

IMPACT OF REVOLUTIONARY ARTIFICIAL INTELLIGENCE BASED CODE

AUTOMATION MODELS ON SOFTWARE DEVELOPMENT INDUSTRY AND

SOFTWARE DEVELOPERS

by

Varsha Jain

MS (Software Systems), BE (Computer Science)

DISSERTATION

Presented to the Swiss School of Business and Management Geneva

In Partial Fulfillment

Of the Requirements

For the Degree

DOCTOR OF BUSINESS ADMINISTRATION

SWISS SCHOOL OF BUSINESS AND MANAGEMENT GENEVA

May, 2023

IMPACT OF REVOLUTIONARY ARTIFICIAL INTELLIGENCE BASED CODE

AUTOMATION MODELS ON SOFTWARE DEVELOPMENT INDUSTRY AND

SOFTWARE DEVELOPERS

by

Varsha Jain

APPROVED BY

 __

 Prof. Sasa Petar,Phd, Chair

 __

 Milica Popovic Stijacic, Phd, Committee Member

 __

 Kishore Kunal, Phd,DBA, Committee Member

RECEIVED/APPROVED BY:

SSBM Representative

Dedication

This thesis is dedicated to my family for their constant support and

encouragement. My parents, who have been the greatest source of inspiration. My, late

mother, with her undying fighting spirit, taught me the importance of resilience and

determination. She has always been the biggest pillar of my strength. My father, who has

always stood by me. He always supported and encouraged me in everything that I wanted

to do. This thesis is dedicated to both of them.

My husband whose unwavering support and belief in me has been my driving

force. A big thanks to him for always being there. He gave me the strength and

motivation to overcome challenges and pursue my dreams.

To my children, who have been my constant source of inspiration. Am deeply

indebted to them for their patience, understanding and most importantly for giving me the

time and space to pursue this journey. Their support in letting me spend long hours

immersed in my research and writing, undisturbed, greatly helped me complete this

journey in a short time.

iv

Acknowledgements

I extend my sincere thanks to my mentor Dr. Kishore Kunal for his continuous

guidance and help all through the completion of the thesis. His expertise, guidance and

patience has been instrumental in shaping this work. The review comments and insightful

feedback from Dr. Kunal pushed me to strive for excellence. I am very thankful for his

mentorship and guidance throughout this journey.

I would also like to express my gratitude to the research participants for sharing

their time and knowledge for the purpose of this study. Their willingness to participate

and provide valuable insights has enriched the findings and contributed valuably towards

the completion of this thesis.

 My family members kept my morale high throughout the process. Without their

support and motivation to pursue the Doctorate program, it would have been impossible

to complete the thesis and Doctorate in this manner.

v

ABSTRACT

IMPACT OF REVOLUTIONARY ARTIFICIAL INTELLIGENCE BASED CODE

AUTOMATION MODELS ON SOFTWARE DEVELOPMENT INDUSTRY AND

SOFTWARE DEVELOPERS

Varsha Jain

2023

Dissertation Chair: Dr. Kishore Kunal

The purpose of this study is to explore the impact of large language models on the

software industry. The study seeks to answer the research question, “How does

automating software development impact the job of software professionals and how

much effort and cost-saving will organizations get by augmenting software development

with artificial intelligence”. The goal is to analyze the various software development

tasks that can be automated using artificial intelligence-based code automation models

and study the impact of this automation on software professionals and the industry.

vi

TABLE OF CONTENTS

List of Tables ... viii

List of Figures .. xi

CHAPTER I: INTRODUCTION ... 1

1.1 Introduction ... 1

1.2 Research Problem ... 2

1.3 Purpose of Research .. 3

1.4 Significance of the study ... 3

1.5 Research Purpose and Questions .. 4

CHAPTER II: REVIEW OF LITERATURE .. 6

2.1 A brief history of computing... 6

2.2 Automation Approaches ... 6

2.3 AI in Software Development .. 8

2.4 AI-Based Tools used in Programming .. 8

2.5 Large language Models ... 10

2.6 Impact of Artificial Intelligence on Software Professionals 14

2.7 Evaluation of AI models ... 15

CHAPTER III: METHODOLOGY ... 17

3.1 Research Purpose and Questions .. 17

3.2 Research Design and Strategies .. 18

3.3 Data Analysis .. 22

3.4 Research Hypothesis ... 26

3.5 Research Design Limitations .. 29

CHAPTER IV: RESULTS ... 30

4.1 Survey Results .. 30

4.2 Research Question One ... 30

4.3 Research Question Two .. 70

4.4 Research Question Three .. 109

4.5 Research Question Four .. 176

4.6 Research Question Five .. 182

4.7 Summary of Findings .. 188

CHAPTER V: DISCUSSION .. 191

vii

5.1 Discussion of Results .. 191

5.2 Research Question One ... 191

5.3 Research Question Two .. 198

5.4 Research Question Three .. 206

5.5 Research Question Four .. 253

5.6 Research Question Five .. 256

CHAPTER VI: SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 259

6.1 Summary ... 259

6.2 Implications... 259

6.3 Recommendations for Future Research .. 261

6.4 Conclusion .. 262

APPENDIX A SURVEY RESULTS ... 264

APPENDIX B CODE SAMPLES .. 274

REFERENCES ... 305

viii

LIST OF TABLES

Table 1 List of pre-trained language models ... 11

Table 2 Analysis of Code Translation using Codex ... 24

Table 3 Example of Cost-Benefit Analysis for Code Translation 25

Table 4 Traceability Matrix .. 37

Table 5 Non-functional requirements ... 72

Table 6 Binary Classification - Results .. 74

Table 7 Multi-class Classification - Results ... 75

Table 8 Results from different experiments.. 79

Table 9 Results from Random-Forest Classifier ... 79

Table 10 OneVsRest Classifier (NFR classification) ... 80

Table 11 K-neighbors Classifier (NFR classification) .. 80

Table 12 SVC Classifier (NFR Classification) ... 81

Table 13 SVC Classifier (NFR Classification on the balanced dataset) 82

Table 14 Code Completion (Code to Code) ... 87

Table 15 Code Translation (Code to Code) .. 88

Table 16 Multi-lingual Code Translation ... 89

Table 17 Code Generation (Text to Code) .. 90

Table 18 HumanEval Dataset ... 91

Table 19 Scores on APPS Dataset .. 93

Table 20 Defect Detection .. 94

Table 21 Code Summarization (Code to Text) ... 94

Table 22 Research Setup ... 96

Table 23 Binary Classification Effort (Zero-shot) .. 112

Table 24 Processing Time for 625 requirements .. 112

Table 25 Multi-class classification (Zero-shot) .. 113

Table 26 Processing time for 370 requirements ... 113

Table 27 Binary classification effort (Embeddings-based approach) 115

Table 28 Multi-class classification effort (Embeddings-based approach) 116

Table 29 Effort saving with Approach-1 .. 117

Table 30 Effort saving with Approach-2 .. 117

Table 31 Multi-class classification Effort Saving (Approach-1) 118

Table 32 Multi-class classification Effort saving (Approach 2) 119

Table 33 Factors impacting cost - binary classification (zero-shot) 119

Table 34 Factors impacting cost multi-class classification (zero-shot) 120

Table 35 Factors for cost calculation (Binary classification – embeddings based) 121

Table 36 Factors impacting cost multi-class classification (embeddings-based) 122

Table 37 Cost of manual binary classification .. 123

Table 38 Overhead costs – binary classification ... 123

Table 39 Other expenses – binary classification ... 123

Table 40 Cost saving (Binary Classification) – Approach 1 .. 124

Table 41 Cost saving (Binary Classification) – Approach 2 .. 124

Table 42 Cost of manual classification (multi-class) .. 125

ix

Table 43 Overhead costs (multi-class) .. 125

Table 44 Other expenses (multi-class) .. 125

Table 45 Cost saving (Multi-class Classification) – Approach 1 126

Table 46 Cost saving (Multi-class Classification) – Approach 2 126

Table 47 Overall (Binary Classification) .. 127

Table 48 Overall (Multi-class classification) .. 128

Table 49 Code Statistics.. 130

Table 50 Effort Analysis ... 130

Table 51 Effort Saving (Code Generation - Android App) .. 132

Table 52 Cost of inferencing (Android App) .. 132

Table 53 Cost of manually building the app – Android App .. 133

Table 54 Cost saving - Android App .. 133

Table 55 Overall Savings - Android App ... 134

Table 56 Statistics - ASP.NET.. 136

Table 57 Effort Analysis - ASP.NET using LLM .. 137

Table 58 Effort saving - ASP.NET ... 138

Table 59 Cost of inferencing with Codex (ASP.NET) ... 138

Table 60 Cost of manually building the app – ASP.NET ... 139

Table 61 Cost saving - ASP.NET ... 139

Table 62 Overall - ASP.NET .. 140

Table 63 Code statistics – Code Translation... 144

Table 64 Effort Analysis - Code Translation .. 144

Table 65 Effort Analysis - Code Translation .. 146

Table 66 Effort Saving – Code Translation .. 147

Table 67 Cost of inferencing using Codex ... 147

Table 68 Cost of manual translation ... 148

Table 69 Cost saving using LLM - Code Translation... 148

Table 70 Overall Savings - Code Translation ... 149

Table 71 Code statistics - COBOL to Java ... 164

Table 72 Effort Analysis - Legacy Code Documentation ... 165

Table 73 Effort Analysis - COBOL to Java migration ... 165

Table 74 Effort Analysis - Manual code documentation .. 168

Table 75 Effort Analysis - Manual code migration .. 169

Table 76 Effort Saving - Code Documentation .. 169

Table 77 Effort Saving - Code Generation ... 169

Table 78 Total Effort saving in end-to-end process.. 170

Table 79 Cost of inferencing - documentation ... 170

Table 80 COBOL code and documentation to Java .. 171

Table 81 Cost of manual documentation .. 172

Table 82 Cost saving documentation .. 172

Table 83 Cost of manual code generation... 172

Table 84 Cost saving for code generation... 173

Table 85 End-to-end Cost saving .. 173

Table 86 Overall savings (end-to-end process) .. 173

x

Table 87 Cost-Benefit Analysis - Android App ... 218

Table 88 Cost-Benefit Analysis - ASP.NET... 219

Table 89 Cost-Benefit Analysis - Code Generation (Complex application) 221

Table 90 Cost-Benefit Analysis - Code Translation ... 224

Table 91 Cost-Benefit Analysis - Code Translation (Complex Application) 226

Table 92 Cost-Benefit Analysis (End-to-end process) ... 231

Table 93 Cost-Benefit Analysis (Large Application) ... 234

Table 94 Calculating prompt-tuning effort ... 242

Table 95 Calculating manual correction effort ... 243

Table 96 Initial Effort Saving Calculation .. 244

Table 97 Calculating change in effort saving due to manual correction 245

Table 98 Calculating change in effort saving due to deployment effort 246

Table 99 Calculating change in effort saving due to fine-tuning effort involved 247

Table 100 Cost incurred due to effort spent in prompt-tuning 248

Table 101 Additional cost incurred due to manual correction .. 249

Table 102 Calculating cost incurred due to infrastructure .. 250

Table 103 Cost incurred due to deployment effort spent and fine-tuning effort 251

Table 104 Cost of inferencing fine-tuned model and doing manual corrections 252

Table 105 Code generation capability of GPT-J, GPT-3, and Codex 274

xi

LIST OF FIGURES

Figure 1 Codex .. 12

Figure 2 Experiment Setup ... 20

Figure 3 GPT-3 understanding about software requirements – Look and Feel 32

Figure 4 GPT-3 understanding about software requirements – Performance 32

Figure 5 Clustering using GPT-3 .. 34

Figure 6 Similarity detection .. 39

Figure 7 Software requirements elicitation ... 41

Figure 8 Actor and use-case recognition using GPT-3 ... 47

Figure 9 Design pattern recognition from problem description .. 50

Figure 10 Design pattern recognition in code ... 51

Figure 11 Class extraction from problem statement using GPT-3 53

Figure 12 Eco-Friendly website .. 55

Figure 13 Eco-friendly website (ChatGPT) .. 55

Figure 14 Code completion ... 57

Figure 15 Template code generation... 59

Figure 16 Code Refactoring .. 60

Figure 17 Code summarization ... 62

Figure 18 Code Documentation .. 63

Figure 19 Code annotation .. 64

Figure 20 Bug Detection ... 67

Figure 21 Code style and formatting .. 68

Figure 22 Code optimization .. 68

Figure 23 Test case generation ... 70

Figure 24 Distribution of functional vs non-functional requirements 72

Figure 25 Distribution of non-functional requirements .. 73

Figure 26 Classification report – binary classification (zero-shot) 77

Figure 27 Classification report - multiclass classification (zero-shot) 78

Figure 28 Android drawing app .. 98

Figure 29 Screen1 - User Details .. 100

Figure 30 Screen 2 - Travel Details .. 100

Figure 31 Screen 3 - Accommodation Details .. 101

Figure 32 User options screen ... 103

Figure 33 Human vs Human ... 103

Figure 34 Human vs Computer ... 103

Figure 35 Java Classes for Migrated Application ... 107

Figure 36 Migrated Java Application ... 107

Figure 37 Code with comments .. 142

Figure 38 Code with line breaks ... 142

Figure 39 playerOne Documentation .. 150

Figure 40 playerTwo Documentation ... 151

Figure 41 Generated Generic documentation ... 156

Figure 42 Generated Design documentation... 157

xii

Figure 43 GPT-3 proposed solution .. 159

Figure 44 Software Requirements Classification - Comparison..................................... 201

Figure 45 Binary Classification - Cost and Effort .. 207

Figure 46 Multi-class Classification - Cost and Effort ... 208

Figure 47 Effort and Cost saving - Zero-shot (Binary)... 208

Figure 48 Effort and Cost Saving – Embeddings based (Binary) 209

Figure 49 Effort and Cost saving - Zero shot (Multi-class) .. 211

Figure 50 Effort and Cost saving - Embeddings based (Multi-class) 211

Figure 51 Cost and Effort - Code Generation (Android App) .. 216

Figure 52 Effort and Cost Saving- Android App .. 216

Figure 53 Cost and Effort - Code Generation (ASP.NET) ... 217

Figure 54 Effort and Cost Savings (ASP.NET) .. 217

Figure 55 Cost and Effort - Code Translation .. 222

Figure 56 Effort and cost saving - Code Translation .. 223

Figure 57 Cost and Effort - Code Documentation .. 228

Figure 58 Cost and Effort - Code Migration ... 228

Figure 59 Cost and Effort - End-to-end process ... 229

Figure 60 Effort and Cost Savings - Code Documentation .. 230

Figure 61 Effort and Cost Savings - Code Migration ... 230

Figure 62 Effort and Cost Savings - Manual Techniques ... 231

Figure 63 Q1 - Role of the participant .. 265

Figure 64 Q2 - Programming skills .. 265

Figure 65 Q3 – Programming language preference .. 266

Figure 66 Q4 – Effort needed for simple complexity program in Python 266

Figure 67 Effort needed for simple complexity program in Java 267

Figure 68 Effort to code simple complexity program in PL of choice 267

Figure 69 Effort needed to code medium complexity program in Python 269

Figure 70 Effort needed to code medium complexity program in Java 269

Figure 71 Effort to code medium complexity program in PL of choice 270

Figure 72 Time (in person days) to code complex program in Python 270

Figure 73 Time (in person days) to code complex program in Java 271

Figure 74 Time (in person days) to code complex program in PL of choice 271

Figure 75 Reason for slow development .. 272

Figure 76 Code writing preference ... 272

Figure 77 Preference to utility compared to manual approach 273

Figure 78 Preference for auto code generation ... 273

Figure 79 Code Documentation using Codex ... 275

Figure 80 Python Code (To be translated to Java) .. 276

Figure 81 Java Code (Translated using Codex) .. 277

Figure 82 Lines of the program added to test the program ... 277

Figure 83 Code written manually by Java programmer .. 278

Figure 84 GPT-3 generated webpage ... 279

Figure 85 GPT-3 generated stylesheet .. 280

Figure 86 ChatGPT generated webpage-1 .. 281

xiii

Figure 87 ChatGPT generated webpage-2 .. 282

Figure 88 ChatGPT generated stylesheet-1 .. 283

Figure 89 ChatGPT generated stylesheet-2 .. 284

Figure 90 ChatGPT generated stylesheet-3 .. 285

Figure 91 ChatGPT generated stylesheet-4 .. 286

Figure 92 ChatGPT generated stylesheet-5 .. 287

Figure 93 Android app code - 1 .. 288

Figure 94 Android app code - 2 .. 288

Figure 95 Android app code - 3 .. 289

Figure 96 Android app code - 4 .. 289

Figure 97 Android app code - 5 .. 290

Figure 98 Android app code - 6 .. 290

Figure 99 Android app code - 7 .. 291

Figure 100 Android app code - 8 .. 291

Figure 101 ASP.NET application -1 ... 292

Figure 102 ASP.NET application -2 ... 293

Figure 103 ASP.NET application -3 ... 294

Figure 104 ASP.NET application -4 ... 295

Figure 105 Tic-Tac-Toe 1 ... 296

Figure 106 Tic-Tac-Toe 2 ... 296

Figure 107 Tic-Tac-Toe 3 ... 297

Figure 108 Tic-Tac-Toe 4 ... 297

Figure 109 Tic-Tac-Toe 5 ... 298

Figure 110 Tic-Tac-Toe 6 ... 298

Figure 111 Tic-Tac-Toe 7 ... 299

Figure 112 Tic-Tac-Toe 8 ... 299

Figure 113 Tic-Tac-Toe 9 ... 300

Figure 114 Tic-Tac-Toe 10 ... 300

Figure 115 COBOL Code ... 301

Figure 116 COBOL Code Continued ... 302

Figure 117 Seven-point Framework Case 1 .. 303

Figure 118 Seven-point Framework Case 2 .. 304

1

CHAPTER I:

INTRODUCTION

1.1 Introduction

Artificial intelligence has positively impacted many industries. In healthcare,

artificial intelligence can assist in clinical data processing and bringing value from

unstructured data. Similarly, in the banking industry, artificial intelligence can help with

fraud detection and loan default. The software industry also has constantly been working

on improvements in the software development process. Software development

encompasses everything from programming and unit testing to debugging and

documentation. The manual process of software development is both error-prone and

expensive. It relies heavily on the availability of skilled software professionals. The

recent innovations in the field of Artificial Intelligence (AI) and especially large language

models show promise in helping tackle these challenges.

Software systems have become exponentially complex since the early days of

programming (Bahdanau, Cho and Bengio, 2014). The Standish Group reported that for

the period 2011 to 2015, only 44% of projects were on a budget. The percentage of

projects that were completed on time was only 40% while those which met the project

objectives were 56% (CHAOS REPORT 2015, no date). According to the comprehensive

CHAOS 2020 report published in 2021 and referenced in Henny Portman‟s QRC (Project

Success, Quick reference card, 2021), the percentage of successful software projects was

only 31% while the percentage of projects which failed was 19%. 50% of the software

projects are still facing challenges to achieve success. In addition to this, there is a

chronic shortage of skilled software developers. Reports (Krasner, 2018) suggest, that it

was estimated that the United States incurred approximately $319 billion in costs due to

substandard quality software in the year 2018.

2

Recently, the field of Artificial Intelligence has seen some innovations and in

particular with large language models. This study analyzes these different AI language

models and different programming tools based on AI. It questions how these models and

tools can contribute to speeding the software development process. The effort and cost-

saving the industry can get by employing these models can help accelerate their adoption

in the industry. The goal is to understand how artificial intelligence will affect the job of

software professionals and its impact on the growth of the software industry.

1.2 Research Problem

The software development industry faces significant challenges, such as a

shortage of skilled software developers, cybersecurity breaches, and complex

technologies, as revealed by the 2022 Global DevSecOps Survey (Bendor-Samuel, 2022).

The COVID-19 pandemic has further compounded these issues, with remote and hybrid

work scenarios becoming more prevalent, reducing the supply of skilled staff. According

to Code.org (Code.org 2016 Annual Report, no date), there are over 500,000 unfilled

computing jobs in the United States alone, as the number of computer science graduates

does not keep pace with the growing demand for software developers. This talent gap is

causing several issues for businesses, such as increased development timelines, rising

project costs, and reduced ability to innovate efficiently. A survey by Harvey Nash

(Harvey Nash Group, 2021) found that 67% of technology leaders believe that the talent

gap is hurting their businesses.

Furthermore, the software development industry faces a high project failure rate,

resulting in a considerable drain on resources, revenue loss, and reputational damage

(The curious case of the CHAOS Report 2009, no date). The rapid pace of technological

change, increased competition for talent, and talent shortage make it challenging for the

3

industry to keep up with constantly evolving technologies and accelerate digital

transformation.

1.3 Purpose of Research

In the last few years, there have been many developments in the field of artificial

intelligence. A range of large pre-trained models has been released that show promise in

automating code-related tasks. With the rise in development costs and the growing dearth

of talent, the purpose of this research is to assess how these large pre-trained models can

be leveraged. The aim is to assess the impact of these models in different phases of

software development. The research aims to study how traditional techniques compare to

performing code automation using large language models. The study will also analyze the

cost and effort benefits organizations will get by leveraging large pre-trained models for

code automation.

The study also aims to analyze the impact this automation will have on the jobs of

software professionals. Automation in the field of software development is not new and

has been happening for several decades now. Integrated Development Environments

(IDEs) that support code writing, and rule-based systems capable of translating

programming languages are all forms of automation. However, large pre-trained models

have brought a revolutionary change. The purpose of the research is to analyze the new

skills that will be needed in the future if large language models could augment code-

related tasks.

1.4 Significance of the study

Artificial intelligence and machine learning is the fastest-evolving technology.

With a plethora of large pre-trained models released in the last two years, from GPT-3

(OpenAI, 2022), GPT-J (EleutherAI - text generation testing UI, no date) to Palm-Coder

(Chowdhery et al., 2022), CodeGeeX (Zheng et al., 2023) and GPT-4 (OpenAI, 2023),

4

there is a lack of study on how these models impact large software enterprises. The

results from this study will provide insights into various code-related tasks that can be

automated. They will also help understand the efficiency of these models in performing

such tasks.

When such insights are available, they can help organizations change the way

they think of software development today. Based on the results of the study,

organizations can make informed decisions on what stages in the software development

cycle, automation using large language models can be applied, and how they will benefit

from the same.

The study also aims to come up with a framework that can help perform a cost-

benefit analysis when augmenting code-related tasks with large pre-trained models. This

framework can help organizations assess and measure the benefits, if any, that they may

or may not get based on the problem they want to solve.

Automation invariably leads to reskilling. When certain tasks are automated, it

means that the machine can now perform those tasks more efficiently and effectively than

humans. This often leads to job displacement, but it also creates opportunities for

individuals to learn new skills that are in demand.

Reskilling is important because it allows individuals to adapt to new technologies

and the dynamic employment landscape. By learning new skills, individuals can remain

competitive and increase their value in the workforce. It also helps to ensure that

individuals can find new job opportunities as old ones become obsolete. The results of

this study will help identify the new set of skills that will be needed as different code-

related tasks get automated using artificial intelligence and machine learning.

1.5 Research Purpose and Questions

5

The research study‟s overall objective is to assess the impact of large pre-trained

models on the software industry as well as on software professionals.

 What software development tasks can be automated using artificial

intelligence-based language models?

 How do large language models‟ code automation capabilities compare against

traditional code generation?

 How much effort saving and cost-benefit will organizations get by

augmenting these AI-based models with a software programmer?

 What types of jobs will be completely replaced, if any, due to the adoption of

AI in the software industry?

 What is the new set of skills that will emerge as AI is increasingly adopted

across the organization for software development?

6

CHAPTER II:

REVIEW OF LITERATURE

2.1 A brief history of computing

A brief history of how computing and artificial intelligence has progressed over

the years. In the early 1940s and 1950s, scientists began to explore the concept of

artificial intelligence. Alan Turing published his work on “Computing Machinery and

Intelligence” (Turing, 2004) in 1950, where he first explored the concept of making

machines intelligent. The Logic Theorist, developed by Newell and Simon is considered

a stepping stone in the field of Artificial Intelligence (Kaur, no date). However, many

challenges like the need for high computation power, huge data requirements, and many

technological bottlenecks hindered the growth of the field of Artificial Intelligence.

As technology advanced, the realm of Artificial Intelligence also began to grow.

AI saw significant growth from 1993 to 2011 (enterpriseitworld, 2018). As computing

became faster with the availability of cost-effective memory and data storage, access to

different types of data (structured as well as unstructured) became possible. This

significantly aided the advancement of machine learning and artificial intelligence. It

became possible to apply complex and compute-intensive deep learning algorithms to

solve bigger problems.

2.2 Automation Approaches

AI is transforming the software development process in numerous ways - from

AI-powered tools for code suggestion to automated generation of test cases, fixing and

catching bugs in the code.

2.2.1 Rule-based systems

The traditional code automation approach relied heavily on programming

language rules and grammar (Imam, Rousan and Aljawarneh, 2014). However, this

7

approach requires a substantial level of expertise in the specific domain and significant

manual effort. Also, when dealing with intricate systems, it can be exceedingly time

consuming and challenging to generate the rules. Automation tools built with this

approach cannot learn and improve themselves. AI-based large language models, on the

other hand, can comprehend like a human and learn and improve based on their training

data.

2.2.2 Neural Machine Translation

With the increase in computation power and advances in deep learning, neural

networks like RNN or recurrent neural networks, LSTM or long-short-term neural

networks, and GRU or Gated Recurrent Unit became very popular. A typical neural

machine translation (NMT) model contains an encoder-decoder structure (Yang, Wang

and Chu, 2020). The encoder is used to encode the input sequence while the decoder

makes the predictions for the target sentence. Based on the requirement, these encoder-

decoders can be either feed-forward neural networks or recurrent neural networks.

Recurrent Neural Networks (Zargar, 2021) are designed for data that is sequential

such as a sequence of words, images, sentences, and so on. A recurrent neural network

considers time as one of the dimensions and changes its state with time. They have

proved very powerful in solving NLP tasks. However, they suffer from Vanishing

gradient and exploding gradient problems (Zargar, 2021). Models like LSTM and GRU

help overcome this problem.

One drawback of using the NMT approach for machine learning-based coding

tasks is training a model from scratch with a large volume of labeled data. This approach

has an inherent dependency on the availability of task-specific large labeled datasets –

thus increasing the effort and cost of training.

8

2.2.3 Pre-trained language models

To overcome the bottlenecks of traditional encoder-decoder architectures,

Bahdanau, in 2016, introduced the concept of attention mechanism (Bahdanau, Cho and

Bengio, 2014) using which the decoder decides which part of the sentence to pay

attention to. Later, the transformer architecture, which is built on attention mechanism

was proposed by Vaswani et al., 2017. This architecture is much more powerful than

traditional sequence to sequence models. Several models emerged as a result of this

concept like BERT, GPT-1/2/3, T5, and so on. In a study, Galanis et al., 2021 described

how these transformer-based models have evolved.

2.3 AI in Software Development

Artificial Intelligence can help in various stages of the software development

process. As discussed by Vinugayathri, no date, AI can impact the following areas in

software development:

- Requirement Gathering

- Design

- Code Generation

- Testing and

- Deployment

Mithas, Kude and Whitaker, 2018, believe that AI can play two different roles in

software development. In its first role, AI can be used as a tool to develop software

programs, and in the other role, AI itself serves as the software. In its first role, AI can be

used to generate code, thus, helping the software developer to shift focus to other

business tasks and help generate value. It is assumed that AI will replace code in its

second role. However, it is believed that conventional code will still be relevant.

2.4 AI-Based Tools used in Programming

9

A report by Forrester (Hammond, 2020) predicts how low-code platforms and

breakthroughs like GPT-3 will change the way software development teams work. There

is a consensus building upon the need for such AI-based coding tools today. In terms of

developing code – even today, we continue to write code by hand. The programmer

references multiple resources - primary resources like the programming language

documentation and secondary resources like books, code repositories like GitHub,

discussion forums like Quora, and many more. Over the years, we have seen many

coding assistants that have become available to programmers to assist them in their

journey. While many are rules or grammar-based, recently, many of the code assistants

are based on Artificial Intelligence. Some examples are:

 Tab Nine – a deep learning model which is a code auto-completion tool. As the

programmer types the code, it predicts or suggests the remaining code for that line.

This is a GPT-2 model trained on around 2 million files from GitHub. It supports 23

programming languages and has around 14 integrations with software like IntelliJ

IDEA, PyCharm, and so on (Synced, 2019).

 Kite (Hung, 2021) is another ML-based tool that is good at code completion. In

addition, it also uses recommendation techniques to suggest similar or related code

within its codebase. Kite is trained on over 25 million files. It supports around 16

programming languages and is integrated with 16 code editors.

 Microsoft‟s IntelliCode (Ramel, 2020), (Svyatkovskiy et al., 2020) is another code

assistant which is based on the LSTM model architecture. It assists in statement

completion. It also provides signature help and recommends the most likely overload

for the given context. IntelliCode supports C#, C++, TypeScript/JavaScript, or

XAML in Visual Studio 2019 or higher.

10

 There are many more such tools like AiXcoder, IntelliSense, Jedi, and Wing Python

IDE.

 Asiroglu et al., 2019 suggest generating HTML code automatically, from individual

web page mock-ups, using machine learning techniques.

Although these tools are very powerful, there are a few drawbacks:

1. Most of these tools assist in only statement completion or signature selection

2. In many cases, with these models, the accuracy attained on synthetic benchmarks fails

to translate well on practical completion tasks in real-life settings.

3. Limited or specific language support.

4. Inability to interpret natural language and generate code and vice-versa.

Given this context, AI-based language models like Codex, GPT-3, CodeBert, and

GPT-J are extremely powerful.

2.5 Large language Models

As discussed under “Automation Approaches – Pre-trained language models”, the

last three years have seen the growth of pre-trained language models. The code writing,

code understanding, and natural language understanding of these pre-trained models

which are based on transformer architecture is far superior to any existing tool or

technology. In the paper “Attention is all you need” (Vaswani et al., 2017), the authors

explain the transformer architecture in detail. A typical transformer model contains both

an encoder and decoder stack. There are some models like BERT which are encoder-only

while some like GPT-3 which are decoder-only models. Encoder-only models are good

for language modeling while decoder-only models are used for predictive tasks. There are

other models like T5 and Code-T5 which contain both the encoder and decoder stacks.

Table 1 below gives a list of pre-trained language models that are built on

transformer architecture (Qiu et al., 2020) and (Han et al., 2020).

11

Table 1

List of pre-trained language models

Pre-trained

Model

Transformer

Architecture
of Params Data

Fine-

tuning

GPT Decoder Only 117M BookCorpus Yes

GPT-2 Decoder Only
117M-

1542M

WebText
No

GPT-3 Decoder Only 125M-175B
CommonCrawl + WebText2 +

Books1 + Books2 +

Wikipedia

No

BERT Encoder Only 110M-340M WikiEn + BookCorpus Yes

RoBERTa Encoder Only 355M
BookCorpus + CC-News +

OpenWebText + STORIES
Yes

XLNet
Two-Stream Encoder

Only ≈ BERT
WikiEn + BookCorpus +

Giga5 + ClueWeb + Common

Crawl

Yes

ELECTRA Encoder Only 335M same as XLNet Yes

UniLM Encoder Only 340M WikiEn+BookCorpus Yes

BART
Transformer (Encoder

+ Decoder)

110% of

BERT same as RoBERTa Yes

T5
Transformer (Encoder

+ Decoder)
220M-11B

Colossal Clean Crawled

Corpus (C4)
Yes

ERNIE

(THU)
Encoder Only 114M WikiEn + Wikidata Yes

KnowBERT Encoder Only 253M-523M WikiEn + WordNet/Wiki Yes

12

GPT-3, short for Generative Pre-trained Transformer, is a 175 billion-parameter

auto-regressive language model (Brown et al., 2020). Recently, Chen et al., 2021

introduced Codex – a GPT language model finetuned on GitHub code. Models like GPT-

3 and Codex are pre-trained on a vast amount of unlabeled data followed by

discriminative fine-tuning on a specific task. Codex can understand multiple languages

like Python, Java, C++, Javascript, Perl, and many more and can be used for many code-

related tasks. Figure 1 below shows the various code-related tasks that can be performed

using Codex. Github Copilot (Your AI pair programmer, no date) is also powered by

OpenAI Codex.

 Figure 1

Codex

13

OpenAI recently released new versions of its models, ChatGPT (Introducing

ChatGPT, 2022) also known as gpt3.5-turbo, and GPT-4 (OpenAI, 2023). Both these

models are based on the previous version of the instruct series of GPT-3 models but have

been trained differently, using Reinforcement learning with Human Feedback. Both these

models can understand different programming languages and can perform code-related

tasks either similar to or even better than models like Codex.

Models like GPT-3, Codex, and GPT-4 are only available as APIs. Hence, they

cannot be deployed in one‟s environment. EleutherAI released GPT-J (EleutherAI - text

generation testing UI, no date) – a 6 billion parameter open-source model similar to GPT-

3. GPT-J training data contains a good amount of GitHub code. Hence, the code-related

capabilities of GPT-J are better than GPT-3. Since GPT-J is open-source, it can be

deployed in one‟s environment and it is also possible to fine-tune it with custom datasets

for different code-related tasks. Fine-tuning greatly helps in improving the performance

of the pre-trained model on custom code-related tasks. Perez, Ottens and Viswanathan,

2021 have demonstrated how fine-tuning the small GPT-2 (117 million parameters)

model improved its code-generation capability achieving a BLEU score of 0.22.

CodeBERT (Feng et al., 2020) is another transformer-based model built for

various natural language – programming language tasks. CodeBERT can be used for

predicting defects (Pan, Minyan and Biao, 2021) and to automatically fix bugs in Java

programs (Mashhadi and Hemmati, 2021). Gandhi, 2020 proposes how CodeBERT can

be used for the generation of code documentation as well. BERT models can also be used

for code completion as discussed by Ciniselli et al., 2021.

Recently many transformer-based models have been released like GPT-Neox

(GPT-NeoX, no date), OPT (Alford, 2022) and Bloom (BigScience, 2022). All these

14

models are open-source models and can be utilized for different code-related tasks. Like

GPT-J, these models can also be finetuned for a given data set and given requirement.

AI-based language models can perform many code-related tasks other than

sentence completion or signature recommendation as opposed to the different code

assistant tools. These models have not yet been fully explored and can positively impact

the software development industry and the role of software developers.

2.6 Impact of Artificial Intelligence on Software Professionals

Over the years, there have been many debates on whether Artificial Intelligence

will replace humans. In a detailed survey (Alkashri, Siyam and Alqaryouti, 2020), Siyam

N talks about how Artificial Intelligence is slowly moving towards Artificial General

Intelligence and the possibility of Artificial Super Intelligence. It also discusses the

impact of Artificial Intelligence on employment and how the role of software engineers

will change gradually. A 2016 study from McKinsey indicates that almost 78% of work

falls under the “predictable physical work” category and 69 % of jobs involving data

processing will be replaced by machines. Concerning the role of Software engineers,

there are different opinions on whether AI will replace them. Guelfi, 2018 discusses his

idea about “senseware” engineers and believes that software engineers will be replaced

with advanced AI technology. Similarly, there have been predictions that almost 70% of

IT jobs will be killed due to automation (Venkatesh, 2017).

On the other hand, there are other opinions (Schatsky and Bumb, 2020) that

suggest that AI will only help augment the work of software developers. In one of the

studies (Zohair, 2018) Lubna studies the impact of AI on software engineers and the

future of software engineering by 2050. Lubna brings out the fact that although software

engineers cannot be replaced, they will need to reskill and adapt to the latest changes in

technology and advances in AI. In “Artificial Intelligence and IT Professionals” (Mithas,

15

Kude and Whitaker, 2018), the authors discuss that though there have been predictions

that software developer jobs will be reduced by 70% in India, such predictions are not

new. Almost six decades ago, Herbert Simon made a similar prediction on how “self-

programming techniques” could lead to the extinction of software developers. The

authors use an approach to first identify the contributing factors to the changes in demand

for software programmers, study the relation of these factors with AI and then analyze

how AI can impact them.

Thus, with the rise in powerful transformer-based large language models or LLM,

it is important to study their impact on the industry.

2.7 Evaluation of AI models

To correctly assess the impact of AI models on the job of software developers, it

is vital to evaluate the efficiency and usefulness of these models. Kulkarni and

Padmanabham, 2017, integrate different AI activities like machine learning, statistical

model, knowledge representation, intelligent decision-making, and so on into both

extended waterfall models and agile models. The authors then study the effectiveness of

this integration with the software development process. They have used the metrics

UGAM and IoI in their study.

In the context of source code, there are many metrics for static source code.

However, when it comes to automated code generation, limited research has been

conducted. Li et al., 2020 propose a metric model for automatic code generation

consisting of six different metrics based on the efficiency and quality of generated code.

Narasimhan, Venkatesha Rao and M B, 2021 propose a metric CGEM (Code

Generation Evaluation Metrics) to validate the code generated using GPT-3. Amongst

other metrics, CGEM contains metrics like LOC, BLEU score, ROUGE-1, 2, L score,

number of edits required, number of compilation errors, and so on. Eighty codes are

16

generated using GPT-3 and these metrics are then applied to them. Based on the results,

the codes are then classified as acceptable or not-acceptable using artificial neural

network modeling. During training, the model gave an accuracy of 76.81% and during

testing, the accuracy was 61.54%.

The metric models mentioned above are only for automatic code generation.

However, AI models like GPT-3, Codex, and GPT-J can augment other code-related

tasks as well like code documentation, code translation, and fixing bugs. There is a need

to come up with some framework that could help assess the impact of AI-based models

on both cost and effort. With the help of this framework, it should be possible to correctly

gauge how these models will affect the software developers and positively favor the

software industry.

In “How much automation does a data scientist want” (D. Wang et al., 2021), the

authors study how much automation data scientists and machine learning engineers need

in their workflows. The authors have suggested a human-centric framework with

different personas, tasks, sub-tasks, and levels of automation. Based on this framework,

they further design an online survey study that helps them conclude. A similar approach

can be used for measuring how much code automation can be done using the pre-trained

models. This can then, further, be extended to analyze the kind of jobs that this

automation can replace.

17

CHAPTER III:

METHODOLOGY

3.1 Research Purpose and Questions

As we have seen so far, the software development process is costly and becoming

increasingly difficult especially due to the chronic shortage of specialized software

developers. Code automation serves as a good option to overcome this challenge. We

have also seen that rule-based systems for code automation have several drawbacks.

Similarly, approaches in AI like Neural Machine Translation need a huge amount of

labeled data making this approach difficult and costly. This led to the revolution in AI

with pre-trained models like GPT-3, GPT-J, and Codex which have code generation and

code documentation capabilities.

Although large language models are effective for various natural language tasks,

their use for code automation has not been explored in depth. It is unclear how large

language models can be effectively used to automate code tasks such as code completion

and error correction. There are not many studies comparing the efficiency and

effectiveness of large language models to traditional code completion tools. Also, the

potential benefits of using large language models for code automation have not been fully

explored. There is also a lack of research on how code automation will impact the

software industry and software professionals. There is a need to investigate how code

automation will change the way software is developed and maintained, and how it will

impact the career paths of software professionals. Thus, to summarize, there is a need for

research that evaluates the effectiveness of using large language models for code

automation in comparison to other methods of code development and measure its impact

on software professionals.

This research aims to fill in this research gap and answer the following questions:

18

1. What software development tasks can be automated using artificial

intelligence-based language models?

2. How do large language models‟ code automation capabilities compare against

traditional code generation?

3. How much effort saving and cost-benefit will organizations get by

augmenting these AI-based models with a software programmer?

4. What types of jobs will be completely replaced, if any, due to the adoption of

AI in the software industry?

5. What is the new set of skills that will emerge as AI is increasingly adopted

across the organization for software development?

3.2 Research Design and Strategies

3.2.1 Research Design

To answer the proposed research question, a blended approach of qualitative and

quantitative techniques would be employed. Survey research would be used to gather

information on the tasks which programmers think should be automated. It will also help

understand the programmer‟s point of view towards code automation - whether

programmers are inclined towards automating code-related tasks or prefer performing the

task manually.

Sample Survey Questions:

Q1. Describe your role: Student, Programmer, Manager, or Other

Q2. Rate your programming skills on a scale of 1 to 4

Q3. What programming language are you comfortable with:

Java, C++, Python, .NET, Javascript, C, C#, Go, R, Swift, PHP, Perl,

Ruby, Scala, Other

19

Q4. Time (in mins) you would take to code a simple Java program

Q5. Time (in mins) you would take to code a simple Python program

Q6. Time (in mins) you would take to code a simple C++ program

Q7. Time (in mins) you would take to code a medium-complexity program

Q8. Time (in mins) you would take to code a complex program

Q9. Select the reason for the slow development time

Q10. Would you prefer to write code from scratch compared to using templates?

Q11. Would you prefer to make use of an automatic code generation utility for

code completion?

By using quantitative methods, some experiments will be performed in a

controlled environment where I will study the impact of automating the code-related

tasks using per-trained models. The results from the experiments will be analyzed to

measure the amount of cost and effort savings we get as a result of this automation.

Based on both the qualitative and quantitative research done, I will design a framework to

evaluate the benefits of code automation and the kind of reskilling needed, if any.

3.2.2 Sample Selection

For my sample I would want to reach out to programmers with different levels of

programming experience and who are willing to to take part in the study. The objective is

to receive five thousand responses to the survey and have a small group of programmers

who would be involved in the experiment. The setup of the experiment will be as follows:

1. For each programming language, there will be six programmers needed. These

six programmers will be divided into three groups.

2. The first group will contain an expert programmer, the second group will have

a programmer with medium programming skills and the third group will have

a programmer with basic programming skills in the concerned programming

20

language. These programmers will be assigned a code-related task to be done

manually without any automation.

3. Each of these groups will also contain a programmer with basic knowledge of

the concerned programming language who will perform the same code-related

task with the help of pre-trained language models like Codex, GPT-3, GPT-J,

or any other such model.

This setup will be repeated for different programming languages and different

code-related tasks. The intention will be to analyze the effort saving we get by

automating different code-related tasks. By assigning programmers with different levels

of expertise and experience, we will also be able to analyze the cost-saving we can get by

replacing one expensive resource with a cheaper resource and augmenting it with

Artificial Intelligence based models. The data collected and analyzed in this manner will

also help chart the skills needed to work with AI-based code automation models. Thus, it

will help me answer my research questions.

3.2.3 Participant Selection

A wide range of developers will be considered for participation in the survey.

This would range from freshers to experts in the said programming language. Since code

Group 1:

1 Expert Programmer

1 Basic Programmer (for Automation)

Group 2:

1 Intermediate Programmer

1 Basic Programmer (for Automation)

Group 3:

1 Basic Programmer

1 Basic Programmer (for Automation)

Figure 2

Experiment Setup

21

automation can greatly impact the future of the software industry, a larger focus will be

on the new generation who will be using these tools.

Fresh graduates/students pursuing bachelors/masters with programming

knowledge will constitute around 60% of the participants. 20% of the participants will be

programmers with between 2 to 5 years of programming experience. The remaining 20%

of the participants will be software developers with 5+ years of programming experience.

For the experiment setup, participants with experience in different programming

languages will be considered. Also, it will be ensured that programmers with different

levels of expertise participate in this exercise.

3.2.4 Sources of Data and Data Collection Procedures

To validate different tasks that can be automated using large pre-trained models,

there is a dependency on small datasets that can be used for few-shot learning or fine-

tuning. For this purpose, free datasets for different tasks have been identified. A few of

the sources are:

- Code-T5 dataset (“Code-T5 Dataset,” no date) for code summarization, generating

code from text, code translation, code defect detection, and so on.

- LeetCode solutions (kamyu, 2020) also has a repository of code solutions in C++,

Python, and Java. Since these solutions are for the same coding task – in different

programming languages, they also serve as parallel data that may be needed to

validate the task at hand.

- Similarly, a dataset for Java code with documentation is available at

http://leclair.tech/data/funcom/ (LeClair, A. and McMillan, C.).

- CodeSearchNet dataset (https://github.com/github/CodeSearchNet) contains around 2

million pairs of comments and equivalent code which can be utilized for fine-tuning

and extracting samples for few-shot learning.

http://leclair.tech/data/funcom/
https://github.com/github/CodeSearchNet

22

- CodeTrans for Java-C# translation (CodeXGLUE, 2020)

3.3 Data Analysis

Our first research question is “What are the software development tasks that can

be automated using artificial intelligence-based language models?”

To answer this question, we will work with different pre-trained models like

Codex, GPT-3, GPT-J, Code-T5, and CodeBERT. All these models are pre-trained on

code datasets and capable of performing different code automation tasks. If possible, we

will try to do a comparative study of these models for related tasks and present the

results.

For example, Table 105 in Appendix B, shows the code generation capability of

GPT-3, GPT-J, and Codex for a simple Python program. The instruction is given in

natural language to take the name, age, and roll no as input from the user and write it to

the file. Similarly, an example of a code documentation task that can be performed using

the pre-trained Codex model is shown in Figure 79 in Appendix B. Similarly, we will try

other tasks possible with Codex and other pre-trained models.

Our second research question is “How do large language models‟ code

automation capabilities compare against traditional code generation?”

Traditionally, code is written manually from scratch or by referring to various

online resources like GitHub, StackOverflow, and so on. Also, traditional code

translation tools are rules-based. To answer this question, we will show through some

experiments, the quality of code generated or translated by large language models. We

will also compare these capabilities with some standard IDE that are used by software

developers to augment their coding tasks. We aim to show that such code generation,

translation, or documentation capabilities provided by these large language models are

better compared to the standard options available to a software programmer.

23

 Our next research question is “How much effort-saving and cost-benefit will

organizations get by augmenting these AI-based models with a software programmer?”

To answer this question, based on the survey conducted, we will select three

programming languages and three tasks that the programmer community is interested in.

Then we will perform experiments using the strategy mentioned under “Sample

selection”.

The research methodology to be adopted to answer this question is showcased

below with the help of an example:

1. Code automation task to be done - Code Translation (from Python to Java)

2. The pre-trained model identified – Codex

3. Code Complexity – Simple

4. Code objective - Add two numbers using a linked list

5. Experiment Group - One programmer with medium programming skills and another

with basic skills (to auto-generate code using pre-trained models)

Figure 80 in Appendix B shows the Python program which needs to be translated

to Java. The code shown in Figure 80 is fed to Codex which then translates it into

equivalent Java code. Figure 81 in Appendix B shows the Java code which is generated

using Codex. A few lines of code need to be added to the program as shown in Figure 82

in Appendix B to test the program. This program generated by Codex is a working

program with no errors and correct logic.

Parallelly, a programmer with intermediate programming skills will be assigned

to generate the equivalent Java program manually. The screenshot in Figure 83 in

Appendix B shows the program written manually.

Analysis:

24

Table 2

Analysis of Code Translation using Codex

*In terms of cost-saving, based on project size, replacing three software developers (at an

average rate of $100/hour) with one developer, can give a cost-saving of almost 60%.

The same process will be repeated with the other two groups with one

programmer of different programming expertise and another with basic programming

skills for auto-generation of code. Similarly, the task will also be repeated using other

pre-trained models like GPT-3, GPT-J, CodeBERT, and Code-T5. Post the experiment,

No. of lines of Python Code 37

No. of lines generated by Java Code 37

No. of lines added to test the program 8

Does translated program compile? Yes

Does the translated program execute and give correct

results?

Yes

Time taken to translate the program using Codex 30 sec

Time taken to copy-paste the code in Java editor and

add the extra lines of code to test and run the program

5 min 30 sec

Total time for end-to-end translation of simple Python

program to Java

6 min

Approximate time to translate code from scratch and

execute it (with intermediate programming skills)

25 min

Effort saving 19 min

*Cost-saving One expensive resource replaced

with one cheaper resource

Skills needed Basic programming and debugging

25

we will conduct another survey to study the effectiveness of these models for code

automation.

We will develop a framework to measure the cost-benefit one can get by utilizing

these models. An example of measuring the benefits of utilizing automation in code

translation for a large program with 10 million lines of code is shown below (code is fed

by breaking it down into smaller blocks):

Table 3

Example of Cost-Benefit Analysis for Code Translation

 Manual

Translation

Translation

using AI model

Saving

LOC per block 1000 1000

Total no. of blocks of code 10,000 10,000

% Effort saving using AI (Minimum assured) 40% 40%

Developer‟s translation effort (hours per LOC

block)

40 24

Developer‟s rate ($ per hour) 40 40

Developer‟s cost to client ($) / block of code 1600 960

Developer‟s cost to client ($) for 10 million lines of

code

16,000,000 9,600,000 6,400,000

Cost of manual effort (correction/validation)

needed with AI model

 600,000

Total cost to client (per block) 16,000,000 10,200,000 36%

*Saving to the client is near ~ 6 million dollars or 36% of the original cost

The answer to the next two research questions “What types of jobs will be

completely replaced, if any, due to adoption of AI in the software industry?” and “What

26

are the new set of skills that will emerge as AI is increasingly adopted across the

organization for software development?” will depend on the exhaustive experiments

conducted using different models.

A preliminary analysis suggests that for complex programs, for which one needs

to refer to multiple resources, large models like Codex and GPT-J can help generate

template code. Manual intervention will however be needed to check for logical errors.

The current analysis also suggests that strong programming fundamentals with

good debugging skills will be needed to work with these models. However, expert

programming skills may not be needed as the model can help generate at least 60 percent

of the code.

3.4 Research Hypothesis

Based on the research questions, we formulate the following hypotheses:

1. The code generation/translation capabilities of large language models are better than

traditional code generation and rule-based tools.

We have seen in the literature review that traditional tools used for code

automation either help with a single line of code/method completion or use rule-based

methods for code translation. Hence, they do not provide an optimal way of code

automation. When it comes to code generation, large language models do not suggest a

single line or method completion but are capable of completing an entire piece of code.

Also, regarding code translation, large language models, do not perform a one-one

translation of code from source to target, as is the case with traditional code translation

tools. They, on the contrary, rely on understanding the semantics of the program and

suggest an optimal translation of the given piece of code.

We aim to prove this hypothesis by performing a few experiments outlined in the

sections above.

27

2. If large language models are to be used optimally, then a human-in-the-loop is

necessary for validation of the result generated by the model.

Even though large pre-trained language models can generate code, the generated

output, depending on the complexity of the task, may not be completely accurate. We

hypothesize that manual intervention will remain a part of these techniques of code

generation, where the code generated by the model will be validated, corrected, and then

implemented by the software developer as part of the bigger project.

3. If code automation using large language models is leveraged in the industry, it can

improve software quality by reducing errors and increasing consistency.

Manual code generation is prone to errors. Also, with different programmers

following different programming styles, code inconsistency is bound to rise. We

hypothesize that if we make use of large language models for automatic code generation,

these inconsistencies will reduce since the code generated by the model will be consistent

and can be directed to follow best practices.

4. If large language models are used for code automation, it can improve software

development efficiency by reducing the time needed to develop code and provide

significant cost and effort benefits to software organizations.

We hypothesize that large language models like Codex can greatly help reduce

the time needed to develop code with a good amount of accuracy. This can, in turn, help a

company decrease the time to market its software products. We will evaluate these

models for the time and effort spent on code generation. We plan to prove this hypothesis

by performing various experiments and thus show that they can provide significant cost

and effort benefits to the organization.

28

5. If code automation using large language models is adopted in the software industry,

it can improve software development flexibility by allowing developers to focus on

higher-level tasks and by providing more options for code generation.

With AI performing repetitive and tedious coding tasks, we hypothesize that the

time and energy of software professionals can be directed toward higher-level tasks and

problem-solving.

6. If code automation using large language models is adopted in the industry, then

reskilling software professionals is necessary.

We aim to show that AI models will provide significant benefits to organizations

in terms of both cost and effort. At the same time, we hypothesize that the role of a

software developer will not diminish. Rather, there will be a shift where automation will

take over the task of performing all the trivial tasks, and software engineers can

concentrate on high-level aspects. As code automation tools become more sophisticated,

developers may find themselves doing less coding and more debugging, testing, and

troubleshooting.

Prompt engineering is another skill that will need a developer‟s attention.

Providing the right prompts for guiding the model to generate the best output is a skill

that software developers will have to learn.

7. If code automation continues to increase in popularity and effectiveness, it will have a

significant impact on the software industry and software professionals.

We hypothesize that if code automation using large language models proves to be

effective and becomes popular, it is likely to impact the software industry in many ways.

First, as suggested in the earlier hypothesis, the role of software developers may change.

Second, the demand for software developers may change. As code automation becomes

more common, businesses may be less likely to need as many software developers on

29

staff. Instead, they may contract with code automation service providers to handle their

coding needs. Third, the nature of software development may change. As code

automation tools become more prevalent, the software development process may become

more streamlined and efficient. The cost of software development may change. As code

automation tools become more common, the cost of developing software may decrease.

This could make it more affordable for small businesses and startups to develop their

software applications. Finally, it will allow for the rapid creation of new software

applications and the ability to rapidly deploy them. This will lead to a more competitive

software industry and increased pressure on software professionals to keep up with the

latest trends.

3.5 Research Design Limitations

The approach described above can be applied to extensively understand the

benefits of three major code automation tasks. However, under code automation, many

tasks can be proposed to be automated. The limitation of this approach is in analyzing the

benefits of code automation for all possible tasks.

Also, every language model has a limit on the total number of tokens. For

example, GPT-J and GPT-3 have a limit of 2048 tokens and Codex has a limit of 4096

tokens. Hence, a single large program cannot be fed to these models. We will be limiting

ourselves to programs that are not very big and do not exceed the required number of

tokens.

30

CHAPTER IV:

RESULTS

4.1 Survey Results

A survey was conducted to gather information on the most used programming

languages, estimate the time taken to code manually from scratch, and the preference of

the audience towards automating code-related tasks. Survey results are presented in

Appendix A. The survey results indicate that the most preferred programming languages

are Java, Python, and C++. We also observe that as the complexity of the program

increases, the effort needed for the same also increases. The unavailability of sufficient

skilled resources and the rapid technology change appear as the top two reasons behind

the slow development time. The survey also indicates that the community is open to the

use of automation in the area of software development.

We then proceeded with validating the hypothesis and arriving at the answers to our

research questions.

Research Question Findings

4.2 Research Question One

“What are the software development tasks that can be automated using artificial

intelligence-based language models?”

There are many different tasks involved in software development, but some of the

most common include planning and requirements gathering, design, coding, testing, and

documentation. AI-based models can be used to automate all of these tasks, making the

software development process more efficient and effective.

4.2.1 Planning and requirements gathering

31

One of the most important aspects of software development is planning and

gathering the requirements. This entails understanding what the software needs to do, and

what the user wants it to do. Software development teams often expect business

customers to articulate their requirements in a clear and concise manner, while business

customers anticipate development teams to provide a solution based on ambiguous and

unstated, or unknown requirements. However, these expectations are often unrealistic.

Therefore, it is essential to explicitly document the requirements in a consolidated

document that can serve as a reference during the software development process.

Requirements gathering is largely done manually. However, there are a few areas

where AI can help augment this phase of software development.

4.2.1.1 Software requirement classification

This helps in understanding the requirements better and also helps in scoping the

project. Manually, this is a time-consuming task, but AI can help automate it to some

extent. Software requirements broadly fall into two major categories: functional

requirements and non-functional requirements. Non-functional requirements can further

be classified into other categories like performance, security, usability, maintainability,

scalability, and so on. Software requirement classification can be done by analyzing the

natural language requirements documents using NLP techniques. This will help identify

the different types of requirements, including functional, non-functional, design, etc.

We tested the capability of a large model like GPT-3 to perform this task. The

model was first asked some questions to check its knowledge on functional and non-

functional requirements. Then, the model was given the task to classify a given

requirement into one of the non-functional requirements. Figure 3 and Figure 4 below

show the capability of the model in understanding software requirements.

32

The model was further tested on the Promise NFR (PROMISE Software

Engineering Repository, no date) dataset to measure its capability against other

traditional methods and other ML models. The detailed approach and results are provided

in the next section 4.3.1.

4.2.1.2 Software requirement clustering

Figure 3

GPT-3 understanding about software requirements – Look and Feel

Figure 4

GPT-3 understanding about software requirements – Performance

GPT-3 Generated

GPT-3 Generated

GPT-3 Generated

Classification using GPT-3

GPT-3 Generated

GPT-3 Generated

GPT-3 Generated

Classification using GPT-3

33

Software requirements clustering, like, software requirements classification, is

another approach for organizing and analyzing requirements in the software development

process. While both approaches can be useful for understanding and prioritizing user

needs, there are some key differences between the two:

 Purpose: Grouping similar requirements is the primary aim of software requirements

clustering, whereas the main goal of software requirements classification is to assign

requirements to predefined categories or labels.

 Granularity: Software requirements clustering tends to be more granular than

classification, as it involves grouping similar requirements rather than assigning them

to broad categories. This can help developers to identify specific themes and patterns

in user needs and to understand the context and implications of each requirement

more fully.

 Benefits: Software requirements clustering can help developers to more efficiently

and effectively understand and prioritize user needs, as it allows them to identify

specific themes and patterns in the requirements. Classification, on the other hand,

can be useful for organizing and tracking requirements, as it allows developers to

assign requirements to specific categories or labels.

Overall, software requirements clustering and classification are both useful tools

for understanding and prioritizing user needs in the software development process. Since

large language models like GPT-3 have natural language understanding capabilities, they

can be utilized for this task of clustering software requirements. We tested the capability

of GPT-3 to cluster a set of software requirements.

34

As we can see in Figure 5, GPT-3 model can form logical clusters given a set of

software requirements, without any fine-tuning or few-shot learning.

Figure 5

Clustering using GPT-3

Input

Clusters identified using GPT-3

35

4.2.1.3 Automated requirement tracing

Automated requirement tracing is the process of establishing and maintaining

traceability between software requirements and other artifacts in the development

process, such as code, test cases, and design documents. This helps developers verify all

requirements are fully addressed and tested, and to determine any gaps or inconsistencies

in the requirements.

Large language models like GPT-3 and BERT are powerful models for various

natural language processing (NLP) tasks. They can be used to automate the requirement

tracing process, by analyzing the content of requirements and other artifacts and

identifying relationships between them. To use a large language model for automated

requirement tracing, developers can input the requirements and other artifacts into the

model and train it to recognize specific phrases or patterns that indicate a relationship

between them. For example, the model might be trained to recognize phrases such as

"This requirement is related to" or "This design document addresses". The model could

then extract these phrases and generate a list of relationships between the requirements

and other artifacts.

Here is an example of how a model like GPT-3 can be used for this purpose:

Consider a software development project where the requirement‟s gathering phase has

yielded the following requirement:

Input - Requirement (R1): "The system shall support multiple languages, including

English, Spanish, and French."

During the design, implementation, and testing phases, various artifacts related to this

requirement are created. However, the implementation has an issue that needs to be

addressed.

Example Artifacts:

36

Design Artifact (D1): A detailed design document that includes the following excerpt:

The system will use a localization library, such as i18next, to provide

internationalization support for English, Spanish, and French languages. Language files

containing translations for each supported language will be stored in the /locales

directory.

Code Artifact (C1): A snippet of code implementing the language support, but mistakenly

only including English and Spanish.

import i18next from "i18next";

i18next.init({

 resources: {

 en: { translation: require("./locales/en.json") },

 es: { translation: require("./locales/es.json") },

 },

});

Test Artifact (T1): A test case verifying that the system works as expected in English and

Spanish, but missing test cases for French language support.

describe("Language support", () => {

 it("supports English language", () => {

 i18next.changeLanguage("en");

 expect(i18next.t("welcome_message")).toBe("Welcome!");

 });

it("supports Spanish language", () => {

 i18next.changeLanguage("es");

 expect(i18next.t("welcome_message")).toBe("¡Bienvenido!");

 });

});

37

Output - Traceability Matrix (produced by GPT-3):

Table 4

Traceability Matrix

Requirement Design Artifact Code Artifact Test Artifact

The system shall support

multiple languages, including...

Excerpt from design

document (D1) describing... Sample code (C1) Test cases (T1)

Upon reviewing the traceability matrix and examining the artifacts, it becomes

apparent that both the code artifact (C1) and the test artifact (T1) are missing support for

the French language, which is part of the original requirement (R1). The development

team can then address this issue by updating the implementation and test cases

accordingly.

In this example, the traceability matrix helps identify an implementation issue by

highlighting the discrepancy between the original requirement and the related artifacts.

By examining the actual artifacts in detail, the team can detect and correct the issue.

Similarly, another example of how a model like GPT-3 can be used for this purpose:

 Input the requirements and other artifacts into GPT-3: The developers input the

requirements and other artifacts (such as design documents and test cases) into GPT-3

as text data.

 Train the model to recognize relationships: The model can then be fine-tuned or used

to recognize specific phrases or patterns that indicate a relationship between the

requirements and other artifacts using prompt-engineering techniques. For example,

the model can be used to recognize the phrase "This requirement is related to" as an

indication that the requirement is linked to another artifact.

38

 Extract the relationships: The model analyzes the text data and extracts the

relationships between the requirements and other artifacts based on the phrases and

patterns it has learned to recognize.

 Track changes and identify conflicts: The developers can use the model to track

changes to the requirements and other artifacts over time, ensuring that traceability is

maintained as the project progresses. The model can also be used to identify any

potential conflicts or inconsistencies between the requirements and other artifacts,

helping developers to identify and resolve any issues.

There are many potential applications for using large language models for

automated requirement tracing in the industry. For example, a software development

team could use the model to establish traceability between requirements and design

documents, helping to ensure that all requirements are fully addressed in the design. A

quality assurance (QA) team could use the model to trace requirements to test cases,

helping to ensure that all requirements are fully tested. And a project manager could use

the model to identify dependencies and constraints in the requirements, helping to

mitigate risks and ensure the project stays on track.

Overall, the use of large language models for automated requirement tracing can

significantly improve the efficiency and accuracy of the requirement tracing process,

helping developers to more fully understand and address user needs and to deliver

software that meets those needs.

4.2.1.4 Similarity detection

Similarity detection in software requirements refers to the process of identifying

similar requirements across different projects or within a single project. This can be

useful for many reasons, including reducing the effort required for requirement gathering

and helping to automate team formation.

39

One way to detect similarities in software requirements is by using natural

language processing (NLP) techniques, such as those offered by large language models.

By analyzing the text of the requirements and identifying common words and phrases,

LLMs can identify requirements that are similar in content or theme.

For example, consider two software projects that both require a feature for

filtering and sorting products. By analyzing the text of the requirements for these

projects, an LLM might identify the common theme of "filtering and sorting products"

and group the requirements together as similar. Figure 6 below shows how GPT-3

analyzes such requirements which are similar and generates one comprehensive

requirement.

Another approach to similarity detection in software requirements is to use

machine learning algorithms to analyze the requirements and identify patterns or trends.

For example, a machine learning algorithm could be trained on a dataset of software

requirements and learn to identify common themes or patterns based on the words and

phrases used in the requirements. The algorithm could then be used to identify similar

requirements in new projects.

Similarity detection in software requirements can be useful for several purposes,

such as reducing the effort required for requirement gathering and helping to automate

Figure 6

Similarity detection

GPT-3 Generated

Input

40

team formation. By identifying similar requirements in different projects, developers can

more easily reuse or adapt existing requirements, reducing the need to start from scratch

and saving time and resources. Similarly, by identifying similar requirements within a

single project, developers can more easily identify common themes and patterns, helping

to inform the development roadmap and team formation.

Overall, similarity detection in software requirements can significantly help to

improve the efficiency and accuracy of the requirement-gathering process. It can help

developers to gain deeper comprehension of the requirements, address the needs of the

user and to deliver software that meets those needs.

4.2.1.5 Automated requirement elicitation

This can be done by extracting requirements from unstructured sources, such as

emails, chat logs, etc. For example, let's say a software development team is working on a

new mobile app for booking flights. The team has received a large amount of customer

feedback on the app, including comments and suggestions from users. The team can use a

large pre-trained language model like GPT-3 to analyze this customer feedback and

extract specific requirements or feature requests.

We tested the capability of GPT-3 to perform this task of eliciting software

requirements from customer reviews. We used the app_reviews dataset on huggingface

(Grano et al., 2017) for this purpose. GPT-3 was able to successfully identify the possible

set of software requirements from a given set of customer reviews as shown in Figure 7.

This indicates the usefulness of these large language models in eliciting software

requirements from unstructured text.

41

4.2.1.6 Detect ambiguity in SRS documents

Ambiguity in software requirements specification (SRS) documents can be a

major issue as it can lead to misunderstandings, confusion, and ultimately, project

failures. Therefore, it is important to detect and resolve ambiguities in SRS documents as

soon as feasible during the process of software development.

One way to detect ambiguity in SRS documents is to use LLMs. These

transformer models, since trained on a vast amount of data, understand the nuances of

natural language, making them well-suited for identifying ambiguities in written text.

Figure 7

Software requirements elicitation

GPT-3 Generated

Input

42

For example, consider the following two requirements:

- The system shall allow users to search for products by name or description.

- The system shall allow users to search for products by name, description, or both.

At first glance, these requirements may seem similar, but they have different intentions.

The first requirement specifies that users can search for products using either the name or

the description, while the second requirement specifies that users can search using either

the name, the description, or both.

A large language model could potentially flag these requirements as ambiguous

because they are similar but have different intentions. This would allow the development

team to clarify the requirements and ensure that they are understood correctly before

proceeding with the development process. Some more examples of software functional

requirements that are similar but have different intent and could potentially lead to

ambiguity:

- "The system shall allow users to view their account balance."

- "The system shall allow users to view the balance of any account."

The first requirement specifies that users can view their account balance, while

the second requirement specifies that users can view the balance of any account. This

could potentially lead to ambiguity if it is not clear which of these requirements should

take precedence, or if it is not clear how the system should handle conflicting

requirements. Moreover, such a conflict could potentially have significant implications

for the system's security and access controls. Hence, such ambiguity must be resolved.

Another example:

- "The system shall display a list of all available products when the user selects the

'Browse Products' option."

- "The system shall display a list of all available products to all users."

43

The first requirement specifies that a list of available products should be displayed

when the user selects the 'Browse Products' option, while the second requirement

specifies that a list of available products should be displayed to all users at all times. This

could potentially lead to ambiguity if it is not clear how the two requirements should be

reconciled, or if it is not clear which of these requirements should take precedence. Also,

such conflict could have significant implications for the system's user interface and the

way that information is presented to users. Hence, resolving such ambiguities and conflict

is critical. Large transformer models like GPT-3 and BERT can be used for the same.

It is important to identify and resolve ambiguities in software functional

requirements, early on in the development process, to avoid misunderstandings and

confusion and to ensure that the system is developed per the intended requirements.

Another way to detect ambiguity in SRS documents is to use the model to specifically

check for ambiguities. The model can be used to identify phrases or words that may be

open to interpretation and flag them for further review. For example, consider the

following requirement:

"The system shall display a warning when the user attempts to delete a file that is

currently in use."

This requirement could potentially be ambiguous because the phrase "currently in use"

could be interpreted in different ways. For example, it could mean that the file is being

accessed by another user, or it could mean that the file is being edited by the current user.

A language model can be used to check for ambiguities and potentially flag this

requirement as ambiguous and prompt the development team to clarify the meaning of

"currently in use" before proceeding with the development process. Some additional

examples of ambiguous requirements are:

- “The system shall allow users to enter their login credentials.”

44

This requirement does not specify what the login credentials consist of (e.g.,

username and password, email, and password, etc.), which could lead to confusion

and misunderstandings.

- “The system shall display an error message when the user inputs an invalid value.”

This requirement does not specify what qualifies as an “invalid value,” leaving it

open to interpretation. It could refer to values that are outside a certain range, values

that do not match a specific format, or any other type of value deemed “invalid” by

the system.

- “The system shall send a notification to the user’s email address when a certain event

occurs.”

This requirement does not specify which email address the notification should be sent

to, or how the system should determine the correct email address to use. This could

lead to confusion if the system has access to multiple email addresses for a given

user.

In summary, detecting ambiguity in SRS documents is essential to a software

development project‟s success. Large language models and tools that check for

ambiguities can be useful in identifying and resolving ambiguities in written text, helping

to ensure that requirements are understood and implemented correctly.

4.2.2 Design

Design is the process of translating the requirements into a representation of the

software that can be used to guide its implementation. It is the process of creating a plan

or blueprint for the software. This plan includes the overall structure of the software, the

interfaces between the various components, and the algorithms that will be used to

implement the functionality.

45

In most cases, the design is expressed as a diagram or a set of diagrams.

Alternatively, the design could be described as a set of rules or constraints. The design

phase is important because it is during this phase that the team decides how the software

will be organized and how it will work. Multiple design tasks are done manually, like

creating UML diagrams, website design, identifying the correct class hierarchy, etc. AI

can help automate some of these tasks. The design phase can be automated to some

extent using AI-based models.

4.2.2.1 Action extraction from requirements document

Action extraction from software requirements is an important step in the design

phase of software development, as it helps to identify and understand the specific tasks

and behaviors that the software should perform. Action recognition and actor recognition

are important tasks in the process of action extraction from software requirements. Action

recognition involves identifying the specific tasks and behaviors that the software should

perform, while actor recognition involves identifying the entities that will perform these

actions.

Here are some examples of action and actor recognition using large language

models:

- Identifying specific actions: A large language model can analyze a requirement

document and identify specific actions that the software should perform. For

example, "The software should be able to search for a particular product by name"

would be recognized as the action "search for a product by name."

- Identifying actors: The language model can also identify the entities that will perform

the actions. In the example above, the actor might be "the user" or "the system."

- Extracting action details: The language model can also extract additional details about

the actions, such as the input and output for each action. For example, "The software

46

should be able to search for a particular product by name and display a list of

matching products" would be recognized as the action "search for a product by name"

with input "product name" and output "list of matching products."

- Identifying conditional actions: The language model can also recognize conditional

actions, such as "If the search returns no results, display a message saying 'No

products found.'" In this case, the action is "display a message" and the condition is

"if the search returns no results."

Use-case diagrams are a common way to represent the interactions between

different actors and systems in software development. They can be used to describe how

the system functions and the various ways in which it can be used.

Action and actor recognition from software requirements can be useful in creating

use-case diagrams because it allows you to identify the various actions or use-cases that

the system needs to support and the actors that will be interacting with the system. For

example, for a given set of software requirements that describe the functionality of an e-

commerce system, we can use action and actor recognition to identify the different

actions that the system needs to support, such as searching for products, placing orders,

and processing payments. We can also identify the actors that will be interacting with the

system, such as customers, administrators, and payment processors.

Using this information, we can then create a use-case diagram that shows the

different actions that the system needs to support and the actors that will be interacting

with the system. We can also use the use-case diagram to understand the relationships

and dependencies between different components of the system and how they interact with

each other to support the various actions and actors.

Creating a use-case diagram is just one step in the software development process,

and there may be additional steps involved in fully understanding and implementing the

47

interactions between different components of the system. However, action and actor

recognition can be a useful starting point for understanding the functionality of a system

and identifying the various actors and actions that it needs to support.

We evaluated the capabilities of GPT-3 for the task of actor and use-case

recognition. As we can see in Figure 8 below, GPT-3 is capable of successfully

recognizing the actors and use-cases given a problem description. Here, we used one-

shot, meaning we provided one sample for GPT-3 to understand the task needed to be

performed.

4.2.2.2 Design pattern recognition and classification

In the design phase of software development, it is important to accurately identify

and classify design patterns to effectively structure and organize the software. Design

patterns are reusable solutions to common design problems, and they can help to improve

the flexibility, maintainability, and scalability of the software.

Figure 8

Actor and use-case recognition using GPT-3

GPT-3 Generated

Input

48

Large language models can play a valuable role in the recognition and

classification of design patterns by using natural language processing techniques to

analyze and understand written text, including design documentation and source code.

These models can identify the specific design patterns employed in the software and

classify them based on their characteristics and features.

Below are some concrete examples of how large language models can support

design pattern recognition and classification:

- Identifying design patterns in documentation

A large language model can analyze design documentation, such as requirement

documents and design specifications, to identify the design patterns that are used in

the software. For example, if the documentation describes the use of a factory pattern

to create objects, the language model could recognize this and classify it as a factory

pattern.

- Identifying design patterns in source code

The model can also analyze source code to identify and classify design patterns. For

example, if the source code includes the use of a decorator pattern to add new

functionality to an object, the model could recognize this and classify it as a decorator

pattern.

- Classifying design patterns

In addition to identifying the specific design patterns that are used in the software, the

model can also classify the patterns based on their characteristics and features. For

example, the model could classify a factory pattern as a creational pattern, which

deals with the creation of objects, or a decorator pattern as a structural pattern, which

deals with the composition of objects.

- Providing context and explanations

49

The model can also provide context and explanations for the identified design

patterns, such as the benefits and drawbacks of each pattern and the situations in

which they are most appropriate. This can help software developers to understand and

effectively apply the design patterns in their work.

Overall, large language models can play a valuable role in the recognition and

classification of design patterns in the design phase of software development. By using

NLP techniques to analyze written text and source code, these models can accurately

identify and classify the design patterns employed in the software, providing valuable

context and explanations for software developers.

We evaluated GPT-3 for the task of design pattern recognition and classification.

Figure 9 below shows, that given a set of problem descriptions, how GPT-3 can correctly

identify the design pattern applicable to a given statement.

50

Similarly, Figure 10 shows how a model like GPT-3 can be used to identify the

correct design pattern in code.

Figure 9

Design pattern recognition from problem description

Input

GPT-3 identified design patterns

51

We further explored the capability of this model on the task of

Figure 10

Design pattern recognition in code

Input

Design pattern recognized

using GPT-3

52

design pattern extraction on the code fragments from the book Design Patterns: Elements

of reusable object-oriented software (Gamma et al., 1994). In the next section, we present

our approach and results on the same.

4.2.2.3 Class extraction for given problem statement

Classes are a fundamental concept in object-oriented programming, and they

represent the entities that make up the software system. In the design phase of software

development, it is important to accurately understand and model these classes. Class

extraction involves identifying and defining the classes that are needed to achieve the

desired behavior and structure of the software, as specified in the requirement documents.

Large language models can play a valuable role in class extraction by using

natural language processing (NLP) techniques to analyze the text of the requirement

documents and identify relevant information. These models can extract key nouns and

verbs from the requirements and use them to define the classes and their characteristics

and behaviors. For example, consider the following requirement:

"The software should be able to search for a particular product by name and display a

list of matching products."

A large language model can identify the key nouns "software," "product," and "list" and

the verb "search," and use this information to define the classes in the software. The

model might suggest defining a "Product" class with a "search" method, a "ProductList"

class to represent the list of matching products, and a "Software" class to represent the

overall software system.

In addition to extracting information about the classes, the model can also provide

context and explanations for the identified classes and their characteristics and behaviors.

For example, it might provide information about the attributes and methods that should

be included in each class and the relationships between the classes.

53

We tested the capability of the GPT-3 model to perform this task of class

extraction. Figure 11 below, shows how the model is successfully able to identify the

classes, the attributes, the methods, and the relationships between the classes, given a

problem statement.

4.2.2.4 Website design generation

Figure 11

Class extraction from problem statement using GPT-3

GPT-3 generated classes, methods, and relationships

54

Machine learning algorithms can be applied to create custom domain-specific

website designs for the user. This can save a lot of manual effort. AiDA (Artificial

intelligence design assistant) makes use of proprietary machine learning algorithms to

create custom domain-specific website designs for the user – saving a lot of effort. Based

on the user inputs and requirements, the AI assistant provides the best suggestions to the

user for their website.

Similarly, large pre-trained models like GPT-3 can be utilized to generate

template design code for a given requirement. For example, consider a requirement

below:

“A user wants to create a new website for an online store that sells eco-friendly products.

The user provides some high-level descriptions and design requirements such as:

The website should have a clean and modern design. The color scheme should

include green and white to reflect the eco-friendly theme. The website should have a

prominent header section with a logo, navigation menu, and search bar. The website

should have a hero section that showcases some of the featured products. The website

should have a section for displaying categories of products. The website should have a

footer section with links to social media and other relevant pages. Using these high-level

descriptions and design requirements, generate a website design that meets the user's

needs”

For this requirement, the machine generated code is added in the appendix. Figure

12 below shows the output generated by the code:

55

Similarly, Figure 13 below shows the output produced by the code generated by

gpt3.5-turbo (ChatGPT)

Figure 12

Eco-Friendly website

Figure 13

Eco-friendly website (ChatGPT)

56

4.2.3 Coding and Testing

Coding is the process of translating the design into a computer program. The code

is written in a programming language and is typically organized into modules or classes.

Testing ensures that the code compiles and meets the requirements. This is among the

most crucial phases of software development, as errors in the code can lead to incorrect

results. Also, there is a huge dependency on the coding standards followed by the team

and the testing team. There are multiple tools available to help with coding and testing,

like code coverage tools, static analysis tools, and so on. AI can help in automating the

process of writing code as well as in testing the code.

4.2.3.1 Code completion and suggestion

Code completion, also known as statement completion or auto-completion, is a

software feature that suggests possible syntax or code snippets as the user is typing, based

on previous inputs or a predefined list of suggestions. Code suggestion, on the other

hand, is a feature that suggests possible functions or method names based on the context

of the code. Large pre-trained transformer models have been used to improve the

accuracy and efficiency of code completion and suggestion systems. Large volumes of

source code and text written in natural language can be processed and analyzed by these

models, which then use this knowledge to provide relevant suggestions to the user.

Code completion is a feature that helps software developers by automatically

completing the code they are writing. Large language models can be used to implement

code completion systems that can suggest code snippets and complete entire code blocks.

For example, a code completion system based on a large language model can suggest the

correct code snippets for a given programming task, such as creating a database

connection or implementing a specific algorithm. The system can also generate entire

57

code blocks for common software components, such as error-handling routines or

database access layers.

One example of a code completion tool that uses a large language model is Deep

TabNine. This tool uses a language model based transformer architecture and trained on a

dataset of more than two million GitHub repositories and can provide accurate code

completion suggestions for a wide range of programming languages. Another example is

the code suggestion feature in the PyCharm Integrated Development Environment (IDE).

PyCharm uses a language model trained on a dataset of Python code to suggest function

and method names as the user is typing. This can save time and improve the readability

of the code by suggesting appropriate names for variables and functions.

Large language models have also been leveraged to enhance the precision of error

detection and correction in code. For example, the language model-based tool Kite uses

machine learning to analyze the context of the code and suggest corrections for syntax

errors. Similarly, Figure 14 shows the capability of Codex to complete a piece of

incomplete code.

Figure 14

Code completion

58

In addition to the code-specific applications, these large transformer models have

also been used to enhance the accuracy of natural language processing tasks in code

documentation and comments. For example, a language model could be used to suggest

appropriate tags for documentation or to generate summaries of code functionality based

on comments.

Overall, the use of LLMs in code completion and suggestion has the potential to

improve the efficiency and accuracy of coding tasks and to make programming more

accessible to a wider range of users. In the next section, we present a detailed analysis

and comparison of different models for performing this task.

4.2.3.2 Code generation

Code generation denotes the ability of large machine learning models to generate

code based on instructions in natural language. This can be a useful tool for software

developers, as it can help to automate the task of writing code. The use of LLMs in code

generation has recently become very popular, since these LLMs can generate code that is

not only correct but also easily understandable and maintainable. The following are some

examples of how large language models are being used in code generation.

- Code Templates

Code templates are pre-written code snippets that can be used to generate code

quickly and easily. Large language models can be trained to generate code templates

based on natural language instructions. For example, a software developer could

describe a specific software component and the language model would generate a

code template that implements that component. For example, Figure 15 below shows

the template code generated by Codex for a class in Python that implements a stack

data structure. This code implements a basic stack data structure in Python, with

59

methods for pushing items onto the stack, popping items off the stack, checking if the

stack is empty, and returning the size of the stack.

`

- Code Refactoring

Code refactoring involves making design changes to existing code without affecting

its functionality. Pre-trained language models can be employed to automate the code

refactoring process by identifying patterns in the existing code and generating new

code snippets that are more efficient, readable, and maintainable. For example, a code

refactoring system based on a large language model can analyze an existing codebase

Template code generated using GPT-3

Figure 15

Template code generation

60

and generate new code snippets that follow modern programming practices and best

coding standards. The system can also suggest code changes that will improve

performance, reduce complexity, and enhance code quality. Figure 16 below shows

an example of code refactored to improve performance.

This code implements a function named „sum_of_cubes‟ which accepts a list of

numbers as input and computes a sum of the cubes of those numbers. However, this

code can be improved by using a more efficient algorithm. One such algorithm is

using the formula [n(n + 1)/2]
2
 to calculate the sum of cubes of the first n natural

numbers.

- API Generation

One of the prevalent use-cases of large transformer models in code generation is the

generation of APIs. An API, short for Application Programming Interface is a

collection of protocols, procedures, and tools used in the development of software and

applications. An API specification contains information about the functions, data

types, and structures that a software component provides. LLMs can be leveraged to

generate code for APIs based on the input API specification. For example, a language

model could generate code in multiple programming languages, such as Python, Java,

and C++, for both the server-side and client-side components of an API.

Input Refactored code using GPT-3

Figure 16

Code Refactoring

61

This shows that as technology continues to advance, it is likely that large language models

will play an increasingly important role in the future of software engineering. The results of

different large language models on the tasks described above, are presented in the next

section.

4.2.3.3 Code summarization and documentation

As the team of developers working on a piece of code changes over time, it

becomes difficult for new resources to fully comprehend code that was written years ago.

Code summarization involves creating a concise, meaningful summary of code by

capturing its key features and functionality. Large language models can process the code,

identify its key components, and generate a brief and informative summary. Figure 17

below shows the capability of a large model to summarize code.

Code documentation, like code summarization, is an important aspect of software

development, as it helps developers understand the code and use it effectively. Large

language models can generate documentation for given piece of code, making it easier for

developers to understand code.

Input

62

Here are a few examples of how these models are used in code documentation.

- Auto-Generated Documentation

Large language models can be leveraged to generate code documentation

automatically, by analyzing the code and extracting relevant information. This helps

developers understand the code easily, as they do not have to manually go through the

code and create documentation.

Figure 17

Code summarization

GPT-3 Generated Code summary

Input given to GPT-3

63

 Figure 18

Code Documentation

Inline documentation generated using GPT-3

Inline documentation generated using GPT-3

Inline documentation generated using GPT-3

64

- Code Annotation

Another important use of large language models in code documentation is code

annotation. These models can add comments to the code, explaining its functionality

and purpose. This helps developers easily comprehend the code since they can review

the comments as they go through the code.

- Code Examples

Large ML models can also be leveraged to generate code examples, to help

developers understand how to use the code effectively. These models can analyze the

code and generate examples that demonstrate how the code can be used in different

scenarios.

4.2.3.4 Code translation

Figure 19

Code annotation

65

As technology evolves rapidly, the programming languages that are currently

relevant may become obsolete in a few years. This makes the code difficult to maintain,

and it may need to be migrated or translated to a newer language. Code translation

involves converting a piece of code from one programming language to another. This can

be challenging since it demands an understanding of the syntax, semantics, and structure

of both target as well as source language, as well as the underlying logic and functionality

of the code.

Leveraging large language models for code translation has made this task easier

and more accurate. The models have learned the patterns and structures of multiple

programming languages since they were trained on a vast amount of code. They can then

use this knowledge to translate the code into a new language while preserving its

functionality and logic. Here are a few examples of how large language models are being

used in code translation:

- Source-to-Target Translation

This type of code translation involves converting source code written in one language

into another language. For example, translating Python code into Java code. In this

case, the model needs to understand the syntax, structure, and semantics of both

languages to ensure a successful translation.

- Framework Conversion

This type of code translation involves converting code written for one framework into

another framework. For example, converting code written for the Django framework

in Python into the Ruby on Rails framework. In this case, the model needs to

understand the specific syntax, structure, and functionality of each framework to

ensure the translated code works as expected.

- Legacy Code Migration

66

This type of code translation involves converting old, outdated code into modern, up-

to-date code. For example, converting code written in COBOL into Java. In this case,

the model must comprehend the syntax, structure, and functionality of both the old

and new languages to ensure the translated code works as expected.

These are just a few examples of how large language models are being used in

code translation. The use of these models has made the task of code translation faster,

more accurate, and more efficient, enabling developers to concentrate on other areas of

the development process. It is noteworthy to highlight that while large pre-trained models

have the potential to greatly aid in code translation, they are not a silver bullet solution.

The generated code still needs to be reviewed and tested by a human developer to ensure

that it meets the desired specifications and standards. While these models are not a

complete solution, they can save time and effort for developers and make code translation

a more efficient and streamlined process.

4.2.3.5 Code review

Code review is the process of examining the code written by a software developer

for errors, bugs, and potential improvements. It is a necessary step in the process of

software development since it ensures that the code adheres to the desired levels of

quality and is ready to be deployed. However, when done manually, this can be a tedious

and time-consuming process.

AI-based models such as GPT-3 and Codex can play a significant role. By

utilizing the strength of Deep Learning and Natural Language Processing, GPT-3 can

assist in code review in several ways:

- Automated Bug Detection

67

GPT-3 can be trained to identify common bugs and security vulnerabilities in code.

For example, if the code has an unhandled exception, GPT-3 can detect it and suggest

an appropriate solution.

- Code Style and Formatting

Large language models like Codex can assist in ensuring that the code follows the

desired coding standards and conventions. For example, if the code is not formatted

according to the company's coding standards, Codex can suggest appropriate changes.

Input Code

GPT-3 Detected bugs and suggested code

Figure 20

Bug Detection

68

- Code Optimization and suggesting alternatives

A large language model can help identify areas of the code that can be optimized for

better performance. For example, if a particular piece of code is taking too long to

execute, LLM like Codex can suggest alternative solutions that can improve the

performance. If a developer is using an inefficient algorithm, Codex can suggest a

more efficient one. Figure 22 below shows one such example.

Figure 21

Code style and formatting
GPT-3 suggested PEP8 violations and code

Input

Input

GPT-3 generated optimal code

Figure 22

Code optimization

69

- Duplicate Code Detection

Large language models can assist in identifying duplicated code within a codebase,

making it easier to eliminate and maintain the codebase's readability and

maintainability. Thus, pre-trained transformer models such as Codex and GPT-3 have

the potential to revolutionize the code review process. By automating some of the

manual tasks involved in code review, these models can help software developers to

save time, improve the quality of their code, and make the software development

process more efficient. While there is still room for improvement, the future looks

bright for AI-based models in code review, and it will be interesting to see how they

evolve and become even more useful in the years to come.

4.2.3.6 Test case generation

Test case generation is the process of automatically generating test cases for a

piece of code. To test the functionality of the code, test cases need to be generated. This

is a time-consuming process that can be automated using AI-based models. For example,

given a piece of code that implements a function, the model can generate a set of inputs

that would exercise different scenarios and edge cases of the function. The model can

also generate assertions or expected outputs for each test case, making the test cases self-

verifying as shown in Figure 23 below.

Similarly, large language models can be used for test-driven development (TDD).

Developing automated tests before writing code is a key component of the test-driven

development technique. The purpose of TDD is to make sure that the code meets the

required specifications and that the software behaves as expected. Large language models

can be leveraged in TDD to generate test cases and validate the code's behavior.

70

4.3 Research Question Two

How do large language models’ code automation capabilities compare against

traditional code generation?

Our first hypothesis states that “The code generation/translation capabilities of

large language models are better than traditional code generation and rule-based tools”.

We extend this hypothesis to different phases of the software development life cycle.

In our findings to RQ1, we found several tasks where AI-based large language

models can help automate different tasks. In this question, we aim to compare how these

models fare when compared to the traditional techniques most widely used to perform the

same task.

4.3.1 Planning and requirements gathering

Software requirement classification

Figure 23

Test case generation

Input

GPT-3 generated test-cases

71

Software development teams must learn about the needs and requirements of their

potential clients and users before launching a new product. This process is called

requirements elicitation and can take a long time to complete. A software requirements

specification (SRS) document, which outlines and defines all of the criteria that must be

satisfied for the product to be considered complete, is the final result of the requirements

elicitation process. The requirements elicitation method takes into account a variety of

requirements, including functional requirements (FRs) and non-functional requirements

(NFRs). As opposed to NFRs, which evaluate criteria like performance, scalability, and

use cases, FRs describe the specific behaviors and functionality of the product.

The SRS is more transparent and well-organized when requirements are classified

correctly. However, manual classification can be both time- and resource- consuming and

can lead to teams inaccurately assessing the non-functional requirements. Automating

requirements classification might reduce the demand for subject-matter specialists and

enable the software industry in adopting this technique.

However, it is still difficult to automatically categorize requirements stated in

natural language into both functional as well as non-functional and also the subcategories

of non-functional requirements (Núñez, no date). This is even though software

requirements are well understood and thoroughly documented. This is particularly

because stakeholders and requirements engineers define the same type of demand using

various terminology and grammar, according to Abad et al., 2017. Hence, finding the best

techniques to implement an accurate automated classification is a challenge.

We have seen in the discussion about RQ1, that large language models support

the task of requirements classification. Here, we do a detailed study on the same and

compare their performance to other tools and techniques used for the same.

Dataset:

72

We used the PROMISE NFR dataset. The dataset consists of a set of functional

and non-functional requirements for a range of software products. The dataset has a total

of 624 requirements. Figure 24 below shows the distribution of functional vs non-

functional requirements.

Figure 24

Distribution of functional vs non-functional requirements

The non-functional requirements further belong to different types like Usability

(US); Security (SE); Scalability (SC); Portability (PO); Performance (PE); Operational

(O); Maintainability (MN); Look and Feel (LF); Legal (L); Fault Tolerance (FT);

Availability (A)

Table 5 below shows the distribution of each of these NFRs in the dataset.

Table 5

Non-functional requirements

Sr. No. NFR Count

1 A 21

2 FT 10

3 L 13

73

4 LF 38

5 MN 17

6 O 62

7 PE 54

8 PO 1

9 SC 21

10 SE 66

11 US 67

The same is depicted in the graph below.

Task

The evaluation is carried out on two tasks related to requirement classification:

1. Binary classification – classify a given requirement into functional vs non-functional

2. Multi-class classification – for the set of non-functional requirements, classify the

requirement into one of the eleven categories mentioned above.

Manual techniques

Figure 25

Distribution of non-functional requirements

74

Prior to the application of machine learning techniques to the task of categorizing

software requirements, this task was majorly done manually. As mentioned earlier,

manual classification is error-prone, resource-intensive, and time-consuming. There is a

dependency on domain experts to correctly identify and capture the non-functional

requirements. At the same time, the availability of domain experts has always remained a

challenge. Daniel Ott (Ott, 2013) explored the categorization of requirement

specifications for the automotive sector. He evaluated fully-automated, semi-automatic,

and manual methods for requirements classification in an industrial context with a team

of ten practitioners. According to his findings, a semi-automatic technique provides the

best quality-to-effort ratio and the best learning outcomes.

To develop a comparison of how traditional manual techniques fare against large

language models, the task of requirements classification is done manually. As discussed

in the research design section, this task is assigned to three candidates with different

levels of competence - expert, intermediate, and novice. These candidates, based on their

expertise, domain knowledge, and prior experience manually classify the requirements

for both binary classification as well as multi-class classification.

The following are the results obtained:

Binary classification

Table 6

Binary Classification - Results

Expertise Level # of correctly classified

requirement

Total # of

requirements

% Accuracy

Novice 439 625 70

Intermediate 506 625 81

Expert 531 625 85

Multi-class classification

75

Table 7

Multi-class Classification - Results

Expertise Level # of correctly classified

requirement

Total # of

requirements

% Accuracy

Novice 229 370 62

Intermediate 263 370 71

Expert 296 370 80

Traditional Machine Learning

As machine learning algorithms have become more sophisticated, researchers

have begun to apply them to the task of automatically classifying software requirements.

Dias Canedo and Cordeiro Mendes, 2020 discuss how machine learning methods can be

used to perform this task effectively. The authors used PROMISE dataset as their primary

data source. They applied different pre-processing and cleaning techniques and BoW,

TF-IDF, and CHI2 were used, respectively, for feature extraction and feature selection.

Logistic Regression (LR), k-Nearest Neighbors (kNN), Support Vector Machine (SVM)

and Multinomial Naive Bayes (MNB) were different algorithms they used for classifying

the requirements. The study found that employing TF-IDF followed by LR was more

efficient with F-measure scores in binary classification, NF classification and general

classification of nearly 0.9 (SVM gave the same score), 0.74 and 0.78 respectively.

Similarly, Navarro-Almanza, Juarez-Ramirez and Licea, 2017 apply a CNN-

based deep learning approach for the task of multi-class classification of software

requirements. With their approach, they got average precision, recall, and F-measure

scores of 0.80, 0.79 and 0.77 respectively. In another study, Kurtanovic and Maalej, 2017

evaluates different supervised classifiers for automatic classification of requirements as

functional / non-functional, with a focus on different types of NFRs. They found that the

most informative features were part of speech tags with the cardinal number (POS tag

CD) being the single most informative feature. In their study, they find that with manual

76

selection of features followed by different pre-processing techniques, they achieve

precision and recall of almost 92%. By simply using word features and no feature

selection, they achieved precision and recall rates of 70% to 90% for classifying NFRs.

Supervised classification techniques require a substantial volume of labeled data.

Casamayor, Godoy and Campo, 2010 employed semi-supervised learning techniques for

NFR classification and demonstrated that this approach performs better as compared to

the supervised classification techniques. Similarly, Fong, 2019 presents his findings on

the use of word embeddings and convolutional neural networks for classifying software

requirements. All the above techniques involve training a custom model using different

ML algorithms. Since there are multiple studies and metrics which already suggest the

accuracy of the various techniques and models, we do not repeat the same exercise here.

As mentioned in the above sections, large language models like GPT-3 and BERT

are already pre-trained on large datasets and they are already capable of performing the

task of classifying text. We explored these models to answer RQ1 for the specific task of

software requirement classification.

Large language models

We observed during RQ1, the capability of GPT-3 to perform the task of software

requirements classification using zero-shot prompt engineering. We now evaluate it

further on the PROMISE NFR dataset.

Approach:

We experiment with GPT-3 on the same two tasks related to requirement

classification, as done in the manual section.

Dataset:

The dataset that we have is small with a total of only 624 requirements. Traditional ML-

model which are built using techniques like word2vec embeddings generally require

77

larger datasets to avoid overfitting and for the model to perform with decent accuracy.

However, since models like GPT-3 are already pre-trained, such models can leverage

their in-built knowledge and work well with small datasets too. In the next section, we

tested the performance of GPT-3 on both of the above tasks.

Approach 1 – Zero-shot

Binary classification

The first approach we tried was using zero-shot learning. Here, we provide a set

of instructions that covers the larger context, for the model to understand the task it is

required to perform. This is called as prompt-engineering. When we have a good prompt,

which we first test on a small number of requirements, we then use this prompt to classify

a larger set of requirements. With this approach, GPT-3 model gave an accuracy of 81%

on the task of binary classification. Figure 26 below shows the precision and recall values

for functional (1.0) and non-functional (0.0) requirements.

Multi-class classification

Similarly, we prepare a prompt that works well on a set of requirements, for

categorizing the non-functional requirements into one of the eleven categories. We then

evaluate the model accuracy on classifying larger set of requirements using zero-shot

learning. GPT-3 model gave an accuracy of 71% on the task of multi-class classification.

Figure 26

Classification report – binary classification (zero-shot)

78

Figure 27 below shows the recall and precision values for various classes using this

approach.

Approach 2 – Embeddings based classification

Binary classification

In the second approach, we use GPT-3 embeddings and build a classifier model

using it. Since GPT-3 is a massive 175-billion-parameter model, its embeddings are very

powerful as they capture complex relationships between words, phrases, and sentences.

We use the text-similarity-davinci-001 model to generate the embeddings for the

requirements. These embeddings are very high in dimension (12288 dimensions).

We tried different algorithms, performed cross-validation, and applied

hyperparameter tuning to arrive at the best-performing model. The results are shown

below.

Figure 27

Classification report - multiclass classification (zero-shot)

79

Table 8

Results from different experiments

Sr. No. Model Accuracy Precision

(1)

Recall

(1)

Precision

(0)

Recall

(0)

1 Random forest 88 0.85 0.81 0.89 0.92

2 XG Boost 91 0.84 0.92 0.96 0.90

3 XGB Random Forest 83 0.76 0.81 0.88 0.85

4 Random forest (hyper-

tuned)

93 0.87 0.92 0.96 0.93

As observed above, for binary classification, random forest classifier gave the

best accuracy of 92%.

Table 9

Results from Random-Forest Classifier

 Precision Recall F1-score Support

0 0.96 0.92 0.94 122

1 0.86 0.92 0.89 66

Accuracy 0.92 188

Macro avg 0.91 0.92 0.91 188

Weighted avg 0.92 0.92 0.92 188

Multiclass-classification

Similarly, experiments were performed for multi-class classification using an

embeddings-based approach. We trained different models for this task using different

algorithms. The dataset for the non-functional requirements is imbalanced. First, we

trained the models without applying any class-balancing techniques. The performance of

the trained models was observed and the metrics were recorded on the test dataset.

The results are as shown below:

80

A. OneVsRestClassifier (SVC)

Table 10

OneVsRest Classifier (NFR classification)
 precision recall f1-score support

 0 0.89 1.00 0.94 8

 1 0.00 0.00 0.00 3

 2 0.50 1.00 0.67 1

 3 0.86 0.60 0.71 10

 4 0.00 0.00 0.00 3

 5 0.65 0.94 0.77 16

 6 1.00 0.83 0.90 23

 7 0.00 0.00 0.00 1

 8 0.75 0.86 0.80 7

 9 0.83 0.95 0.88 20

 10 0.79 0.79 0.79 19

 accuracy 0.80 111

 macro avg 0.57 0.63 0.59 111

weighted avg 0.78 0.80 0.78 111

B. K-neighbors classifier

Table 11

K-neighbors Classifier (NFR classification)
 precision recall f1-score support

 0 0.78 0.88 0.82 8

 1 1.00 0.33 0.50 3

 2 0.33 1.00 0.50 1

 3 0.78 0.70 0.74 10

 4 0.00 0.00 0.00 3

 5 0.58 0.88 0.70 16

 6 0.75 0.78 0.77 23

81

 7 0.00 0.00 0.00 1

 8 0.80 0.57 0.67 7

 9 0.86 0.95 0.90 20

 10 0.92 0.58 0.71 19

 accuracy 0.74 111

 macro avg 0.62 0.61 0.57 111

weighted avg 0.76 0.74 0.73 111

C. SVC (an optimized model after hyper-tuning)

Table 12

SVC Classifier (NFR Classification)
 precision recall f1-score support

 0 0.88 0.88 0.88 8

 1 0.00 0.00 0.00 3

 2 0.50 1.00 0.67 1

 3 0.89 0.80 0.84 10

 4 0.00 0.00 0.00 3

 5 0.58 0.94 0.71 16

 6 1.00 0.87 0.93 23

 7 0.00 0.00 0.00 1

 8 0.86 0.86 0.86 7

 9 0.95 0.90 0.92 20

 10 0.83 0.79 0.81 19

 accuracy 0.81 111

 macro avg 0.59 0.64 0.60 111

weighted avg 0.81 0.81 0.80 111

As mentioned earlier, the dataset for non-functional requirements is a highly

imbalanced dataset with only one example for the category Portability (PO) vs 67

examples for the category Usability (US). To handle this, first, a few additional samples

82

were included in the dataset related to the Portability requirement. Then, class over-

sampling techniques using SMOTE were applied to balance the dataset.

Different experiments were conducted on the balanced dataset. Based on the

results obtained from these experiments, the model trained using SVC was selected as the

best-performing model for the task of multi-class classification.

Table 13

SVC Classifier (NFR Classification on the balanced dataset)
 precision recall f1-score support

 0 0.88 0.88 0.88 8

 1 0.00 0.00 0.00 3

 2 0.50 1.00 0.67 1

 3 0.89 0.80 0.84 10

 4 0.00 0.00 0.00 3

 5 0.60 0.94 0.73 16

 6 1.00 0.87 0.93 23

 7 0.00 0.00 0.00 1

 8 0.86 0.86 0.86 7

 9 0.95 0.90 0.92 20

 10 0.83 0.79 0.81 19

 accuracy 0.81 111

 macro avg 0.59 0.64 0.60 111

weighted avg 0.81 0.81 0.80 111

 4.3.2 Coding and Testing

Manual Techniques

Traditionally, code is written manually by programmers, requiring a lot of time

and effort. Errors get easily introduced by typos, misplaced characters, or incorrect

syntax, resulting in bugs and glitches that need to be fixed later. Software developers

make use of specialized tools to perform several code-related tasks:

83

1. Writing code

2. Debugging code

3. Refactoring code

4. Managing code repositories

5. Deploying code

Some of such specialized tools are:

1. Integrated Development Environments (IDEs) like Eclipse, IntelliJ IDEA, Visual

Studio, etc.

2. Code Editors like Emacs, Vim, Visual Studio Code, etc.

3. Code Repository and Version Control Systems like Git, SVN, CVS, etc.

4. Code Quality and Static Analysis tools like PMD, Checkstyle, FindBugs, etc.

5. Project Management tools like Jira, Trello, Asana, etc.

Rule-Based Tools and Techniques

To further simplify the coding process and reduce errors, rule-based techniques

were introduced. Rule-based systems are logical programs that use predefined rules to

make deductions and choices to perform automated actions. These rules which provide

triggers and outline corresponding actions, are mostly expressed as "if statements". For

example, an email containing the word "invoice" can be a trigger, with the action being to

forward the email to the finance team. While rule-based systems mimic human

intelligence, they are not AI and they do not learn from mistakes. Instead, they follow

rules laid out by humans.

There are rule-based linting tools (Wilson, no date) that can be used to automate

some tasks like code quality checks. Another rule-based tool that can be used for

translating code (for example C++ to Java) is SWIG (Simplified Wrapper and Interface

Generator).

84

However, these tools have some drawbacks:

1. They are not very intelligent and require a lot of manual input from developers.

2. They are not very good at understanding the context of the code, so they can only do

very basic automation.

While manual techniques are time-consuming and error-prone, rule-based

techniques have helped to simplify the coding process and reduce errors. However, rule-

based systems are limited by the rules laid out by humans.

Large Language Model (LLM) Techniques

Recently, the development of Large Language Models (LLMs) has revolutionized

the way we approach coding and testing. LLMs are founded on artificial intelligence and

machine learning principles, which means that they can analyze and understand large

amounts of natural language data to generate accurate and efficient code. Unlike rule-

based techniques, artificial intelligence and machine learning-based techniques can learn

and adapt. With LLMs, we can expect to see a significant reduction in the amount of time

and resources required for coding and testing, while also improving the quality and

reliability of the code being produced.

In RQ1, we identified various programming language tasks that can be automated

using large models like Codex. For example, automatically generate code from natural

language specifications, or generate test cases based on code. AI-based language models

like Codex are very good at understanding the context of the code and can do more

advanced automation. Many programming tools now integrate large language models

pre-trained on code, which can be used for software development tasks. Some of these

tools are:

1. Code completion tools like Kite

2. AI-powered code review tools like DeepCode

85

3. Bug detection tools like DeepBug

4. Test generation tools like Appvance IQ

These AI-based tools are very intelligent and can automate tasks that would

normally require a lot of manual input from developers. They are very good at

understanding the context of the code, so they can do more advanced automation.

However, these tools are still in their early stages of development and might not be as

reliable as traditional tools. They might also be more expensive than traditional tools.

In addition to different tools like Kite which are AI-based, different pre-trained

models like Codex, CodeT5, CodeBERT and many more can be extremely useful for

automating various code-related tasks. While AI-based tools like Kite are customized to

perform a single task like code completion, pre-trained language models like Codex can

perform multiple tasks like code generation, code translation, unit test generation, and

more and can be incorporated into different workflows. Also, Kite or TabNine provide

completion at line or function level while the pre-trained models are capable of

completing whole blocks of code. Pretrained models also can generate code by providing

instructions in natural language, which is a very powerful feature.

Pretrained models which are open-source like GPT-J and CodeT5 can be further

improved through continuous training. They can be finetuned on project code for specific

tasks and hence can be customized to user needs even when there are restrictions with

data due to data being proprietary. This makes open-source pre-trained models extremely

useful.

We explored various pre-trained models to understand different code automation

tasks that can be performed using them.

Dataset:

86

CodeXGLUE (CodeXGLUE, 2020) is a compilation of datasets for the purpos of

assessing the performance of machine learning models in various code-related tasks.

These tasks include clone identification, detection of defects, cloze testing, completing

code, translating code, searching for code, refining code, generating code from text,

summarizing code, and generating documentation.

The datasets include both existing ones, such as CodeSearchNet, Defects4J,

CONCODE, POJ-104, Bugs2Fix and BigCloneBench, as well as recently introduced

ones. The following tables show the scores of different models on various code

automation tasks. These scores are calculated on different datasets for different tasks. In

the later section, the efficiency of the Codex model is shown for different code

automation tasks, when performed in an experimental setup to solve different problem

statements.

Code Completion

As we observed in the above sections, large pre-trained models can be used

effectively for the task of code completion. The following table shows the token-level

and line-level accuracy of different models on completion in Python and Java. As can be

observed from the table below, GPT-Neox (250M parameter) model has the highest

“Edit-Sim” score on the task of Java completion.

"Edit-sim" score is a similarity metric used to measure the similarity between two

pieces of text based on the number of edits required to transform one text into the other.

The score is determined by dividing the count of shared edit operations (insertions,

deletions, and substitutions) by the total number of edit operations needed to convert both

texts into a common form. A higher edit-sim score indicates a greater similarity between

the two pieces of text. Amongst the first three models listed in the table 14 below,

87

“CodeGPT-Adapted” has the highest overall score when considering both Python

completion scores and Java completion scores.

Table 14

Code Completion (Code to Code)

Code Translation

Java and C#

Similarly, the following table compares the accuracy and BLEU score of different models

on the task of code translation for Java to C# and C# to Java, using different pre-trained

models. The StructCoder model has the highest CodeBLEU score on the CodeTrans

88

dataset for both Java to C# and C# to Java. It also has the highest accuracy on both of

these tasks.

Table 15

Code Translation (Code to Code)

Multi-lingual code translation

The following table demonstrates the capability of different large language models like

InCoder, CodeGen-Multi, and CodeGeeX. These models support translation between

various programming languages.

In the context of the HumanEval dataset, @1, @10, and @100 are evaluation

metrics that measure the accuracy of a model's response to a given prompt when

compared to human responses.

 @1 represents the accuracy of the model's top-ranked response. It measures how

often the model's highest-ranked response is the same as the human-selected

response.

89

 @10 represents the accuracy of the model's top 10 responses. It measures how often

the correct response is within the top 10 responses generated by the model.

 @100 represents the accuracy of the model's top 100 responses. It measures how

often the correct response is within the top 100 responses generated by the model.

As can be observed, CodeGeeX-FT (the fine-tuned version of CodeGeeX) has the

highest @1 score for most translation cases. CodeGen-Multi has a higher score for the

task of translation from Python to C++.

Table 16

Multi-lingual Code Translation

Dataset Languages

HumanEval Python, C++, Java, JavaScript, Go

 Score

Model Size
Target

Source

Python C++ Java

@1 @10 @100 @1 @10 @100 @1 @10 @100

InCoder 6.7B

Python

 26.11 41.00 54.25 26.74 42.66 61.20

CodeGen-

Multi
16B 35.94 47.81 59.37 29.27 45.70 64.45

CodeGeeX 13B 26.54 43.56 56.48 25.84 41.52 59.72

CodeGeeX-

FT
13B 34.16 46.86 61.22 41.98 58.17 72.78

InCoder 6.7B

C++

34.37 58.41 78.57 34.04 57.02 68.70

CodeGen-

Multi
16B 33.83 55.37 76.64 43.20 69.84 88.82

CodeGeeX 13B 27.18 49.02 67.69 22.56 40.91 64.08

CodeGeeX-

FT
13B 62.79 80.39 87.10 71.68 81.62 85.84

90

InCoder 6.7B

Java

42.76 65.55 80.43 40.01 55.17 70.39

CodeGen-

Multi
16B 52.73 69.30 82.74 41.42 54.68 65.50

CodeGeeX 13B 43.41 68.46 84.03 39.33 58.48 72.36

CodeGeeX-

FT
13B 75.03 87.71 95.13 49.67 65.65 75.40

Code Generation

The following table shows different scores on the CONCODE dataset, for the task

of producing Java code when given natural language instructions. As can be observed,

StructCoder gives the highest score for this task.

Table 17

Code Generation (Text to Code)

Code Generation (Text to Code)

Benchmark Dataset Languages

CodeXGlue CONCODE Java

 Score

Model Size Layers
Open-

source EM BLEU CodeBLEU

GPT-2 117M 12 Yes 17.35 25.37 29.69

CodeGPT 124M 12 Yes 18.25 28.69 32.71

CodeGPT-

adapted
124M 12 Yes 20.10 32.79

35.98

PLBART 140M 6 Yes 18.75 36.69 38.52

CoTexT 220M 12 Yes 20.1 37.4 40.14

CodeT5 220M 12 Yes 22.30 40.73 43.20

StructCoder 220M 12 Yes 22.35 40.91 44.76

91

The table below shows the scores of different LLMs on the HumanEval dataset

for the purpose of generating Python code when given instructions in natural language.

The Pass - @1, @10 and @100 scores (Xu et al., 2022) are listed. As can be observed, in

the open-source category, CodeGen-Mono (16 billion parameters) model has the highest

Pass@1 score of 29.28%. This model has been pre-trained on BigPython dataset and has

34 layers. Codex (where the training data is not revealed), is a 12-billion parameter model

and has the next highest score of 28.81%. Codex has been fine-tuned on 179 GB of

Python files. Similarly, GPT-Neox, which is a 20-billion parameter model trained on the

Pile dataset, has a Pass@1 score of 15.4%. This transformer-based model has a total of

44 layers.

Table 18

HumanEval Dataset

Dataset Languages

HumanEval Python

 Score

Model Size Layers
Open-

source Training Data
Pass

@ 1

Pass

@ 10

Pass

@ 100

PolyCoder 2.7B 32 Yes
12 Programming

Languages – Github 5.59% 9.84% 17.68%

CodeParrot 1.5B 48 Yes Python – Github 3.58% 8.03% 14.96%

GPT-Neo
2.7B 32 Yes The Pile – Mix of text

and Github Code

6.41% 11.27% 21.37%

GPT-J
6B 28 Yes The Pile – Mix of text

and Github Code

11.62% 15.74% 27.74%

INCODER 6.7B 32 Yes
Public GitHub/GitLab

code and StackOverflow 15.2% 27.8% 47.0%

92

We also show below the results of generating Python code from natural language

on the APPS dataset. The APPS dataset is made up of various programming problems

that were gathered from open-access coding websites, including but not limited to

Codeforces and Kattis. The problems in the APPS dataset span a range of difficulty

levels, from introductory to collegiate competition level, and are designed to assess both

coding ability and problem-solving skills. As can be observed below, CodeRL+CodeT5

model, which is a 770 million parameter model has the highest Pass @1 score for all the

different difficulty levels. In the open-source models, GPT-J, which is a 6-billion

parameter model, has a Pass @1 score of 5.60 on the introductory level dataset. Codex

has a Pass @100 score of 25.02 on the introductory level. In addition, a new framework,

Parsel, for algorithmic reasoning, shows promise in improving the pass rates than those

obtained using models like AlphaCode and Codex.

GPT-NeoX 20B 44 Yes
The Pile - Mix of text

and Github Code 15.4% 25.6% 41.2%

CodeGen-

Multi

6.1B 33 Yes BIGQUERY 18.16% 28.71% 44.85%

CodeGen-

Multi

16.1B 34 Yes BIGQUERY 18.32% 32.07% 50.80%

CodeGen-

Mono

6.1B 33 Yes BIGPYTHON 26.13% 42.29% 65.82%

CodeGen-

Mono

16.1B 34 Yes BIGPYTHON 29.28% 49.86% 75.00%

Codex 12B Not

indicated

No Not mentioned 28.81% 46.81% 72.31%

93

Table 19

Scores on APPS Dataset

 Score

Model Size
Open-

source Pass @ 1 Pass @ 5 Pass @ 100

Int

ro

Int

er

Co

mp

All Int

ro

Int

er

Co

mp

All Int

ro

Int

er

Co

mp

All

Codex 12B No
4.1

4

0.1

4

0.0

2

0.9

2

9.6

5

0.5

1

0.0

9

2.2

5

25.

02

3.7

0

3.2

3

7.8

7

Alpha

Code

1B No
17.

67

5.2

4

7.0

6

8.0

9

GPT-3 175B No
0.2

0

0.0

3

0.0

0

0.0

6

GPT-2 1.5B Yes
1.3

0

0.7

0

0.0

0

0.6

8

3.6

0

1.0

3

0.0

0

1.3

4

25.

00

9.2

7

8.8

0

12.

32

GPT-Neo 2.7B Yes
3.9

0

0.5

7

0.0

0

1.1

2

5.5

0

0.8

0

0.0

0

1.5

8

27.

90

9.8

3

11.

40

13.

76

GPT-J 6B Yes
5.6

0

1.0

0

0.5

0

1.8

2

9.2

0

1.7

3

1.0

0

3.0

8

35.

20

13.

15

13.

51

17.

63

CodeRL+

CodeT5

770M No 7.0

8

1.8

6

0.7

5

2.6

9

16.

37

4.9

5

2.8

4

6.8

1

40.

00

15.

67

17.

90

20.

98

Defect Detection

In the table below, results from different models on the Devign dataset are shown

for the task of defect detection in C programs. The dataset was created to study code

vulnerabilities and to help researchers and developers build models that can automatically

identify security issues in software code. CoTexT, which is a 220 million parameter

model with 12 layers has the highest accuracy of 66.62% on this task.

Dataset Languages

APPS Python

94

Table 20

Defect Detection

Defect Detection

Benchmark Dataset Languages

CodeXGlue Devign C

Code Summarization

The results on CodeSearchNet for the task of Code Summarization on six

different programming languages are shown below. The Smoothed BLEU-4 score is the

metric used here to measure the efficiency of these models. This is a widely used metric

in natural language processing and machine translation, and it is often used to evaluate

the quality of machine-generated translations by comparing them to one or more human-

generated translations. The smoothing technique used in the calculation of the score is

designed to reduce the impact of chance matches and make the score more robust and

reliable. CodeT5, a 220 million parameter model, has the highest score on this task of

code summarization, across all programming languages.

Table 21

Code Summarization (Code to Text)

Model Size Layers Opensource Accuracy

RoBERTa 125M 12 Yes 61.05

CodeBERT 125M 12 Yes 62.08

PLBART 140M 6 Yes 63.18

VulBERTa-MLP 125M 12 Yes 64.75

CoTexT 220M 12 Yes 66.62

Code Summarization (Code to Text)

Benchmark Dataset Languages

95

 Smoothed BLEU-4 Score

Model Size Layers Opensource Ruby JavaScript Go Python Java PHP Overall

RoBERTa 125M 12 Yes 11.17 11.90 17.72 18.14 16.47 24.02 16.57

CodeBERT 125M 12 Yes 12.16 14.90 18.07 19.06 17.65 25.16 17.83

PLBART 140M 6 Yes 14.11 15.56 18.91 19.3 18.45 23.58 18.32

T5 220M 12 Yes 14.18 14.57 19.17 19.26 18.35 24.59 18.35

CoTexT 220M 12 Yes 14.02 14.96 18.86 19.73 19.06 24.68 18.55

CodeT5 220M 12 Yes 15.24 16.16 19.56 20.01 20.31 26.03 19.55

Code Refinement

The table below shows the efficiency of different LLMs on the task of refining

Java code which may have bugs. The dataset used here is Bugs2Fix. On the small test set,

CoText has the highest CodeBLEU score, while CodeT5 has the highest accuracy. For

the medium test set, however, CodeBERT has the highest CodeBLEU score.

Code Refinement (Code to Code)

Benchmark Dataset Languages

CodeXGlue Bugs2Fix Java

CodeXGlue CodeSearchNet Python, Java, PHP, JavaScript,

Ruby, Go

 Score

 Small test set Medium test set

Model Size Layers Open-source BLEU Accuracy
Code

BLEU BLEU Accuracy
Code

BLEU

T5 220M 12 Yes 74.94 15.3 75.85 88.28 4.11 85.61

RoBERTa

(code)
125M 12 Yes 77.30 15.90

 90.07 4.10

CodeBERT 125M 12 Yes 77.42 16.40 75.58 91.07 5.16 87.52

96

Codex vs Manual

We observed in the sections above, that different LLMs perform well on different

programming language tasks. Also, they have all been evaluated on datasets, specific to

each of those tasks. Some of these datasets also had programs used in programming

competitions. However, this study intends to evaluate the applicability of these LLMs in

an enterprise environment, dealing with some real and complex problem statements. We

observed in the previous section, that Codex showed good results on various

programming language tasks.

We now use the experimental setup described in the research design section, to

measure the efficiency of Codex on a variety of tasks. This is the same as the setup used

for software requirements classification. The different coding tasks will be performed by

three individuals with different expertise levels in the desired programming language,

manually. At the same time, the same tasks will be performed by a novice programmer

but with the help of an AI code assistant like Codex / gpt3.5-turbo or GPT-4.

This setup is depicted below.

Table 22

Research Setup

First Group Second Group Third Group

Novice programmer

(Manual code generation)

Intermediate programmer

(Manual code generation)

Expert programmer

(Manual code generation)

Novice programmer with AI code assistant like Codex

We identified four programming tasks to evaluate the performance of large

language models against traditional techniques:

PLBART 140M 6 Yes 77.02 19.21 - 88.5 8.98 -

CodeT5 220M 12 Yes 77.43 21.61 - 87.64 13.96 -

CoText 220M 12 Yes 77.79 21.03 76.15 88.4 13.11 85.83

97

1. Code generation - Build an Android Java App for drawing on a screen using touch

2. Code generation - Build an ASP.NET C# application for making travel reservations

3. Code translation - Translate a simple game built using C++ to Java

4. Code documentation - Document legacy code

Code Generation

For evaluating LLM for code generation, we consider two problem statements

involving two different technologies:

1. Build an Android Java App for drawing on a screen using touch

2. Build an ASP.NET C# application for making travel reservations

Android Java App

The intent here was to start with a simple code generation example. We start with

evaluating the capability of an AI model in helping build a simple Android Java app that

enables users to draw on the screen of their mobile device using touch gestures. The app

will include basic features like changing the color of the drawing and can provide a

straightforward and easy-to-use tool for people who want to express their creativity or

take notes using their mobile devices.

The main goal of this app is to provide a simple and convenient way for users to

draw on their mobile devices without needing complex tools or software. The audience

for this app can include anyone who wants a basic drawing app on their device, such as

children, hobbyists, or casual users. The importance of this task lies in the fact that it

provides a simple interface for people to draw and express their creativity on their mobile

devices. The essential features of this app will include touch-based drawing and the

ability to change the color of the drawing. It can also include basic features like a clear

screen option to start a new drawing.

98

The code generated using Codex is attached in the appendix. The code generated

was almost 90% accurate and needed some corrections to make it a fully functional app.

The AI-generated code with manual corrections was used to create this mobile app and

the app was deployed on an Android phone. Figure 28 below shows the screenshot of the

Android app built using LLM and a simple drawing made using the same.

Individuals with different expertise levels built similar fully functional drawing

apps. Everyone took different time to complete building the app.

ASP.NET C# Travel Reservation application

The second application we want to build by augmenting an AI model is a travel

reservation application. For this study, the application will not have many complexities as

a real travel application. However, this application has more complexity than the previous

Figure 28

Android drawing app

99

application. This application involves having a user interface created using ASP.NET

Webforms and integration with a MySQL database.

The intent of the application is for the user to be able to add passenger details like

passenger name, email, address, and so on. This screen facilitates adding new passengers,

deleting a passenger, and editing the passenger details. When a passenger is selected, the

application will direct the user to the next page, where the travel details for that passenger

will be reflected. Again, the user would have the option to add a new travel booking for

the passenger or update or delete the existing details. Similarly, from the main page, the

application will allow the user to view the accommodation for a selected passenger. This

would direct the user to the accommodation page where the user can view all the

accommodation-related details for the passenger and add new details or update or delete

the existing details.

We used OpenAI Codex models initially to generate the code for the ASP.NET

WebForms for all three screens. The model successfully generated the logic for the

webforms as desired. Prompt engineering was required to be done to help the model

understand the requirement better and accordingly generate the desired code. The model

was also used to generate the SQL commands for creating the MySQL tables with the

desired structure. Almost 90% of the code generated by the model was correct while the

remaining 10% of the code needed some modifications/updates. Post the corrections, the

application was a ready-running application.

Later, we used gpt3.5-turbo (ChatGPT) to improve the user interface of the

application. Again 90% of the suggested code worked as-is without the need for major

modifications. The figures below show the screenshots of the final application created by

leveraging the AI models.

100

Figure 30

Screen 2 - Travel Details

Figure 29

Screen1 - User Details

101

Individuals with different expertise levels built similar fully functional drawing

apps. Everyone took different time to complete building the app. The effort and cost

estimates in building this app are discussed in the next section. Just as in the previous

Android application, parallelly, this application was also developed manually by

individuals with different expertise levels. The time taken by everyone was different but

they were all able to build a fully functional prototype. The effort and cost estimates in

building this application manually versus by using the AI model will be discussed in the

next section.

Code Translation

For the task of code translation, an existing C++ application was selected. The

target programming language that was chosen for this translation was Java. The C++

application was a game of Tic-Tac-Toe.

Figure 31

Screen 3 - Accommodation Details

102

This application could be played in two modes:

1. Human vs Human

2. Human vs Computer

The intention is to translate this application to Java and evaluate the efficiency of

the AI model in producing a working functional prototype. The source C++ code had

different header and code files and some utility files. In the previous task of code

generation, the challenge related to context window limitation was less, since the input

was a set of instructions, which did not consume many tokens. This allowed the model to

generate coherent code by utilizing the remaining number of tokens.

In the case of code translation, there were two major challenges:

1. The input to be given to the model was a piece of code that consumed many

tokens. Subsequently, the available number of tokens for generating the translated

code was limited.

2. The input files were sometimes large and there were dependencies between the

application file and the header files. This, along with the context window

limitation of the model, made the translation task using an LLM, more

challenging.

The target translated Java code generated by the model for this task is attached in the

appendix. The models used for the task of translation have a good understanding of

modern programming languages. Hence, the model was correctly able to translate around

90% of the code. The remaining code had to be manually corrected/updated. Post the

manual review, updates, and corrections, a fully functional Java application was ready.

The figures below show some screenshots of the translated Java application.

As in the other cases, the same task of translating the C++ application to Java was

carried out manually by individuals with different levels of expertise in both C++ and

103

Java. Here, the individuals were required to understand not just the source C++ language,

but the target Java language as well. As in the other tasks, all the individuals were able to

translate the application, but with different turnaround times. These efforts and cost

estimates will be discussed in the next section.

Figure 32

User options screen
Figure 33

Human vs Human

Figure 34

Human vs Computer

104

Technical Document Generation

For the above task of code translation, the AI model was also used to generate

documentation for two source C++ files. The documentation explained the intent of the

source program with other important details. This was used to validate that the generated

Java code satisfies all the requirements and implements all features in the source files.

Legacy Code Documentation and Migration

Legacy systems have been around for many years and still serve a critical

function within an organization. These systems, although functional, may become

difficult to maintain and update as they become outdated and require specialized

knowledge to maintain. One example of a legacy system is the COBOL programming

language.

COBOL is a programming language that has been around since the late 1950s. It

was initially designed for business applications. Despite being over 60 years old, COBOL

continues to be a vital part of many critical systems in industries such as finance and

government. COBOL code can be complex, and understanding it requires specialized

knowledge and experience. However, maintaining the COBOL code can be a challenge.

The aging workforce that worked on COBOL systems may be retiring or leaving the

organization, taking their knowledge of the system with them. This knowledge gap can

make it challenging to maintain and update COBOL code, especially if the

documentation is lacking.

As discussed in RQ1, documentation is essential for understanding how a

program works and how it should be maintained. It provides a reference for programmers

and other stakeholders to understand the code's functionality and design. Documentation

also helps in identifying potential areas of risk or bugs within the code. Furthermore, it

provides a foundation for new developers to understand the system and make

105

modifications effectively. However, documentation is often neglected or not updated,

resulting in inadequate knowledge and comprehension of the codebase. This is

particularly true for legacy systems, where documentation may have been lost over time

or was never created.

Generating documentation from legacy COBOL code can be a time-consuming

and challenging task. However, it is essential for maintaining and updating COBOL

systems effectively. The following are some of the reasons why generating

documentation from legacy COBOL code is necessary:

1. Understanding the Codebase

Generating documentation can provide a comprehensive understanding of the

COBOL system. It can help identify dependencies, workflows, and potential areas of

risk or bugs within the code. This knowledge is crucial for maintaining and updating

the system effectively.

2. Facilitating System Upgrades

Legacy COBOL systems may require upgrades to meet modern requirements.

However, without proper documentation, it can be challenging to identify the areas

that need to be updated or modified. Documentation can provide a roadmap for

making upgrades to the system.

3. Enabling Effective Collaboration

Legacy COBOL systems may have multiple stakeholders, including programmers,

managers, and other stakeholders. Documentation can help facilitate effective

collaboration between these stakeholders, ensuring that everyone understands the

system's functionality and design.

4. Knowledge Transfer

106

As mentioned earlier, the aging workforce that worked on COBOL systems may be

retiring or leaving the organization. Documentation can provide a means of

transferring knowledge to new developers, ensuring that the system's knowledge is

not lost.

In this experiment, we aim to generate documentation for an existing COBOL

application and then migrate this application to Java. Once documentation is in place,

migration to modern programming languages such as Java becomes a more manageable

task. The knowledge gained from the documentation can help identify potential areas of

risk or bugs within the code, making it easier to address them during migration. It can

also help identify the dependencies and workflows required for the system to function

correctly, making it easier to make the necessary modifications required for migration.

For this experiment, we aim to migrate a “Human Resource Management System”

available at “https://www.sourcecodesworld.com/source/show.asp?ScriptID=469”

(Project - Human Resource Management System. - COBOL Projects Source Code in

COBOL, no date). This is a COBOL application, which maintains data about employees,

their leaves, transfer requests, confirmation status, payments, and so on. As in the

previous experiments, this experiment is also carried out using a similar setup. Unlike the

C++ to Java translation, which consisted of many files which had interdependencies, here

the COBOL application was one single file. However, this was a large piece of COBOL

code, and a block of COBOL code linked or branched to other blocks based on different

conditions. Capturing the dependencies between these blocks of code, documenting them,

and then migrating them to Java was a complex task.

The AI model helped accomplish this task of first generating documentation and

then converting it to Java with an overall accuracy of 70%. Figure 35 below shows all the

Java classes created for the single COBOL file.

107

Figure 36 below shows screenshots of the fully functional migrated Java application.

Figure 35

Java Classes for Migrated Application

Figure 36

Migrated Java Application

108

It is to be noted that the COBOL application is a relatively simple application

without interdependencies on other COBOL files or CICS libraries. All these

dependencies will increase the complexities involved in migration and effectively reduce

the accuracy.

The same task of documenting and migrating the legacy COBOL application to

Java was carried out manually by three individuals with varying levels of expertise, as in

the other tasks. However, there was one challenge involved in the manual setup. This

experiment involves translating from a legacy language like COBOL to a modern

language like Java. For the setup, where this task will be carried out manually, the

resource must understand both these languages. This was a challenge, since people who

have expertise in legacy languages like COBOL, generally do not have a great

understanding of modern programming languages like Java and vice versa. Hence, in this

setup, in the intermediate and expert group, the resources involved have an intermediate

and expert understanding respectively of Java but only a basic understanding of COBOL.

All three individuals could document and migrate the application. However, all

the individuals took a different amount of time to complete the tasks. The detailed cost

and effort analysis for both manual and AI-supported development will be discussed in

the next section.

To summarize, the code generated using the AI model, for all the problem

statements was corrected and tested after corrections. The statistics on the number of

edits needed and the effort needed to generate or perform the coding tasks are described

in the next sections for each problem statement.

After performing the required modifications manually, all applications built using

the Codex were fully functional applications meeting the desired requirements.

109

For all the programming tasks discussed in this section, there are a few key

observations on the code written by the three individuals vs code generated using the AI

model:

1. Since every individual has different expertise in the programming language and

different programming styles, the code produced by all three individuals was

inconsistent in terms of coding style and structure.

2. The variable names or function names used by the individuals were not always self-

explanatory. The AI model, however, used naming conventions, which were self-

explanatory.

3. The quality of code written by an expert was better than the code written by a novice

programmer. The quality of code generated by the AI model was equivalent to that of

an intermediate programmer.

4. All three individuals took significantly more amount of time than the time taken by

the AI model to generate the code.

The above results in the requirements, design, and build phases support our first

hypothesis, that the software requirements, design, and code capabilities of large

language models are better than traditional models.

In the next section, we compare the effort-saving and cost-benefit analysis.

4.4 Research Question Three

How much effort saving and cost-benefit will organizations get by augmenting these AI-

based models with a software programmer?

We hypothesized that:

Hypothesis 2

If large language models are to be used optimally, then a human-in-the-loop is necessary

for validation of the result generated by the model.

110

Hypothesis 3

If code automation using large language models is leveraged in the industry, it can

improve software quality by reducing errors and increasing consistency.

Hypothesis 4

If large language models are used for code automation, it can improve software

development efficiency by reducing the time needed to develop code and provide

significant cost and effort benefits to software organizations.

In our findings to RQ2, we observed that large language models can perform

many code automation tasks. We also observed that the capabilities of these models are

better than traditional tools or methods using certain quality metrics.

In this section, we will try to estimate the effort saving and cost-benefit, if any,

that can be achieved using these large language models.

4.4.1 Planning and requirements gathering

Software requirement classification

Effort

In this section, we discuss the effort required to perform the task of software

requirement classification. We analyze the effort involved when this task is performed

manually as against using a large language model. As discussed in section 4.2.2.1.1, two

classification tasks are being performed – binary classification and multi-class

classification of NFRs.

Large-language Model

Approach 1 – Zero-shot learning

The following tasks were involved in performing requirement classification using

zero-shot learning approach. These tasks are the same for both binary classification as

well as multi-class classification.

111

1. Prompt-engineering

Prompt engineering is a technique used with large language models to carefully

design input prompts for the model, that can guide the model toward a specific task or

goal. This involves choosing the right words, phrases, and structure for the prompt, as

well as selecting relevant background information and context that will help the model

understand the task at hand. The goal of prompt engineering is to create a clear and

concise prompt that provides the necessary context and constraints for the model to meet

the specific objective or goal. Effective prompt engineering can greatly enhance the

performance of these large pre-trained models and help achieve a given level of accuracy.

Prompt engineering is performed in iterations. In the first iteration, a basic prompt

is designed and the model‟s performance is observed on a small set of data. In the case of

OpenAI GPT-3, this activity is performed in the playground provided by OpenAI.

2. Data preparation/cleaning

Large language models like GPT-3 break down the input text into tokens, where

each token is a smaller unit of the word or sub-words. GPT-3 uses byte-pair encoding

(BPE) for tokenization, which is a technique that divides words into sub-words based on

their frequency of occurrence in the training data. The resulting vocabulary of BPE

tokens is used to represent the input text in a format that can be processed by the GPT-3

model. Tokenization in GPT-3 plays a crucial role in improving the performance and

efficiency of the model.

Models like GPT-3 are sensitive to spaces and new-line characters. Also, any

special characters like emojis, exclamation marks, and so on, which do not play a critical

role in the classification process, must be removed, to improve the quality of text being

fed to the model.

112

3. After the data is cleaned and prepared, the OpenAI GPT-3 API is invoked in a loop

for each requirement to be classified. The instructions along with the requirement to

be classified are sent to the end-point, which then returns the result based on the

designed prompt. The results are then validated against the ground truth.

4. Based on the first set of results and the accuracy obtained, the prompt is further tuned

to help the model improve the understanding of the end goal. This process is again

done in the playground and a better-performing prompt is designed.

5. Step 3 is now repeated to arrive at the final scores.

Binary Classification

Table 23 below shows the effort involved in performing the binary classification

task using zero-shot learning.

Table 23

Binary Classification Effort (Zero-shot)

Sr. No. Task Time (in hours)

1 Prompt-engineering – first iteration 2

2 Building basic solution with below steps:

a. Data cleaning 1

b. Iterative prompt-engineering 5

c. Evaluation 1

Total Effort 9 hours

Time taken to perform classification on 625 requirements using the above solution:

Table 24

Processing Time for 625 requirements

Time taken to process each request 3 seconds

of requirements 625

Total time taken ~30 minutes

113

The total effort involved in building the solution and performing binary classification is

9.5 hours.

Multi-class classification

Similarly, Table 25 below shows the effort involved in performing the multi-class

classification task using the zero-shot learning approach.

Table 25

Multi-class classification (Zero-shot)

Sr. No. Task Time (in hours)

1 Prompt-engineering – first iteration 4

2 Building basic solution with below steps:

a. Data cleaning 1

b. Iterative prompt-engineering 8

c. Evaluation 1

Total Effort 14 hours

Time taken to perform classification on 370 requirements using the above solution:

Table 26

Processing time for 370 requirements

Time taken to process each request 3 seconds

of requirements 370

Total time taken ~20 minutes

The total effort involved in building the solution and performing binary classification =

14.5 hours

Approach 2 – Embeddings based model

The following tasks were involved in training a custom model on top of a large

language model for software requirements classification. As in the case of binary

114

classification, these tasks are the same for both binary classification as well as multi-class

classification.

1. Data cleaning and preparation

This step is the same as in approach 1. However, before performing this step, the

dataset is first split into a train set (70%) and a test set (30%). All the steps are now

performed on the training dataset. In this step, all the extra lines, spaces, and emojis or

special characters that may be present in the text are removed. Feature extraction from

the requirements is not required as the embeddings, which will be generated in the next

step, will capture the semantics of the requirement, which will then be used for further

training the model.

2. Embeddings generation

When the clean data is ready, the GPT-3 embeddings API is invoked to generate

the embeddings for each requirement in the dataset. GPT-3 embeddings refer to the

vector representations of words or tokens learned by the GPT-3 language model during

training. Embeddings are a crucial component of GPT-3. These embeddings, since

trained on a massive corpus of text data, enable the model to capture a wide range of

linguistic patterns and semantic relationships between words. Thus, these high-

dimensional vectors can be used to represent complex semantic relationships between

words.

The embedding model used to generate the embeddings for the classification

problem is text-similarity-davinci-001. This model generates embeddings having 12288

dimensions. OpenAI has recently released text-embedding-ada-002. These embeddings

are fewer in dimension but are considered to be more powerful. This embedding model

was released after all the experiments for this study were completed using the previous

embedding model.

115

3. Model building

This step is similar to traditional model building. We build and test different

classification models like Logistic Regression (LR), Random Forest Classifier (RF), and

Support vector machine (SVM) among others. We apply cross-validation techniques to

identify the model which will perform well on unseen data. We also perform

hyperparameter tuning to further tune the model‟s performance to achieve better scores.

The best-performing model is selected for the next step i.e. evaluating on test data.

4. Evaluating on test data

The selected model is then used to classify the requirements in the test dataset.

For each requirement that must be classified, the step of cleaning the post and generating

the embedding must be done, before sending it to the model for classification. The

accuracy, F1-score, and other metrics are noted.

Binary Classification

Table 27 below shows the effort involved in performing binary classification

using the embeddings-based approach.

Table 27

Binary classification effort (Embeddings-based approach)

Sr. No. Task Time (in hours)

1 Data cleaning/preparation for model training 1

2 Generating Embeddings for 437 requirements (training data) 0.25

3
Model training (training different models, cross-validation,

hyper-parameter tuning) 14

4 Evaluating on test data (188 posts) 0.25

Total Effort 15.5 hours

Multi-class Classification

116

Similarly, Table 28 below shows the effort involved in multi-class classification

using the embeddings-based approach.

Table 28

Multi-class classification effort (Embeddings-based approach)

Sr. No. Task Time (in hours)

1 Data cleaning/preparation for model training 1

2 Generating Embeddings for 259 requirements (training data) 0.25

3 Model training (training different models, cross-validation,

hyper-parameter tuning)

19

4 Evaluating on test data (111 posts) 0.25

Total Effort 20.5 hours

Manual

The same task of binary and multi-class classification was performed manually by

three individuals of different expertise.

Binary classification

1. Novice classifier – this individual was new to the classification task with little to no

experience in software requirement classification.

The individual, being a novice, needed guidance from time to time. The total time

taken to perform the task was 52 hours.

Average time per requirement is ~5 mins

Accuracy – 439 out of 625 (~70%)

2. Intermediate classifier – this individual had some experience in software requirement

classification from previous engagements.

The total time taken to perform the task was 31 hours.

Average time per requirement is ~3 mins

Accuracy – 506 out of 625 (~81%)

117

3. Expert classifier – this individual had extensive experience in performing this task.

The total time taken to perform the task was 22 hours.

Average time per requirement is ~2 min

Accuracy – 531 out of 625 (~85%)

Effort saving with Approach-1

Table 29 below shows the effort saving obtained when using LLM as compared to

the same task being done manually by programmers of different levels of expertise.

Table 29

Effort saving with Approach-1

 LLM Novice Intermediate Expert

Time taken 9.5 hours 52 hours 31 hours 22 hours

Effort saving* 42.5 hours 21.5 hours 12.5 hours

Percentage effort saving* 82% 69% 57%

Effort saving with Approach-2

The point to be noted here is that the total time taken here for LLM is the time

taken to train the model on 70% of the dataset and test on the remaining 30% of the

dataset. While the time taken manually indicates the time taken to manually label the

entire dataset of 625 software requirements.

Table 30

Effort saving with Approach-2

 LLM Novice Intermediate Expert

Total Time taken 15.5 hours 52 hours 31 hours 22 hours

Effort saving* 36.5 hours 15.5 hours 6.5 hours

Percentage effort saving* 70% 50% 30%

*Effort saving – Manual classification effort – LLM effort

*Percentage effort saving – Effort saving / Manual classification effort

Multi-class classification

118

The task of multi-class classification was more complex to be done manually as

compared to binary classification since the number of classes involved here is large (11).

Depicted below is the manual effort involved.

1. Novice classifier – The total time taken to perform the task was 40 hours.

Average time per requirement is ~6.5 mins

Accuracy – 229 out of 370 (~62%)

2. Intermediate classifier – The total time taken to perform the task was 31 hours.

Average time per requirement is ~5 mins

Accuracy – 263 out of 370 (~71%)

3. Expert classifier – The total time taken to perform the task was 21.5 hours.

Average time per requirement is ~3.5 min

Accuracy – 296 out of 370 (~80%)

Effort saving with Approach-1

Table 31 below shows the effort saving obtained when using LLM to perform

multi-class classification using Approach-1, as compared to the same task being

performed manually by programmers of different levels of expertise.

Table 31

Multi-class classification Effort Saving (Approach-1)

 LLM Novice Intermediate Expert

Time taken 14.5 hours 40 hours 31 hours 21.5 hours

Effort saving* 25.5 hours 16.5 hours 7 hours

Percentage effort saving* 64% 53% 33%

Effort saving with Approach-2

The point to be noted here is that the total time taken here for LLM is the time

taken to train the model on 70% of the dataset and test on the remaining 30% of the

119

dataset. While the time taken manually indicates the time taken to manually label the

entire dataset of 370 non-functional requirements.

Table 32

Multi-class classification Effort saving (Approach 2)

 LLM Novice Intermediate Expert

Total Time taken 20.5 hours 40 hours 31 hours 21.5 hours

Effort saving* 19.5 hours 10.5 hours 1 hour

Percentage effort saving* 49% 34% 5%

*Effort saving – Manual classification effort – LLM effort

*Percentage effort saving – Effort saving / Manual classification effort

Cost Estimate

Large language Model

We used the OpenAI Davinci model for performing the binary classification using

zero-shot prompt engineering. Similarly, we used OpenAI similarity embeddings for

building a classifier model using the embeddings. Both these models are charged per

1000 tokens. The charges are as mentioned below:

text-davinici-002 model – $0.02 per 1000 tokens

text-similarity-davinci-001 model - $0.2 per 1000 tokens

Approach 1 - Zero-shot learning

Binary classification

Table 33 below lists various factors which contribute to calculating the cost

involved in performing binary classification using the zero-shot approach.

Table 33

Factors impacting cost - binary classification (zero-shot)

Requirements 625

Total # of tokens for all requirements 14,434

Tokens in instruction 200

120

Tokens in completion (max) 3

Total # of tokens (instruction + requirement +

completion)*

14,434 + (625 * 200) + (625 * 3) =

1,41,309

Cost of completion API $0.02 per 1000 tokens

Total cost of inferencing $3

* Total # of tokens = Total # of tokens for all requirements + (# requirements * # of tokens in instruction) + (# requirements * # of

tokens in completion)
* Total cost = Total # of tokens * Cost of API / 1000

Labor cost

Assuming an hourly rate of $40 for AI resource in performing classification using

LLM, the cost of performing the classification using Approach-1 is:

Total effort = 9.5 hours

Rate = $40/hour

Resource cost = $40* 9.5 = $380

Total cost = Effort cost + Cost of inferencing = $383

Multi-class classification

Similarly, Table 34 below shows different factors involved in calculating the cost

for the multi-class classification of NFRs.

Table 34

Factors impacting cost multi-class classification (zero-shot)

Non-functional requirements 370

Total # of tokens for all requirements 8,932

Tokens in instruction 59

Tokens in completion (max) 10

Total # of tokens (instruction + requirement +

completion)*

8,932 + (370 * 59) + (370 * 10) = 34,462

Cost of completion API $0.02 per 1000 tokens

Total cost of inferencing $0.69

* Total # of tokens = Total # of tokens for all posts + (# posts * # of tokens in instruction) + (# posts * # of tokens in completion)
* Total cost = Total # of tokens * Cost of API / 1000

121

Labor cost

Assuming an hourly rate of $40 for AI resource in performing classification using

LLM, the cost of performing the classification using Approach-1 is:

Total effort = 14.5 hours

Rate = $40/hour

Resource cost = $40 * 14.5 = $580

Total cost = Effort cost + Cost of inferencing = $581

Approach 2 – Embeddings based model

Binary classification

The table below lists the factors considered during calculating the cost for

performing binary classification using the embeddings-based approach

Table 35

Factors for cost calculation (Binary classification – embeddings based)

Requirements 625

Total # of tokens for all requirements 14,434

Cost of embedding API $0.2 per 1000 tokens

Total cost of generating embeddings $3

Labor cost

Assuming an hourly rate of $40 for an AI resource involved in building the

classification model using LLM, the cost of performing the classification using

Approach-2 is:

Total effort spent in building and evaluating the model = 15.5 hours

Rate = $40/hour

Resource cost = $40 * 15.5 = $580

Total cost = Resource cost + cost of embeddings = $583

122

Multi-class classification

Similarly, Table 36 below lists the factors considered during calculating the cost for

multi-class classification using the embeddings-based approach

Table 36

Factors impacting cost multi-class classification (embeddings-based)

Requirements 370

Total # of tokens for all requirements 8,932

Cost of embedding API $0.2 per 1000 tokens

Total cost of generating embeddings $2

Labor cost

Assuming an hourly rate of $40 for a data scientist involved in building the

classification model using LLM, the cost of performing the classification using

Approach-2 is:

Total effort spent in building and evaluating the model = 20.5 hours

Rate = $40/hour

Resource cost = $40 * 20.5 = $820

Total cost = Resource cost + cost of embeddings = $822

Manual

Binary classification

The following costs will be applicable when performing the task of binary

classification of software requirements manually - labor cost of the classifiers, the

overhead costs associated with the task, and any other expenses incurred during the

classification process. Based on these cost factors, the following is the manual cost

involved for each manual classifier.

Labor cost

123

Assuming an hourly rate of $20 for novice classifiers, $30 for intermediate

classifiers, and $50 for expert classifiers, the cost of performing the classification task is

as follows:

Table 37

Cost of manual binary classification

Novice classifiers: 52 hours x $20/hour = $1040

Intermediate classifiers: 31 hours x $30/hour = $930

Expert classifiers: 22 hours x $50/hour = $1100

Overhead costs

Overhead costs are indirect costs associated with performing the task, such as

training, supervision, and administrative expenses. Assuming an overhead cost of 25% of

the labor cost, the total cost of performing the task is as follows:

Table 38

Overhead costs – binary classification

Novice classifiers: $1040 x 1.25 = $1,300

Intermediate classifiers: $930 x 1.25 = $1,163

Expert classifiers: $1100 x 1.25 = $1,375

Other expenses

Other expenses associated with performing the task include any expenses

associated with obtaining clarification or feedback from stakeholders and any additional

expenses incurred during the classification process. Assuming other expenses of $500,

the total cost of performing the task is as follows:

Table 39

Other expenses – binary classification

Novice classifiers: $1,300 + $500 = $1,800

Intermediate classifiers: $1,163 + $500 = $1,663

124

Expert classifiers: $1,375 + $500 = $1,875

Cost saving – Approach-1

The following table shows the cost savings obtained when using an LLM and

using the first approach, as against the same task being done manually by individuals

with varying levels of expertise.

Table 40

Cost saving (Binary Classification) – Approach 1

 LLM (Zero-shot) Novice Intermediate Expert

Cost $383 $1,800 $1,663 $1,875

Cost saving* $1,417 $1,280 $1,492

Percentage cost saving* 79% 77% 80%

Cost saving – Approach-2

Similarly, the following table shows the cost savings obtained using approach 2

with LLM as against the manual approach.

Table 41

Cost saving (Binary Classification) – Approach 2

 LLM

(Embeddings)

Novice Intermediate Expert

Cost $623 $1,800 $1,663 $1875

Cost saving* $1,177 $1,040 $1,252

Percentage cost saving* 65% 62% 67%

Multi-class classification

As in the case of manual binary classification, the following costs will be

applicable when performing multi-class classification manually – labor cost of the

classifiers, the overhead costs associated with the task, and any other expenses incurred

during the classification process. Based on these cost factors, the following is the manual

cost involved for each manual classifier.

125

Labor cost

Assuming an hourly rate of $20 for novice classifiers, $30 for intermediate

classifiers, and $50 for expert classifiers, the cost of performing the classification task is

as follows:

Table 42

Cost of manual classification (multi-class)

Novice classifiers: 40 hours x $20/hour = $800

Intermediate classifiers: 31 hours x $30/hour = $930

Expert classifiers: 21.5 hours x $50/hour = $1075

Overhead costs

As in the case of manual binary classification, assuming an overhead cost of 25%

of the labor cost, the total cost of performing the task is as follows:

Table 43

Overhead costs (multi-class)

Novice classifiers: $800 x 1.25 = $1000

Intermediate classifiers: $930 x 1.25 = $1163

Expert classifiers: $1075 x 1.25 = $1344

Other expenses

Assuming other expenses of $500, the total cost of performing the task is as

follows:

Table 44

Other expenses (multi-class)

Novice classifiers: $1000 + $500 = $1,500

Intermediate classifiers: $1163 + $500 = $1,663

Expert classifiers: $1156 + $500 = $1,844

Cost saving – Approach-1

126

The following table shows the cost savings obtained in multi-class classification

using Approach-1.

Table 45

Cost saving (Multi-class Classification) – Approach 1

 LLM (Zero-shot) Novice Intermediate Expert

Cost $581 $1,500 $1,663 $1,844

Cost saving* $919 $1,082 $1,263

Percentage cost saving* 61% 65% 68%

Cost saving – Approach-2

The following table shows the cost savings obtained in multi-class classification

using Approach-2.

Table 46

Cost saving (Multi-class Classification) – Approach 2

 LLM

(Embeddings)

Novice Intermediate Expert

Cost $822 $1,500 $1,663 $1,844

Cost saving* $678 $841 $1,022

Percentage cost saving* 45% 51% 55%

Overall

Binary classification

The following table shows the overall metrics for binary classification, using both

approaches.

127

Table 47

Overall (Binary Classification)

 LLM

(Zero-shot)

LLM

(Embeddings)

Novice Intermediate Expert

Accuracy 81% 92% 70% 81% 85%

% Effort saving with zero-shot LLM 82% 69% 57%

% Effort saving with embedding

LLM

 70% 50% 30%

% Cost saving with zero-shot LLM 79% 77% 80%

% Cost saving with embedding

LLM

 65% 63% 67%

We observe, that when using an embeddings-based model-building approach, the

effort saving is 30% when compared to the same work done by an expert manually. In

terms of cost, we see a saving of 67% as against the classification done manually by an

expert classifier. Also, the accuracy of the model is greater (92%) than manual expert

classification (85%).

We also observe that the accuracy of the zero-shot approach is the same as the

manual intermediate classifier (81%) but lower than the manual expert classifier (85%).

However, the cost and effort savings in both cases are considerably higher. The effort

saving against a manual intermediate classifier is 69% and against a manual expert

classifier is 57%. Similarly, the cost saving against both the manual intermediate and

manual expert classifier is 77% and 80% respectively.

Multi-class classification

Table 48 provides the overall metrics for multi-class classification, using both

approaches.

128

Table 48

Overall (Multi-class classification)

 LLM

(Zero-shot)

LLM

(Embeddings)

Novice Intermediate Expert

Accuracy 71% 81% 62% 71% 80%

% Effort saving with zero-shot LLM 64% 53% 33%

% Effort saving with embedding

LLM

 49% 34% 5%

% Cost saving with zero-shot LLM 61% 65% 68%

% Cost saving with embedding

LLM

 45% 51% 55%

We observe, that when using the embeddings-based model building approach, the

effort saving is 5% and cost saving 55% as against the classification done manually by an

expert classifier. Also, the accuracy of the model is almost similar (81%) as compared to

manual expert classification (80%).

We also observe that the accuracy of the zero-shot approach is the same as the

manual intermediate classifier (71%) but lower than the manual expert classifier (80%).

Also, the effort saving against a manual intermediate classifier is 53%, and against a

manual expert classifier is 33%. Similarly, the cost saving against both the manual

intermediate and manual expert classifier is 65% and 68% respectively.

4.4.2 Coding and Testing

4.4.2.1 Code Generation

Task 1 – Android Java App

Intent

The intent of this Android app is very simple – to draw on the screen using touch.

Also, the app will have buttons to erase the drawing and to change the colors.

129

Effort

Large Language Model (Codex)

Tasks

1. Prompt-engineering

Initial prompt

The model was instructed to generate code for such an app with the desired

features. The model provided a template code. The template code was accurate with a

few missing points:

a. The action to be done on a click of button-1 (erase the drawing was missing)

b. A second button to change the color of the drawing was missing

Prompt-tuning-1

Based on the code generated, further instructions were provided to the model to

add the action of erasing the drawing.

Result – the model successfully regenerated the code with this feature in place

Prompt-tuning-2

The model was given further instructions to generate code to add a button which

when clicked will change the color to be used for the drawing.

Result – again the model was successfully able to add this feature and provide the

final code.

2. Code correction

The next step was to create a project in Android Studio and copy the code. There

were a few errors that were corrected.

For example:

- the generated code imported the class android.app.Activity. This had to be changed to

androidx.appcompat.app.AppCompatActivity.

130

- the generated code set the contentView to the DrawingView object i.e.

setContentView(dv);. This was changed to set the contentView to the main activity and

add the drawingView object to it i.e.

setContentView(R.layout.activity_main);

LinearLayout ll = (LinearLayout)findViewById(R.id.llayout1);

ll.addView(dv);

Table 49 below shows the statistics on the lines of code generated by the model and the

number of edits required.

3. Code testing

In this step, the code is tested to check if the generated code has all the features

and functions correctly.

Code Statistics

Table 49

Code Statistics

LOC generated # Insertions # Deletions # Edits

139 9 1 1

Effort Analysis

Table 50

Effort Analysis

Sr. No. Task Time (in

hours)

1 Prompt engineering (code generation in multiple

iterations)

2.5 hours

2 Code correction 0.5 hours

3 Testing the code and deploying in Android phone 1 hour

Total Effort 4 hours

Manual

131

The same task was given to each of the individual programmers in the novice,

intermediate, and expert programmer group. At a high level, the following are the steps

that will be required to be done.

1. Setting up the project: This involves creating a new Android project, configuring the

project settings, and setting up the layout and UI elements for the app.

2. Implementing touch input: The app needs to handle touch input to enable users to

draw on the screen. This may involve setting up touch listeners, detecting touch

events, and drawing on the canvas.

3. Adding the erase button: The app needs to include a button that allows users to erase

their drawings. This may involve creating a new button widget, setting up a click

listener for the button, and implementing the erase functionality.

4. Adding the color button: The app needs to include a button that allows users to

change the color of their drawing. This may involve creating a new button widget,

setting up a click listener for the button, and implementing the change color

functionality.

5. Testing and debugging: Once the app is implemented, it needs to be thoroughly tested

to ensure that it works as intended and is free of bugs and errors.

Given that the complexity of the program is simple, the following is the time

taken by the individual groups to complete the task:

- Novice programmer – 20 hours

- Intermediate programmer – 14 hours

- Expert programmer – 6 hours

Effort saving

132

The following table shows the effort saving obtained when using LLM for code

generation as against the code written manually by individuals with different levels of

expertise.

Table 51

Effort Saving (Code Generation - Android App)

 LLM Novice Intermediate Expert

Time taken 4 hours 20 hours 14 hours 6 hours

Effort saving* 16 hours 10 hours 2 hours

Percentage effort saving* 80% 71% 33%

Cost Estimate

Large language model

We used the OpenAI Codex model (code-davinci-002) for generating code, given

instructions in natural language. The pricing for this model is the same as text-davinci-

002 model used for requirements classification i.e., $0.02 per 1000 tokens

Table 52

Cost of inferencing (Android App)

Average LOC generated (including newlines) in one pass 169

of iterations of prompt engineering/fine-tuning 15

Total tokens generated 30,000

Cost of completion API $0.02 per 1000 tokens

Total cost of inferencing* $0.6
* Total cost = Total # of tokens * Cost of API / 1000

Labor cost

Assuming an hourly rate of $40 for AI resource in inferencing LLM and performing

prompt engineering, the cost of generating code for this task is:

Total effort spent in code generation and testing – 4 hours

133

Hourly rate - $40

Resource cost - $40 * 4 = $160

Total cost = Resource cost + cost of inferencing = $161

Manual

Novice programmer: A novice programmer takes longer to complete each step of

the development process, and requires more guidance and supervision.

Intermediate programmer: An intermediate programmer has more experience with

Android development and can complete each step of the process more quickly and with

less guidance.

Expert programmer: An expert programmer has extensive experience with

Android development and can complete each step of the process quickly and efficiently.

Assuming an hourly rate of $20 per hour for a novice programmer, $30 for an

intermediate programmer, and $50 for an expert programmer, the cost of building this

app manually is as follows:

Table 53

Cost of manually building the app – Android App

Novice programmer: 20 hours x $20/hour = $400

Intermediate programmer: 14 hours x $30/hour = $420

Expert classifiers: 6 hours x $50/hour = $300

Cost saving

The following table shows the cost savings obtained when using LLM for building the

app.

Table 54

Cost saving - Android App

 LLM (Zero-shot) Novice Intermediate Expert

Cost $161 $400 $420 $300

134

Cost saving* $239 $259 $139

Percentage cost saving* 60% 62% 46%

Overall

The following table shows the overall effort and cost savings obtained in building this

app using LLM.

Table 55

Overall Savings - Android App

 LLM (Zero-shot) Novice Intermediate Expert

% Effort saving 80% 71% 33%

% Cost saving 60% 62% 46%

Cost-Benefit Analysis (with respect to Expert programmer)

We observe, that the effort saving when using a large language model like Codex,

is around 33% and cost saving 46% as against the code written manually by an expert

programmer. Similarly, the cost and effort savings in both the other cases (novice and

intermediate) are also considerable. The effort saving against a manual programmer is

80% and against an intermediate programmer is 71%. Similarly, the cost saving against

both the manual intermediate and manual expert programmer is around 60%.

Task 2 – ASP.NET Travel reservation application

Intent

This task intends to build a small travel reservation app using ASP.NET. The app

will allow adding a new user with details like age, name, gender, and so on. The user

WebForm will be connected to a backend SQL database. There will option to

add/edit/update/delete a user. There will be two more WebForms - one for handling

ticketing details for each user, again with the option to edit the details, and another for

135

handling the accommodation for the user. Both these WebForms will also be connected

to a backend SQL table.

Effort

Large Language Model (Codex)

Tasks

1. Prompt-engineering

WebForm

The model was first instructed to generate code for the „user‟ WebForm. Prompt

engineering was done to provide the right instructions to the model to produce the desired

output. At times the model only produced the backend logic without the WebForm. In

such cases, the model had to be directed to produce the code for the WebForm as well.

Here the requirement was that the WebForm should be connected to the back-end

SQL database. The model generated the code which linked the GridView in the

WebForm to the SQL table. In addition, when the model was given instructions to use

TemplateField instead of BoundField, the model was successfully able to do so as well.

Two WebForms were generated in this manner using Codex – User and Ticket

SQL

The model was also used to generate SQL code for creating the User and Ticket

tables. The model was provided with the structure of the table and the key and

relationship details.

2. Code correction

To test the generated code, a project was created in Visual Studio and the

generated code was copied and pasted to the right place. There were some edits,

deletions, and insertions needed. For example, in the WebForm code that was generated,

there were some placeholder text boxes created as shown below:

136

 <asp:TextBox ID="txtName" runat="server" placeholder="Name"></asp:TextBox>

<asp:TextBox ID="txtEmail" runat="server" placeholder="Email"></asp:TextBox>

<asp:TextBox ID="txtPhone" runat="server" placeholder="Phone"></asp:TextBox>

<asp:TextBox ID="txtAddress" runat="server" placeholder="Address"></asp:TextBox>

<asp:Button ID="btnAdd" runat="server" Text="Add" />

This was not required and hence deleted. In the application code, there was logic

creating the connection string to the database. An edit to the connection string name was

required. There were some insertions needed like storing the state of the datatable in a

ViewState as the current table as shown below:

ViewState["CurrentTable"] = dt;

This was required so that the state of the DataTable object could be persisted across

postbacks.

Table 56 below shows the statistics on the code edits, deletions, and insertions required.

Table 56

Statistics - ASP.NET

LOC generated # Insertions # Deletions # Edits

1326 40 30 50

% modification needed in code ~9%

3. Code testing

The generated code, after the required modifications, is tested to ensure the

application has the desired functionality.

Effort Analysis

The following table shows the effort involved in building the ASP.NET application with

the assistance of LLM.

137

Table 57

Effort Analysis - ASP.NET using LLM

Sr. No. Task Time (in hours)

1 Prompt engineering (code generation in multiple

iterations for:

- Three forms with the backend logic

- SQL code

- Improving UI

10 hours

2 Code correction 3 hours

3 Testing and debugging the code 3 hours

Total Effort 16 hours

Manual

The same task of building this travel reservation application was given to each of

the individual programmers in the novice, intermediate, and expert programmer group. At

a high level, the following are the steps that were required to be done.

1. Setting up the project: This involves creating a new ASP.NET project and

configuring the project settings.

2. Creating the three webforms with all the desired options

3. Adding the required back-end logic for each of the three forms

4. Linking the forms as required

5. Testing and debugging: Once the application is implemented, it needs to be

thoroughly tested to ensure that it works as intended and is free of bugs and

errors.

Building such a travel reservation application is a medium-complexity task. Following is

the time taken by the individual groups to complete the task:

- Novice programmer – 160 hours

- Intermediate programmer – 80 hours

138

- Expert programmer – 40 hours

Effort saving

The following table shows the effort saving obtained in building this app using LLM.

Table 58

Effort saving - ASP.NET

 LLM Novice Intermediate Expert

Time taken 16 hours 160 hours 80 hours 40 hours

Effort saving* 144 hours 64 hours 24 hours

Percentage effort saving* 90% 80% 60%

Cost Estimate

Large language model

As in the previous code generation task, we used the OpenAI Codex model (code-

davinci-002) for generating code for building this application.

Table 59

Cost of inferencing with Codex (ASP.NET)

Average LOC generated (including newlines) in one pass 360

of iterations of prompt engineering/fine-tuning 20

Total tokens generated 90,000

Cost of completion API $0.02 per 1000 tokens

Total cost of inferencing* $1.8

* Total cost = Total # of tokens * Cost of API / 1000

Labor cost

Assuming an hourly rate of $40 for AI resource in inferencing LLM and performing

prompt engineering, the cost of generating code for this task is:

Total effort spent in code generation and testing – 16 hours

Hourly rate - $40

139

Resource cost - $40 * 16 = $640

Total cost = Resource cost + cost of inferencing = $642

Manual

As in the previous case, assuming an hourly rate of $20 per hour for a novice

programmer, $30 for an intermediate programmer, and $50 for an expert programmer, the

cost of building this app manually is as follows:

Table 60

Cost of manually building the app – ASP.NET

Novice programmer: 160 hours x $20/hour = $3200

Intermediate programmer: 80 hours x $30/hour = $2400

Expert classifiers: 40 hours x $50/hour = $2000

Cost saving

The following table shows the cost savings obtained in building the app using an AI

model as against an entirely manual approach.

Table 61

Cost saving - ASP.NET

 LLM (Zero-shot) Novice Intermediate Expert

Cost $642 $3200 $2400 $2000

Cost saving* $2558 $1758 $1358

Percentage cost saving* 80% 73% 68%

Overall

The following table shows the overall cost and effort savings obtained by using

LLM for building the application.

140

Table 62

Overall - ASP.NET

 LLM (Zero-shot) Novice Intermediate Expert

% Effort saving 90% 80% 60%

% Cost saving 80% 73% 68%

As can be observed, the effort saving when using a large language model like

Codex is around 60%, and cost-saving is 68% as against the code written manually by an

expert programmer. Similarly, the cost and effort savings in both the other cases (novice

and intermediate) are also considerable. The effort saving against a manual programmer

is 90% and against an intermediate programmer is 80%. Similarly, the cost saving against

the manual intermediate programmer is 73% and the manual novice programmer is 80%.

4.4.2.2 Code Translation

Intent

The intent of this task is to translate an existing game of Tic-Tac-Toe from C++ to

Java.

Source

For this experiment, the code is picked from a public GitHub repository,

https://github.com/ash-dodek/TicTacToe (Harsh, 2022).

As the author mentions, the game is for two players. The game offers two modes

of play – Person against a person and Person against a computer. The intent is to translate

this code to Java and do the cost-benefit analysis for the same.

The original C++ repository consists of a set of C++ files along with some header

files. Provided below is a brief description of some of the files:

1. Two header files – one each to check if „X‟ player is a winner or „O‟ player is a

winner. The function in the first header returns true if „X‟ player is a winner and the

second function in another header returns true if „O‟ player is a winner.

https://github.com/ash-dodek/TicTacToe

141

2. Other than this, there are two header files – one to make each player move on the

board and return true if the move was successful.

3. There are two header files for human-to-robot interaction. One file marks the move

for the computer while the other checks if the computer wins the game and returns

true if it does.

4. One starter file with the main function to start the game and provide options for the

user to choose from. The options provided are to play against a human vs a computer.

Overall, seven C++ files in this application need to be migrated to Java.

Effort

Large Language Model (Codex)

Translating this C++ application to Java using a large language model was a

challenging task, especially because the model has limitations on context length. Listed

below are the steps involved in performing this translation:

1. Analyze the C++ application: Before starting the translation process, it's essential to

understand the structure of the C++ application. This step involved analyzing the

code and identifying the functions, classes, data types, and libraries used.

The initial analysis showed that there were six header files, for performing the various

moves in the game and for checking the winner. Also, there was one main file that

served as an entry point for the program.

2. Preprocess the C++ files: In this step, the C++ files are pre-processed to remove any

comments, unnecessary code, and other elements that may not be relevant to the

translation process. This helps reduce the input size and makes it easier for the

language model to process.

As shown in Figure 37, the code contained multiple lines of code which were

commented. All such lines were removed.

142

Similarly, all extra new lines present in the code, as shown in Figure 38 were removed as

well.

z

3. Divide the C++ files into smaller chunks: Next, the C++ files are divided into smaller

chunks to avoid exceeding the context length limitations of the language model. This

was done by breaking down the code into individual functions or smaller code blocks.

This task was challenging as when performing the chunking it was important to not

lose the context. For example, when splitting the code, it was observed that including

some variable declarations or some function definitions helped the model to

understand the code better and hence translate better. For the following piece of code,

during the else condition, the control is transferred to the location of the label ifFail.

For converting the program to Java, it is critical to understand what the program must

do during the else block. Providing the required context becomes critical for the

correct conversion of the program.

Figure 37

Code with comments

Figure 38

Code with line breaks

143

else if(move==8)

{

 if (gameb[2][1]=='-'){

 gameb[2][1]={'O'};

 clr();

 cout

 <<gameb[0][0]<<" | "<<gameb[0][1]<<" | "<<gameb[0][2]<<"\n"

 <<"-- --- --- \n"

 <<gameb[1][0]<<" | "<<gameb[1][1]<<" | "<<gameb[1][2]<<"\n"

 <<"-- --- --- \n"

 <<gameb[2][0]<<" | "<<gameb[2][1]<<" | "<<gameb[2][2]<<"\n";

 }

 else goto ifFail;

}

When dealing with large pieces of code, this step will be the most crucial step and

will determine the efficiency of translation.

4. Translate the code using the language model: In this step, the C++ code is translated

into Java. The smaller code blocks are fed into the model one at a time, prompt

engineering is done and the model's output is used to create the equivalent Java code.

This process is repeated until all the C++ code has been translated.

5. Review and refine the translated code: Once the code has been translated, it is

reviewed to ensure that it is accurate and complete. The code is also refined by

adjusting any syntax errors or inconsistencies and tested to ensure it works as

intended.

Provided below are the statistics on the lines of code generated, edited, and deleted.

144

Table 63

Code statistics – Code Translation

LOC generated # Insertions # Deletions # Edits

800 35 15 20

% modification needed in code ~9%

6. Optimize the translated code: The translated code is optimized by removing any

redundant or inefficient code, and optimized for performance.

7. Compile and test the Java application: Finally, the Java application is compiled and

tested thoroughly to ensure that it works as expected. Debugging of any issues that

arise is done, and further optimizations are done as needed.

For each of the above tasks, given below is the effort taken.

Effort Analysis

The following table shows the different tasks involved in the translation process using

LLM and the total effort involved.

Table 64

Effort Analysis - Code Translation

Sr. No. Task Time (in hours)

1 Code analysis 0.5

2 Pre-processing 1.5

3 Code chunking 2

4 Prompt engineering and code translation 5

5 Code stitching and code correction 1

6 Code optimization 2

7 Code testing 2

Total Effort 14

Thus, the total effort to translate the application from C++ to Java is 14 hours.

Manual

145

The same task was given to each of the individual programmers in the novice,

intermediate, and expert programmer group. Since this is the task of translation, the

requirement here is that the developer must have an understanding of both languages C++

and Java. In the novice group, the programmer had a basic understanding of both

programming languages while in the expert group, the programmer had a good

understanding of both programming languages. At a high level, the following are the

steps that were required to be done.

1. Analyze the C++ application

Based on the expertise of the programmer, the effort needed in this step differs. For

example, for a novice developer, this step involves considerable effort, as the novice

developer needs to spend significant time learning the syntax and structure of the C++

language and understanding the application's code. However, the expert developer,

being familiar with both C++ and Java can analyze the code more efficiently.

2. Convert the C++ code to Java:

As in step 1, for a novice developer, this step requires significant effort as the novice

developer needs to learn the syntax and structure of Java, and translating complex

C++ code into Java could be challenging. However, the expert developer being

familiar with both C++ and Java can translate the code more quickly and accurately.

3. Review and refine the translated code

As in the other steps, identifying and correcting errors in the code can be challenging

for a novice developer as compared to an intermediate or expert programmer who can

identify and correct errors more efficiently.

4. Optimize the Java code:

146

This task requires an understanding of Java optimization techniques. For a novice

developer, this will require considerable effort as compared to an expert programmer

who would be familiar with various Java optimization techniques.

5. Compile and test the Java application:

This step requires compiling, debugging, and testing the Java code. Again based on

the expertise, the effort needed in this step will vary for each programmer.

Provided below is the analysis of the effort needed by each group to perform this task.

Effort Analysis

The following table shows the manual effort involved by individuals of different levels of

expertise in performing the translation.

Table 65

Effort Analysis - Code Translation

 Effort (in hours)

 Novice Intermediate Expert

Analyze Code 16 8 4

Translate Code 56 32 14

Refine code 12 8 4

Optimize code 10 5 3

Debug and Test 12 8 5

Total Effort 106 61 30

Effort saving

Table 66 below shows the effort savings obtained in performing the translation by

leveraging AI as against the same task done manually.

147

Table 66

Effort Saving – Code Translation

 LLM Novice Intermediate Expert

Time taken 14 hours 106 hours 61 hours 30 hours

Effort saving if model is used* 92 hours 47 hours 16 hours

Percentage effort saving* 87% 77% 53%

*Effort saving = Manual effort – LLM effort
*Percentage effort saving – Effort saving / Manual effort

Cost Estimate

Large language Model (Codex)

In the discussion to research question 1, it was observed that OpenAI Codex was

capable of translation from one modern programming language to another. This model

understands both C++ and Java. Hence, this model was used for translation.

Table 67

Cost of inferencing using Codex

chunks passed to the model 12

Average #LOC translated in one pass 100

of iterations of prompt engineering/fine-

tuning

15

Total tokens (translated + generated)

including different passes

9,450,000

(2,250,000 tokens during experimentation +

7,200,000 during translation)
Cost of completion API $0.02 per 1000 tokens

Total cost of inferencing* $189

* Total cost = Total # of tokens * Cost of API / 1000

Labor cost

Assuming an hourly rate of $40 for AI resource in inferencing LLM and performing

prompt engineering, the cost of generating code for this task is:

of hours to complete the translation – 14

Hourly rate - $40

148

Cost of AI resource – 14 * 40 = $560

Cost of inferencing - $189

Total cost - $749

Manual

Assuming an hourly rate of $20 per hour for a novice programmer, $30 for an

intermediate programmer, and $50 for an expert programmer, the cost of translating this

application manually is as follows:

Table 68

Cost of manual translation

Novice programmer: 106 hours x $20/hour = $2120

Intermediate programmer: 61 hours x $30/hour = $1830

Expert classifiers: 30 hours x $50/hour = $1500

Cost saving

The following table shows the cost savings obtained by leveraging LLM for the task of

code translation.

Table 69

Cost saving using LLM - Code Translation

 LLM (Zero-shot) Novice Intermediate Expert

Cost $749 $2120 $1830 $1500

Cost saving* $1371 $1081 $751

Percentage cost saving* 65% 59% 50%

Overall

The following table shows the overall savings obtained using LLM as compared

to performing the translation manually.

149

Table 70

Overall Savings - Code Translation

 LLM (Zero-shot) Novice Intermediate Expert

% Effort saving 87% 77% 53%

% Cost saving 65% 59% 50%

As expected, the percentage of effort saving is highest when compared to a novice

programmer. The percentage of effort saving decreases as the level of expertise increases.

For example, the AI model can save 87% of the effort for novices, 77% for intermediate

level, and 53% for experts. Similarly, for the novice programmer, the overall cost saving

is 65%, which means that the AI model can perform the task with 65% less cost

compared to the manual effort. Like effort saving, the percentage of cost saving decreases

as the level of expertise increases. For example, the AI model can save 65% of the cost

for novices, 59% for intermediate level, and 50% for experts.

4.4.2.3 Technical document generation

In Research Question 1, there was a brief mention of ChatGPT and the code

generation and code understanding capabilities of this new model from OpenAI. In

continuation to the code translation for the Tic-Tac-Toe game, we also tried to generate

the technical documentation out of the original C++ code. Shown below is a snippet of

the document generated using ChatGPT.

An important point to note is the capability of this model to identify that the two

functions have a lot in common and can be combined. These insights from existing code

can be very helpful, especially in tasks like code translation/migration. Identifying such

technical debt in code and providing suggestions or resolutions for the same is one of the

big advantages that models like Codex and ChatGPT provide.

150

Figure 39

playerOne Documentation

151

Figure 40

playerTwo Documentation

152

4.4.2.4 Legacy Code Documentation and Migration

Intent

The requirement is to generate documentation for an existing COBOL application

and migrate it to Java. The application is a Human Resource Management System that

maintains employee records and maintains all employee information like personal details,

leave requests, transfer requests, payment information, and so on.

Two types of documentation were to be generated using the large language model:

1. Generic documentation which describes the intent of the piece of code, various

variables or data structures used, and the functionality performed.

2. Design document – generated with the intent to re-architect the entire application

The next step was to generate the Java code for this application with the help of the

generated documentation.

Effort

Large Langue Model (gpt-3.5 turbo alias ChatGPT)

The following tasks are involved when a large language model is leveraged for

generating documentation from legacy code.

1. Code analysis

The original COBOL application had 1300 lines of COBOL code. The total number

of tokens in this COBOL application were around 28,000. The gpt-3.5 turbo model

has a limitation of 4096 tokens (including input and generated output). Hence,

analyzing the code and strategizing the chunking process to achieve the best results

becomes a crucial step to perform this task.

2. Code cleaning

153

In this stage, the code is cleaned of all extra lines, spaces, and comments. This avoids

sending unnecessary information to the model, reducing the total number of tokens

being consumed and improving the chances of getting better results from the model.

3. Code chunking

The next step is to create logical chunks for the entire piece of code. The model is fed

with these chunks of code to extract the documentation from it. This is a crucial step

and has a great impact on the efficiency of translation.

For example, randomly selecting 12 lines of COBOL code as shown below:

and feeding them to the model would generate documentation as shown:

154

On the other hand, providing a logical block of code as shown below:

produces coherent documentation like:

155

4. Prompt-engineering

After chunking the code into logical blocks, each block is fed to the model and

appropriate instructions are given to the model to generate the documentation. Prompt

engineering is done to come up with the best prompt which works well on all chunks

of code. Zero-shot and one-shot techniques are experimented with and a final prompt

and technique is decided to perform this task.

Steps 3 and 4 are performed repeatedly till the best technique for chunking the code is

devised along with the prompt for it.

As discussed above, the large language model was used to generate two kinds of

documentation. The first is generic documentation to understand the intent of the

code and get key insights from it. Figure 41 below shows the generic documentation

that is generated for COBOL code which is added in Appendix B (Figure 115 and

Figure 116).

156

Generated documentation

Figure 41

Generated Generic documentation

157

For the same piece of code, Figure 42 below shows the design documentation that is

generated

Further, it also generates the proposed solution for migration to Java as shown in Figure

43 below.

Figure 42

Generated Design documentation

158

159

5. Document Review

The document is reviewed to ensure that it reflects the functionality of the code and

uses a similar style of documentation for all chunks of code.

6. Document Organization

The next step is to organize and if required, consolidate the documentation generated

for different chunks of code

7. Code Migration to Java

This step involves multiple sub-steps:

a. Analyzing documentation: Understand the documentation and identify the

chunking logic for generating Java code. This is crucial as for generating

equivalent Java code for a piece of COBOL code, it is important to include the

entire context (different data structures, file systems, and other dependencies)

for that piece of COBOL code.

b. Chunking the code: Based on the understanding from the documentation, the

COBOL code is chunked into logical blocks of code by including the

necessary context and dependencies.

Figure 43

GPT-3 proposed solution

160

As in the case of documentation, this is the most crucial step and plays a

critical role in the kind of output that will be generated. For example,

randomly selecting a few lines of code as shown below:

generates documentation and code as:

Java equivalent code:

161

However, by utilizing the understanding from the generated documentation, it can

be inferred that LEAVE-PARA contains information about employee leave.

By including all the necessary context and dependencies around LEAVE-PARA

in the block of code during chunking as shown below:

162

improves the quality of output generated as shown below:

163

GPT-3 Generated Java code:

164

The above code compiles without any errors, clearly indicating the

improvement in the quality of generated code.

c. Prompt-engineering: Next step is to perform prompt-engineering to

translate the chunks of COBOL code into equivalent Java.

d. Code correction: The generated code is copied into a Java IDE and

corrections are done, wherever required.

For the 1400 lines of COBOL code, 25 Java classes were generated. The

following table gives the statistics on the lines of Java code generated, edited, and

deleted.

Table 71

Code statistics - COBOL to Java

LOC generated # Insertions # Deletions # Edits

1570 80 50 175

% Modification needed in code ~20%

e. Code compilation and testing: The final migrated code is compiled and

tested to ensure that the migrated Java application achieves the desired

functionality. 23 out of 25 generated Java classes compiled without errors.

The corrections were needed mostly to edit the class names to match the

calling program. Few insertions were needed to include the user input in

the class rather than receiving it as input parameters.

Effort Analysis

The following two tables depict the effort involved in performing the two tasks i.e.

Legacy Code Documentation (Generic documentation and Design documentation

generation) and Code migration, performed as part of this experiment.

Legacy Code Documentation (Generic and Design Document)

165

Table 72

Effort Analysis - Legacy Code Documentation

Sr. No. Task Time (in hours)

1 Code analysis and understanding 2

2 Code cleaning 2

3 Code chunking* 8

4 Prompt engineering and generation of code

documentation*

16

5 Document Review 4

6 Document Organization 2

Total Effort 34

*These tasks are performed repeatedly till an optimal solution is identified

COBOL to Java migration

Table 73

Effort Analysis - COBOL to Java migration

Sr. No. Task Time (in hours)

1 Analyzing generated documentation* 4

2 Code chunking* 12

3 Prompt engineering and code generation 24

4 Code review and correction 12

5 Code compilation and testing 8

Total Effort 60

*These tasks are performed repeatedly till an optimal solution is identified

Thus, the total effort to generate documentation for the legacy COBOL application is 34

hours, and migrating the application to Java is 60 hours.

Manual

The same task was given to each of the individual programmers in the novice,

intermediate, and expert programmer group. For the task of generating documentation,

166

the group consisted of programmers with basic, intermediate, and expert understanding of

COBOL. However, for the task of migrating to Java, knowledge of both COBOL and

Java was required. This was challenging, primarily due to the difference in the

programming paradigms between COBOL and Java. Also, these languages differ in their

syntax, keywords, data types, and other programming concepts.

COBOL is a procedural language while Java is an object-oriented language. For a

programmer skilled in one modern programming language like C++, it is comparatively

easy to also be an expert in another modern programming language like Java. However,

for a programmer who is an expert in a procedural language like COBOL, mastering the

skills of an object-oriented language like Java may be challenging. Hence, for the task of

migration to Java, the intermediate and expert groups had a developer which had the

desired expertise in Java but only basic knowledge of COBOL. Thus, in the novice

group, the programmer had a basic understanding of both source and target programming

languages while in the expert group, the programmer had a good understanding of Java

but only a basic understanding of COBOL.

At a high level, the following are the steps that were required to be done.

Code Documentation (Generic documentation and Design document)

1. Understanding the COBOL application

Before starting documentation, the developer needs to understand the COBOL

application thoroughly. This includes understanding the program's logic, file

structures, input/output formats, and other critical components. The developer needs

to review the COBOL code line by line and understand the purpose of each statement.

The developer also needs to identify the program's data structures and understand

how they are used throughout the program.

2. Identifying documentation requirements

167

Once the developer has a good understanding of the COBOL application, they need to

identify the documentation requirements. This includes determining what needs to be

documented, such as the program's flow, data structures, input/output formats, and

processing logic. The developer needs to decide which parts of the COBOL program

require documentation and how detailed the documentation needs to be.

3. Creating a generic documentation

The developer needs to create generic documentation that outlines the COBOL

application's overall functionality, data structures, input/output formats, and

processing logic. This documentation should provide an overview of the program and

its purpose. It should also describe the program's data structures and how they are

used.

4. Creating a design document

Based on the generic documentation, the developer needs to create a design document

that outlines the detailed technical specifications of the COBOL application. The

design document should describe the processing logic and the steps involved in

executing the program. It should also provide details about the input/output formats

and the program's data structures. The document should also include a proposed

solution for migrating the code to Java.

Code Migration (COBOL to Java)

1. Writing equivalent Java Code

With the understanding of the COBOL code gathered in Step 1 of producing

documentation of the COBOL code, and the produced documentation and design, the

developer can start the process of writing the equivalent Java code. The developer

will need to convert the COBOL program's processing logic, data structures, and

input/output formats to Java. The developers in all the groups, including the expert

168

and intermediate programmers, may only have a basic understanding of the source

language while having the desired expertise in the target language. Hence, they may

need to refer to additional resources to gain an understanding of the COBOL syntax

and structure.

2. Testing the Java code

Once the Java code is written, it needs to be tested to ensure that it produces the same

output as the original COBOL program.

3. Debugging the Java code

During testing, the developer may encounter errors or bugs in the Java code.

Debugging involves identifying and fixing these errors to ensure that the Java code

produces the correct output.

Table 74 below details the effort needed by each group to perform the task of

documenting the legacy code.

Table 74

Effort Analysis - Manual code documentation

 Effort (in hours)

 Novice Intermediate Expert

Code Understanding 40 30 20

Documentation Requirement Identification 20 15 10

Generic documentation 30 20 10

Design document generation 50 35 25

Total Effort 140 100 65

Similarly, Table 75 below details the effort needed by each group to migrate the

code to Java.

169

Table 75

Effort Analysis - Manual code migration

 Effort (in hours)

 Novice Intermediate Expert

Writing equivalent Java code 110 70 50

Testing Java code 40 30 20

Debugging Java code 30 20 10

Total Effort 180 120 80

Effort saving

The following table shows the effort saving obtained when performing the task of code

documentation by leveraging an AI model, as against the same task done manually.

Table 76

Effort Saving - Code Documentation

 LLM Novice Intermediate Expert

Time taken 34 hours 140 hours 100 hours 65 hours

Effort saving if model is used* 106 hours 66 hours 31 hours

Percentage effort saving* 76% 66% 48%

*Effort saving = Manual effort – LLM effort

*Percentage effort saving – Effort saving / Manual effort

Similarly, the table below shows the effort saving in the code generation task.

Table 77

Effort Saving - Code Generation

 LLM Novice Intermediate Expert

Time taken 60 hours 180 hours 120 hours 80 hours

Effort saving if model is used* 120 hours 60 hours 20 hours

Percentage effort saving* 67% 50% 25%

*Effort saving = Manual effort – LLM effort
*Percentage effort saving – Effort saving / Manual effort

The table below shows the total effort saving obtained in the end-to-end process.

170

Table 78

Total Effort saving in end-to-end process

 LLM Novice Intermediate Expert

Time taken 94 hours 320 hours 220 hours 145 hours

Effort saving if model is used* 226 hours 126 hours 51 hours

Percentage effort saving* 71% 57% 35%

Cost Estimate

Large Langue Model (gpt-3.5 turbo alias ChatGPT)

The model that was used to perform this task of COBOL documentation and

COBOL to Java migration was gpt-3.5 turbo (ChatGPT). The pricing for this model is

$0.002 / 1K tokens.

Code documentation (Generic documentation + Design Document)

Table 79

Cost of inferencing - documentation

LOC per sample used for prompt-engineering 150

Tokens in input + generated documentation 4096

of iterations of prompt engineering for generic documentation 15

of iterations of prompt engineering for design document

generation

25

Total # of tokens consumed during prompt engineering for both

steps

143360 (generic) + 225280

(design) = 368640

chunks passed to the model 33

times response regenerated 3

Total tokens (input + generated documentation) including

different experiments

774,144

(368,640 tokens during

experimentation +

405,504 tokens for

documentation)
Cost of completion API $0.002 per 1000 tokens

Total cost of inferencing* $1.54

* Total cost = Total # of tokens * Cost of API / 1000

171

Labor cost

Assuming an hourly rate of $40 for AI resource in inferencing LLM and performing

prompt engineering, the cost of generating both documentation for this task is:

of hours to generate both generic and design documentation – 34

Hourly rate - $40

Cost of AI resource - $1360

Cost of inferencing - $1.54

Total cost - $1362

Code migration (COBOL code and documentation to Java)

Table 80

COBOL code and documentation to Java

LOC used per sample for prompt-engineering 150

Tokens in input + generated code 4096

of iterations of prompt engineering for generating Java

code

45

Total # of tokens consumed during prompt-engineering 184,320

chunks passed to the model 33

times response regenerated 3

Total tokens (input + generated code) including different

experiments

589,824 (184,320 tokens during

experimentation +

405,504 during code generation)
Cost of completion API $0.002 per 1000 tokens

Total cost of inferencing* $1.18

* Total cost = Total # of tokens * Cost of API / 1000

Labor cost

With the same assumptions as above, the cost of generating Java code for this task is:

of hours to generate Java code – 60

Hourly rate - $40

172

Cost of AI resource - $2400

Cost of inferencing - $1.18

Total cost - $2401

Manual

Assuming an hourly rate of $20 per hour for a novice programmer, $30 for an

intermediate programmer, and $50 for an expert programmer, the cost of generating

documentation for this application manually is as follows:

Table 81

Cost of manual documentation

Novice programmer: 140 hours x $20/hour = $2800

Intermediate programmer: 100 hours x $30/hour = $3000

Expert classifiers: 65 hours x $50/hour = $3250

Cost saving (for documentation)

The following table shows the cost saving obtained in the documentation stage, by

leveraging LLM.

Table 82

Cost saving documentation

 LLM (Zero-shot) Novice Intermediate Expert

Cost $1362 $2800 $3000 $3250

Cost saving* $1438 $1638 $1888

Percentage cost saving* 51% 55% 58%

Similarly, the cost of generating code manually is as follows:

Table 83

Cost of manual code generation

Novice programmer: 180 hours x $20/hour = $3600

Intermediate programmer: 120 hours x $30/hour = $3600

173

Expert classifiers: 80 hours x $50/hour = $4000

Cost saving (for code generation)

The following table shows the cost saving obtained in the code generation stage, by

leveraging LLM.

Table 84

Cost saving for code generation

 LLM (Zero-shot) Novice Intermediate Expert

Cost $2401 $3600 $3600 $4000

Cost saving* $1199 $1199 $1599

Percentage cost saving* 33% 33% 40%

Total cost saving for the end-end process

The following table shows the total cost saving obtained in the end-to-end process.

Table 85

End-to-end Cost saving

 LLM (Zero-shot) Novice Intermediate Expert

Cost $3763 $6400 $6600 $7250

Cost saving* $2637 $2837 $3487

Percentage cost saving* 41% 43% 48%

Overall

The following table shows the overall savings obtained in the end-to-end process

when leveraging AI for the task of legacy code migration, as compared to the same task

being performed manually by programmers of different levels of expertise.

Table 86

Overall savings (end-to-end process)

 LLM (Zero-shot) Novice Intermediate Expert

% Effort saving 71% 57% 35%

174

% Cost saving 41% 43% 48%

As observed in the previous cases, ChatGPT model proves to be effective in

minimizing effort and cost in both code documentation and code migration. As the skill

level increases from Novice to Expert, there is a noticeable decline in the percentage of

effort savings and an increase in cost savings. The effort saving when using an ML model

versus the same task being performed by a novice programmer is 71% and the cost

saving is 41%. However, as the skill level changes from novice to expert, the effort

saving is only 35% and the cost saving is 48%. This indicates that using an ML model

does not provide a significant advantage against an expert programmer in terms of effort

saving. This is because an expert programmer would take only slightly more time than

the time taken to perform the task using an ML model. However, in terms of cost saving,

the benefit of using an ML model as against an expert programmer is almost 50%.

The complexity of the program that was considered for this experiment was

relatively simple. It is expected that as the complexity increases, the number of activities

and effort involved in using an ML model which is not particularly trained in a

programming language like COBOL, to perform the task of migration, will be

considerably higher. Based on the expertise of the programmers available to perform this

task manually, a thorough cost-benefit analysis would need to be performed before

employing an ML model for the same.

4.4.2.5 Complex tasks

In this section, the objective is to highlight certain code automation tasks that are

still challenging and may require significant effort when performed using a large

language model.

1. Generating code for microservices architecture

175

In a microservices architecture, different services have complex dependencies and

communication patterns. Large language models still struggle to generate code for

these scenarios, as providing them with the complete context to understand the

relationships between services can be challenging due to the context length

limitations of these models. Similarly, handling the intricate details of service-to-

service communication stays a challenge for these models.

2. Framework-specific code generation

When generating code for specific frameworks, such as React or Angular, large

language models might struggle to produce code that adheres to best practices,

patterns, and conventions specific to that framework. This is because the model's

training data may not include enough examples or the latest practices of these

frameworks.

3. Complex build systems

For large software projects that rely on intricate build systems, such as Gradle or

Maven, large language models may have difficulty generating accurate build

configurations or managing dependencies across multiple sub-projects. This is due to

the complexity and context-specific nature of these systems.

4. Code generation for embedded systems

Embedded systems often have strict requirements regarding memory usage,

performance, and hardware constraints. Large language models are not yet mature

enough to generate efficient code tailored to these constraints, as they lack the context

to understand and optimize for specific hardware and software requirements.

When exploring the possibility of using large language models for such tasks, it is

important to evaluate the amount of effort that would be required in data preparation and

contextualizing the models, so that they can provide some effort savings. Based on the

176

size of the codebase and the criticality of the requirement, a detailed analysis of the

various tasks required to get the maximum benefit from the model should be done.

4.5 Research Question Four

What types of jobs will be completely replaced, if any, due to the adoption of AI in

the software industry?

We hypothesized that:

Hypothesis 5

If code automation using large language models is adopted in the software industry, it

can improve software development flexibility by allowing developers to focus on higher-

level tasks and by providing more options for code generation.

Based on the exhaustive analysis and set of experiments that were performed, we

analyzed the impact the adoption of these large language models may have on various

jobs in the software industry. In our research, we observed the following jobs that can be

augmented with the help of large language models:

1. Planning and Requirements

We discussed in section 4.2.1.to 4.2.3, how large language models can augment

different activities in the planning and requirements stage. They can help in software

requirement classification and clustering; they can automate tracing the requirement

to the design; detecting similarity between a given set of requirements; extracting

requirements from unstructured sources and detecting ambiguity from SRS

documents.

We did a detailed study of the efficiency, cost, and effort saving we get by leveraging

large language models in tasks like requirement classification. We observe that

though the models can perform different tasks in this phase, manual validation will

always be required and human cannot be eliminated or replaced for this task.

177

They do however provide a significant effort saving and can free up the bandwidth of

the person to work on higher-order decision-making tasks.

For example, in the requirements gathering phase, the person who would earlier

manually classify the requirements could now leverage the requirement classification

experience to perform the following tasks during the Requirements Analysis phase:

- Analyzing requirements to identify potential gaps or areas of ambiguity.

- Working with stakeholders to clarify and refine requirements.

- Prioritizing requirements based on business value and technical feasibility.

- Defining the scope of the project based on the requirements.

- Developing use cases, scenarios, and other artifacts to further refine the requirements.

- Collaborating with the implementation team to make sure that the requirements are

clear and actionable.

By focusing on these higher-order decision-making tasks related to requirements, the

person can ensure that the software development project stays on track and delivers a

product that meets the needs of the stakeholders.

2. Design

We also observe how large language models can be leveraged in the design phase for

tasks like action extraction from requirements; design pattern recognition and

classification; class extraction and designing websites.

As in the previous cases, we observe that LLM can only augment and not replace a

human in these tasks. The creation of design documents often requires human

expertise and judgment to ensure that they accurately represent the design of the

software system. Additionally, individuals involved in the design phase also play a

key role in ensuring that the design meets the functional and non-functional

requirements of the software system and that it is scalable, maintainable, and secure.

178

3. Coding

We observed during the various code automation tasks that we attempted during the

previous phase, that these large language models can surely help reduce effort by

providing code suggestions or snippets for specific tasks. However, we also observed

that they do not always guarantee correctness. Human developers remained essential

for reviewing the AI-generated code, verifying its correctness, and integrating it into

the existing codebase.

Similarly, by automating certain code-related tasks, the freed-up bandwidth of the

programmer could be used for:

- Architecture and Design: The person could focus on designing the overall

architecture of the application, including selecting the appropriate design patterns,

frameworks, and technologies. They could also develop high-level design

specifications that guide the development team in implementing the application.

- Testing and Quality Assurance: The person could focus on ensuring that the

application meets the required quality standards and is free from defects. They could

develop test plans and test cases, perform testing activities, and work closely with the

development team to identify and resolve any issues that arise.

- Performance Optimization: The person could focus on optimizing the performance of

the application by identifying potential bottlenecks and developing strategies to

improve performance. This could involve analyzing code, configuring servers and

databases, and developing caching and optimization strategies.

- Security and Compliance: The person could focus on ensuring that the application is

secure and complies with relevant regulations and standards. They could perform

security assessments, implement security controls, and develop compliance policies

and procedures.

179

4. Software testing and quality assurance

We observed in Research Question One that large language models (LLMs) can be

employed to automate test case generation, complementing traditional AI-based

testing tools. By leveraging their natural language understanding capabilities and vast

knowledge of programming languages, LLMs can generate test cases based on given

requirements and conditions.

We have seen that:

- LLMs can understand human-readable requirements and convert them into test cases,

streamlining the process of writing test cases from scratch. Developers and testers can

provide high-level descriptions of desired test scenarios, and the LLM can generate

the corresponding test cases in the appropriate programming language.

- LLMs can generate test cases that cover a wide range of scenarios, including

functional, integration, and system testing. By understanding the codebase and the

intended functionality, LLMs can create test cases that address different aspects of the

software, helping to ensure comprehensive testing.

- As LLMs are trained on vast amounts of code, they can adapt to changes in the

codebase, generating new test cases when updates are made. This enables a more

agile testing process, as the LLM can quickly produce relevant test cases when

modifications occur.

- LLMs can generate test cases that address edge cases and negative testing scenarios.

By identifying potential failure points, LLMs can create tests that target these

vulnerabilities, ensuring a more robust and reliable software product.

However, there are still limitations and challenges associated with using LLMs for

automated test case generation:

- Interpretation of AI-generated test cases

180

Human expertise is necessary for reviewing and interpreting the test cases generated

by LLMs, as the models may produce test cases that are not relevant, incorrect, or

incomplete. Testers must understand the implications of the generated test cases and

make informed decisions on which ones to use and how to address any issues that

arise.

- Ensuring comprehensive test coverage

While LLMs can generate a variety of test cases, they may not always anticipate

every possible scenario. Human testers play a critical role in designing and

implementing test strategies that cover a wide range of scenarios, including those that

the LLM might not have generated.

- Quality assurance and maintenance

Testers must ensure that the AI-generated test cases align with best practices and

meet the project's quality standards. They also need to maintain and update the test

cases as the software evolves, addressing any new requirements or issues that emerge.

Thus, LLMs can significantly improve the process of automated test case generation

in software testing. However, human expertise remains vital in interpreting AI-

generated test cases, ensuring comprehensive test coverage, and maintaining quality

standards. When LLMs and human testers work together, they can create a more

effective and efficient testing process, ultimately resulting in more robust software

products.

5. Supporting code refactoring and optimization

We observed in the previous sections that large language models can analyze

codebases to identify inefficiencies, suggest improvements, and even generate

optimized code. However, their suggestions may not always align with best practices

or project requirements. Human developers with domain knowledge are needed to

181

review AI-generated recommendations, taking into account factors like

maintainability, scalability, and performance.

6. Enhancing technical documentation

We also observed that large language models can help generate technical

documentation, which can help technical writers by providing a starting point for

creating user guides, API documentation, and other materials. AI models can extract

information from code and produce coherent, well-structured content. However,

human writers are still needed to ensure that the documentation is accurate, clear, and

tailored to the target audience. They can also add valuable context and insights that

AI models may not be able to infer from the code alone.

7. Teaching programming language

As we conducted various experiments, we realized the impact of these AI models in

helping developers learn new programming languages, frameworks, and libraries by

providing examples and explanations. These models can thus help in expanding the

skill sets of the programmers and thus improve overall productivity.

This is especially true when generating documentation from legacy languages like

COBOL. The large language model, especially ChatGPT, can explain in detail what

the piece of code does which helps expand the knowledge base of the developer.

In summary, while AI adoption in the software industry offers significant benefits

in terms of productivity and efficiency, it does not render human expertise obsolete.

Instead, AI serves as a powerful tool that augments human capabilities, enabling software

professionals to focus on higher-level tasks and achieve greater flexibility in software

development. The true potential of AI in the software industry will be realized when

humans and AI work together, leveraging the strengths of both to create better software

solutions.

182

4.6 Research Question Five

What is the new set of skills that will emerge as AI is increasingly adopted across

the organization for software development?

There are two hypotheses that we consider:

Hypothesis 6

If code automation using large language models is adopted in the industry, then

reskilling software professionals is necessary.

Hypothesis 7

If code automation continues to increase in popularity and effectiveness, it will have a

significant impact on the software industry and software professionals.

We have seen in all our experiments so far, that large language models (LLMs)

have the potential to transform the software development industry by providing ways to

automate tasks such as generating code, translating code, requirements elicitation, and

more. As LLMs become increasingly adopted across organizations for software

development, it is essential to consider the new set of skills that may emerge.

We will now evaluate the two hypotheses related to the impact of LLMs on the

software industry and the necessary reskilling of software professionals.

Hypothesis 6: If code automation using large language models is adopted in the industry,

then reskilling software professionals is necessary.

The first hypothesis suggests that the adoption of LLMs for code automation in

the industry will require software professionals to be reskilled to adapt to the changing

landscape.

We observed in our experiments that using LLMs for tasks like requirement

classification, code generation, and code translation indeed saves considerable effort.

While this can lead to increased efficiency and speed in software development, it also

183

means that software professionals will need to be trained in new areas. Based on the

experiments we identify the following skills that may become increasingly important

when working with LLMs in software development. These skills include:

Prompt engineering

Prompt engineering involves creating high-quality prompts that can generate

accurate and relevant results using LLMs. Prompts are the input texts or instructions that

are provided to the LLMs to generate the desired output. Developing effective prompts

requires an understanding of the way large language models process and understand text,

a clear understanding of the task that needs to be done, domain knowledge, and natural

language. By creating effective prompts, software professionals can ensure that the code

generated or translated by LLMs meets the required quality and is relevant to the problem

at hand.

We consider this as one of the crucial skills required to leverage code automation

using large language models. We observed in the experiments conducted, that changing

the way the instruction is given to the model, greatly helped improve the output achieved.

For example, for a task of generating documentation for a piece of code, rather than

giving simple instructions like “Generate documentation for the following piece of code”,

building a more comprehensive prompt with the required context helped get much better

results.

Code analysis

As LLMs generate code automatically, software professionals should possess

good analytical skills to analyze the generated code to identify any errors or

inconsistencies. This skill will be essential to evaluate the quality of the code generated

by LLMs.

184

In our experiments, we observed that LLMs tend to hallucinate. This means that a

perfect-appearing code may contain incorrect functionality or bugs. This is especially true

when the model does not have the required knowledge to perform the task or the

knowledge of the programming language involved. In such cases, we have to provide

some examples to the model to help it understand the task at hand. We observed that

there were cases, where, given a few examples, the model started to produce code but the

code was mostly a copy of the examples provided in the task. The code though appeared

correct was not performing the intended task. To identify such cases, the analytical skills

of programmers will play a critical role to analyze the code generated by the LLM. Based

on the analysis done, further prompt engineering may be needed to nudge the model to

produce code that is more aligned with the requirements.

Debugging skills

Debugging skills will be essential for software professionals to identify and fix

any errors or issues that may arise when working with LLMs. As LLMs generate code

automatically, it can be challenging to identify the root cause of errors or inconsistencies.

Therefore, software professionals must have strong debugging skills to identify the

problem and apply the necessary fixes. These skills will become even more critical as

LLMs become more complex and generate more complex code.

Collaboration and communication skills

Collaboration and communication skills will be vital as software development

teams become more cross-functional and include data scientists and other team members.

With the increasing complexity of software development processes, it will be essential

for team members to work together effectively to achieve the desired outcomes.

Collaboration and communication skills are essential to ensuring that team members

work together seamlessly, share their expertise, and achieve common goals.

185

Creativity and innovation

While LLMs can automate many software development tasks, creativity and

innovation will still be essential for software professionals to solve complex problems

that LLMs cannot solve and develop new products and features. Additionally, software

professionals must find innovative solutions to incorporate LLMs effectively into the

software development workflow.

Model fine-tuning and customization

To optimize the performance of LLMs in specific domains, software professionals

will need to learn how to fine-tune and customize these models. This includes

understanding the underlying architecture, training data, and methodologies, as well as

leveraging transfer learning and other techniques to adapt the models to specific tasks or

industries.

In some of the code-related tasks, we observed that using the pre-trained model

and performing prompt engineering may not suffice. This is particularly applicable in the

case of programming languages that the model does not have sufficient knowledge on.

For such tasks, provided there is sufficient data available, fine-tuning the model is a

better option. For example, for legacy languages, fine-tuning the model with the legacy

language has a better chance of performing as the model would now be able to

understand the legacy language. Also, since during finetuning, the knowledge the model

already has is retained, the final fine-tuned model has a better chance of performing the

task than the pre-trained model.

AI ethics and responsible AI development

As LLMs become more widely adopted, software professionals will need to

address the ethical considerations when utilizing them. This includes understanding the

186

potential biases in AI-generated code, addressing privacy concerns, and making sure that

AI systems are transparent, fair, and accountable.

Data-driven decision-making

As LLMs can process and analyze vast amounts of data, software professionals

will need to develop skills in data-driven decision-making. This includes understanding

how to use data to inform software design, feature prioritization, and system

optimization, as well as leveraging insights from AI-generated analysis to drive

improvements.

Overall, we understand that the adoption of large language models for code

automation will necessitate the reskilling of software professionals. New skills, such as

prompt engineering, analytical and debugging skills, model fine-tuning, and responsible

AI development, will become increasingly important.

Hypothesis 7: If code automation continues to increase in popularity and effectiveness, it

will have a significant impact on the software industry and software professionals.

The second hypothesis suggests that the increasing popularity and effectiveness of

code automation using LLMs will have a significant impact on the software industry and

software professionals.

We have observed as part of our previous experiments that LLMs can automate a

significant portion of software development tasks and can be employed to automate

various software development processes. One potential impact of this trend is a shift in

the job market for software professionals.

The impact of code automation using large language models like GPT-3, GPT3.5,

Codex, and Bloom can be profound across various industries, including service-based

companies and product-based companies.

Service-based companies

187

Workforce: Code automation can lead to a decrease in the demand for entry-level

developers, as many routine tasks can be automated. However, there will be an increased

need for skilled professionals who can manage, maintain, and integrate these AI-powered

tools into existing systems.

Business: The revenue impact could be positive, as service-based companies can

reduce costs by automating tasks and increasing efficiency, allowing them to take on

more projects or clients. The reduced costs and increased efficiency from code

automation could result in a better profit margin and allow for a more competitive pricing

strategy. However, businesses may need to invest in training employees to work with

new technologies and ensure a seamless transition to the AI-driven workflow.

Way of working: Service-based companies might need to adapt to a more hybrid

way of working, where AI-driven automation tools complement human expertise. This

can involve reevaluating business models and redefining roles within the company to

make the best use of AI capabilities.

Thus, in the service industry, where software companies offer development

services to clients, the adoption of LLMs for code automation can lead to faster delivery

times and improved quality of work. With LLMs, software development tasks can be

automated, allowing for faster delivery times, and software developers can focus on more

complex tasks that require human creativity and expertise. This could potentially lead to

an increase in demand for software development services, as software companies that can

leverage LLMs effectively could deliver projects more efficiently than their competitors.

Product-based companies

Workforce: Code automation could decrease the demand for certain roles, such as

entry-level developers, as routine tasks are automated. However, there will be an

188

increased need for skilled professionals who can manage, maintain, and integrate AI-

driven tools into existing workflows.

Business: Product-based companies can benefit from increased efficiency and

reduced time-to-market for their products due to automation. This can lead to increased

revenue opportunities, as companies can focus on innovation and expanding their product

portfolios.

Way of working: Product-based companies might need to adopt a more

collaborative approach between AI tools and human expertise. This involves investing in

employee training, redefining roles, and responsibilities, and creating a culture that

embraces innovation and change. Also, the role of product developers could evolve to

focus more on designing and training models, rather than coding the product.

Thus, in the product industry, where software companies develop and sell

software products, the adoption of LLMs for code automation could lead to increased

competition. With the increased efficiency and automation offered by LLMs, new

entrants into the market could develop software products and features faster and at a

lower cost. This could lead to increased competition for existing software companies,

particularly those that rely on manual processes to develop and maintain their products.

Overall, code automation using large language models has the potential to reshape

various industries. While it can lead to workforce shifts and the need for new skills, the

overall impact on business and the way of working can be positive, with increased

efficiency, reduced costs, and a focus on innovation.

4.7 Summary of Findings

Our findings indicate that different software development tasks can be automated

using large pre-trained models. In section 4.2., we discussed how these models can be

189

leveraged across all the phases of the software development lifecycle from software

requirements planning to design, development, and testing.

We also studied how traditional techniques compare against LLM-based

approaches. Our findings indicate that for tasks like software requirements classification,

LLMs provide comparable or even better accuracy than traditional techniques. The task

of classifying requirements into functional vs non-functional gave an accuracy of 85%

manual (expert). Traditional ML vs LLM-based classification also are comparable with

an average f-score of 0.92. Similarly, NFR classification, when done manually by an

expert gave an accuracy of 80%. Tradition ML techniques gave precision and recall

between 72% to 90% and LLM-based NFR classification gave an average accuracy of

81%. Similarly, we observed that in code-related tasks, leveraging LLM was more

efficient as compared to performing the same task manually. The average accuracy on

different tasks like code generation, translation, and documentation, related to a modern

programming language and simple to medium complexity applications was around 80%.

Our findings also indicate that significant cost and effort savings are obtained by

leveraging artificial intelligence for different tasks as compared to the same tasks done

traditionally. It was observed that for tasks like classifying software requirements, there

was an effort saving of almost 57% and a cost saving of 80% as compared to the task

done manually by an expert. Similarly, for multi-class classification, these figures were

33% and 68% respectively. We see similar savings of more than 60% on code-generation

tasks, more than 50% on code translation tasks, and between 35% to 45% on end-to-end

code migration tasks.

Our research findings also indicate that machine-learning models are probabilistic

and cannot replace human jobs. Manual review and validation will always be required.

These models can be used to augment the developer and serve as a peer programmer.

190

This would also allow the developers to concentrate on higher-order decision-making

tasks like business understanding, stakeholder management, designing, and building for

scalability and performance.

Our research findings also provide insights into the skillset which would be

required when leveraging large pre-trained models for code automation. Analytical and

debugging skills, prompt-tuning, and model-tuning will be the new set of skills that will

be required, as indicated by the findings. The findings also indicate how code automation

can impact both service-based and product-based industries. Workforce, ways of

working, and business will all be redefined with the adoption of LLM in the industry.

191

CHAPTER V:

DISCUSSION

5.1 Discussion of Results

In the previous section, we did various experiments to answer the research

questions raised at the beginning of this study. We also tested various hypotheses listed in

the previous section and got some results. The results obtained and the experiments

performed are all listed in section Chapter IV. We now discuss the results obtained to

arrive at some conclusions.

5.2 Research Question One

“What are the software development tasks that can be automated using artificial

intelligence-based language models?”

In section 4.2.1, we investigated the potential of large language models (LLMs)

for automating various software development tasks. The primary goal was to assess the

extent to which these models could improve efficiency, reduce human error, and

contribute to the overall software development cycle. The discussion below highlights

our main findings and delves into the implications of incorporating large language

models into software development processes.

5.2.1 Planning and requirements gathering

In our study, we explored the potential of LLMs to automate and enhance various

aspects of the planning and requirements-gathering phase of software development. Our

findings indicate that these models can be effectively utilized in requirement

classification, clustering, elicitation, traceability, similarity detection, and ambiguity

detection.

192

The discussion below highlights the principal findings and their significance in

the realm of planning and requirements gathering.

5.2.1.1 Requirement Classification and Clustering

Our results demonstrate that LLMs can help classify and cluster requirements

based on their type and functionality. The models used for validating this task were from

the GPT3.5 series. Figure 3 and Figure 4 show that by leveraging natural language

understanding and pattern recognition capabilities, these models can automate the

functional and non-functional requirement classification and clustering process, leading

to time savings, reduced human errors, and better organization of requirements for

subsequent analysis and development.

5.2.1.2 Requirement Elicitation

LLMs show proficiency in eliciting requirements from stakeholders. In section

4.2.1.5, we tested the capability of the GPT-3.5 series of models to perform this task of

eliciting software requirements from customer reviews. Figure 7 shows the results

obtained. We observe that these large language models can generate contextually relevant

questions, analyze responses to refine requirements and ensure that the gathered

requirements align with stakeholder expectations. This automation contributes to the

overall quality of the requirements and streamlines the elicitation process.

5.2.1.3 Traceability

According to our findings, LLMs can be instrumental in maintaining traceability

across the software development lifecycle. We observe in section 4.2.1.3, how for a

requirement of multi-lingual support, the traceability matrix could help identify that both

the code artifact and the test artifact were missing support for the French language, which

was part of the original requirement.

193

In addition to using the inbuilt capability of the model in pattern recognition,

when we have a large set of code, design, and test artifacts, pre-trained models like GPT-

3 can be fine-tuned with this dataset. This helps overcome the context limitation of 4096

tokens that these models have. As a result of finetuning, given any new set of new

artifacts, the model can generate the traceability matrix for the same without needing to

be fed some examples for it to understand the task to be done.

Thus, we have seen that by automatically linking related requirements and their

corresponding design, code, and test artifacts, these models can enhance project

management capabilities and facilitate the handling of requirement changes.

5.2.1.4 Similarity Detection

In our study in section 4.2.1.4, we found that LLMs have the potential to identify

similar or duplicate requirements within the gathered data. By analyzing the semantic

meaning of the requirements, these models can detect overlaps, redundancies, and

potential inconsistencies. This can contribute to improving the overall coherence and

quality of the requirements set. This will ultimately result in a more efficient and accurate

software development process.

5.2.1.5 Ambiguity Detection

In section 4.2.1.6, we observed that language models demonstrate the ability to

detect ambiguous or unclear requirements. We saw various examples, where, by

recognizing vague, ambiguous, or incomplete requirement descriptions, LLMs can flag

them for further clarification and refinement. This finally ensures a higher quality and

more consistent set of requirements.

Limitations and Future Work

Despite the promising results, it is important to recognize the drawbacks of LLMs

when it comes to planning and requirements gathering. Their accuracy depends on the

194

quality of training data, and they may struggle with understanding complex or domain-

specific requirement descriptions. Moreover, biases lying in the underlying dataset can

inadvertently be propagated by the models.

Future research should focus on enhancing the ability of LLMs to handle diverse

and complex requirements, addressing biases in training data, and developing

methodologies for seamlessly integrating these models into existing requirement

engineering processes.

In conclusion, LLMs show great potential in automating and enhancing various

aspects of the planning and requirements-gathering phase of software development. By

improving requirement classification, clustering, elicitation, traceability, similarity

detection, and ambiguity detection, these models can contribute to the overall success of

software development projects. As we continue to refine these models and explore their

integration into requirement engineering processes, further breakthrough and continued

improvements are expected in this area.

5.2.2 Design

In section 4.2.1.2, we investigated the potential of LLMs to automate and enhance

various aspects of the design phase of software development. Our findings indicate that

these models can be effectively utilized in action extraction, design pattern recognition

and classification, class extraction, and website design generation. The discussion below

highlights the key findings and their substantial impact with regard to the design phase.

5.2.2.1 Action Extraction from Requirements Document

Our findings demonstrate that LLMs can effectively extract actions, actors, action

details, as well as conditional actions from software requirements. LLMs extract actions

by identifying and understanding the verbs and their corresponding objects. This enables

the automatic generation of tasks or user stories, which can streamline the design process

195

and facilitate better communication among team members. We also observed that by

providing some samples to the model, the model learns better on the task of action

extraction that it is required to perform.

5.2.2.2 Design Pattern Recognition and Classification

LLMs have shown promise in recognizing and classifying design patterns within

existing code or design documents. In section 4.2.2.2, we have seen examples, where

given a problem description, a large language model can correctly identify the best design

pattern applicable to the problem description. Similarly, we have also seen how the LLM

can identify the design pattern for a given piece of code. Thus, by understanding the

structure and intent of design patterns, these models can assist developers in making

informed decisions about the appropriate design patterns to implement, ultimately

improving the overall software design quality.

5.2.2.3 Class Extraction for Given Problem Statement

Our research indicates that LLMs can be used to extract classes and their

properties from problem statements or requirements documents. In section 4.2.2.3, we

have seen how GPT-3 model can identify classes, their attributes, the methods, and the

relationships between the classes, given a problem statement. By analyzing the text and

identifying relevant entities and relationships, these models can ease the process of

extracting the information required for creating class diagrams or object-oriented design

structures, which serve as a basis for the implementation phase.

5.2.2.4 Website Design Generation

LLMs have demonstrated the ability to generate website designs based on high-

level descriptions or design requirements. We have seen in section 4.2.2.4, two different

website designs produced by two different models – text-davinici-003 and gpt3.5-turbo.

Both designs meet the design requirements. By further prompt engineering, it would be

196

possible to continue to develop and refine the design and convert the template code into a

properly functioning website. Thus, we see that by interpreting the design intent

expressed in natural language, these models can generate wireframes, layout templates, or

even fully functional prototypes, effectively reducing the time and effort spent on the

design process and allowing designers to focus on more complex tasks.

In conclusion, LLMs hold significant promise for automating various aspects of

the design phase in software development. By leveraging their natural language

understanding and pattern recognition capabilities, these models can improve the overall

design quality and efficiency throughout the software engineering process. However, it is

imperative to consider the limitations of LLMs, such as potential biases and inaccuracies,

and to validate their outputs before integrating them into the design process.

5.2.3 Coding and Testing

In our study, we investigated the potential of LLMs to automate various aspects of

the coding process in software development. Our findings indicate that these models can

be effectively utilized in code completion and suggestion, code generation, code

summarization and documentation, code translation, code review, and test case

generation. The discussion below highlights the salient findings and their consequential

significance in relation to code automation.

5.2.3.1 Code Completion and Suggestion

Our findings demonstrate that LLMs can effectively provide context-aware code

suggestions and completions, reducing the amount of manual coding effort and

improving developer productivity. We discussed in section 4.2.3.1, various AI-based

tools and LLMs that are available today which provide automatic code suggestions. By

understanding the semantic and syntactic patterns in the code, LLMs can predict and

suggest the most appropriate code snippets, function names, or variable names based on

197

the current context. Thus, these tools like TabNine, and CoPilot as well as large language

models like Codex, ChatGPT, and GPT-4 can greatly help improve the productivity of

developers.

5.2.3.2 Code Generation

We saw in section 4.2.3.2, how LLMs have shown promise in generating code

based on high-level descriptions or requirements. By interpreting natural language input

or pseudo-code, these models can generate syntactically and semantically accurate code

snippets or full functions, effectively reducing the time and effort spent on coding and

allowing developers to focus on more complex tasks.

5.2.3.3 Code Summarization and Documentation

Our research indicates that LLMs can be used to automatically generate code

summaries, comments, and documentation. By analyzing code structures and semantics,

these models can provide concise explanations of the code's functionality, aiding

developers in understanding and maintaining the codebase.

5.2.3.4 Code Translation

In our study, LLMs have demonstrated the ability to translate code between

different programming languages, allowing developers to convert existing codebases or

reuse code snippets across multiple projects. By understanding the syntax and semantics

of both source and target languages, LLMs can generate accurate translations while

maintaining the original code's functionality.

5.2.3.5 Code Review

Our findings suggest that LLMs can assist in the code review process by detecting

potential issues, such as syntax errors, logical flaws, or violations of coding standards. By

analyzing the code and providing feedback, these models can help improve code quality

and ensure adherence to best practices.

198

5.2.3.6 Test Case Generation

LLMs have shown potential in generating test cases based on code analysis or

requirements. By understanding the code's functionality and identifying edge cases, these

models can generate appropriate test inputs and expected outputs, allowing developers to

automate testing and ensure that the code meets the desired specifications.

In conclusion, LLMs hold significant promise for automating various aspects of

the coding process in software development. By leveraging their natural language

understanding and code analysis capabilities, these models can improve developer

productivity, code quality, and overall efficiency throughout the software development

lifecycle. However, it is important to consider the limitations of LLMs, such as potential

biases and inaccuracies, and to validate their outputs before integrating them into

production systems.

5.3 Research Question Two

“How do large language models’ code automation capabilities compare against

traditional code generation?. We extend this question to different activities in the

software development life cycle.

5.3.1 Planning and requirements gathering

Software requirement classification

In section 4.3.1, we discussed different approaches for performing the task of

software requirements classification. Two tasks were evaluated:

a. Binary classification - categorizing software requirements as functional or non-

functional

b. Multi-class classification of non-functional software requirements into multiple

categories

Manual classification

199

As we saw in the earlier section, manual classification is a time-consuming

process that requires human expertise and knowledge of the software domain. While it

can be accurate and effective in certain cases, it can be prone to errors and inconsistencies

due to human bias and subjectivity. To perform an objective analysis of both the above

tasks when done manually, three candidates with different expertise were invited to

perform the task. The person who was a novice in the field of performing classification

manually and with limited domain knowledge could classify the requirements for the task

of binary classification with an accuracy of 70%. Similarly, candidates with intermediate

and expert knowledge in this task could accurately classify the requirements 81% and

85% of the time respectively.

These same candidates could classify the non-functional requirements into

multiple categories with an accuracy of 62%, 71%, and 80% respectively.

Traditional ML

Similarly, we saw that traditional machine learning techniques have been

explored in the past to automate these tasks of binary and multi-class classification of

software requirements. The study by Dias Canedo and Cordeiro Mendes, 2020 showed

that using a TF-IDF approach followed by logistic regression gave them an F-measure

score of nearly 0.9 for binary classification and around 0.7 for NF classification.

Similarly, the study by Almanza, which used CNN based deep learning approach for

multi-class classification gave an F-measure of 0.77. Another study by Kurtanovic which

did a manual selection of features followed by different pre-processing techniques helped

them achieve a precision and recall between 72% to 90% for classifying NFRs. However,

we also note the need for three critical components when building these classification

models:

1. A significant amount of training data

200

2. Labeled data with clean and correct labels

3. Computational resources for training the ML models

All the above factors make traditional machine learning difficult to adopt,

especially, in the case of data dearth. Also, traditional techniques like word2vec or TF-

IDF can face limitations when dealing with complex language structures and contexts.

Large Language Models

As we have seen in the earlier section, large language models offer a solution for

the limitations of the traditional machine learning approach discussed above. Since these

models are pre-trained, they have a lot of in-built knowledge which can be leveraged for

tasks like the classification of software requirements. We have seen that by giving them

accurate instructions, these models like GPT-3 can perform the desired task with good

accuracy. This reduces the need of training the model and thus reduces the need for

significant data and compute. Also, the architecture of these models makes use of an

attention mechanism, that enables the model to stay focused on the most important parts

of the input data when making predictions. This helps the model to capture the relevant

information and ignore the noise, making it more effective at text classification tasks.

We discussed two different approaches for performing classification using large-

language models. The first requires no training and involves providing instructions and

desired context to the model to perform the classification. This technique is called zero-

shot learning. This technique gave an accuracy of 81% for binary classification. For

multi-class, the accuracy score was 71%.

In the second technique, the embeddings from the LLM are utilized to build a

classifier on top following the traditional approach. This approach though involving

training gives better results since the model learns better from the small data set and is

thus able to perform the classification better. The results show that the embeddings-based

201

approach resulted in an accuracy of 92% and 81% for the tasks of binary and multi-class

classification respectively.

Figure 44 above depicts the accuracies obtained using various techniques for both binary

and multi-class classification. As is evident from the graph, both traditional machine

learning and embedding-based approach give equivalent results for the binary

classification of software requirements. For multi-class classification of NFRs, the results

from the embeddings-based approach are superior to traditional ML and close to manual

labeling done by an expert. The zero-shot approach from the LLM, though inferior to the

embeddings-based LLM approach and traditional ML approach, produces results that are

comparable to manual labeling done by a person with intermediate domain and

Figure 44

Software Requirements Classification - Comparison

202

classification skills. Also, zero-shot learning approaches can be improved iteratively by

providing better context and instructions to the model. They can also be improved by

techniques like few-shot learning, where the model can learn better by giving it some

examples.

These results indicate:

1. Large language models can provide results comparable to or better than traditional

approaches.

2. Large language models do not need as much data as would be needed for traditional

machine learning.

3. Approaches like zero-shot learning can be applied even when there is no labeled data.

Also, since this approach relies on instructions given to the model, the results will be

consistent as compared to other approaches.

4. Large language models, being probabilistic, their zero-shot approach and embedding-

based approach, would still require manual review.

5.3.2. Coding and Testing

5.3.2.1 Code Generation

As discussed in section 4.3.2, two problem statements were selected for the task

of code generation. The first was an Android mobile application for drawing using touch.

The second application was an ASP.NET C# application for building a travel reservation

application.

Traditional techniques

We have seen that traditionally code is written manually. There are many editors

available that aid in writing the code and provide suggestions or pointers to the correct

libraries. For developing Android applications, Android Studio is one of the widely used

203

tools, which helps in quickly building and designing Android applications. Similarly,

Visual Studio is the application used for building ASP.NET applications.

Both the applications mentioned above were built manually by three individuals

(novice, intermediate, and expert programmers) according to the setup discussed earlier.

Android Studio and Visual Studio 2019 were used by programmers for building their

applications. All were able to build the application but took a different amount of time to

build the application. Also, the code written by all three individuals differed in terms of

style, structure, and naming conventions.

Large Language Model

The large language model considered here was Codex. ChatGPT model was also

used to assist in the UI building for the ASP.NET application. We observed that in both

cases the code generated using the AI model was almost 90% correct. The remaining

code needed corrections to convert the code into a fully functional application. The same

editors i.e. Android Studio and Visual Studio 2019 were used to edit and make

corrections to the code. The code produced by the AI model was more structured,

followed the right naming conventions, and was less error-prone as compared to the code

written manually.

5.3.2.2 Code Translation

The second task we evaluated was code translation. Here, the source application

was a C++ game of Tic-Tac-Toe. We attempted to translate it to Java. The experiment

setup was the same as in the previous case.

Traditional Techniques

To perform the task of translating the code from C++ to Java manually, the

programmers involved, based on their category, were required to have basic to expert

knowledge of both the source and target programming language. The editor used by the

204

programmers for building the Java application was BlueJ. All three individuals were able

to translate the source application to the target language. However, as in the case of code

generation, they all had different turn-around times. The other observations also were the

same as in the task of code generation i.e., the quality of code, code consistency,

structure, and programming style varied from individual to individual.

Large Language Model

As in the case of code generation, the OpenAI Codex model was leveraged for

performing the task of code translation. The source C++ application consisted of multiple

application and header files that were linked together. For meaningful translation, it was

important to provide the required context i.e., snippets of relevant code from dependent

files, to the piece of code being translated. This improved the accuracy of the translation.

By applying various techniques and performing the prompt-engineering, the model was

able to generate code with almost 90% accuracy and required a few

modifications/corrections to turn the code into a working application. In the previous

section, we have seen screenshots of the entire translated Java application, which was

aided by the AI model. The factors, related to code quality, structure, and style, when

considered for the code generated by an AI model were better than those of a novice

programmer and comparable to an intermediate programmer or expert programmer.

5.3.2.3 Legacy Code Documentation and Migration

Here, the task was to document legacy COBOL code and migrate it to Java. For

documentation, two types of documentation were required:

- Generic documentation which describes the intent of the program and gives a high-

level overview of the program

- Design document

Finally, it was required to migrate the application to Java.

205

Traditional Techniques

When performing the task of code translation manually, there were multiple

challenges:

1. The individuals involved in this task should have an understanding of both a

procedural language like COBOL and an object-oriented language like Java

2. For the task of writing documentation for the code and creating the design document,

a good understanding of COBOL was required.

3. The task of writing documentation and creating design documents manually is effort

intensive, irrespective of the expertise in the programming language involved.

The individuals who performed the task of this legacy code migration were those with a

basic understanding of COBOL and either basic, intermediate, or expert programming

skills in Java. They all accomplished the task but required a considerable amount of time

to complete it. The factors like code quality and consistency were the same as in the other

tasks. These got extended to the documentation process as well i.e., the documentation

produced by everyone was structured differently and was written in different styles.

Large Language Model

The model used here for performing the task of documenting the COBOL code

and generating the Java code was ChatGPT (gpt3.5-turbo). The challenge here for

leveraging the AI model was different than the translation task. In this task, the COBOL

code was extremely large. All this code could not be fed to the model, at the same time,

to either generate the documentation or generate the Java code. Different engineering

techniques were applied to chunk the code into coherent blocks to get the desired

functionality. In the previous sections, we have seen screenshots of the fully functional

and migrated Java application. The generated documentation was well-structured and

206

coherent. Similarly, the generated Java code was well structured and comparable in

quality to that written by an expert.

By considering various factors like the ability of the AI models to generate,

document, or translate code, the accuracy of the generated code/documentation, quality of

code, and so on., and the various experiments conducted in the software requirement

classification and coding and testing phase, we validate our hypothesis that “The code

generation/translation capabilities of large language models are better than traditional

code generation and rule-based tools.”

It is important to note, however, that the code generation tasks considered here,

were comparatively simple, as compared to a complex application with multiple features,

security considerations, and performance requirements that may require specialized

expertise and manual coding to ensure optimal results. In such cases, relying solely on a

language model for code generation may not be sufficient and may need to be

supplemented with manual coding and rigorous testing to ensure the functionality,

security, and performance of the application. In such cases, it may still be useful to utilize

a language model for generating certain portions of the code or for providing suggestions

and guidance to the developers.

5.4 Research Question Three

How much effort saving and cost-benefit will organizations get by augmenting

these AI-based models with a software programmer?

5.4.1 Planning and requirements gathering

Software requirement classification

As discussed in the previous sections, we experimented with employing a large

language model for the task of software requirements classification. The model was used

to perform:

207

- Binary classification i.e., functional vs non-functional requirements classification

- Multi-class classification i.e., NFR classification into multiple categories

As discussed in section 4.4.1, for each classification process, two approaches

were evaluated to perform the desired task. The first was zero-shot learning, which

involved prompt engineering. We discussed the various steps involved in building a

classification solution, for both binary classification as well as multi-class categorization

using the zero-shot approach. The second approach was building an embeddings-based

model. Again, we discussed various steps involved in building this model for both binary

and multi-class prediction.

To calculate the cost and effort savings, the same task of binary and multi-class

classification was also performed manually by people with different levels of expertise.

Following graphs depict the cost and effort involved in performing binary and multi-class

classification of requirements using AI-based and manual techniques.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

10

20

30

40

50

60

70

80

90

100

Model - Zero
shot

Model -
Embeddings

Novice Intermediate Expert

C
o

st
 in

 D
o

lla
rs

%
 A

cc
u

ra
cy

 a
n

d
 #

 H
o

u
rs

 o
f

Ef
fo

rt

Techniques

Binary Classification

Cost Effort Accuracy

Figure 45

Binary Classification - Cost and Effort

208

Similarly, the graphs below depict the percentage cost and percentage effort

saving obtained when using zero-shot learning and embeddings-based approach for

binary classification as compared to the same being performed manually by people of

different levels of expertise.

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0

10

20

30

40

50

60

70

80

90

Model - Zero
shot

Model -
Embeddings

Novice Intermediate Expert

C
o

st
 in

 D
o

lla
rs

%
 A

cc
u

ra
cy

 a
n

d
 #

 H
o

u
rs

 o
f

Ef
fo

rt

Techniques

Multi-class Classification

Cost Effort Accuracy

0

10

20

30

40

50

60

70

80

90

Novice Intermediate Expert

P
er

ce
n

ta
ge

Manual Expertise

Effort and Cost saving with Zero-shot Approach
Binary Classification

% Effort saving % Cost saving

Figure 46

Multi-class Classification - Cost and Effort

Figure 47

Effort and Cost saving - Zero-shot (Binary)

209

For the current task, which involves simple sets of software requirements, we observe the

following:

Binary Classification

 AI techniques vs Manual (Novice)

If the binary classification is done using the model instead of being done manually by

a person who is a novice, the model will provide significant savings in both cost and

effort. The effort will be reduced by almost 82% using the zero-shot approach and

70% using the embeddings-based approach. Similarly, the cost will be reduced by

79% and 65% in both these cases. We have also seen earlier that in this case, the

accuracy obtained using AI techniques is much higher as compared to the manual

approach.

 AI techniques vs Manual (Intermediate)

0

10

20

30

40

50

60

70

80

Novice Intermediate Expert

P
er

ce
n

ta
ge

Manual Expertise

Effort and Cost saving with Embeddings-based Approach
Binary Classification

% Effort saving % Cost saving

Figure 48

Effort and Cost Saving – Embeddings based (Binary)

210

Similarly, when comparing using an AI model versus manual performance by an

individual with intermediate skills, the cost savings is greater than the effort savings

for performing binary classification. This indicates that implementing the AI model in

this scenario would result in a reduction of effort by 69% (zero-shot) and 50%

(embeddings-based) and cost by 77% (zero-shot) and 63% (embeddings-based).

Additionally, previous observations have shown that the accuracy of the AI model is

81% (zero-shot) and 92 % (embeddings-based) which is either the same or higher

than that performed manually (81%) in this case.

 AI techniques vs Manual (Expert)

When comparing the performance of an AI model to that of an individual with expert

skills, we find that the AI model offers much higher benefits in cost than in effort.

Notably, the AI model provides significant cost savings compared to the manual

approach, with a reduction of up to 80%. Additionally, while the effort savings may

be less pronounced at 57%, the AI model can perform the task much more quickly

and consistently than a human expert, improving efficiency and reducing the

likelihood of errors. Regarding accuracy, the accuracy of the AI model (92%) exceeds

that of a human expert (85%) in the case of the embeddings-based approach, while is

only slightly lower (81%) than the human expert in the case of zero-shot approach,

ensuring high-quality results.

Similarly, the graphs below depict the percentage cost and percentage effort

saving obtained when using zero-shot learning and embeddings-based approach for

multi-class classification as compared to the same being performed manually by people

of different levels of expertise.

211

0

10

20

30

40

50

60

70

80

Novice Intermediate Expert

P
er

ce
n

ta
ge

Manual Expertise

Effort and Cost saving with Zero-shot Approach
Multi-class Classification

% Effort saving % Cost saving

0

10

20

30

40

50

60

Novice Intermediate Expert

P
er

ce
n

ta
ge

Manual Expertise

Effort and Cost saving with Embeddings-based Approach
Multi-class Classification

% Effort saving % Cost saving

Figure 49

Effort and Cost saving - Zero shot (Multi-class)

Figure 50

Effort and Cost saving - Embeddings based (Multi-class)

212

Multi-class Classification

 AI techniques vs Manual (Novice)

Just like in the case of binary classification, AI techniques, both zero-shot and

embeddings-based approaches, provide significant cost and effort saving for the task of

multi-class classification of non-functional requirements, as compared to the task being

done manually by a person who is a novice. The effort will be reduced by almost 64%

using the zero-shot approach and 49% using the embeddings-based approach. Similarly,

the cost will be reduced by 61% and 45% in both these cases. The accuracy percentage

obtained manually, in this case, is 62% which is considerably lower as compared to 71%

(zero-shot) and 81% (multi-class).

We can see that there is a significant drop in effort savings, and hence cost

savings, when using an embedding-based approach. This is because building a multi-

class model and applying different techniques to optimize the model‟s performance

consumes considerable time and effort, thus reducing the overall effort savings.

 AI techniques vs Manual (Intermediate)

Similarly, as in the case of binary classification, when comparing the AI model

versus the manual classifier with intermediate skills, the cost savings is greater than the

effort savings for performing multi-class classification. We see a reduction of effort by

53% (zero-shot) and 34% (embeddings-based) and cost by 65% (zero-shot) and 51%

(embeddings-based). Additionally, we have seen that the accuracy of the AI model is

71% (zero-shot) and 81 % (embeddings-based) which is either the same or higher than

that performed manually in this case.

We can see that as the expertise of the person performing the task increases, the

effort savings obtained from the model decrease.

 AI techniques vs Manual (Expert)

213

In this case, we have seen that the drop in effort saving is much higher than in the

last two cases. Here, the effort saved using the zero-shot approach is 33% while using the

embeddings-based approach is only 5%. However, the cost savings are better at 68%

(zero-shot) and 55% (embeddings-based). The accuracy however, using the zero-shot

approach (71%) is lower compared to that obtained by the manual expert (80%).

Conversely, the embeddings-based model performs at par with the manual expert, in

terms of accuracy. Overall, we can see that for multi-class classification, the advantages

obtained in using an AI model are more towards saving cost than effort. Especially, in the

embeddings-based approach, the effort saving is negligible but both cost saving and

accuracy are better than what can be achieved by a manual expert.

It is critical to highlight, that the current study has been done with a set of

requirements that are simple in complexity. These requirements are short and of few

sentences only. Also, when categorizing the non-functional requirements into specific

categories, the categories are of known types like “Look and Feel”, “Security” and so on.

The time taken to build a solution using OpenAI models, in this case, was

comparatively less due to two reasons:

1. The model is a large language model which is already pre-trained and has a very good

understanding of both functional and non-functional requirements. Hence, making it

learn the task of performing the classification did not take much effort.

2. The requirements were simple and short. Hence, it did not involve significant effort in

cleaning up the requirements.

Conversely, in the case of complex and sizable requirements, where the task

entails classifying them into some custom categories, the effort involved in building such

a solution will increase considerably. Following would be the considerations that would

come into play when building such a solution:

214

1. Every large model has a context window limitation i.e., there is a limit on the total

number of words the model can process including the output to be generated, at any

given time. If the requirements are large and exceed this limit, then it would involve

building a few more steps into the solution. This would include breaking down the

requirement into smaller chunks and then generating the summary for the

requirement. The summary would then be used for classification purposes.

2. If the categories are custom, then, it would involve significant prompt-engineering

techniques. Zero-shot may not be efficient in such a case. Few-shot or chain-of-

thought approach would have to be leveraged. It could also involve creating complex

instructions with a step-by-step process that the model must follow to perform the

classification.

3. Another approach that may have to be tried is to build a pipeline where the output

from the previous step feeds into the next step, where each step is used to extract

different information from the requirements. In the final step, all the extracted

information can be leveraged to perform the classification.

4. For any approach that is built, a manual review of the classification being done by the

model with inputs to improve the performance will be required.

Building such solutions will involve much more effort and hence also increase the

cost. However, these solutions will still be useful as compared to the manual approach,

due to the following two reasons:

1. Building the solution using prompt engineering is possible even when the available

dataset is extremely small and not labeled.

2. Given that the large language model understands the semantic meaning of words, it

can extract meaningful information from large requirements and is much less prone to

errors as compared to the manual approach.

215

3. Once the solution is built, the time used to process new requirements and perform the

classification will be much less as compared to the manual approach. Also, the

accuracy of these models is comparable to at least a person with intermediate

expertise in the domain.

Considering all the above points, we validate all three hypotheses that we had proposed

to be true:

 If large language models are to be used optimally, then a human-in-the-loop is

necessary for validation of the result generated by the model.

 If code automation using large language models is leveraged in the industry, it

can improve software quality by reducing errors and increasing consistency.

 If large language models are used for code automation, it can improve software

development efficiency by reducing the time needed to develop code and provide

significant cost and effort benefits to software organizations.

5.4.2 Coding and Testing

5.4.2.1 Code Generation

As we discussed in section 4.4.2.1, the first app that was developed using both

manual and AI-assisted techniques was an Android app for drawing on the screen using

touch and the other was an ASP.NET application. The graphs below depict the cost and

effort involved in building these applications. Another set of graphs also depicts the

percentage effort saving and percentage cost saving we get by leveraging these AI

models as compared to these applications being built manually from scratch by

developers of different levels of expertise.

We observe that leveraging an AI model gives significant effort savings,

especially when compared to a novice programmer. As the expertise of the programmer

increases, the effort savings obtained reduce. However, the cost savings are still

216

significant. We have seen that even when compared to an expert programmer, the model

can provide a cost saving of at least 68% when considering the task of code generation.

$0

$50

$100

$150

$200

$250

$300

$350

$400

$450

0

5

10

15

20

25

LLM Novice Intermediate Expert

C
o

st
 in

 D
o

lla
rs

Ti
m

e
in

 h
o

u
rs

Techniques

Code Generation - Android App

Time Cost

0%

20%

40%

60%

80%

100%

Novice Intermediate Expert

%
 S

av
in

gs

Manual Techniques

Effort and Cost Savings in using LLM against manual
Techniques

Android App

% Effort saving % Cost saving

Figure 51

Cost and Effort - Code Generation (Android App)

Figure 52

Effort and Cost Saving- Android App

217

$0

$500

$1,000

$1,500

$2,000

$2,500

$3,000

$3,500

0

20

40

60

80

100

120

140

160

180

LLM Novice Intermediate Expert

C
o

st
 in

 D
o

lla
rs

Ti
m

e
in

 h
o

u
rs

Techniques

Code Generation - ASP.NET Application

Time taken Cost

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Novice Intermediate Expert

%
 S

av
in

gs

Manual Techniques

Effort and Cost Savings in using LLM against manual Techniques
ASP.NET Application

% Effort saving % Cost saving

Figure 53

Cost and Effort - Code Generation (ASP.NET)

Figure 54

Effort and Cost Savings (ASP.NET)

218

We have also seen that the accuracy of the suggested code in both cases was

almost 90%. This means around 10% of the code had to be corrected to build a complete

working application.

Cost-Benefit Analysis (with respect to Expert programmer) – Android App

Table 87

Cost-Benefit Analysis - Android App

 Manual Code

Writing

Code

Generation

using AI model

Saving

LOC 150 150

Approximate % code which is generated correctly 80% 80%

Developer‟s effort (hours) 6 2.5

% Effort saving using AI 60% 60%

Developer‟s rate ($ per hour) 50 40

Developer‟s cost to client ($) 300 100

Manual effort involved (correction/validation) in

hours

 1.5

Effective % Effort Saving (Overall) 33% 33%

Cost of manual effort (correction/validation)

needed with AI model

 60

Cost of API usage 1

Total cost to client 300 161 46%

219

Cost-Benefit Analysis (with respect to Expert programmer) – ASP.NET Application

Table 88

Cost-Benefit Analysis - ASP.NET

 Manual Code

Writing

Code

Generation

using AI model

Saving

LOC 1326 1326

Approximate % code which is generated correctly 90% 90%

Developer‟s effort (hours) 40 10

% Effort saving using AI 75% 75%

Developer‟s rate ($ per hour) 50 40

Developer‟s cost to client ($) 2000 400

Manual effort involved (correction/validation) in

hours

 6

Effective % Effort Saving (Overall) 60% 60%

Cost of manual effort (correction/validation)

needed with AI model

 240

Cost of API usage 2

Total cost to client 2000 642 68%

We must note, that the applications built were of simple to medium complexity

and were small applications. There are a few points to consider when leveraging AI

models for the task of code generation and building large applications:

1. Language models are probabilistic and it is important to have a human in the loop

when we build applications using these models. Manual intervention is required to

review and correct the code.

2. Large language models have context window limitations, meaning they can only

consider a limited amount of context when generating code. This can cause them to

220

miss important information needed to generate effective and efficient code for large

applications.

3. Pre-trained language models lack the ability to understand the complex relationships

between different pieces of code within an application, which can lead to generating

code that is not well-optimized and may not work effectively within the larger

application.

4. In addition to point 3, a large application may have interdependencies between many

different components or frameworks, which further complicates the challenge of

generating effective code. These large models may not be able to capture these

complex relationships, leading to generating code that may again not be well-

optimized or effective within the larger application.

To overcome these limitations, it is important that large pre-trained transformer models

should be used in conjunction with other techniques, such as:

 Analyzing existing code to understand dependencies and interdependencies between

different pieces of code.

 Incorporating human input and oversight into the code generation process.

Due to the challenges involved, the effort involved in building a large application

with many different components and interdependencies will be considerably higher.

For example, consider building an enterprise-level application that involves

building a frontend with technologies like Angular or ReactJS, backend implementation,

database integration, features like payment processing with gateway integration,

authentication libraries, and so on. Let us assume this application consists of

approximately 50,000 LOC and it takes 20 weeks with four developers to build the

application. Let us also assume that in these four developers, there is one expert

programmer and two programmers with intermediate expertise, and one novice

221

developer. Given, these conditions, the following table shows the cost-benefit analysis for

building this application manually versus when assisted with an AI model.

Table 89

Cost-Benefit Analysis - Code Generation (Complex application)

 Manual Code

Writing

Code

Generation

using AI model

Saving

LOC 50000 50000

Approximate % code which is

generated correctly
 45% 45%

Developer‟s effort (hours) 3200 800

% Effort saving using AI 75% 75%

Developer‟s rate ($ per hour) 40

 Expert 50

 Intermediate 30

 Novice 20

Developer‟s cost to client ($) 104000 32000

Manual effort involved

(correction/validation) in hours
 1700

Effective % Effort Saving

(Overall)
 22% 22%

Cost of manual effort

(correction/validation) needed

with AI model

 51000

Cost of API usage 600

Total cost to client ($) 104000 83600 20%

Thus, we can see that in a large application with around 50000 LOC and many

interdependencies, if the model generates approximately 45% of the code correctly, the

actual effort saving is only 22% in contrast to the 60% effort saving observed in the

222

study. This is due to the fact, that there is considerable manual effort involved in

correcting, validating, and stitching the remaining 55% of the code. Similarly, we can see

that the cost saving is approximately 20% of the cost taken to manually build the

application compared to the 68% effort saving observed during the study.

Also, the current model being used is an API-based model. Hence, there is only

API usage cost involved. If the model used is an open-source model which also involves

deploying the model on-premise and fine-tuning the model, this will add to the effort

involved in fine-tuning the model and the cost of hardware (compute) required to deploy

the model. This will depend on the size of the model used and the amount of compute

needed for deployment, fine-tuning, or inferencing.

5.4.2.2 Code Translation

We discussed in section 4.4.2.2, how an AI-assisted approach can be followed for

the task of code translation. The source was a C++ file for a Tic-Tac-Toe application and

the target was a Java program for the same. The graph below depicts the cost and effort

involved in performing the translation using AI models.

0

500

1000

1500

2000

2500

0

20

40

60

80

100

120

LLM Manual Intermediate Expert

C
o

st
 in

 D
o

lla
rs

Ef
fo

rt
 in

 H
o

u
rs

Techniques

Code Translation

Time Cost

Figure 55

Cost and Effort - Code Translation

223

Similarly, the graph below depicts the percentage effort saving and percentage

cost saving we get by leveraging these AI models as compared to these applications being

translated manually from scratch by developers of different levels of expertise.

Like code generation, we observe that leveraging an AI model gives significant

effort savings, especially when compared to a novice programmer. Also, we observe that

the effort and cost savings obtained when compared to an expert are less than those

obtained against a novice programmer. However, the savings are still significant. We

observe that both effort and cost savings obtained by leveraging AI against as compared

to an expert programmer are approximately around 50%.

The accuracy of the translated code was almost 90%. This means around 10% of

the code had to be corrected to build a complete working application.

Cost-Benefit Analysis (with respect to Expert programmer)

0%

20%

40%

60%

80%

100%

Novice Intermediate Expert

%
 S

av
in

gs

Manual Techniques

Effort and Cost Savings in using LLM against
Manual Techniques

% Effort saving % Cost saving

Figure 56

Effort and cost saving - Code Translation

224

Table 90

Cost-Benefit Analysis - Code Translation

 Manual Code

Writing

Code

Generation

using AI model

Saving

LOC 800 800

Approximate % code which is generated correctly 90% 90%

Developer‟s effort (hours) 30 9

% Effort saving using AI 53% 70%

Developer‟s rate ($ per hour) 50 40

Developer‟s cost to client ($) 1500 360

Manual effort involved (correction/validation) in

hours

 5

Effective % Effort Saving (Overall) 53% 53%

Cost of manual effort (correction/validation)

needed with AI model

 200

Cost of API usage 189

Total cost to client 1500 749 50%

Like code generation, the application translated here was of simple to medium

complexity and was a small application. All the points mentioned during the code

generation section are applicable for code translation too when leveraging AI models for

translating large applications. In addition, during code translation, it is important to be

aware that the translation is generally an as-is translation. This means that any code

optimization or re-architecting that may be needed as part of the translated application,

will bring in additional effort. Hence, combining different techniques including rule-

based and tool-based where applicable, is recommended.

225

For example, let us consider the case of a company that has a C-based system that

is used to manage inventory and sales data, but the system has become outdated and

difficult to maintain. The company wants to modernize the system by transitioning to a

more modern programming language like Java.

The C-based system has around 100,000 lines of code, including functions,

structures, and libraries. The translation process would involve analyzing the existing

code, identifying any language-specific features or dependencies, and then rewriting or

refactoring the code to work with Java.

This process could be challenging, as C is a low-level language that requires

manual memory management, while Java is a high-level language that uses automatic

garbage collection. The translation effort would involve mapping C constructs to Java

equivalents, such as translating C functions to Java methods, C structures to Java classes,

and C libraries to Java packages.

There may also be performance considerations related to moving the system to

Java, as C is typically faster than Java. The performance impact of the translation would

have to be studied and the code would have to be optimized as needed.

Given the complexities involved, let us say, it takes approximately 400 developer

days to do this translation manually. Just as in code generation, the assumption is there is

1 expert programmer and 2 programmers with intermediate expertise and 1 is a novice

developer

Given, these conditions, the following table shows the cost-benefit analysis for

building this application manually versus when assisted with an AI model.

226

Table 91

Cost-Benefit Analysis - Code Translation (Complex Application)

 Manual Code

Writing

Code

Generation

using AI model

Saving

LOC 100000 100000

Approximate % code which is

translated correctly
 45% 45%

Avg. LOC per person 250 1000

Developers 4 2

Avg. LOC per day 1000 2000

Days for translation 100 50

Developer‟s effort (hours) 3200 800

% Effort saving using AI 75% 75%

Developer‟s rate ($ per hour) 40

 Expert 50

 Intermediate 30

 Novice 20

Developer‟s cost to client ($) 136000 32000

Manual effort involved

(correction/validation) in hours
 1760

Effective Hours Overall 2560

Effective % Effort Saving

(Overall)
 20% 20%

Cost of manual effort

(correction/validation) needed

with AI model

 80000

Cost of API usage 600

Total cost to client ($) 136000 112600 26%

227

Thus, we can see that when trying to translate a large application with around

100000 LOC, if the model generates approximately 45% of the code correctly, the actual

effort saving is only 20%. This is due to the fact, that there is considerable manual effort

involved in correcting, validating, and stitching the remaining 55% of the code. Similarly,

we can see that the cost saving is approximately 20%.

As in code generation, the current model being used is an API-based model.

Hence, there is only API usage cost involved. Using an open-source model and fine-

tuning it will change the accuracy figures and accordingly the effort and cost savings

incurred.

5.4.2.3 Legacy Code Documentation and Migration

In section 4.4.2.4, we measured the cost and effort saved in generating code

documentation (generic and design) from legacy COBOL code and migrating the code to

Java. The graphs below depict the cost and effort involved in performing the individual

steps of documentation followed by migration and in performing the end-to-end process.

The percentage effort saving and percentage cost saving obtained by leveraging these AI

models as compared to performing migration manually by developers of different levels

of expertise is also shown below.

As in the previous tasks, we observe that leveraging an AI model gives significant

effort savings, especially when compared to a novice programmer. We also observe that

significant effort and cost savings are obtained by leveraging AI even against an expert

programmer.

As observed in the figure below, while a novice programmer takes 140 hours to

document the COBOL code into generic and design documentation, the AI model can

perform the same task in only 34 hours. Due to this, we see a significant difference in the

cost incurred in this process when using the AI model.

228

Similarly, we see that a novice programmer takes approximately 180 hours to

generate Java code by referring to the documentation and code. While the AI model can

generate the code in 60 hours. This again causes a significant difference in the Java code

generation process.

$0

$500

$1,000

$1,500

$2,000

$2,500

$3,000

$3,500

0

20

40

60

80

100

120

140

160

LLM Novice Intermediate Expert

C
o

st
 in

 D
o

lla
rs

Ef
fo

rt
 in

 H
o

u
rs

Techniques

Code Documentation

Time taken Cost

$0

$500

$1,000

$1,500

$2,000

$2,500

$3,000

$3,500

$4,000

$4,500

0

50

100

150

200

LLM Novice Intermediate Expert

C
o

st
 in

 D
o

lla
rs

Ef
fo

rt
 in

 H
o

u
rs

Techniques

Code Migration

Time taken Cost

Figure 57

Cost and Effort - Code Documentation

Figure 58

Cost and Effort - Code Migration

229

We also observe, that while the novice programmer takes 180 hours, an expert

programmer takes significantly less time, approximately 80 hours to do the same task.

Hence, the effort saving obtained in this case is less as compared to the previous case.

Figure 59 below shows the effort and cost involved in the end-to-end process of

the code migration.

Similarly, the graphs below show the percentage effort and percentage cost savings we

get in different steps of documentation and code conversion. Figure 62 also shows the

percentage effort and cost savings obtained in the overall process.

$0

$1,000

$2,000

$3,000

$4,000

$5,000

$6,000

$7,000

$8,000

0

50

100

150

200

250

300

350

LLM Novice Intermediate Expert

C
o

st
 in

 D
o

lla
rs

Ef
fo

rt
 in

 H
o

u
rs

Techniques

Overall - Documentation + Migration

Time taken Cost

Figure 59

Cost and Effort - End-to-end process

230

0%

10%

20%

30%

40%

50%

60%

70%

80%

Novice Intermediate Expert

%
 S

av
in

gs

Manual Techniques

Effort and Cost Savings in using LLM against
Manual Techniques (Code Documentation)

Percentage effort saving* Percentage cost saving*

0%

10%

20%

30%

40%

50%

60%

70%

80%

Novice Intermediate Expert

%
 S

av
in

gs

Manual Techniques

Effort and Cost Savings in using LLM
against Manual Techniques (Code

Migration)

Percentage effort saving* Percentage cost saving*

Figure 60

Effort and Cost Savings - Code Documentation

Figure 61

Effort and Cost Savings - Code Migration

231

We have seen that the accuracy of the translated code was almost 80%.

Cost-Benefit Analysis (with respect to Expert programmer)

Table 92

Cost-Benefit Analysis (End-to-end process)

 Manual Code

Writing

Code

Generation

using AI model

Saving

LOC 1300 1300

Approximate % code which is generated correctly 80% 80%

Developer‟s effort (hours) 145 74

% Effort saving using AI 49% 49%

Developer‟s rate ($ per hour) 50 40

Developer‟s cost to client ($) 7250 2960

Manual effort involved (correction/validation) in

hours

 20

0%

10%

20%

30%

40%

50%

60%

70%

80%

Novice Intermediate Expert

%
 S

av
in

gs

Manual Techniques

Effort and Cost Savings in using LLM against Manual
Techniques (Overall)

Percentage effort saving* Percentage cost saving*

Figure 62

Effort and Cost Savings - Manual Techniques

232

Effective % Effort Saving (Overall) 35% 35%

Cost of manual effort (correction/validation)

needed with AI model

 800

Cost of API usage 2

Total cost to client 7250 3760 48%

As in previous cases, the application for which the code documentation was

generated and then migrated to Java was of simple to medium complexity. All the points

mentioned in the previous sections apply to this task too when leveraging AI models for

translating large and complex applications. In addition, for legacy code migration, a few

things add to the complexity. Legacy languages like COBOL are procedural and target

languages like Java are object-oriented. Hence, as we discussed in the approach, this is a

two-step process – where we first generate documentation and then do the code

generation. There will additionally be other steps that will be manual like creating the

design diagrams (UML diagrams) and re-architecting the entire target application. These

factors also amplify the intricacy of the task in the case of large complex applications. As

mentioned earlier, combining different techniques including rule-based and tool-based

approaches can provide better efficiency in performing these tasks.

Let us consider the case where a COBOL application with millions of lines of

code must be re-architected and transitioned to a Java application.

There are a few points to be taken care of when migrating COBOL to Java:

1. Understanding the business requirements

Before starting the migration process, it's essential to have a clear understanding of

the business requirements that the COBOL system is currently fulfilling. This will

help in identifying the critical areas of the system that need to be migrated first and

ensure that the new Java system meets the business needs.

233

2. Mapping COBOL constructs to Java

COBOL and Java are two different programming languages with different syntaxes,

semantics, and libraries. It's important to map COBOL constructs to their Java

equivalents, such as COBOL data structures to Java classes, COBOL subprograms to

Java methods, and COBOL libraries to Java packages.

3. Handling data types

COBOL uses a different set of data types than Java, which can lead to compatibility

issues during the migration. It's important to understand the data types used in the

COBOL system and map them to appropriate Java data types.

4. Handling I/O operations

COBOL and Java have different ways of handling I/O operations. The migration

process should include refactoring the COBOL I/O operations to work with Java

equivalents.

5. Testing and validation

The migration process should include comprehensive testing and validation of the

new Java system to ensure that it meets the business requirements and performs as

expected.

6. Performance optimization

COBOL and Java have different performance characteristics. The new Java system

should be optimized for performance to ensure that it can handle the same level of

workload as the COBOL system.

7. Data security: The migration process should consider the security implications of

moving the data from the COBOL system to the Java system. Appropriate measures

should be taken to ensure the security and integrity of the data during the migration

process.

234

Let us assume that the COBOL application to be migrated has 40 million lines of code.

Considering the above points, the following table shows the cost-benefit analysis for

building this application manually versus when assisted with an AI model.

Table 93

Cost-Benefit Analysis (Large Application)

 Manual Code

Writing

Code

Generation

using AI model

Saving

LOC 40,000,000 40,000,000

Approximate % code which is

translated correctly
 40% 40%

Avg. LOC per person per

day
 250 1000

Developer‟s effort (hours) 1,280,000 320,000

% Effort saving using AI 75% 75%

Average rate ($ per hour) for

developers
 40 40

Developer‟s cost to client ($) 51,200,000 12,800,000

Manual effort involved

(correction/validation) in hours
 768000

Effective Hours Overall 1,088,000

Effective % Effort Saving

(Overall)
 15% 15%

Cost of manual effort

(correction/validation) needed

with AI model

 31000000

Cost of API usage 10000

Total cost to client ($) 51,200,000 43,800,000 15%

Thus, we can see the client will see a benefit of around 7 million dollars, which is a 15%

reduction in the manual cost.

235

Conclusion

From these studies, we can conclude that the following factors influence the effort and

hence cost saving when leveraging an AI model:

1. The model‟s capability and understanding of the programming language/s involved.

2. The complexity of the application and interdependencies

3. The effort required to generate code relevant to the problem statement (prompt-

engineering effort)

4. Percentage of manual effort involved in correcting/validating the code

5. The effort involved in deploying an open-source model (if required)

6. Cost of infrastructure for hosting the model (if required)

7. The effort involved in fine-tuning the model (if required)

We call this the seven-point framework.

5.4.3 Seven-point framework

Based on the above discussion, we align the points mentioned above in three

phases:

A. Model Discovery phase

This is the phase in which we identify the right AI/ML model that will be most

effective in solving the problem. This phase would involve experimenting with

different models and reviewing the published metrics and scores.

The following two points from the seven-point framework fall in this phase:

1. Complexity of Application

Understanding the complexity of the application will help ease the process of

identifying the right model for the task. There are various sub-parameters that we

propose to measure the complexity of the application. Based on the value selected

for the sub-parameter, a score will be assigned to the sub-parameter. Then an

236

average score will be calculated and a value will be assigned to the main

parameter. The same process will apply to all the parameters and sub-parameters

described next.

i. Total Lines of Code (LOC) – As part of this framework, and based on the

various experiments conducted, we can define the following values for this

sub-parameter:

a. < 5000

b. Between 5000 and 50000

c. > 50000

This becomes one of the metrics to measure the complexity of the application.

ii. Individual file size – As we have discussed so far, all AI models have some

limitations on the maximum lines of code they can read in one API call. This

limitation is set by the model‟s context window. At the time of this study, the

largest context window is provided by GPT-4, which is 32k tokens (including

input and output). Hence, the size of the individual files involved becomes a

determining factor for measuring the complexity of the application. If the

individual files are large, then it would involve breaking these files into

chunks, thus losing context and increasing complexity. The values we define

for this sub-parameter are:

a. Small

b. Medium

c. Large

iii. Frameworks / Components / DB involved – This is another sub-parameter that

can be used to measure the complexity of an application. As more and more

237

components are added to it, the application becomes increasingly complex.

The values we define here are:

a. None

b. Few

c. Many

iv. Interdependency between code components – This is linked to the fact that AI

models have limited context windows. If there is a lot of dependency between

different code components, the AI model may not be able to capture the same.

Hence, this increases the complexity of the application. The values for this

sub-parameter are:

a. None

b. Few

c. Many

By considering the values for each of the sub-parameters, and after calculating the

scores and average score, one final value will be assigned to the “Complexity of

Application.” The value assigned will be one from:

Simple, Medium, or Complex

2. Model Capability

The second important point which is part of the model discovery phase is model

capability. After we determine the complexity of the application, we also need to

identify the right AI/ML model to be used for the task. Two sub-parameters can

be considered to determine the model capability:

i. Published scores – When an AI/ML model is released, along with the task that

the model can perform, the scores of the model are also released. These scores

will differ based on the task the model performs and the evaluation criteria. In

238

some cases, CodeBLEU score is published, while for some models the

accuracy is published. Reviewing the published score is one of the ways of

measuring the model's capability. The following values can be defined for this

sub-parameter:

a. Very Low – the score published for the model is very low

b. Low – the score is on the lower side

c. Average – the score is average as compared to other models

d. High – the published score is high compared to the scores of other

models

ii. Initial testing – In addition to reviewing the published scores, one must

perform some experiments related to the programming language and task at

hand. Based on the experimentation, the following values can be assigned to

this sub-parameter:

a. Poor

b. Average

c. Good

d. High

Based on both the above sub-parameter values, a single value will be assigned

to the model capability parameter. The value that will be assigned would be

one from:

Poor, Average, Good, or Excellent.

B. The second phase is Setup Consideration

Once we have completed the model discovery, we must now identify the setup

considerations for inferencing, deploying, or fine-tuning the model. The following

points from the seven-point framework will be part of this phase:

239

3. Deployment Effort

Based on the model identified, a model may be open-source which must be

deployed before consumption, while in other cases, the model may be deployed

on external servers and only available as a service. If the model is available as a

service, there will be no deployment effort. However, in other cases, depending

on the model size, the deployment effort will vary. Hence, we define the

following values to be selected for this parameter:

a. Small model – if a model is less than 15 GB, the deployment effort will be

low

b. Medium-sized model – if the model is less than 60 GB, an average effort

will be required for deploying the model

c. Large model – for models which are larger than 60 GB, the deployment

effort will be considerable

d. NA – if the model to be used is available only as a service, the value for

this sub-parameter will be “NA.”

Depending on the values selected and the calculated scores, the final value for

the “Deployment Effort” parameter will be one from:

NA, Low, Medium, High

4. Fine-tuning effort

Depending on the capability of the model, the value for this parameter will be

auto-calculated. When fine-tuning a model, the effort involved depends on the

following sub-parameters:

i. Labeled data for fine-tuning the model – if the model is having an average

understanding, it means the model was not exposed to the programming

language as part of its learning process. Hence, considerable size of labeled

240

data will be needed for tuning the model. On the other hand, if the model

already has a very good understanding of the programming language, the

magnitude of data required to further tune the model will be considerably low.

ii. Data preparation effort – The effort involved in collecting and preparing

labeled data will vary depending on the volume of data needed to fine-tune the

model.

iii. Similarly, the effort spent on various experiments and hyperparameter tuning

will vary depending on the model capability.

Thus, we observe that all these sub-parameters largely depend on the capability of

the model. Hence, the value for “Fine-tuning” effort is derived from model

capability and would be assigned one of the following values:

NA - if API based model is used,

Not required - if the model capability is excellent

Low – if model understanding of programming language is good

Medium – if the model has an average understanding of the programming

language

High – if the model has a poor understanding of the programming language

5. Infrastructure Cost / API cost

The next critical parameter in setup considerations is the “Infrastructure Cost /

API Cost” involved. This cost depends on two sub-parameters:

i. Size per GPU

Depending on the size of the model being used for deployment or fine-tuning,

the GPU size needed for deploying, inferencing, or fine-tuning the model will

vary. This will in turn impact the cost involved. The following values can be

assigned to this sub-parameter:

241

a. <= 20 GB – if a small GPU suffices for fine-tuning or inferencing the

model

b. > 20 GB and <= 40 GB – this is suited for medium-sized models

c. > 40 GB – most large models need more than 40 GB GPU RAM

ii. Count of GPUs

Depending on the size of the model and fine-tuning requirements, the number

of GPUs needed for inferencing or fine-tuning a model will vary. For

inferencing with small GPUs, most times a single GPU is sufficient. However,

for fine-tuning a small model, more than one GPU may be needed. This also

affects the cost of infrastructure. The following values are defined for this

sub-parameter:

a. < 2 – sufficient for inferencing with small GPUs and sometimes for fine-

tuning small GPUs

b. Between 2 to 8 – most medium-sized GPUs would need between 2 to 8 for

inferencing or finetuning the model

c. > 8 – large models will generally need 8 or more GPUs, only for

inferencing

As in the other cases, based on the values selected for these sub-parameters, a

score will be assigned to each sub-parameter, an average score calculated and

a final value from one of the below values will be assigned to “Infrastructure

Cost / API Cost” parameter:

NA, Low, Medium, High

C. Implementation

This is the last phase of the framework. The following two points from the seven-

point framework get aligned to this phase:

242

6. Prompt-tuning effort involved

The values for this parameter will be auto-calculated from points 1 and 2 in the

model discovery phase. The extent of effort needed to tune the prompt for task

execution is contingent on the complexity of the application and the model‟s

capabilities. For example, if the application is of simple complexity and the model

capability is excellent, then the effort involved in tuning the model will be low.

However, if the application is complex and the capability of the model is

excellent, the tuning effort will increase. Considering these various possibilities,

the following values are auto-assigned to this parameter:

Low, Average, High, Very High, Opt for Manual

Table 94

Calculating prompt-tuning effort

Model Capability Complexity of

Application

Prompt-tuning

effort

Excellent Simple Low

 Medium Average

 Complex High

Good Simple Low

 Medium Medium

 High High

Average Simple Average

 Medium High

 High Very High

Poor - Opt for Manual

As it can be observed, if the model capability is poor, it is suggested to opt for a

manual approach. This is because if the model does not have an understanding of

243

the programming language, then even for a simple application, the fine-tuning

effort will be large. For a complex application, fine-tuning will not only add to the

effort but also the cost. Hence, for a “Poor” model capability, performing the task

manually or using rule-based techniques, should be preferred.

7. The last parameter from the seven-point framework is “Manual correction.” As

we have seen, different AI models can perform different tasks and support

different programming languages. However, we cannot expect any model to

provide a 100% accurate code. These models can provide a template code that

must be manually reviewed and corrected. This parameter measures the effort and

cost involved in correcting the code generated by the AI model. The value for this

parameter, as in the previous case, is auto-calculated. This also depends on points

1 and 2 from the model discovery phase. Similar, to point 6, the values for this

parameter are:

Low, Medium, High, Very High, Opt for Manual

These values are calculated as follows:

Table 95

Calculating manual correction effort

Model Capability Complexity of

Application

Manual correction

effort

Excellent Simple Low

 Medium Medium

 Complex High

Good Simple Medium

 Medium High

 High Very High

Average Simple Medium

244

 Medium High

 High Very High

Poor - Opt for Manual

This framework can now be applied to calculate the effort and cost saving for any given

task.

Effort saving

Effort saving will be measured by considering the following points:

1. Initial effort saving by using a pre-trained model

The first effort saving is caused by leveraging the AI model for automated code

generation. The template code or documentation generated by the model saves the

effort of manually writing the code. By considering the final value from point 6, the

initial effort saving can be calculated as follows:

Table 96

Initial Effort Saving Calculation

Prompt-engineering

effort

Initial effort saving Reason

Low > 75%

If the prompt-engineering effort required is

low, since the model capability is excellent,

then the effort required to produce the template

code will be far less as compared to writing the

code manually. This would result in a high

initial effort saving. However, as the model

capability reduces and the prompt-engineering

effort increases, it would mean, generating

even template code will require a large effort

and hence reduced initial effort saving.

Average
Between 50% to 75%

High
Between 25% to 50%

Very High < 25%

2. Effort saving after manual correction

245

After the initial code has been generated, there will be extra effort involved in

manually correcting the code. This will cause the initial effort saving obtain to

reduce. The effort saving after manual correction is calculated as shown below:

Table 97

Calculating change in effort saving due to manual correction

Manual correction Effort saving Reason

Low Reduction in effort by 25% to 45%

The value of the manual

correction parameter is auto-

calculated based on the

complexity of the application and

model capability. Both these

factors together indicate the

accuracy of the model. Thus, if

the manual effort value is low, it

means that the model accuracy

was good. Hence, the effort

saving will be reduced by 25% to

45%. However, as the manual

effort correction value moves

from low to high, the reduction in

effort saving will rise gradually.

If the manual correction needed is

very high, then the effort

reduction will be more than 90%.

This will considerably reduce the

overall effort, even if the initial

effort saving is high.

Medium
Reduction in effort by 45% to 70%

High
Reduction in effort by 70% to 90%

Very High

Reduction in effort by more than

90%

3. Deployment effort

246

When using API-based models like OpenAI GPT-3 or Codex, since these models are

already hosted, there is no deployment effort involved. However, when using open-

source models, extra effort will be involved in deploying the model. The

“Deployment effort” parameter from the framework guides how the effort saving will

be affected. The following table indicates the same.

Table 98

Calculating change in effort saving due to deployment effort

Deployment Effort Effort saving Reason

NA No deployment effort

The value of the

deployment effort parameter

depends on the size of the

manual selected during the

model discovery phase. If

the deployment effort is

low, then the reduction in

effort saving will be by a

smaller percentage of

approximately 10%.

However, as the deployment

effort increases, the effort

saving further reduces.

Low

Further reduction in effort by

10%

Medium

Further reduction in effort by

20%

High

Further reduction in effort by

30%

4. Fine-tuning effort

Similarly, if fine-tuning is needed, then the effort required for the same must also be

factored in. This will further reduce the initial effort saving. The “Finetuning effort”

point guides the further reduction in effort. The following table indicates how the

effort-saving changes due to this parameter.

247

Table 99

Calculating change in effort saving due to fine-tuning effort involved

Fine-tuning Effort Effort saving Reason

NA Inference only API-based model

The value of fine-tuning

effort parameter is auto-

calculated based on the

model capability. The

value is NA if the model is

API-based, large model

and fine-tuning is not

possible. If the model

capability is Excellent,

fine-tuning will not be

required, hence there will

be no reduction in effort

saving. For other cases, the

effort saving will be

reduced as shown in the

table.

Not required No further reduction in effort

Low
Further reduction in effort by

50%

Medium
Further reduction in effort by

70%

High
Further reduction in effort by

90%

Cost saving

As in the case of effort saving, cost saving is calculated by considering the values of

different parameters in the seven-point framework.

Case 1 – No fine-tuning required

1. Cost incurred due to the effort spent in prompt-tuning

This cost is calculated based on the “Prompt-engineering effort” parameter from the

seven-point framework.

248

Table 100

Cost incurred due to effort spent in prompt-tuning

Prompt-engineering Effort Cost incurred Reason

Low < 20%

The prompt-engineering effort

parameter is auto-calculated by

considering both the complexity of the

application and the capability of the

model. If this parameter value is low, it

means, not much effort is required in

performing the prompt engineering to

perform the desired task. Hence, the

cost incurred will be < 20%. This

means the cost saving will be

significant, ~80%. However, as the

value of this parameter moves from

low to very high, the cost will increase.

When the prompt-engineering effort is

very high, it means the cost incurred

will be ~70% of the manual cost. As a

result, the cost saving will be very less.

Average
Between 20% to

45%

High
Between 45% to

70%

Very High ~70%

Opt for Manual Same as manual

2. Additional cost due to manual correction

As we have seen in effort savings calculation, the code generated by the AI model is

not always accurate, and manual validation and correction is always required. Here,

we calculate the additional cost incurred due to manual corrections. This cost is

calculated by considering the value in the “Manual correction” parameter from the

seven-point framework

249

Table 101

Additional cost incurred due to manual correction

Manual correction Additional cost incurred Reason

Low ~ 20%
The manual correction parameter

is auto-calculated by considering

both application complexity and

model capability, giving an idea of

model accuracy. Thus, if the

manual correction required is low,

then the additional cost incurred

will be less, ~20%. However, as

the manual correction required

grows from low to very high, the

additional cost incurred also

increases. This will reduce the

final cost saving obtained.

Medium Between 20% to 40%

High Between 40% to 60%

Very High Between 60% to 80%

Opt for Manual Same as manual

Case 2: Fine-tuning required

When fine-tuning is required, the points to consider when calculating the cost incurred

will vary as other costs like infrastructure and deployment costs will need to be

considered.

1. Infrastructure cost

The infrastructure cost will depend on two factors:

a. The size of compute and number of compute instances required

b. The duration for which the compute will be used

Both these factors are determined by “Fine-tuning effort” and “Infrastructure cost”

parameters from the framework. Thus, the following table indicates how the

infrastructure cost is affected by these parameters.

250

Table 102

Calculating cost incurred due to infrastructure

Fine-tuning Effort Infrastructure cost Cost incurred Reason

Low Low 10%
The fine-tuning effort is auto-

calculated based on the capability

of the model. If the model

capability is Poor, the fine-tuning

effort required will be high. This

means the duration for which the

compute will be required, will be

more. Similarly, if the model

capability is good, the fine-tuning

effort will be low, which means

the duration for which compute is

required will be less. The value for

the infrastructure cost parameter

depends on the size of the compute

and the number of compute

instances. Thus, if both fine-tuning

effort and infrastructure cost is

low, the additional cost incurred

will be low, approximately 10%.

However, if fine-tuning effort and

infrastructure requirements are

both high, cost incurred will be

approximately 70%.

Low Medium 20%

Low High 30%

Medium Low 20%

Medium Medium 40%

Medium High 55%

High Low 30%

High Medium 55%

High High 70%

2. Deployment effort cost and fine-tuning cost

The deployment effort cost and fine-tuning cost will depend on two factors:

a. The effort involved in deploying the model

251

b. The effort involved in fine-tuning the model

Both these factors are determined by “Deployment effort” and “Fine-tuning effort”

parameters from the framework. The following table indicates how these parameters

affect the additional cost incurred.

Table 103

Cost incurred due to deployment effort spent and fine-tuning effort

Deployment Effort Fine-tuning Effort Cost incurred Reason

Low Low 10%
The deployment effort depends on

the size of the model. If the model

size is small, the deployment effort

is low. However, the deployment

effort is high, if the model size is

large. Also, the fine-tuning effort is

auto-calculated based on the

capability of the model. If the model

capability is Poor, the fine-tuning

effort required will be high.

Similarly, if the model capability is

good, the fine-tuning effort will be

low. Thus, if both deployment effort

and fine-tuning effort are low, the

additional cost incurred will be low,

approximately 10%. However, if

deployment effort and fine-tuning

effort are both high, the cost

incurred will be approximately 70%.

Low Medium 20%

Low High 30%

Medium Low 20%

Medium Medium 40%

Medium High 55%

High Low 30%

High Medium 55%

High High 70%

3. Cost of inferencing and manual corrections

252

The effort involved in inferencing the fine-tuned model and performing manual

corrections depend on:

a. Complexity of the application

b. Model capability

Table 104

Cost of inferencing fine-tuned model and doing manual corrections

Complexity of

application

Model

capability
Cost incurred Reason

Simple Excellent 10%
If the model capability is good, the

fine-tuned model will give better

accuracy and hence reduce the manual

corrections required. Similarly, if the

complexity of the application is small,

the effort involved in inferencing the

fine-tuned model and hence the

associated cost will be less. Thus, we

see that if complexity is simple and

model capability is good, then the cost

of inferencing and manual corrections

is less. Similarly, if the application is

complex and model capability is

average, the time and hence cost of

inferencing will be high, and manual

corrections effort will also be high.

Hence, the cost incurred in this case

will be high, approximately 70%.

 Good 20%

 Average 30%

Medium Excellent 30%

 Good 40%

 Average 50%

Complex Excellent 50%

 Good 60%

 Average 70%

By considering all these factors, the final cost saving incurred will be calculated.

253

In the appendix, we show sample effort and cost savings obtained when applying this

framework to two different scenarios.

We had hypothesized that:

Hypothesis 2

If large language models are to be used optimally, then a human-in-the-loop is necessary

for validation of the result generated by the model.

Hypothesis 3

If code automation using large language models is leveraged in the industry, it can

improve software quality by reducing errors and increasing consistency.

Hypothesis 4

If large language models are used for code automation, it can improve software

development efficiency by reducing the time needed to develop code and provide

significant cost and effort benefits to software organizations.

The above results and discussions prove that all three hypotheses are true.

5.5 Research Question Four

What types of jobs will be completely replaced, if any, due to the adoption of AI in

the software industry?

In section 4.5, we explored how large transformer models can be leveraged for

performing different jobs in the software industry. We have seen that these models help

reduce the development effort in various tasks, right from requirements gathering and

software development to testing.

We discussed the different tasks LLM can help augment in the different phases of

the software development cycle, like

1. Planning and Requirements

2. Design

254

3. Coding and Testing

4. Software testing and quality assurance

5. Code refactoring and optimization

6. Enhancing technical documentation

7. Teaching programming language

In all the above phases, though AI models can be leveraged for various tasks,

validating, and correcting the task done by the model will still be needed. Especially, in

the code domain, though these models produce authentic-looking code and

documentation, the generated code or documentation will not always be accurate. Hence,

manual review and validation will always be required when leveraging these models.

In these tasks, the effort saving primarily comes from the effort spent in searching

different sources on the internet, to help solve a problem in the software development life

cycle. Large language models provide pointed answers to the task and for code-related

tasks can generate template code or documentation for the user, which must further be

refined and optimized. Thus, though capable of reducing the effort spent in performing a

task, AI models cannot replace a job completely. At the same time, the adoption of these

models does free up the bandwidth of the developers and allows them to focus on higher

levels jobs.

For example, in the requirements phase, a person can now focus on higher-order

decision-making jobs like working with stakeholders, defining the scope of the project,

and collaborating with different teams. In the design phase, the effort saved by

automating certain tasks can be utilized by focusing on other jobs requiring higher-order

thinking skills like designing for a scalable, maintainable, and more secure system.

Similarly, in the development phase, the developer whose effort is saved due to auto code

generation or translation can now focus on jobs like architecting the applications, creating

255

design documents, working on performance improvements, and looking into security

constraints. In the testing phase, AI can help automate test case generation. However,

validating that the generated test cases are accurate and correcting them will still require

manual effort. Moreover, individuals can also focus on other aspects like ensuring that

the test cases align with best practices and they meet the quality standards.

Similarly, we have seen that AI models can suggest refactored and optimized

code. This saves time for the developers to perform the optimization from scratch.

However, the refactored code will need to be reviewed and different factors like

performance and scalability would have to be considered. This is where the individual

bandwidth saved by automation can be directed.

We also saw that AI models can generate technical documentation. However, the

quality of the documentation may not be as per industry standards. This is because the AI

models are generic. Hence, they cannot capture or generate documentation that is domain

specific. Thus, human writers will still be needed to add more context and domain

knowledge to the documentation.

We also experienced as part of the various experiments, that the AI model can

help programmers learn a new programming language. The model can explain what a

piece of code does with details about the variables used and reasoning. However, as in

the other tasks, this information may not always be correct. The AI model can help speed

up learning a programming language, but it lacks the domain knowledge which can help

cover different aspects of the programming language. For this purpose, an individual with

an expert understanding of the programming language will always be needed.

We had hypothesized that:

256

If code automation using large language models is adopted in the software industry, it

can improve software development flexibility by allowing developers to focus on higher-

level tasks and by providing more options for code generation.

Based on the results and the above discussion, this hypothesis has been proven true.

5.6 Research Question Five

What is the new set of skills that will emerge as AI is increasingly adopted across

the organization for software development?

We discussed in section 4.6 that AI models are rapidly evolving and becoming

more efficient to solve a variety of problems in software development. However, working

with these models requires a new set of skills to make the model understand and learn

better and for the model to produce the desired output with better accuracy.

The skills we discussed are:

- Prompt engineering or prompt tuning

This is one of the critical skills that will be required when working with AI models.

As we have already seen, AI models are well-read and have a lot of knowledge.

However, they must be given the right instructions to get the right output.

Contextualizing the model by adding more domain knowledge and context in the

prompt will be required to get the best results. Knowing how to produce this prompt

and tune it further based on the requirement will be one of the critical skills required.

- Analytical and debugging skills

These skills though not new, would be required and will be critical when working the

LLMs. As we have seen in the entire study, after the result is generated by the model,

manual review and correction will still be needed. Here, the analytical and debugging

skills of individuals will be more important. As we have seen earlier, a generated

piece of code that may be appearing correct may still contain errors or bugs.

257

Analyzing the code, debugging the code, and correcting the code followed by further

tuning the prompt to produce better code, will be required in such cases.

- Collaboration and communication skills

These skills will also become critical as different teams would need to collaborate to

get the desired results. When using these AI models, collaboration with teams who

have a business understanding of the problem, architecture team, design team, and

also teams that automate tasks using rule-based tools may be required. Having a 360-

degree view of the problem to be solved can help the individual provide the right

context to the model and hence generate better results.

- Creativity and innovation

As the capability of the model improves, creativity and innovation become important

skills that will be needed in the future. By understanding the strengths and limitations

of the AI models, individuals should be able to innovate and come up with different

ways and techniques how to maximize and apply the strengths of the model across the

entire life cycle of software development. Hence, this becomes another critical skill to

acquire.

- Model fine-tuning, responsible AI, and data-driven decision making

While some AI models may be able to solve the problem at hand without further

training, there may be some set of problems, for which further improving or fine-

tuning the model will be required. Also, for finetuning a model, data understanding

and preparation are most critical. The quality of data used in the fine-tuning process

will greatly impact the quality of results obtained from the fine-tuned model. At the

same time, ensuring that all ethical considerations and responsible AI principles are

followed will be equally important. Hence, it will be important to acquire all these

skills as we move towards AI-assisted software development.

258

We hypothesized:

Hypothesis 6: If code automation using large language models is adopted in the industry,

then reskilling software professionals is necessary.

As we see from the above discussion, this hypothesis is true.

Our last hypothesis was:

Hypothesis 7

If code automation continues to increase in popularity and effectiveness, it will have a

significant impact on the software industry and software professionals.

We discussed in section 4.2.2 how large language models will have a significant impact

on the software industry and software professionals.

We observed how AI-assisted software development will impact the workforce,

business, and ways of working in both services-based and product-based industries. As

AI models become more efficient, there may be a decrease in entry-level developers as

some of the tasks may be automated. There will also be a shift in the skills required to

work with these models, as discussed in the previous section.

We have also seen from the results of various experiments conducted in this

study, how LLMs can provide significant effort and cost savings in different phases of

software development. We also suggested a seven-point framework, which can be used

by both services-based as well as product-based companies to measure the effort and cost

savings they can get by automating different tasks.

The way of working will also be impacted, for both categories of industries. There

will be a need to train employees to make use of AI in an intelligent and responsible

manner. A more collaborative and hybrid approach will emerge as the adoption of large

language models grows in the industry.

259

CHAPTER VI:

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS

6.1 Summary

As part of this research, we aimed to study the impact large language models will

have on the software industry and software professionals. We listed the research

questions and hypotheses.

We did various experiments in a controlled environment and noted the results of

the study. Based on the various results obtained, we see that efficient LLMs like Codex,

and ChatGPT can perform many code-related tasks. They can also provide significant

effort and cost savings if the application complexity is simple. We also studied that, when

industries do not want to use API-based models due to data privacy issues, other open-

source models like CodeGee, GPT-Neox, and Bloom may be utilized.

We present a seven-point framework, which we derive based on our studies and

experiments. This framework takes into account seven points that can help assess the cost

and effort impact LLMs can have when leveraged during the software development

lifecycle. The key points of this framework are…..

We also identified the new skillset that will be required when AI-assisted

programming must be used. We also discussed how the way of working will be impacted

and a hybrid approach will evolve.

6.2 Implications

The cost of software development and the lack of skilled talent are two major

challenges that software industries face today. Traditional techniques for code automation

are not very efficient. Training a machine learning model using traditional approaches

like neural machine translation, requires large amounts of data and compute. This study

260

focuses on assessing the impact that large transformer models have in the area of code

automation and measuring their impact on the software industry.

The research findings present an illuminating perspective on the capabilities of

large pre-trained models from the context of code automation. The study throws light on

the various software development tasks that can be automated by using LLMs. These

tasks are not limited to code development alone but can belong to any phase of the

software development lifecycle. The study also indicates how the capability of LLMs in

performing these tasks is either comparable to or even better than traditional approaches.

These findings can help industries envision different areas where they would like to apply

large transformer models for automating diverse tasks.

The findings also indicate that manual validation and correction will always be

required due to the probabilistic nature of these models. Hence, these models can only be

used to augment developers and not replace them. The study findings also give an

indication of the amount of cost and effort saving one can get by leveraging these models.

The seven-point framework presented in the study can help software organizations

perform a cost-benefit analysis that they can get for different tasks, based on the

complexity of the problem and the capability of the ML model. This can help them

choose the right model for the problem to be solved and estimate the savings.

The seven-point framework will prove useful to assess the impact of problem

complexity on automation. It would help an organization assess whether the cost of

finetuning a model for a particular problem is worth the effort. It will also help them

identify solutions that could involve combining multiple techniques along with LLM to

save their effort and cost.

The findings from the study give insights into the skills that will be required in the

future as the adoption of LLMs in the industry increases. Entry-level development work

261

can be automated using LLMs and developers would need to upskill and reskill

themselves. This study will help developers understand why such reskilling will be

needed and how it will help them in their course of work.

Limitations

The study currently assessed how LLMs can be used for code automation using

techniques like prompt-tuning and inferencing. Also, the problem statements that were

used were of medium complexity and mostly related to modern programming languages.

The aspect of fine-tuning a pre-trained model for a custom problem or training a

transformer-based model from scratch on a custom dataset was not explored. These

activities require large amounts of compute and hence, were kept out of scope for this

research.

6.3 Recommendations for Future Research

Considering the limitations listed above, it is recommended to conduct future

studies on smaller models, fine-tune them for custom problem statements and custom

datasets, and apply the seven-point framework to arrive at the cost-benefit analysis in

such cases. The study also mostly targets modern programming languages. Future studies

must be done on legacy programming languages and assess the capability and impact that

these models can bring in this space.

The case studies considered during the course were of medium complexity.

Building on this study, further research is recommended to be carried out, to measure the

impact of code automation when the task is complex. This study can help provide

insights into the benefit these models can bring when there are a large number of files,

where each file is large with many interdependencies on other components or

frameworks. Such a study will help in assessing whether fine-tuning a model in such a

case will provide the necessary benefit.

262

Also, the current study included only the task of requirements classification from

the requirements elicitation phase. A similar study must be done for other tasks in both

the requirements identification as well as the design phases. This study will help in

getting a better understanding of the model‟s capabilities in performing various tasks,

other than those mentioned in this study.

6.4 Conclusion

 In this study, we aimed to assess the impact large pre-trained models will have on

the software development industry. Our findings prove, that the revolution has already

started. These models, which are pre-trained on code, can perform many code-related

tasks and thus provide multiple benefits. The study assessed the efficiency of these

models and also measured the cost and effort savings obtained by leveraging them. The

study showed that these models can provide effort savings of more than 50% when the

task is of simple to medium complexity and involves modern programming languages.

For tasks involving legacy language like COBOL, the study saw an effort saving of

around 30%. Similarly, based on the complexity of the task and the programming

language involved, the cost savings will vary.

One pivotal outcomes of the research study was the suggested seven-point

framework. This framework can serve as a guiding principle for organizations to assess

and measure the benefits they will get when leveraging these models, based on the task

and complexity of the application. The study also indicates that LLMs will only help

augment software development and not replace their jobs. On the contrary, the freed-up

bandwidth of the developers will help them focus on higher-order decision-making skills.

Also, as AI-assisted programming becomes mainstream and more widely adopted by

businesses, the study reveals a new set of skills that will emerge. Since the models can

generate code, analyzing and debugging the generated code will be crucial. Hence,

263

having strong analytical and debugging skills will be required. In addition, prompt-

tuning, model fine-tuning, and collaboration and communication skills to effectively

communicate with different teams to get the desired outcome, will be equally important.

To conclude, the research shows that as large language model adoption grows, the

software development industry will see great benefits. Both service-based and product-

based industries will see a change in the way of working, the workforce, and the business.

As more efficient code automation models get released, the industry can see a much

bigger and better impact.

264

APPENDIX A

SURVEY RESULTS

The following questions were asked to the participants during the online survey:

Sample Survey Questions:

1. Describe your role: Student, Programmer, Manager, Other

2. Rate your programming skills on a scale of 1 to 4

3. What programming language are you comfortable with:

Java, C++, Python, .NET, Javascript, C, C#, Go, R, Swift, PHP, Perl, Ruby, Scala,

Other

4. Time (in mins) you would take to code a simple Java program

5. Time (in mins) you would take to code a simple Python program

6. Time (in mins) you would take to code a simple C++ program

7. Time (in mins) you would take to code a medium complexity program

8. Time (in mins) you would take to code a complex program

9. Select reason for slow development time

10. Would you prefer to write code from scratch compared to using templates?

11. Would you prefer to make use of an automatic code generation utility for code

completion?

The survey recorded 1 ,777 responses. The screenshots below indicate the responses

received.

265

Figure 63

Q1 - Role of the participant

Figure 64

Q2 - Programming skills

266

Figure 65

Q3 – Programming language preference

Figure 66

Q4 – Effort needed for simple complexity program in Python

267

Figure 67

Effort needed for simple complexity program in Java

Figure 68

Effort to code simple complexity program in PL of choice

268

269

Figure 69

Effort needed to code medium complexity program in Python

Figure 70

Effort needed to code medium complexity program in Java

270

Figure 71

Effort to code medium complexity program in PL of choice

Figure 72

Time (in person days) to code complex program in Python

271

Figure 73

Time (in person days) to code complex program in Java

Figure 74

Time (in person days) to code complex program in PL of choice

272

Figure 75

Reason for slow development

Figure 76

Code writing preference

273

Figure 77

Preference to utility compared to manual approach

Figure 78

Preference for auto code generation

274

APPENDIX B

CODE SAMPLES

Table 105

Code generation capability of GPT-J, GPT-3, and Codex

GPT-J generated code

GPT-3 generated code

Codex generated code

275

Figure 79

Code Documentation using Codex

276

Figure 80

Python Code (To be translated to Java)

277

Figure 81

Java Code (Translated using Codex)

Figure 82

Lines of the program added to test the program

278

Figure 83

Code written manually by Java programmer

279

 Figure 84

GPT-3 generated webpage

280

Figure 85

GPT-3 generated stylesheet

281

Figure 86

ChatGPT generated webpage-1

282

Figure 87

ChatGPT generated webpage-2

283

Figure 88

ChatGPT generated stylesheet-1

284

Figure 89

ChatGPT generated stylesheet-2

285

Figure 90

ChatGPT generated stylesheet-3

286

Figure 91

ChatGPT generated stylesheet-4

287

Figure 92

ChatGPT generated stylesheet-5

288

Figure 93

Android app code - 1

Figure 94

Android app code - 2

289

Figure 95

Android app code - 3

Figure 96

Android app code - 4

290

Figure 97

Android app code - 5

Figure 98

Android app code - 6

291

Figure 99

Android app code - 7

Figure 100

Android app code - 8

292

Figure 101

ASP.NET application -1

293

Figure 102

ASP.NET application -2

294

Figure 103

ASP.NET application -3

295

Figure 104

ASP.NET application -4

296

Figure 105

Tic-Tac-Toe 1

Figure 106

Tic-Tac-Toe 2

297

Figure 107

Tic-Tac-Toe 3

Figure 108

Tic-Tac-Toe 4

298

Figure 109

Tic-Tac-Toe 5

Figure 110

Tic-Tac-Toe 6

299

Figure 111

Tic-Tac-Toe 7

Figure 112

Tic-Tac-Toe 8

300

Figure 113

Tic-Tac-Toe 9

Figure 114

Tic-Tac-Toe 10

301

Figure 115

COBOL Code

302

Figure 116

COBOL Code Continued

303

Figure 117

Seven-point Framework Case 1

304

Figure 118

Seven-point Framework Case 2

305

REFERENCES

Abad, Z. S. H. et al. (2017) What Works Better? A Study of Classifying Requirements.

2017 IEEE 25th International Requirements Engineering Conference (RE),

Lisbon, Portugal. doi: 10.1109/RE.2017.36.

Aggarwal, G. (2021) Impact of AI on software development - implications of ICC, The

Architect Coach. Available at: https://thearchitectcoach.com/impact-of-ai-on-

software-development-implications-of-icc/.

AI21labs (2021) Announcing AI21 Studio and Jurassic-1 Language Models, Ai21.com.

Available at: https://www.ai21.com/blog/announcing-ai21-studio-and-jurassic-1.

(Accessed: November 16, 2021).

Alford, A. (2022) Meta open-sources 175 billion parameter AI language model

OPT, InfoQ. Available at: https://www.infoq.com/news/2022/06/meta-opt-175b/

(Accessed: April 9, 2023).

Alkashri, Z., Siyam, N. and Alqaryouti, O. (2020) “A detailed survey of Artificial

Intelligence and Software Engineering: Emergent Issues,” in 2020 Fourth

International Conference on Inventive Systems and Control (ICISC). IEEE, pp.

666–672.

Asiroglu, B. et al. (2019) “Automatic HTML code generation from mock-up images

using machine learning techniques,” in 2019 Scientific Meeting on Electrical-

Electronics & Biomedical Engineering and Computer Science (EBBT). IEEE, pp.

1–4.

Bahdanau, D., Cho, K. and Bengio, Y. (2014) “Neural machine translation by jointly

learning to align and translate,” arXiv [cs.CL]. Available at:

http://arxiv.org/abs/1409.0473.

Benbya, H. and McKelvey, B. (2006) “Toward a complexity theory of information

systems development,” Information Technology and People, 19(1), pp. 12–34.

Bendor-Samuel, P. (2022) Spiking Attrition Impact On IT And Engineering

Services, Forbes. Available at:

https://www.forbes.com/sites/peterbendorsamuel/2022/05/31/spiking-attrition-

impact-on-it-and-engineering-services/?sh=1fe9e7217c99 (Accessed: August 20,

2022).

306

Bessen, J. and Frick, W. (2018) How Software Is Helping Big Companies

Dominate, Harvard Business Review. Available at: https://hbr.org/2018/11/how-

software-is-helping-big-companies-dominate.

BigScience (2022) BLOOM, Huggingface.co. Available at:

https://bigscience.huggingface.co/blog/bloom (Accessed: April 9, 2023).

Black, D. (2020) AI is eating software development: Automation for overburdened

programmers, EnterpriseAI. Available at:

https://www.enterpriseai.news/2020/02/25/how-ai-is-automating-and-improving-

software-programming (Accessed: November 7, 2021).

Breaux, T. and Moritz, J. (2021) “The 2021 software developer shortage is

coming,” Communications of the ACM, 64(7), pp. 39–41.

Brooks, F., Jr (1987) “No silver bullet essence and accidents of software

engineering,” IEEE Computer, 20(4), pp. 10–19. doi: 10.1109/mc.1987.1663532.

Brown, T. B. et al. (2020) “Language Models are Few-Shot Learners,” arXiv [cs.CL].

Available at: http://arxiv.org/abs/2005.14165.

Bundy, A. et al. (eds.) (2012) “AI meets Formal Software Development (Dagstuhl

Seminar 12271).” Schloss Dagstuhl--Leibniz-Zentrum fuer Informatik.

Casamayor, A., Godoy, D. and Campo, M. (2010) “Identification of non-functional

requirements in textual specifications: A semi-supervised learning

approach,” Information and software technology, 52(4), pp. 436–445. doi:

10.1016/j.infsof.2009.10.010.

CHAOS REPORT 2015 (no date) Standishgroup.com. Available at:

https://www.standishgroup.com/sample_research_files/CHAOSReport2015-

Final.pdf.

Chen, M. et al. (2021) “Evaluating large language models trained on code,” arXiv

[cs.LG]. Available at: http://arxiv.org/abs/2107.03374.

Chowdhery, A. et al. (2022) “PaLM: Scaling language modeling with Pathways,” arXiv

[cs.CL]. Available at: http://arxiv.org/abs/2204.02311 (Accessed: April 10, 2023).

Chui, M., Manyika, J. and Miremadi, M. (2016) Where machines could replace humans--

-and where they can’t (yet), Mckinsey.com. McKinsey & Company. Available at:

https://www.mckinsey.com/business-functions/mckinsey-digital/our-

insights/where-machines-could-replace-humans-and-where-they-cant-yet

(Accessed: December 18, 2021).

307

Ciniselli, M. et al. (2021) “An empirical study on the usage of BERT models for code

completion.” Available at: https://arxiv.org/abs/2103.07115.

Code Translation - Papers with Code (no date). Available at:

https://paperswithcode.com/task/code-translation.

“Code-T5 Dataset” (no date). Available at:

https://console.cloud.google.com/storage/browser/sfr-codet5-data-

research/data/translate;tab=objects?pageState=(%22StorageObjectListTable%22:(

%22f%22:%22%255B%255D%22))&prefix=&forceOnObjectsSortingFiltering=f

alse&pli=1.

Code.org 2016 Annual Report (no date) Code.org. Available at:

https://code.org/about/2016 (Accessed: April 12, 2023).

“CodeXGLUE” (2020) CodeXGLUE - GitHub. Available at:

https://github.com/microsoft/CodeXGLUE/tree/main/Code-Code/code-to-code-

trans.

Cullum, S. (2007) The effect of automatic code generation on developer job

satisfaction, Open.ac.uk. Available at: http://computing-

reports.open.ac.uk/2007/TR2007-19.pdf.

Dam, H. K. (2019) “Artificial intelligence for software engineering,” XRDS Crossroads

The ACM Magazine for Students, 25(3), pp. 34–37. doi: 10.1145/3313117.

Dias Canedo, E. and Cordeiro Mendes, B. (2020) “Software Requirements classification

using machine learning algorithms,” Entropy (Basel, Switzerland), 22(9), p. 1057.

doi: 10.3390/e22091057.

EleutherAI - text generation testing UI (no date) Eleuther.ai. Available at:

https://6b.eleuther.ai/ (Accessed: December 18, 2021).

enterpriseitworld (2018) Artificial Intelligence- Fruits of A long Journey, Enterprise IT

World. Available at: https://www.enterpriseitworld.com/artificial-intelligence-

fruits-of-a-long-journey/ (Accessed: November 3, 2022).

Fabrício Filho, J., Rodriguez, L. G. A. and da Silva, A. F. (2018) “Yet Another Intelligent

Code-Generating System: A Flexible and Low-Cost Solution. Journal of

Computer Science and Technology,” Journal of Computer Science and

Technology, 33(5), pp. 940–965.

Feng, Z. et al. (2020) “CodeBERT: A pre-trained model for programming and natural

languages.” Available at: http://arxiv.org/abs/2002.08155.

308

Fong, V. L. (2019) Software requirements classification using word embeddings and

convolutional neural networks. California Polytechnic State University, San Luis

Obispo. doi: 10.15368/theses.2018.89.

Galanis, N.-I. et al. (2021) “Machine Learning Meets Natural Language Processing --

The story so far.” Available at:

https://www.researchgate.net/publication/351046768_Machine_Learning_Meets_

Natural_Language_Processing_--_The_story_so_far.

Gamma, E. et al. (1994) Design patterns: Elements of reusable object-oriented software.

Boston: Addison-Wesley Professional.

Gandhi, D. (2020) “Using abstarct syntax tree with CodeBERT to improve BLUE score

in zero-shot code documentation generation,” Pace.edu. Available at:

https://csis.pace.edu/~scha/MID2020/Abstract/a19.pdf.

GPT-NeoX (no date) Huggingface.co. Available at:

https://huggingface.co/docs/transformers/model_doc/gpt_neox (Accessed:

November 12, 2022).

Grano, G. et al. (2017) “app_reviews.” Available at:

https://huggingface.co/datasets/app_reviews.

Guelfi, N. (2018) “Please draw me a Software Engineer,” in Proceedings of the 51st

Hawaii International Conference on System Sciences. Hawaii International

Conference on System Sciences. doi: 10.24251/hicss.2018.701.

Hammond, J. (2020) Predictions 2021: Software developers face mounting

pressure, Forrester. Available at: https://www.forrester.com/blogs/predictions-

2021-software-developers-face-mounting-pressure/.

Han, K. et al. (2020) “A Survey on Vision Transformer,” arXiv [cs.CV]. Available at:

http://arxiv.org/abs/2012.12556.

Harsh (2022) TicTacToe, GitHub. Available at: https://github.com/ash-dodek/TicTacToe.

Harvey Nash Group (2021) Growth in global tech threatened as skills crisis reaches all-

time high, finds world’s largest digital leadership survey, www.harveynash.com.

Available at: https://www.harveynash.com/latest-news/growth-in-global-tech-

threatened-as-skills-crisis-reaches-all-time-high-finds-worlds-largest-digital-

leadership-survey.

309

Hung, D. (2021) Navigate Your Codebase Faster with Find Related Code - Code Faster

with Kite, kite.com. Available at: https://www.kite.com/blog/product/navigate-

your-codebase-faster-with-find-related-code/ (Accessed: November 7, 2021).

Huston, I. (2018) AI Is Not the End of Software Developers, Vmware.com. Available at:

https://tanzu.vmware.com/content/built-to-adapt/ai-is-not-the-end-of-software-

developers (Accessed: September 23, 2021).

Imam, A. T., Rousan, T. and Aljawarneh, S. (2014) “An expert code generator using rule-

based and frames knowledge representation techniques,” in 2014 5th

International Conference on Information and Communication Systems (ICICS).

IEEE, pp. 1–6.

Introducing ChatGPT (2022) openai.com. Available at: https://openai.com/blog/chatgpt

(Accessed: December 9, 2022).

kamyu (2020) LeetCode - Solutions, GitHub. Available at:

https://github.com/kamyu104/LeetCode-Solutions.

Karmakar, A. and Robbes, R. (2021) “What do pre-trained code models know about

code?,” arXiv [cs.SE]. Available at: http://arxiv.org/abs/2108.11308.

Kaur, P. (ed.) (no date) “Unit 1: Introduction and Overview,” in Artificial Intelligence |

DCAP506. Lovely Professional University, p. 9. Available at:

https://eslm.lpude.in/computer_application/mca/term_4/DCAP506_ARTIFICIAL

_INTELLIGENCE/files/basic-html/page9.html (Accessed: November 9, 2021).

Kazman, R. (2017) “Software Engineering,” Computer, 50(7), pp. 10–11. doi:

10.1109/mc.2017.184.

Kejeiri, M. L. (2020) Most commonly used Java Design pattern, GitHub. Available at:

https://github.com/mkejeiri/Java-Design-Pattern.

Korzeniowski, Ł. and Goczyla, K. (2019) “Artificial intelligence for software

development --- the present and the challenges for the future,” Bulletin of the

Military University of Technology, 68(1), pp. 15–32. doi:

10.5604/01.3001.0013.1464.

Krasner, H. (2018) The cost of poor software quality in the US: A 2020

report, Consortium for IT Software Quality. Available at: https://www.it-

cisq.org/the-cost-of-poor-software-quality-in-the-us-a-2020-report.htm.

310

Kulkarni, R. H. and Padmanabham, P. (2017) “Integration of artificial intelligence

activities in software development processes and measuring effectiveness of

integration,” IET software, 11(1), pp. 18–26. doi: 10.1049/iet-sen.2016.0095.

Kurtanovic, Z. and Maalej, W. (2017) “Automatically classifying functional and non-

functional requirements using supervised machine learning,” in 2017 IEEE 25th

International Requirements Engineering Conference (RE). IEEE, pp. 490–495.

LeClair, A. and McMillan, C. (no date) Funcom: Java Function Parallel

Corpus, FunCom. Available at: http://leclair.tech/data/funcom/.

Li, Z. et al. (2020) “The metric for automatic code generation,” Procedia computer

science, 166, pp. 279–286. doi: 10.1016/j.procs.2020.02.099.

Lins, S. et al. (2021) “Artificial intelligence as a service: Classification and research

directions,” Business & information systems engineering, 63(4), pp. 441–456. doi:

10.1007/s12599-021-00708-w.

Lu, S. et al. (2021) “CodeXGLUE: A machine learning benchmark dataset for code

understanding and generation,” arXiv [cs.SE]. Available at:

http://arxiv.org/abs/2102.04664.

Lyon, A. (2021) The Impact GitHub Copilot Will Have on Software

Development, GitHub Copilot Review: Is Copilot a Threat? | Rightpoint.

Available at: https://www.rightpoint.com/thought/articles/2021/08/25/the-impact-

github-copilot-will-have-on-software-development.

Mashhadi, E. and Hemmati, H. (2021) “Applying CodeBERT for automated program

repair of java simple bugs,” arXiv [cs.SE]. Available at:

http://arxiv.org/abs/2103.11626 (Accessed: May 21, 2022).

Mithas, S., Kude, T. and Whitaker, J. (2018) “Artificial intelligence and IT

professionals,” IT professional, 20(5), pp. 6–13. doi:

10.1109/mitp.2018.053891331.

Nagulapati, V., Rapelli, S. and Fiaidhi, J. (2020) “Automating Software Development

using Artificial Intelligence.” doi: 10.36227/techrxiv.12089139.

Narasimhan, A., Venkatesha Rao, K. P. A. and M B, V. (2021) “CGEMs: A Metric

Model for Automatic Code Generation using GPT-3.” Available at:

https://www.researchgate.net/publication/354087810_CGEMs_A_Metric_Model_

for_Automatic_Code_Generation_using_GPT-3.

311

National Research Council of Italy. (no date) “Natural Language Requirements Dataset.”

Available at: http://fmt.isti.cnr.it/nlreqdataset/.

Navarro-Almanza, R., Juarez-Ramirez, R. and Licea, G. (2017) “Towards supporting

software engineering using deep learning: A case of software requirements

classification,” in 2017 5th International Conference in Software Engineering

Research and Innovation (CONISOFT). IEEE, pp. 116–120.

Núñez, P. V. M. (no date) Software Requirements Classification Using Machine

Learning Algorithms | IV Convención Científica Internacional UCLV 2023, IV

International Scientific Convention UCLV 2023. Available at:

https://convencion.uclv.cu/event/simposio-transferencia-de-conocimiento-en-

tecnologias-de-la-informacion-113/track/software-requirements-classification-

using-machine-learning-algorithms-4345.

OpenAI (2022) OpenAI API, platform.openai.com. Available at:

https://platform.openai.com/docs/models/gpt-3 (Accessed: December 21, 2022).

OpenAI (2023) GPT-4, openai.com. Available at: https://openai.com/research/gpt-4

(Accessed: April 9, 2023).

Ott, D. (2013) “Automatic requirement categorization of large natural language

specifications at Mercedes-Benz for review improvements,” in Requirements

Engineering: Foundation for Software Quality. Berlin, Heidelberg: Springer

Berlin Heidelberg, pp. 50–64. doi: 10.1007/978-3-642-37422-7_4.

Paik, I. and Wang, J.-W. (2021) “Improving text-to-code generation with features of code

graph on GPT-2,” Electronics, 10(21), p. 2706. doi:

10.3390/electronics10212706.

Pan, C., Minyan, L. and Biao, X. (2021) “An Empirical Study on Software Defect

Prediction Using CodeBERT Model,” Applied Sciences, 11(11), p. 4793. doi:

10.3390/app11114793.

Parvez, M. R. et al. (2021) “Retrieval augmented code generation and

summarization,” arXiv [cs.SE]. Available at: http://arxiv.org/abs/2108.11601.

Peng, X., Xing, Z. and Sun, J. (2019) “AI-boosted software automation: learning from

human pair programmers,” Science China Information Sciences, 62(10). doi:

10.1007/s11432-018-9854-3.

Perez, L., Ottens, L. and Viswanathan, S. (2021) “Automatic Code Generation using Pre-

Trained Language Models.” Available at:

312

https://www.researchgate.net/publication/349521999_Automatic_Code_Generatio

n_using_Pre-Trained_Language_Models.

Piotrowski, P. T. (2012) “Hired personnel and software development costs.” Available at:

https://www.researchgate.net/publication/238400303_Hired_personnel_and_soft

ware_development_costs.

Project - Human Resource Management System. - COBOL Projects Source Code in

COBOL (no date) Sourcecodesworld.com. Available at:

https://www.sourcecodesworld.com/source/show.asp?ScriptID=469 (Accessed:

April 14, 2023).

Project Success, Quick reference card (2021). Available at:

https://hennyportman.files.wordpress.com/2021/01/project-success-qrc-standish-

group-chaos-report-2020.pdf.

PROMISE Software Engineering Repository (no date) Uottawa.ca. Available at:

http://promise.site.uottawa.ca/SERepository/ (Accessed: December 28, 2022).

Qiu, X. et al. (2020) “Pre-trained models for natural language processing: A

survey,” arXiv [cs.CL]. Available at: http://arxiv.org/abs/2003.08271.

Ramel, D. (2020) IntelliCode advances with first deep learning model for python in VS

code, Visual Studio Magazine. Available at:

https://visualstudiomagazine.com/articles/2020/08/24/intellicode-deep-

learning.aspx.

Schatsky, D. and Bumb, S. (2020) AI is helping to make better software, AI-assisted

software development | Deloitte Insights. Available at:

https://www2.deloitte.com/us/en/insights/focus/signals-for-strategists/ai-assisted-

software-development.html. (Accessed: November 7, 2021).

Simplified Wrapper and Interface Generator (no date). Available at:

https://www.swig.org/.

Stillman, J. (2017) 21 future jobs the robots are actually creating, Inc. Available at:

https://www.inc.com/jessica-stillman/21-future-jobs-robots-are-actually-

creating.html (Accessed: November 7, 2021).

Svyatkovskiy, A. et al. (2020) “IntelliCode compose: code generation using transformer,”

in Proceedings of the 28th ACM Joint Meeting on European Software

Engineering Conference and Symposium on the Foundations of Software

Engineering. New York, NY, USA: ACM, pp. 1433–1443.

313

Synced (2019) Deep TabNine: A powerful AI code autocompleter for

developers, SyncedReview. Available at: https://medium.com/syncedreview/deep-

tabnine-a-powerful-ai-code-autocompleter-for-developers-70454a5953fe.

The curious case of the CHAOS Report 2009 (no date) Project Smart. Available at:

https://www.projectsmart.co.uk/it-project-management/the-curious-case-of-the-

chaos-report-2009.php (Accessed: April 12, 2023).

Turing, A. (2004) “Computing Machinery and Intelligence (1950),” in The Essential

Turing. Oxford University Press. doi: 10.1093/oso/9780198250791.003.0017.

Vaswani, A. et al. (2017) “Attention is all you need,” arXiv [cs.CL]. Available at:

http://arxiv.org/abs/1706.03762.

Venkatesh, G. (2017) “Automation to kill 70% of IT jobs,” The Hindu Business Line, 14

November. Available at: https://www.thehindubusinessline.com/info-

tech/automation-to-kill-70-of-it-jobs/article9960555.ece.

Vinugayathri (no date) How will artificial intelligence impact software

development?, Clariontech.com. Available at:

https://www.clariontech.com/blog/how-will-artificial-intelligence-impact-

software-development (Accessed: December 12, 2021).

Wang, D. et al. (2021) “How much automation does a data scientist want?,” arXiv

[cs.LG]. Available at: http://arxiv.org/abs/2101.03970 (Accessed: May 21, 2023).

Wang, Y. et al. (2021) “CodeT5: Identifier-aware unified pre-trained encoder-decoder

models for code understanding and generation,” arXiv [cs.CL]. Available at:

http://arxiv.org/abs/2109.00859.

Wilson, D. (no date) IBM Garage Methodology. Available at:

https://www.ibm.com/garage/method/practices/code/tool_lint/.

Wilson, H. J. and Daugherty, P. R. (2018) “Collaborative intelligence: humans and AI are

joining forces.” Harvard Business Review, 96(4), pp. 114–123.

Xu, F. F. et al. (2022) “A systematic evaluation of large language models of code,”

in Proceedings of the 6th ACM SIGPLAN International Symposium on Machine

Programming. New York, NY, USA: ACM.

Xu, F. F., Vasilescu, B. and Neubig, G. (2021) “In-IDE code generation from natural

language: Promise and challenges,” arXiv [cs.SE]. Available at:

http://arxiv.org/abs/2101.11149.

314

Yang, S., Wang, Y. and Chu, X. (2020) “A survey of deep learning techniques for Neural

Machine Translation,” arXiv [cs.CL]. Available at:

http://arxiv.org/abs/2002.07526.

Your AI pair programmer (no date) GitHub Copilot · Your AI pair programmer.

Available at: https://copilot.github.com/.

Zaremba, W., Brockman, G. and OpenAI (2021) OpenAI Codex, OpenAI. Available at:

https://openai.com/blog/openai-codex/.

Zargar, S. A. (2021) “Introduction to Sequence Learning Models: RNN, LSTM, GRU.”

doi: 10.13140/RG.2.2.36370.99522.

Zheng, Q. et al. (2023) “CodeGeeX: A pre-trained model for code generation with

multilingual evaluations on HumanEval-X,” arXiv [cs.LG]. Available at:

http://arxiv.org/abs/2303.17568.

Zhou, W. et al. (2021) “Improving code autocompletion with transfer learning,” arXiv

[cs.SE]. Available at: http://arxiv.org/abs/2105.05991.

Zohair, L. M. A. (2018) “The future of software engineering by 2050s: Will AI replace

software engineers?,” International Journal of Information Technology and

Language Studies, 2(3). Available at:

https://journals.sfu.ca/ijitls/index.php/ijitls/article/view/23.

