical practice. Also, clinical validation future studies 

could do to improve our results as it is essential to evaluate the performance of these 

models using real-world clinical data. Future research can focus on testing the 

generalizability of the deep learning models on large datasets with diverse patient 

populations and medical conditions. Future research also needs to be considered the 

privacy and security aspects, as medical data is sensitive and needs to be protected. the 

researcher should focus on developing secure and private ways to use deep learning 

models to aid medical diagnosis. This could involve developing methods to encrypt the 

medical data before it is processed by the model or using techniques such as federated 

learning that keep the data on local servers and minimize the amount of data shared 

between different sites. 

 

6.10 Business Benefits of this Research 

 

The research on "Computer-Aided Medical Diagnostic System on Visual Question-

Answer Using Deep Learning" may help businesses in several ways. 

 

1. Improved Diagnostic Accuracy: Using deep learning to develop a computer-aided 

medical diagnostic system can improve the accuracy of medical diagnosis. This may be 
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extremely advantageous for healthcare organizations since it lowers the likelihood of 

misdiagnosis and improves patient outcomes. 

 

2. Increased Efficiency and Productivity: Businesses may enhance efficiency and 

productivity by automating the diagnosis process with deep learning algorithms. The 

technology can help healthcare workers analyze visual data and answer diagnostic queries 

more rapidly, allowing them to focus on other vital activities. 

 

3. Cost Reduction: Automated diagnostic technologies have the potential to cut healthcare 

expenses. The system can improve resource allocation and minimize dependency on 

expensive diagnostic procedures by reducing the requirement for manual interpretation 

and analysis of medical images. 

 

4. Knowledge Sharing and Collaboration: A computer-aided diagnostic system can serve 

as a centralized platform for medical practitioners to share and collaborate on knowledge. 

The technology can store and analyze massive amounts of medical picture data, allowing 

healthcare organizations to tap into collective knowledge for precise diagnosis and 

treatment decisions. 

 

5. Continuous Learning and Improvement: Deep learning algorithms may learn and 

improve continually over time. The diagnostic accuracy may be improved further by 

training the algorithm on a large collection of medical photos and related questions and 
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answers. This iterative learning process can result in continuous improvements in system 

performance, which will benefit organizations in the long term. 

 

6. Competitive Advantage: Using deep learning to implement a cutting-edge computer-

aided diagnostic system can give a competitive advantage to healthcare firms. Businesses 

may attract more patients, improve their reputation, and differentiate themselves from 

competition by providing more accurate and efficient diagnostic capabilities. 

 

7. Augmented Decision-Making: The computer-aided diagnostic system can be a valuable 

tool for healthcare professionals, helping them make better decisions. Doctors can gain 

additional insights and perspectives by combining their expertise with the system's ability 

to analyze visual data and provide relevant answers. This can help with complex cases, 

improve accuracy, and help physicians make well-informed treatment recommendations. 

 

8. Enhanced Patient Care and Experience: Using a computer-aided diagnostic system can 

lead to better patient care and experience. Patients can receive timely treatment and 

intervention by enabling faster and more accurate diagnoses. The system can also provide 

patients with detailed explanations and visualizations, allowing them to better understand 

their medical conditions. Increased patient satisfaction, trust, and engagement with the 

healthcare provider can result from this. 
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The research being conducted on computer-aided medical diagnostic systems that use 

deep learning for visual question-answering has the potential to benefit the following 

business areas: 

 

1. Healthcare business: This research has a significant impact on the healthcare business 

since computer-aided diagnostics may assist medical personnel in properly and 

efficiently identifying medical disorders. This can result in better patient outcomes and 

lower healthcare expenses. 

 

2. Medical Technology Companies: Medical technology companies can use the research 

findings to build improved diagnostic instruments and improve their present products. 

Deep learning for visual question-answering can aid in the development of more 

accurate and dependable diagnostic systems. 

 

3. Data Analytics Companies: The research findings may be valuable for data analytics 

firms that provide services to the healthcare business. These businesses may use deep 

learning algorithms to analyze medical photos and provide insights into patient 

diagnosis. 

 

4. Insurance companies: Insurance companies can profit from enhanced medical 

diagnosis accuracy. More precise diagnoses can assist in avoiding misdiagnoses and 

needless treatments, resulting in lower costs for insurance providers and patients. 
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The CEO of a hospital can benefit from the implementation of a computer-aided medical 

diagnostic system based on visual question-answering using deep learning in several 

ways: 

 

1. Improved Diagnostic Accuracy: By employing deep learning algorithms to scan 

medical pictures and answer precise questions about them, the system may considerably 

enhance diagnostic accuracy. This can result in more accurate and trustworthy diagnoses, 

lowering the chance of misdiagnosis and improving patient outcomes. The CEO may be 

certain that the hospital is offering high-quality diagnostic services, which boosts the 

institution's reputation. 

 

2. Improved Operational Efficiency: Using a computer-aided diagnostic system helps 

expedite the diagnosis process and enhance hospital operational efficiency. The 

technology can automate picture processing and deliver quick responses to inquiries, 

saving time on manual interpretation. This enables healthcare practitioners to make faster 

judgments, prioritize essential situations, and better allocate resources. The CEO may see 

improved patient flow, shorter wait times, and higher patient throughput, which leads to 

greater operational performance and cost savings. 

 

3. Cost Savings: The computer-aided diagnostic system can help the hospital save money. 

Healthcare resources may be used more efficiently by minimizing unneeded diagnostic 
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tests and procedures. The system's precise analysis and rapid responses can assist in 

avoiding unnecessary testing, which can be costly and time-consuming. Furthermore, by 

lowering misdiagnosis rates, the hospital can avoid costly errors like unneeded treatments 

or prescription errors. The CEO can anticipate better financial results and resource 

optimization. 

 

4. Technological Advancement and Innovation: The hospital's commitment to 

technological advancement and innovation in healthcare is demonstrated by the 

installation of a cutting-edge computer-aided diagnostic system. This has the potential to 

attract top talent, such as skilled medical professionals and researchers interested in 

working with cutting-edge technology. The CEO can establish the hospital as an industry 

leader, attracting partnerships, collaborations, and funding. 

 

5. Patient Satisfaction and Trust: Computer-aided diagnostic systems can help increase 

patient satisfaction and trust. Patients can receive appropriate treatment plans faster if 

accurate diagnoses are provided in a timely manner, leading to improved health outcomes. 

Patients will appreciate the hospital's dedication to utilizing cutting-edge technologies for 

their benefit. Patient loyalty, positive word-of-mouth recommendations, and, ultimately, 

business growth for the hospital can all result from increased patient satisfaction and trust. 

 

6. Data-driven Insights and Research: The computer-aided diagnostic system generates a 

large amount of data, which can be analyzed to gain valuable insights. This information 
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can be used by the CEO to identify trends, patterns, and areas for improvement in 

diagnostic practices. The system can help the hospital's research efforts by allowing for 

the investigation of new diagnostic techniques, treatment approaches, and medical 

discoveries. This can help to improve the hospital's reputation as a research institution and 

foster collaborations between academia and industry. 

 

It should be noted that practical implementation and acceptance of such a system in a 

corporate setting would include careful considerations such as regulatory compliance, data 

protection, and interaction with current healthcare infrastructure. 

 

Overall, implementing a computer-aided medical diagnostic system based on visual 

question-answering using deep learning can provide a hospital CEO with benefits such 

as improved diagnostic accuracy, increased operational efficiency, cost savings, 

technological advancement, patient satisfaction and trust, and data-driven insights for 

research. These advantages contribute to improved healthcare delivery, financial 

performance, and overall hospital success. 
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APPENDIX A   

The computer-aided medical diagnostic system 

Visual Question-answer 

Deep Learning 

Multimodal Transformer  

Artificial intelligence (AI) 

Surgical procedures  

Computer-Assisted Surgery 

Long short-term memory (LSTM)  

Annotated data 

Transfer learning  

Histopathologic diagnosis  

Elementary questions 

Health-care images  

Voice of the Radiologist 

Search engines 

VQA dataset 

VQA-Med  

Open-ended questions 

Fine-grained dimension  

General language database 

Natural Language Processing (NLP) 
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Computer Vision (CV) 

Imbalanced Distribution  

QA pair 

VQA-RAD   

VQA-Med2019 

VQA-Med2020 

Path-VQA 

Closed-ended questions 

 MODALITY 

PLANE 

ORGAN (Organ System) 

Gated Recurrent Units (GRU)  

ABN (Abnormality) 

Local features  

PRES (Object/Condition Presence) 

Self-attention 

POS (Positional Reasoning) 

ATTRIB 

Recurrent Neural Networks (RNNs)  

COUNT (Counting) 

Abnormality 

Positional reasoning 
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Classification 

Multidisciplinary field  

Bounding boxes (detection)  

Masks (segmentation) 

Medical Question Answering  

Cost-effective diagnosis 

State-of-the-art  

VGGNet 

MuVAM model 

ResNet 

Word-to-text (W2T) attention  

Grayscale images  

VQA-RADPh  

RadVisDial 

SLAKE 

Visual Objects 

Semantic labels 

Stacked Attention Network (SAN)  

Compact Bilinear Pooling (MCB) 

Bidirectional Long Short-Term Memory (BiLSTM)  

BERT Model 

Bilinear attention networks  
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MedFuseNet 

MICCAI (Medical Image Computing and Computer Assisted Intervention)  

MLP-based visualBert encoder 

ImageCLEF 2019 VQA-Med data 

MS COCO 

Single Modality 

EfficietNet 

Answer Predictor 

Embedding of images 

ConvNet Architecture 

Scalability Technique 

Trilinear Transformers  

PARALING 

Guided attention and self-attention blocks  

Softmax  

Trilinear interaction. Attention 

Intra-modalities  

Sequential operations 

Absolutely and relatively positional information  

Multi-head attention 

Feed Forward Layer (FFL) 

BLEU Metric 
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Accuracy 

Precision and recall 

F1-Scores 

Fragmentation penalty 

MedPix5 datasets 

Training and Validation  

Test Data 

No, of the most frequent questions 

Pre-Training 
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