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Credit cards offer convenience and user-friendly options for everyday transactions, 

attracting a wide audience seeking hassle-free financial interactions. The continuous 

evolution of technology and expansive network coverage facilitates easier access to credit 

cards and encourages their frequent usage among citizens. However, alongside the 

growth of the credit card industry, the threat of fraud looms large. One prevalent form of 

fraud involves unauthorized use of credit card details for purchases without the card 

owner's consent. With the sheer volume of card transactions, financial institutions and 

credit card issuers face significant challenges in detecting these fraudulent activities. This 

research aims to investigate the potential of Machine Learning techniques in identifying 

fraudulent transactions within a given dataset of credit card transactions. Additionally, 

the study assesses various Machine Learning algorithms using a publicly available credit 
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card transactions dataset, analyzing their effectiveness in distinguishing between 

fraudulent and genuine transactions. Machine Learning algorithms like “Logistic 

Regression”, “Gaussian Naïve Bayes”, “KNeighbors Classifier”, “Linear Support Vector 

Classifier”, “Random Forest Classifier”, “Isolation Forest”, “Bagging Classifier”, 

“Decision Tree Classifier”, “Keras Classifier”, “MLP Classifier”, “LightGBM 

Classifier”, “XGboost Classifier”, “Adaboost Classifier”, “Catboost Classifier”, 

“Dynamic Ensemble” and “Stacking” are applied on the available dataset and compared 

for various performance metrics.   
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CHAPTER I:  

INTRODUCTION 

 

1.1 Introduction 

 

The latest technological advancements have undoubtedly simplified our daily 

routines, offering unparalleled convenience in our day-to-day tasks. Yet, this very 

flexibility has also introduced novel threats previously unfamiliar to us. Embracing the 

prowess of technology exposes us to new vulnerabilities. Credit cards and online 

transactions stand out as prime examples of modern marvels, revolutionizing our 

financial dealings with unparalleled ease. No longer do we need to fret over exact change; 

a simple swipe of our credit card suffices to complete transactions, marking a significant 

departure from the days of haggling over loose coins. 

In today's world, credit cards have seamlessly integrated into our daily lives, 

offering unparalleled ease of use and a straightforward transaction process. People 

experience a sense of empowerment through their use. Moreover, with the explosive 

growth of the e-commerce industry, online payments have become enticing for 

individuals across all financial spectrums. What was once considered a luxury, credit card 

usage has now transformed into a necessity in modern society. 

Credit Cards usage has increased considerably across the globe, making this a 

lucrative financial instrument for fraudsters to target. According to the report "India: 

Number of Credit Cards in Use 2014-2029" by Degenhard (2024), between 2024 and 

2029, there is a projected continuous surge in the utilization of credit cards in India, with 
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an anticipated addition of 2.3 million cards, marking a growth rate of 5.29 percent. This 

trend signifies a consistent expansion, extending over a span of fifteen years. It is 

anticipated that by the end of this period, in 2029, the total number of credit cards in 

circulation is expected to reach 45.81 million, marking a notable milestone as it attains a 

new peak. 

As per this same report, in United States of America, 25 million cards are expected 

to be added reflecting a growth rate of 2.25 percent. 

However, this convenience comes at its own price. Credit Card fraud is resulting in 

loss of billions of dollars globally. According to the report "Card Fraud Value 

Worldwide" by Raynor de Best (2024), there has been a rise in card fraud losses globally, 

with a notable contribution from the United States. Card fraud losses across the world 

increased by more than 10 percent between 2020 and 2021, the largest increase since 

2018. It was estimated that merchants and card acquirers lost more than 30 billion U.S. 

dollars during this period. 

According to the article "Card Industry Faces $400B in Fraud Losses over next 

Decade, Nilson Says" by Caitlin Mullen (2021), projections suggest significant 

challenges ahead for the card industry due to fraud losses. As per this article, over the 

forthcoming decade, the card industry is projected to face a staggering collective loss of 

$408.50 billion globally due to card fraud, as indicated by the annual report from the 

industry research firm Nilson Report. As total payment card volume is anticipated to 

surge to $79.14 trillion by 2030, the industry is estimated to incur $49.32 billion in losses 

attributed to fraud. This article reports, in the previous year, the United States once again 
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held a larger portion of global card fraud compared to its share of total card volume. 

Although representing only 22% of the total card volume worldwide, the U.S. accounted 

for 36% of card fraud in the same period. In 2019, these percentages stood at 22% and 

34%, respectively. It is projected that by 2030, U.S. fraud losses will escalate to $17 

billion, coinciding with total card volume reaching nearly $19 trillion. 

Hindustan Times (2020) reported that in over 10 years period (April 2009 to 

September 2019), fraudsters siphoned INR 615.39 Crore ($75 million) in more than 117 

thousand cases of Credit and Debit card frauds.  

The article titled "5 Most Popular Credit Card Frauds in India 2024," authored by 

Asefa Hafeez (2024) and published on Kuvera, highlights the persistent threat of credit 

card frauds in India. It brings to light data from the National Crime Records Bureau 

(NCRB), revealing a concerning trend. In 2021, a total of 3,342 fraud cases were 

reported, marking a substantial increase of approximately 20% compared to the preceding 

year. This surge follows a notable uptick of over 70% in such fraudulent activities during 

2020. 

According to the "Consumer Sentinel Network Annual Data Book 2021" by the 

Federal Trade Commission (FTC, 2021), for five consecutive years from 2017 to 2021, 

Credit Card fraud was the biggest identity theft reported. As per this report, the number of 

Credit Card frauds reported in US in the year 2017, 2018, 2019, 2020 and 2021 are 

133,107, 157,745, 271,938, 393,378 and 389,737 respectively. 

According to the article "Debit, Credit Card Frauds on Rise, ATM Scams down: 

NCRB" by Shuja Asrar (2022), 3,432 cases of credit and debit card frauds were filed from 
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across India in 2021, up nearly 20% from the year-earlier. In 2020, such frauds increased 

by over 70%. In just two years, credit and debit card-related frauds nearly doubled, it 

showed. 

As per the research report from Security.org team, 65% of US Credit Card holders 

have been fraud victims at some point in their lives. Same research found that in 2022, 44 

percent of credit card users reported having two or more fraudulent charges, compared to 

35 percent in 2021. Below image from the Security.org indicates percentage of card holders 

impacted by Credit Card fraud. 

 

 

Figure 1.1 

Percentage of card holders impacted by Credit Card fraud (security.org team, 2023) 
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The webpage "Credit Card Fraud Soars to 10-Year High" by Experian Plc (2023) 

reveals that Credit Card fraud rate rose by 18% in the last three months of 2022 which 

means the overall fraud rate for 2022 was the highest yearly rate recorded by Experian in 

the last 10 years.  
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1.2 Research Problem 

 

Credit card fraud poses significant challenges and impacts various stakeholders in 

the financial ecosystem. 

At its core, credit card fraud occurs when someone unlawfully uses a card or its 

associated account for transactions, unbeknownst to the legitimate cardholder. This illicit 

activity not only affects the cardholder, who faces potential financial losses, but also 

impacts merchants who may suffer revenue losses or reputational damage due to 

fraudulent transactions. Additionally, banks and financial institutions bear the brunt of 

fraud through reputational harm and financial liabilities. 

As technology continues to advance, credit card fraud has become increasingly 

sophisticated, presenting greater hurdles for cardholders, financial institutions, and card 

issuers. The evolving landscape of fraud necessitates constant vigilance and adaptation to 

new tactics and technologies. Furthermore, regulatory and compliance pressures add 

another layer of complexity, requiring banks and financial institutions to invest heavily in 

fraud prevention measures while navigating stringent regulations to protect both 

themselves and their customers.  

Credit card fraud encompasses various types, each presenting distinct risks and 

methods of exploitation. Here are the primary categories: 

1) Card-not-present fraud: Occurs when someone illicitly utilizes vital credit 

card data, including name, card number, CVV, expiry date, to conduct unauthorized 

transactions online. 
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2) Lost or stolen Credit Card: If a credit card is misplaced or stolen, 

unauthorized individuals can exploit it for fraudulent transactions. 

3) Phishing: Fraudsters masquerade as trusted entities, often via emails or text 

messages, to deceive individuals into divulging their credit card account details. With this 

information, they can perpetrate fraudulent transactions. 

4) Skimming: Criminals employ specialized devices attached to point-of-sale 

terminals or ATMs to clandestinely capture credit card data from the magnetic strip. This 

stolen data is then used to create counterfeit cards for fraudulent transactions. 

5) Identity theft: Perpetrators unlawfully obtain and misuse personal data, 

including credit card details, to engage in illicit financial activities without the victim's 

consent. 

1.3 Purpose of Research  

 

In the ever-evolving landscape of financial transactions, card frauds loom as a 

persistent menace. To combat this threat, the industry must embrace cutting-edge 

technological solutions. Financial institutions play a crucial role in this fight by offering 

sophisticated and automated fraud detection capabilities. 

However, as technology is advancing, fraudsters have become craftier, blurring the 

lines between genuine and fraudulent transactions. Traditional pattern matching 

techniques—whether manual or automated—fall short in identifying these increasingly 

sophisticated scams. 
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Another hurdle is the access to credit card transaction datasets. Privacy concerns 

often lock them away from public view, making research outcomes elusive. Financial 

institutions conduct most of the research internally, leaving limited information 

accessible to the wider world. 

As we navigate these challenges, setting performance standards for fraud detection 

models remains a puzzle. But with determination and innovation, we can stay one step 

ahead in this high-stakes game.  

In a given dataset of credit card transactions, fraud detection involves accurately 

classifying new transactions as either genuine or fraudulent. An effective fraud detection 

system not only identifies fraudulent transactions but also minimizes the misclassification 

of genuine transactions as fraudulent. 

 

1.4 Research Purpose and Questions  

 

This paper intends to explore following research questions: 

1) Is it possible to utilize Machine Learning methodologies for the 

identification and mitigation of fraudulent activities within credit card transactions? 

Machine Learning algorithms have demonstrated efficacy in discerning potentially 

fraudulent transactions from a pool of credit card activities. These algorithms operate by 

assessing various transactional attributes to determine the probability of fraudulent 

behavior. By analyzing a multitude of features associated with each transaction, such as 
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transaction amount, frequency, location, and timing, these models are adept at uncovering 

intricate patterns within complex datasets. 

2) If Machine Learning techniques are to be employed for the detection and 

analysis of fraudulent transactions, the pivotal question emerges: which algorithm or model 

exhibits the highest efficacy in discerning fraudulent activities from legitimate ones? To 

elucidate this, an exhaustive comparative study was undertaken, meticulously scrutinizing 

the performance of an array of algorithms and models.  

This study encompassed a diverse spectrum of methodologies, spanning 

traditional techniques such as Logistic Regression and Gaussian Naïve Bayes, alongside 

more sophisticated models including KNeighbors Classifier, Linear Support Vector 

Classifier, Random Forest Classifier, Isolation Forest, Bagging Classifier, Decision Tree 

Classifier, Keras Classifier, MLP Classifier, LightGBM Classifier, XGBoost Classifier, 

Adaboost Classifier, Catboost Classifier, Dynamic Ensemble, and Stacking.  

Each of these Machine Learning algorithms possesses its own distinct 

strengths and weaknesses. Logistic Regression and Gaussian Naïve Bayes are adept at 

binary classification tasks, with Logistic Regression modelling event probabilities based 

on input features, and Gaussian Naïve Bayes assuming conditional feature independence 

given class labels. While interpretable and computationally efficient, these models 

struggle in capturing intricate data relationships. 

KNeighbors Classifier categorizes data points by the majority class of their 

nearest neighbors, potentially effective for detecting local patterns but susceptible to 

computational overhead. Linear Support Vector Classifier (SVC) constructs hyperplanes 
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for class separation, proficient in linearly separable scenarios yet encountering challenges 

with non-linear boundaries. 

The Random Forest Classifier combines multiple decision trees to enhance 

accuracy and feature importance interpretation, however, this model is susceptible to 

overfitting. Isolation Forest isolates anomalies within a tree structure, efficient for high-

dimensional data but potentially less effective in lower dimensions. 

Bagging Classifier employs bootstrap aggregation to mitigate variance 

among multiple models, beneficial for unstable models but potentially lacking robustness 

against outliers. Decision Tree Classifier, while interpretable, is prone to overfitting due 

to its inherent nature of data partitioning. 

Ensemble Models such as Stacking and Dynamic Ensemble combine 

predictions from multiple models, enhancing robustness albeit requiring meticulous 

tuning. Deep Learning Models like Keras Classifier and MLP Classifier learn intricate 

data representations, excelling in capturing complex patterns but demanding substantial 

data volumes. 

Gradient Boosting Models including LightGBM, XGBoost, Catboost, and 

Adaboost sequentially construct weak learners to refine accuracy, proficient in handling 

non-linearity and feature interactions albeit at a computational cost. 

Each algorithm underwent rigorous evaluation, scrutinizing its capacity to 

accurately discern fraudulent transactions while minimizing false positives. Metrics 

encompassing Accuracy, Precision, Recall, and Receiver Operating Characteristic (ROC) 

curves were meticulously analysed to gauge performance across diverse dimensions.  
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The insights gained from this comprehensive comparative study shed light 

on the nuanced strengths and weaknesses of various Machine Learning approaches in 

combating fraudulent activities within credit card transactions, offering invaluable 

guidance for both practitioners and researchers alike. 

In this paper, we utilized a dataset comprising credit card transactions that took 

place in September 2013 involving European cardholders. The dataset captures 

transactions occurring over a span of two days, during which 492 fraudulent transactions 

were identified out of a total of 284,807 transactions. This dataset poses a significant 

challenge due to its highly imbalanced nature, with fraudulent transactions accounting for 

a mere 0.172% of the entire dataset.  

Comprising 31 numerical input variables, the dataset has been anonymized and 

features are denoted by names such as V1, V2, V3 up to V28. For confidentiality reasons, 

specific details about the cardholders and merchants have been obfuscated. Additionally, 

most of the feature data have been scaled to maintain consistency, except for three 

variables: 'Time', 'Amount', and 'Class'. 

The 'Time' feature represents the elapsed time in seconds between each 

transaction and the first transaction recorded in the dataset. This provides insights into the 

temporal aspect of the transactions, aiding in the analysis of transaction patterns over 

time. Meanwhile, the 'Amount' feature signifies the monetary value of each transaction, 

enabling examination of transaction sizes and potential correlations with fraudulent 

activity. 
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'Class' is the target variable for our analysis. It assigns a value of 0 to genuine 

transactions and 1 to fraudulent transactions, facilitating the classification task of 

distinguishing between legitimate and fraudulent activities. 

This dataset serves as a valuable resource for studying fraud detection techniques 

in real-world financial transactions. Despite its anonymized nature, the dataset offers rich 

insights into transaction patterns, temporal dynamics, and transaction amounts, laying the 

foundation for robust fraud detection methodologies."  
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CHAPTER II:  

REVIEW OF LITERATURE 

 

Credit card fraud inflicts substantial financial losses on consumers, eroding trust in the 

credit card ecosystem. An effective fraud detection system is crucial for timely 

intervention to restore consumer confidence. Consequently, numerous researchers have 

explored various solutions to detect and prevent fraud. The following section reviews 

some prominent work in this field: 

Alam et al. (2021) evaluated machine learning classifiers such as Random Forest 

(RF), AdaBoost, and CatBoost for detecting credit card fraud, highlighting their high 

accuracy rates. They discussed the significance of feature selection in improving fraud 

detection performance, with RF and CatBoost showing the best results. The research used 

a highly imbalanced dataset from European cardholders in September 2013, emphasizing 

the need for careful handling of such data. The study concluded that RF and CatBoost 

classifiers achieved the highest accuracy, suggesting further research on different datasets 

to validate these findings. 

Azhan & Meraj (2020) from the Jamia Millia Islamia University, India used 

Multiple Linear Regression, Logistic Regression, K-Nearest Neighbors, Gaussian Naïve 

Bayes, Random Forest and Neural Network to determine potential fraudsters using the 

previous mistakes and details of previous fraudsters. Model evaluation was done using 

precision and F1 scores. This research found K-Nearest Neighbors to be most effective in 
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detecting Credit Card frauds. The study concluded that ML techniques were more 

effective in handling class imbalance compared to shallow Neural Networks. 

Shirgave, Awati, More, and Patil (2019) reviewed various machine learning 

techniques for detecting credit card fraud and compared their performance. They 

discussed supervised and unsupervised algorithms, including Random Forest, Logistic 

Regression, KNN, SVM, Decision Tree, and Naive Bayes. A new system was proposed 

using the Random Forest algorithm, addressing issues like concept drift and class 

imbalance. According to the study's comparison, the Random Forest algorithm 

outperformed others in accuracy, precision, and specificity. This document provided a 

comprehensive analysis of different approaches to improving credit card fraud detection 

using machine learning. 

Four researchers from University of Luxembourg proposed to create a new set of 

features based on analyzing the periodic behavior of the time of a transaction using the 

von Mises distribution. Using a real credit card fraud dataset provided by a large 

European card processing company, authors compared state-of-the-art credit card fraud 

detection models, and evaluated how the different sets of features had an impact on the 

results. By including the proposed periodic features into the methods, the results showed 

an average increase in savings of 13% (Bahnsen et al., 2015) 

Another research examined and compared the performance of four traditional 

supervised classifiers viz. Logistic Regression, Gaussian Naïve Bayes, k-Nearest 

Neighbor and Decision Tree. Authors concluded that Logistic Regression and Decision 
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Tree performed better than other classifiers. They also found that ensemble methods 

performed better in case of highly imbalanced dataset. (C., 2020) 

In their paper titled “Supervised Machine Learning Algorithms for Credit Card 

Fraudulent Transaction Detection: A Comparative Study,” Dhankhad et al. (2018) 

conducted a thorough investigation into the efficacy of various Machine Learning 

algorithms in detecting fraudulent transactions using the Kaggle Credit Card fraud 

dataset. The study, authored by three researchers from Lakehead University, Canada, 

aimed to identify classifiers with superior accuracy in predicting fraud. The findings 

revealed that ensemble learning exhibited marginally superior performance compared to 

individual Machine Learning algorithms such as Logistic Regression or Support Vector 

Machines. 

In their research paper, Dighe et al. (2018) conducted a comparative analysis of 

machine learning algorithms including Naive Bayes, KNN, Decision Trees, Logistic 

Regression, and Neural Network Algorithms such as Multi-Layer Perceptron and 

Chebyshev Functional Link Artificial Neural Network. The study involved training four 

classifiers based on different machine learning techniques and evaluating their 

performance using accuracy metrics. The results showed that the performance of KNN 

surpassed that of other machine learning algorithms, as concluded by the authors. 

Dornadula & Geetha (2019) proposed a novel fraud detection method for 

Streaming Transaction Data, aiming to analyze customers' past transaction details and 

extract behavioral patterns. The research involved clustering cardholders into different 

groups based on transaction amounts and extracting behavioral patterns using the Sliding 
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Window Strategy. Subsequently, various Machine Learning classifiers were applied to 

these groups. The study concluded that Logistic Regression, Decision Tree, and Random 

Forest yielded superior results. 

In the research paper titled “Predicting Credit Card Transaction Fraud Using 

Machine Learning Algorithms”, Gao et. al. (2019) explored the application of linear and 

nonlinear statistical modeling and machine learning models on real credit card transaction 

data. Machine Learning models used in this research were Logistic Regression, Neural 

Networks, Random Forest, Boosted Tree and Support Vector Machines. 

Kazemi & Zarrabi (2017) proposed a deep autoencoder to extract the best features 

from the information of the credit card transactions and then appended a softmax network 

to determine the class labels. This paper delved deep to evaluate a couple of variants of 

autoencoders and compared their results. 

In their research paper “Credit Card Fraud Detection Using Machine Learning 

Models and Collating Machine Learning Models”, Khare & Sait (2018) compared four 

classifier models based on Logistic Regression, SVM, Decision Tree and Random Forest. 

Authors concluded that accuracy of Random Forest was best followed by the results of 

Logistic Regression, SVM and Decision Tree. 

In one comparative study (Mittal & Tyagi, 2019), authors evaluated the suitability 

of machine learning algorithms in detecting credit card frauds. Several popular 

algorithms in supervised, ensemble and unsupervised categories were evaluated on 

different metrics. It was concluded that unsupervised algorithms handle the dataset 
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skewness in better ways and hence perform well over all metrics absolutely and relative 

to other techniques. 

Nadim et. al. (2020) used six Machine Learning algorithms viz. Logistic 

Regression, Linear Discriminant Analysis, K Nearest Neighbors (KNN), Classification 

Trees, Support Vector Classifier, Random Forest Classifier and XGBoost Classifier on 

the European Credit Card dataset.  These algorithms were evaluated based on Accuracy, 

Sensitivity, Specificity and Precision. The research found Random Forest and XGBoost 

to be more apt for fraud detection. 

In the research paper “Credit Card Fraud Detection Framework – A Machine 

Learning Perspective”, Parmar et. al. (2020) explored the presentation of K-Nearest 

Neighbor, Decision Trees, Support Vector Machine (SVM), Logistic Regression, 

Random Forest, and XGBoost for credit card fraud detection. This paper concluded that 

K-Nearest Neighbors performed best, and Logistic Regression performed worst basis 

precision and F1 score. 

Usage of Genetic Algorithm and Neural Network (GANN) was advocated in a 

research paper. (Patidar & Sharma, 2011). Back Propagation Network (BPN) was used to 

train the neural network and genetic algorithm was used to choose the most effective 

parameters for the neural network. 

One study (Puh & Brkic, 2019) implemented and measured performance of three 

selected ML algorithms: Random Forest, Support Vector Machine and Logistic 

Regression. Measures used to evaluate the algorithms were area under the ROC curve 
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(AUC) and average precision (AP). Random Forest performed slightly better than 

Logistic Regression. SVM performed poorest among the group. 

Pumsirirat & Yan (2018) suggested to use unsupervised learning to detect Credit 

Card frauds. In their research paper, they focused on fraud cases that could not be 

detected based on supervised learning. They suggested a model of deep Auto-encoder and 

Restricted Boltzmann Machine (RBM) to use normal transactions to detect fraudulent 

transactions in real time. 

A study like the one proposed here was conducted by Rajora et al. (2018). The 

primary aim of the paper was to find the classifiers that have better accuracy prediction 

for the fraud detection. The paper found that the ensemble learning had slightly better 

performance than individual Machine Learning algorithms like Logistic Regression or 

Support Vector Machines. 

S P Maniraj et al. (2019) illustrated the modelling of a dataset using Machine 

Learning. Available credit card transaction data was modelled using the data of the ones 

that turned out to be fraud. This model was then used to recognize whether a new 

transaction was fraudulent. 

Saloni & Rout (2021) compared several machine learning models like Random 

Forest, Logistic Regression, Naïve Bayes and XGBoost on the European cardholder data. 

SMOTE was used to tackle the class imbalance problem in the dataset. Soft Voting and 

AdaBoost were used to compare the performance of various models. They concluded that 

Random Forest applied with AdaBoost along with SMOTE technique gave the best 

result. 
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Babu et al. (2020) discussed the use of machine learning algorithms such as Naïve 

Bayes, Logistic Regression, and AdaBoost for detecting credit card fraud. They 

highlighted the importance of exploratory data analysis and the role of non-anonymized 

predictors like time and amount in fraud detection. The paper investigated the 

performance of Logistic Regression, Decision Tree, and Random Forest algorithms using 

a dataset from Kaggle. It mentioned the use of t-SNE for visualization and the challenges 

of handling high-dimensional data in fraud detection. The document provided insights 

into various techniques and methodologies for improving the predictive power of fraud 

detection systems. 

In one research paper (Singh et al., 2012), SVM (support vector machine) based 

method with multiple kernel involvement was proposed including several fields of user 

profile instead of only spending profile. The simulation result showed improvement in TP 

(True Positive) & TN (True Negative) rate and decrease in the FP (False Positive) & FN 

(False Negative) rate. 

Researchers from Sri Lanka Institute of Information Technology applied Logistic 

Regression, Naïve Bayes, K-Nearest Neighbors and Support Vector Machines on a real-

world credit card transactions dataset to check their effectiveness in detecting fraudulent 

transactions. Accuracy was used as the performance metrics and Support Vector Machine 

was found to be best performing model. (Thennakoon et. al., 2019) 

Trivedi et al. (2020) from Institute of Engineering and Technology, Chitkara 

University, India tried Random Forest, Naïve Bayes Classifier, Logistic Regression, 

Support Vector Classifier, K-Nearest Neighbors, Decision Trees, and Gradient Boosting 
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on the Kaggle Credit Card dataset. They measured the performance of the models using 

the Accuracy, Precision, Recall, F1 and False Positive Rate. The research concluded 

Random Forest as the best performing model among the evaluated models. 

In the research paper “Credit Card Fraud Detection Using Bayesian and Neural 

Networks”, Tuyls et. al. (2015) applied Artificial Neural Networks and Bayesian Belief 

Networks on the real-world financial data. As per this comparative study, Bayesian 

Networks yielded better results concerning fraud detection and they took less time to train 

but fraud detection process was faster with Artificial Neural Networks. 

Lakshmi & Kavila (2018) from Anil Neerukonda Institute of Technology and 

Sciences, India used European Credit Card transactions dataset to check the effectiveness 

of Logistic Regression, Decision Tree and Random Forest. They used oversampling to 

tackle the issue of data imbalance. These three Machine Learning models were evaluated 

using the performance metrics Accuracy, Specificity, Sensitivity and Error Rate. The 

comparative results showed that the Random Forest performed better than the Logistic 

Regression and Decision Tree techniques. 

Varmedja et al. (2019) from University of Novi Sad, Serbia used Machine 

Learning algorithms Logistic Regression, Naïve Bayes, Random Forest, Multilayer 

Perceptron and Artificial Neural Network on the European card-holders data set which 

was downloaded from Kaggle. To manage the data imbalance, SMOTE technique was 

used. This paper compared the results of these Machine Learning algorithms and 

concluded that Random Forest was best to classify whether transactions were fraud or 

not. 
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A group of researchers from School of Computer Science, Hubei University of 

Technology Wuhan, China proposed a credit card fraud detection technology based on 

Whale Optimization Algorithm (WOA) for Back Propagation (BP) neural network 

aiming at solving the problems of slow convergence rate, easy to fall into local optimum, 

network defects and poor system stability derived from BP neural network. Using whale 

swarm optimization algorithm to optimize the weight of BP network, authors first used 

WOA algorithm to get an optimal initial value, and then used BP network algorithm to 

correct the error value, so as to obtain the optimal value (Wang et al., 2018) 

Yu & Wang (2009) proposed a credit card fraud detection model using outlier 

detection based on distance sum according to the infrequency and unconventionality of 

fraud in credit card transaction data, applying outlier mining into credit card fraud 

detection. This paper concluded that such a model was feasible and accurate in detecting 

credit card fraud. 

Zareapoor & Shamsolmoali (2015) trained various data mining techniques used in 

credit card fraud detection and evaluated each methodology based on certain design 

criteria. This study concluded that the bagging classifier based on decision tree was the 

best classifier to construct the fraud detection model. 

Ileberi et al. (2022) from University of Johannesburg discussed the use of 

Machine Learning (ML) algorithms to detect credit card fraud, focusing on a system that 

employs the genetic algorithm (GA) for feature selection. The GA is used to select the 

most effective features for ML classifiers like Decision Tree, Random Forest, Logistic 

Regression, Artificial Neural Network, and Naïve Bayes. European cardholders data was 
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used to demonstrate that the proposed approach outperformed existing systems in terms 

of accuracy. The GA-based feature selection combined with ML classifiers achieved high 

accuracy rates, with the GA-RF model using the selected features scored an optimal 

accuracy of 99.98%. 

In the research titled “Application of Machine Learning and Resampling 

Techniques to Credit Card Fraud Detection”, Udeze et al. (2022) compared three machine 

learning algorithms viz. Random Forest, XGBoost, and TensorFlow Deep Neural 

Network (DNN) for credit card fraud detection. It explored four resampling techniques to 

handle imbalanced datasets: baseline train test split, class weighted hyperparameter 

approach, undersampling, and oversampling. The performance of these algorithms was 

evaluated using metrics like accuracy, precision, recall, and F1-score. The study found 

that TensorFlow DNN was more efficient in modeling the under-sampled dataset, while 

Random Forest performed better in the baseline approach. XGBoost had better 

performance with the oversampling technique. 

The research paper titled “Credit card fraud detection using artificial neural 

network”, delves into the application of various machine learning algorithms, such as 

Support Vector Machine (SVM), K-Nearest Neighbor (KNN), and Artificial Neural 

Network (ANN), in forecasting credit card fraud occurrences. It juxtaposes traditional 

supervised machine learning approaches against deep learning methodologies to discern 

between fraudulent and legitimate transactions effectively. Notably, the investigation 

unveils that the Artificial Neural Network (ANN) exhibits superior performance 

compared to its counterparts, demonstrating exceptional precision in fraud prediction. 
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Employing a dataset sourced from European bank transactions, the study rigorously 

evaluates the models based on accuracy, precision, and recall metrics, offering valuable 

insights into the efficacy of different methodologies in combating credit card fraud. (RB 

and Suresh Kumar, 2021) 

Tiwari et al. (2021) conducted a thorough investigation into the efficacy of 

various machine learning techniques in detecting credit card fraud. Their study 

meticulously examined approaches such as Hidden Markov Model, Decision Trees, and 

Neural Networks, among others, assessing their strengths and weaknesses. With a keen 

eye on the growing significance of fraud detection in the context of increasing e-

commerce and digital transactions, the paper highlights the pressing need for robust fraud 

detection systems. Moreover, the research explored a range of machine learning methods 

including Random Forests, Bayesian Belief Networks, and Support Vector Machines for 

fraud detection. The study concludes by noting the absence of a universally effective 

technique across all scenarios, emphasizing the necessity for precision-driven 

technologies adaptable to diverse datasets. Although Neural Networks demonstrated high 

precision, their costly training requirements pose a notable challenge. 

Lucas and Jurgovsky (2020) conducted a thorough investigation into the 

intricacies of data-driven credit card fraud detection and explored numerous machine 

learning techniques to tackle its complex challenges. Their aim was to detect fraudulent 

transactions issued illegitimately on behalf of genuine cardholders. The study addresses 

the formidable challenge that credit card fraud poses to electronic payment systems. It 

delves into data-driven detection methods designed to uncover unauthorized transactions 
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made on behalf of legitimate cardholders. The survey commences by outlining the typical 

tasks involved in fraud detection, including dataset characterization, metric selection, and 

strategies for managing imbalanced data. Furthermore, it delves into the concept of 

dataset shift, where evolving transaction patterns and fraudster tactics over time present 

hurdles to the effectiveness of machine learning. Various methodologies are discussed for 

capturing the sequential nature of transactions, ranging from conventional feature 

engineering to sophisticated models like recurrent neural networks and hidden Markov 

models. The study emphasizes inherent challenges such as the infrequency of fraudulent 

transactions and the dynamic nature of purchase behaviors, stressing the significance of 

detailed sequential information often overlooked in transaction feature sets. Throughout 

the survey, a diverse array of strategies are explored to address these challenges, with the 

overarching goal of furnishing readers with a comprehensive grasp of credit card fraud 

detection methodologies and ongoing research advancements. 

S, Varun Kumar et al. (2020) conducted an in-depth exploration into constructing 

a predictive model for distinguishing between fraudulent and legitimate credit card 

transactions, leveraging a variety of machine learning algorithms and neural networks. 

Their primary objective was to accurately anticipate instances of fraud by considering 

transaction attributes such as time and amount, employing statistical and mathematical 

techniques including calculus and linear algebra. Notably, their model yielded promising 

results, achieving an accuracy of 94.84% with logistic regression, 91.62% with naive 

Bayes, and 92.88% with decision tree algorithms. However, the Artificial Neural 

Network (ANN) model emerged as the top performer, boasting an impressive accuracy 
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rate of 98.69%. The overarching goal of the study was to mitigate financial losses 

attributed to credit card fraud by effectively identifying and segregating fraudulent 

transactions based on the temporal and monetary characteristics embedded within the 

dataset. 

Yee et al. (2018) examined the utilization of machine learning and data mining 

techniques in detecting fraudulent credit card transactions. Their study explored a range 

of Bayesian network classifiers, including K2, TAN, and Naïve Bayes, as well as 

logistics and J48 classifiers. The research emphasized the significance of data 

preprocessing methods such as normalization and Principal Component Analysis (PCA) 

in enhancing classification accuracy. Their findings demonstrated that post-

preprocessing, classifiers consistently achieved accuracy levels exceeding 95%, thus 

highlighting the effectiveness of the proposed methodology in combating credit card 

fraud. 

Shukur and Kurnaz (2019) explored the application of Machine Learning (ML) 

methodologies for detecting credit card fraud in their research paper titled "Credit Card 

Fraud Detection using Machine Learning Methodology." The study aimed to tackle the 

challenge posed by highly imbalanced datasets, where fraudulent transactions constituted 

a small fraction. Three ML models were deployed: Logistic Regression, K-means 

clustering, and Neural Network. Following preprocessing, Logistic Regression emerged 

as the top performer among the models. The research concluded by suggesting the 

exploration of more sophisticated techniques like Random Forest, Autoencoder, and 

Support Vector Machines for potential enhancements in fraud detection accuracy. 
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Bhanusri et al. (2020) delved into the utilization of machine learning algorithms 

for the detection of credit card fraud, centering their investigation on Logistic Regression, 

Naïve Bayes, and Random Forest with ensemble classifiers. Their study extensively 

reviewed multiple supervised learning techniques, assessing their efficacy in accurately 

predicting fraudulent transactions. Employing a dataset sourced from Kaggle, comprising 

European cardholder transactions, the authors meticulously evaluated the performance of 

various models based on metrics such as accuracy, precision, recall, f1 score, and 

support. Ultimately, their findings revealed that the Random Forest Classifier, 

implemented with boosting technique, surpassed other methods in effectively detecting 

instances of credit card fraud. 

Alarfaj et al. (2022) centered their research on the detection of credit card fraud 

by leveraging advanced machine learning (ML) and deep learning (DL) algorithms. 

Addressing challenges such as public data accessibility, class imbalance, evolving fraud 

patterns, and high false alarm rates, the authors conducted empirical analysis utilizing the 

European card benchmark dataset. They initially applied ML algorithms and 

subsequently integrated convolutional neural network (CNN) architectures to enhance 

fraud detection accuracy. The proposed model demonstrated exceptional performance 

metrics, achieving optimized values of 99.9% accuracy, 85.71% f1-score, 93% precision, 

and 98% AUC Curves and outperformed existing ML and DL algorithms commonly 

employed in credit card fraud detection. 

Nguyen et al. (2020) explored the utilization of deep learning methods in the 

context of credit card fraud detection, contrasting their efficacy with traditional machine 
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learning algorithms. Their paper meticulously delineated the challenges inherent in this 

domain, including data scarcity, pronounced class imbalance, dynamic fraud strategies, 

and the prevalence of false alarms. Through empirical analysis conducted on three 

distinct financial datasets, the authors demonstrated the superior performance of deep 

learning approaches over conventional models. Their findings underscored the potential 

of these novel techniques to significantly enhance the efficacy of real-world credit card 

fraud detection systems. 

The research conducted under the title "Developing a Credit Card Fraud Detection 

Model using Machine Learning Approaches" aimed to construct a robust credit card fraud 

detection model employing machine learning methodologies to discern transactions as 

either fraudulent or legitimate. Khan et al. (2022) employed Logistic Regression, 

Artificial Neural Networks, and Support Vector Machines as classifiers in their 

investigation. Evaluation of these classifiers involved the utilization of various 

performance metrics such as accuracy, precision, recall, and ROC curve analysis, 

revealing that Support Vector Machine exhibited superior performance compared to other 

models. This study addressed the challenge of imbalanced data in fraud detection by 

implementing resampling techniques during model assessment. The findings of this 

research offer a comprehensive examination of diverse machine learning approaches 

tailored towards the effective detection of credit card fraud. 

Madhurya et al. (2022) delved into the exploration of machine learning techniques 

for detecting credit card fraud in their paper titled "Exploratory analysis of credit card 

fraud detection using machine learning techniques." They underscored the increasing 
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necessity for such systems owing to the surge in online financial transactions and 

associated fraudulent activities. The study conducted a comparative analysis of various 

algorithms including Support Vector Machine, Gradient Boost, and Random Forest to 

ascertain their effectiveness in fraud detection. Furthermore, the research addressed the 

challenge of class imbalance in datasets and proposed solutions to enhance algorithm 

performance. While Logistic Regression exhibited high accuracy, the study revealed that 

KNN demonstrated superior classification capability for credit card fraud detection due to 

its adaptive learning capacity. Additionally, the paper outlined potential avenues for 

future research aimed at augmenting prediction accuracy. 

Suryanarayana et al. (2018) conducted an extensive investigation into credit card 

fraud detection utilizing a range of machine learning algorithms including Naïve Bayes, 

Decision Tree Algorithm, K-Nearest Neighbors Algorithm, Support Vector Machines, 

Logistic Regression, and Artificial Neural Networks. Their study employed real-life 

financial transaction data from an e-commerce organization, consisting of 100,000 

records. To enhance classifier performance and reduce training and operating time, the 

dataset underwent rigorous preprocessing. This preprocessing involved thorough 

exploration of the dataset's feature space and addressing the inherent imbalance within 

the data. Evaluation of model performance was conducted using metrics such as 

Accuracy, Sensitivity, and Specificity. The findings of the study revealed that Logistic 

Regression-based approaches demonstrated superior performance, achieving the highest 

accuracy among the tested algorithms. 
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Sharma et al. (2021) conducted a comparative analysis of machine learning 

models aimed at detecting credit card fraud. The study juxtaposed the efficacy of logistic 

regression, SVM, random forest, and neural networks in this domain. To tackle the 

inherent imbalance in the dataset of credit card transactions, the researchers employed the 

Synthetic Minority Over-sampling Technique (SMOTE). Their findings revealed that the 

Artificial Neural Network (ANN) model surpassed the others, achieving an impressive F1 

score of 0.91. 

In their study, Sulaiman et al. (2022) scrutinized machine learning (ML) 

methodologies deployed in detecting credit card fraud, shedding light on the exponential 

surge in credit card usage and the corresponding escalation in fraud incidents. The paper 

elucidated the pivotal role played by various ML algorithms in scrutinizing customer data 

to pinpoint fraudulent activities, underscoring ML's significance within the financial 

sector. Through a comprehensive review of literature on ML techniques for credit card 

fraud detection (CCFD), the authors navigated issues pertaining to data confidentiality, 

advocating for a hybrid solution integrating neural networks. They astutely identified 

challenges inherent in CCFD, including transactional diversity and data imbalance, 

thereby advocating for an innovative solution that not only ensures user privacy but also 

effectively detects fraud. This comprehensive analysis underscores the imperative of ML 

in combatting credit card fraud and underscores the necessity for pioneering solutions 

that address privacy concerns. 

Olowookere, T. A., and Adewale, O. S. (2020) addressed in their research paper 

"A Framework for Detecting Credit Card Fraud with Cost-Sensitive Meta-Learning 
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Ensemble Approach" the persistent threat of credit card fraud to global financial 

institutions. They proposed a novel framework that integrated meta-learning ensemble 

techniques and cost-sensitive learning to enhance fraud detection. The framework 

involved training three base classifiers (Decision Tree, Multi-Layer Perceptron, and K-

Nearest Neighbors) on historical credit card transaction data. Additionally, a cost-

sensitive logistic regression meta-classifier was trained using predictions from the base 

classifiers and an instance-based cost matrix. The results indicated that the proposed 

ensemble classifier consistently outperformed individual base classifiers across varying 

fraud rates in the dataset. This approach effectively detected fraudulent transactions 

regardless of the proportion of fraud cases in the data. The study underscored the 

significance of amalgamating ensemble methods and cost-sensitive learning to bolster 

credit card fraud detection efforts. 

In the research article "A Soft Voting Ensemble Learning Approach for Credit 

Card Fraud Detection", Mim, M. A., Majadi, N., & Mazumder, P. (2024) addressed the 

pressing issue of credit card fraud, intensified by the surge in daily fraudulent 

transactions. The authors highlighted the challenge posed by class imbalance, where 

fraudulent transactions were disproportionately fewer than legitimate ones, hindering 

accurate fraud detection. To tackle this, they proposed a soft voting ensemble learning 

approach specifically tailored for credit card fraud detection. Through rigorous evaluation 

against various sampling techniques including oversampling, undersampling, and hybrid 

sampling, the efficacy of the soft-voting approach was demonstrated. It surpassed the 

performance of individual classifiers, achieving notable metrics such as a false negative 
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rate (FNR) of 0.0306, precision of 0.9870, recall of 0.9694, f1-score of 0.8764, and 

AUROC of 0.9936. The study underscored the importance of effective fraud detection in 

upholding the integrity of payment systems. By leveraging ensemble techniques, this 

research provided valuable insights for enhancing credit card fraud detection amidst the 

challenge of class imbalance. 

In their study, Afriyie et al. (2023) compared three machine learning models—

Logistic Regression, random forest, and decision trees—for classifying and predicting 

fraudulent credit card transactions. The results showed that random forest achieved the 

highest accuracy (96%) and an area under the curve (AUC) value of 98.9% in predicting 

and detecting fraud. It was observed that credit card holders above 60 years old were 

most affected by fraudulent transactions, which typically occurred between 22:00 GMT 

and 4:00 GMT. This research provided valuable insights for improving credit card fraud 

detection systems. 

Credit card fraud detection was increasingly vital with the growing prevalence of 

cashless transactions (Lilhore & Patil, 2018). The paper emphasized the significance of 

ensuring genuine credit card usage while preventing fraudulent activities. The study 

explored the role of data mining and machine learning techniques in this domain, 

particularly in analyzing transaction history datasets to detect anomalies in spending 

behaviors. A hybrid approach employing AdaBoost and majority voting demonstrated 

promising accuracy rates in fraud detection. Additionally, the utilization of KNN 

algorithm and outlier detection methods was found effective in minimizing false alarms 

and enhancing fraud detection rates. Decision trees were employed for transaction 
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classification based on diverse features, while deep learning models like Convolutional 

Neural Networks (CNNs) also showed potential. The research highlighted several 

challenges in credit card fraud detection, including stakeholders' reluctance to share 

information due to confidentiality concerns, the imperative for computational efficiency 

in real-time detection, and the need for adaptive approaches to counter evolving fraudster 

tactics. In conclusion, safeguarding financial transactions against credit card fraud 

necessitated the amalgamation of innovative techniques, as outlined in this survey. 

The research paper by Islam et al. (2023) titled "An Ensemble Learning Approach 

for Anomaly Detection in Credit Card Data with Imbalanced and Overlapped Classes" 

revealed the challenges of detecting anomalies, such as credit card fraud, in transaction 

data due to overlapping class samples and imbalanced class distribution. Existing 

learning algorithms were noted to potentially exhibit bias towards majority class samples. 

The Credit Card Anomaly Detection (CCAD) model, as proposed, leveraged base 

learners and meta-learning ensemble techniques. It combined four outlier detection 

algorithms as base learners and XGBoost as the meta learner. To address data imbalance 

and overfitting, the model employed stratified sampling and k-fold cross-validation. 

CCAD demonstrated superior performance over existing approaches in detecting 

anomalies from minority class instances. Experimental results on two datasets, namely 

Credit Card Fraud and Credit Card Default Payment, illustrated the effectiveness of the 

proposed model in improving anomaly detection rates in credit card transactions. The 

study emphasized the significance of ensemble techniques in handling imbalanced data 

and enhancing overall performance. 
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In the study conducted by Osegi and Jumbo (2021), a comparative analysis of 

credit card fraud detection methods was performed, focusing on Simulated Annealing 

trained Artificial Neural Networks (SA-ANN), Hierarchical Temporal Memory (HTM), 

and Long Short-Term Memory (LSTM) based ANNs. It was found that HTM, inspired by 

the neocortex and capable of continual learning, showed competitive performance with 

SA-ANN, achieving an average classification performance ratio (ACPR) of 

approximately 1:1. Additionally, HTM outperformed LSTM-ANN by a factor of 2:1 in 

benchmark datasets. These findings suggested that HTM, with its real-time processing 

capabilities and biological inspiration, held promise for addressing the challenges of 

credit card fraud detection faced by financial institutions. 

In the study conducted by Fang, Zhang, and Huang (2019), the authors addressed 

the growing concern of credit card fraud in the context of the expanding e-commerce 

landscape. They highlighted the inherent challenges in detecting fraudulent transactions, 

primarily stemming from the imbalance between normal and fraudulent data sets. The 

research focused on leveraging machine learning techniques for credit card fraud 

detection, particularly employing the Light Gradient Boosting Machine (LightGBM) 

algorithm. The features considered in their analysis encompassed various aspects such as 

customer demographics, transaction details, and categorical variables like consumption 

and job categories. To handle categorical features, they employed one-hot encoding, 

while addressing data imbalance through the Smote algorithm. Their findings indicated 

that LightGBM achieved a remarkable recall rate of 99% on real-world datasets. 

Furthermore, comparisons with other machine learning algorithms like Random Forest 
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(RF) and Gradient Boosting Machine (GBM) demonstrated the superior performance of 

LightGBM. The study also emphasized the importance of exploring fraud rings through 

relationship maps and advocated for further investigation using diverse real-world 

datasets to enhance the model's generalizability. In conclusion, the proposed LightGBM 

model showcased efficient credit card fraud detection capabilities with high recall rates, 

warranting future research focus on refining detection methodologies and identifying 

fraud rings. 

In their study, Warghade, Desai, and Patil (2020) addressed the significant 

problem of credit card fraud in online transactions, noting its increased risk due to the 

expanding use of credit cards. They emphasized the necessity for efficient fraud detection 

algorithms to minimize losses in the finance industry. The researchers highlighted the 

highly imbalanced nature of credit card fraud datasets, where fraudulent transactions are 

significantly fewer than legitimate ones, impacting the learning and prediction phases of 

machine learning algorithms. To address this imbalance, oversampling and 

undersampling methods were employed, with the Synthetic Minority Oversampling 

Technique (SMOTE) utilized to generate synthetic minority class instances. Data 

transformation techniques were also implemented to reduce variance, alongside the 

identification of outliers based on local density deviation and the random isolation of 

observations to detect anomalies. Classification and regression models, including Linear 

models, were utilized, with the Local Outlier Factor (LOF) achieving an accuracy of 

99.66%, Isolation Forest 99.74%, and Support Vector Machine (SVM) 45.84%. 

Evaluation metrics such as Precision, Recall, and F1 score were employed to assess the 
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performance of each algorithm. This article explored techniques for credit card fraud 

detection, emphasizing the challenges posed by imbalanced datasets and the critical role 

of accurate fraud detection. 

In the research paper “Credit Card Fraud Detection Using a New Hybrid Machine 

Learning Architecture”, Malik, Khaw, Belaton, Wong, and Chew proposed a novel 

hybrid machine learning architecture aimed at enhancing credit card fraud detection. The 

research entailed an investigation into seven hybrid machine learning models utilizing a 

real-world dataset. The evaluation metrics included recall (sensitivity), measuring the 

proportion of actual fraud cases correctly predicted, and precision, assessing the accuracy 

of predicted fraud cases. Additionally, the F1-measure, which balances precision and 

recall, and the misclassification rate, indicating the percentage of misclassified 

observations by the model, were considered. In the context of fraud detection, Type-I 

error (false positive) is particularly costly as it necessitates further investigation, while 

Type-II error (false negative) represents missed fraudulent activities, which are typically 

more severe than false allegations. The document extensively discussed the performance 

of hybrid machine learning models, highlighting Adaboost + LGBM as the standout 

performer in terms of AUROC measure, and deemed it the best hybrid model for the 

dataset under study (Malik et al., 2022). 

In the research paper titled "Credit Card Fraud Detection using Pipelining and 

Ensemble Learning" by Bagga, S., Goyal, A., Goyal, N., & Gupta, A. (2020), the authors 

explored the challenges and techniques involved in detecting credit card fraud, an issue 

with significant implications for the financial industry. The study emphasized the 
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dynamic nature of fraudulent behavior patterns and the inherent imbalance within 

datasets, complicating the detection process. Data mining emerged as a pivotal tool in 

addressing credit card fraud detection challenges, with various techniques such as 

Logistic Regression, K-Nearest Neighbors, Random Forest, Naive Bayes, Multilayer 

Perceptron, AdaBoost, Quadrant Discriminative Analysis, Pipelining, and Ensemble 

Learning being employed. Fraud detection encountered hurdles such as imbalanced 

datasets and the ever-evolving nature of fraudulent and legitimate transaction behaviors. 

To evaluate model performance, metrics including Precision, Recall, F1 Score, Matthews 

Correlation Coefficient (MCC), and Balanced Classification Rate (BCR) were employed. 

The results indicated that the proposed Ensemble Learning and Pipelining methods 

surpassed other classifiers in effectively identifying credit card fraud instances. The study 

aimed to enhance fraud detection accuracy, particularly within highly imbalanced 

datasets, showcasing promising outcomes for real-world application. 

In the article titled "Credit Card Fraud Detection Using Unsupervised Machine 

Learning Algorithms" by Bodepudi (2021), the author addressed the escalating risk of 

credit card fraud amidst the surge in e-commerce and online transactions. This heightened 

risk poses significant challenges for banks tasked with detecting fraudulent activities. The 

article highlighted the utilization of anomaly detection techniques, particularly outlier 

detection, as a means to identify transactions or events deviating significantly from 

normal behavioral patterns. Among the unsupervised machine learning algorithms 

employed for this purpose were Isolation Forest, Local Outlier Factor (LOF), and One-

Class SVM. In the study, Isolation Forest emerged as the top-performing algorithm, 
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achieving an impressive accuracy rate of 99.74%. Following closely behind, LOF 

demonstrated an accuracy of 99.65%, while One-Class SVM yielded a comparatively 

lower accuracy score of 70.09%. These findings underscore the efficacy of unsupervised 

machine learning algorithms in bolstering credit card fraud detection efforts, offering 

banks and financial institutions valuable tools to combat fraudulent activities in an 

increasingly digitized financial landscape. 

In their paper titled "Credit Card Fraud Detection Using Supervised Learning 

Approach," More, R. S., Awati, C. J., Shirgave, S. K., Deshmukh, R. J., & Patil, S. S. 

(2020) addressed the pressing issue of credit card fraud within the financial sector. They 

noted the limitations of traditional rule-based methods, citing their time-consuming and 

costly nature. The researchers advocated for the application of machine learning 

techniques, with a particular focus on Random Forest, as an effective means of fraud 

detection. Their system utilized Random Forest to classify credit card transaction alerts as 

either fraudulent or legitimate. Additionally, they implemented a learning-to-rank 

approach to prioritize alerts based on their perceived severity. Performance evaluation of 

the proposed system encompassed metrics such as precision, F1 score, recall, and 

accuracy. The results revealed an impressive accuracy rate of 97.93% on a dataset 

comprising 100,000 transactions. Despite encountering class imbalance issues, the model 

demonstrated robust performance. Further analysis showcased Random Forest's 

superiority over Decision Tree and Naive Bayes classifiers. This comparison underscores 

the efficacy of Random Forest in discerning fraudulent activities within credit card 

transactions. In conclusion, the study proposed a streamlined and efficient approach to 
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credit card fraud detection through the application of machine learning techniques, 

offering a promising avenue for combating financial fraud. 

In their paper titled "Credit Card Fraud Detection in Payment Using Machine 

Learning Classifiers," Mijwil, M. M., and Salem, I. E. (2020) addressed the classification 

challenge of fraud detection in payment transactions. They proposed the utilization of 

machine learning classifiers to differentiate between regular and fraudulent transactions. 

The authors implemented three distinct classifiers: Naïve Bayes, Decision Trees, and 

Bagging Ensemble Learner. These classifiers underwent evaluation using a dataset 

comprising over 297,000 credit card transactions sourced from Kaggle. Performance 

assessment metrics included Precision, Recall, and the area under the Precision-Recall 

Curve (PRC). The PRC area for class 0 (non-fraudulent transactions) ranged between 

99.9% and 100%, indicating exceptional performance in detecting legitimate transactions. 

Decision Trees emerged as the top-performing classifier, achieving an accuracy rate of 

94.12% specifically in predicting fraudulent transactions. In summary, the findings 

underscored the efficacy of the Decision Tree classifier for credit card fraud detection 

within the context of the study. The research contributes valuable insights toward 

enhancing security within payment systems, thus offering significant implications for the 

financial sector. 

 The study titled "Predictive Modelling for Credit Card Fraud Detection Using 

Data Analytics" (Patil et al., 2018) highlighted the global challenge posed by credit card 

and online net banking fraud. The researchers aimed to improve fraud detection accuracy 

in the face of increasing transaction volumes. They introduced a framework designed to 
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process large datasets efficiently, integrating it with Hadoop for fraud prediction. Data 

extraction from Hadoop involved transforming it into raw data files, which were then 

used to develop analytical models. Three models—Logistic Regression, Decision Tree, 

and Random Forest—were utilized in the study. Evaluation of these models utilized 

confusion matrices, demonstrating that Random Forest outperformed Logistic Regression 

and Decision Tree in terms of Accuracy, Precision, and Recall. The research focused on 

detecting fraud in credit card transactions through the application of big data analytics 

and machine learning algorithms. The proposed framework aimed to achieve real-time 

fraud prediction while minimizing risk and ensuring high levels of customer satisfaction. 

 The study by Gupta et al. (2023) highlighted credit card fraud as a significant 

challenge for businesses due to the increasing volume of fraudulent transactions. 

Detecting such activities was crucial to protect clients from unauthorized charges. The 

study focused on modeling credit card fraud detection by employing multiple classifiers 

and data balancing techniques. The dataset suffered from an imbalance, which negatively 

affected model performance. XGBoost showed promising results, achieving a precision 

score of 0.91 and an accuracy score of 0.99 on the imbalanced data. Further enhancement 

was observed with the implementation of Random Oversampling, which raised precision 

and accuracy scores to 0.99 when used alongside XGBoost. The study recognized the 

importance of employing data sampling techniques, like Random Oversampling, to 

improve model performance in identifying fraudulent activities. It emphasized the 

significance of data balancing in achieving optimal performance for credit card fraud 

detection.  
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CHAPTER III:  

METHODOLOGY - ANALYSIS AND DESIGN 

3.1 Data Pre-processing 

 

The dataset utilized in this paper highlights a significant imbalance, a factor that 

deserves careful consideration. Among the extensive collection of transactions totaling 

284,807, merely 492 instances are classified as fraudulent. This substantial contrast in 

numbers underscores the complexity posed by the distribution of the dataset. Such an 

imbalance can pose challenges for analysis and interpretation, requiring specialized 

techniques to address effectively. The distribution of transactions is depicted below: 

 

 

 

 

Table 3.1 

Dataset Distribution 

 

Genuine Transactions 284, 315 99.83% 

Fraudulent Transactions 492 0.17% 

Total Transactions 284, 807  
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Figure 3.1 

“Class” value distribution across dataset 

 

In the dataset used for this analysis, many features have been anonymized to 

protect confidentiality. These anonymized features are labeled from V1 to V28 and are all 

numerical and scaled. However, three columns, namely "Time," "Amount," and "Class," 

remain unaltered.  

The "Time" column indicates the time elapsed in seconds between each 

transaction and the first transaction recorded in the dataset. The "Amount" column 

denotes the transaction amount, while the "Class" column serves as the target variable. In 

this context, a value of 0 in the "Class" column signifies a genuine transaction, whereas a 

value of 1 indicates a fraudulent transaction. 
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Analysis of the data confirms that there are no NULL or MISSING values in the 

columns. 

We analyze the distribution of the "Time" and "Amount" features concerning the 

target feature "Class" to assess their potential impact on the target variable. By examining 

these distributions, we aim to understand whether variations in time and transaction 

amounts correlate with the classification of transactions as genuine or fraudulent. The 

graphical representations depicting these distributions are provided below for visual 

reference and analysis. 

 

Figure 3.2 

“Time” distribution against “Class” 
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Figure 3.3 

“Amount” distribution against “Class” 

 

Above provided visual representations indicate that “Time” feature of the dataset 

may not have significant influence on the target feature "Class." This observation arises 

from the fact that the distribution of "Time" remains largely consistent across both 

genuine and fraudulent transactions. However, a notable disparity is observed in the 

distribution of the "Amount" attribute between genuine and fraudulent transactions. This 

discrepancy suggests that the transaction amount may indeed play a role in distinguishing 

between genuine and fraudulent transactions. 

Both “Amount” and “Time” columns are not normalized as is visible from the 

numeric analysis of this column. 
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Amount 

Count 284,807 

Mean 88.349619 

Standard Deviation 250.12011 

Minimum 0 

25% Percentile 5.6 

50% Percentile 22 

75% Percentile 77.165 

Maximum 25,691.16 

 

Table 3.2 

“Amount” column before scaling 

 

Time 

Count 284,807 

Mean 94,813.859575 

Standard Deviation 47,488.145955 

Minimum 0 

25% Percentile 54,201.5 

50% Percentile 84,692.0 

75% Percentile 139,320.5 

Maximum 172,792 

 

Table 3.3 

“Time” column before scaling 

 

Feature scaling plays a crucial role in enhancing the performance of Machine 

Learning algorithms by enabling them to effectively identify patterns within the dataset 

and make accurate predictions. As such, we employ the min-max method to scale the 

"Amount" and “Time” columns.  

After normalization, a detailed numerical analysis of the "Amount" and “Time” 

column is conducted to gain insights into its distribution and characteristics. This analysis 
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aids in understanding the range, distribution, and statistical properties of transaction 

amounts, which are essential for further analysis and modeling. 

 

Amount 

Count 284,807 

Mean 0.003439 

Standard Deviation 0.009736 

Minimum 0.000000 

25% Percentile 0.000218 

50% Percentile 0.000856 

75% Percentile 0.003004 

Maximum 1.000000 

 

Table 3.4 

“Amount” column after scaling 

 

Time 

Count 284,807 

Mean 0.548717 

Standard Deviation 0.274828 

Minimum 0.000000 

25% Percentile 0.313681 

50% Percentile 0.490138 

75% Percentile 0.806290 

Maximum 1.000000 

 

Table 3.5 

“Time” column after scaling 
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The visual representations provided below illustrate the distribution of the 

"Amount" and “Time” columns both before and after the scaling process. These 

figures offer insights into how the values of the "Amount" and “Time” attributes 

are distributed across the dataset before and after applying the scaling technique. 

This analysis aids in understanding the impact of scaling on the distribution of 

transaction amounts and its implications for subsequent data analysis and modeling. 

 

Figure 3.4 

Distribution of “Amount” before Scaling 
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Figure 3.5 

Distribution of “Amount” after Scaling 

 

 

 

 

Figure 3.6 

Distribution of “Time” before Scaling 
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Figure 3.7 

Distribution of “Time” after Scaling 

 

 

 

3.2 Outliers Identification, Treatment and Removal 

With all features now scaled, the subsequent step involves identifying and 

addressing any outliers present in the data.. 

Outliers, those elusive data points that stray far from the norm within a dataset, 

wield significant influence on the integrity and accuracy of analyses. These exceptional 

data points exhibit characteristics that diverge markedly from the majority of 

observations, thereby disrupting the expected distribution of the data. Their presence can 

skew fundamental statistical parameters like the mean and standard deviation, rendering 

them less representative of the dataset as a whole. 

In the realm of machine learning, where models collect patterns from training data 

to make predictions, outliers pose a formidable challenge. When models are trained on 

datasets riddled with outliers, they risk learning from distorted representations of the data. 
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As a consequence, the predictive accuracy and performance of these models may suffer, 

as they struggle to discern genuine patterns amidst the noise introduced by outliers. 

To mitigate these adverse effects, it is imperative to proactively identify and 

address outliers prior to feeding the data into machine learning algorithms. By doing so, 

researchers can ensure that the models are trained on clean, representative data, thereby 

enhancing their ability to generalize and make accurate predictions on unseen data. 

Various techniques, ranging from statistical methods to advanced algorithms, can be 

employed to detect and manage outliers effectively, safeguarding the integrity and 

efficacy of machine learning analyses. 

The box plot, a staple visualization technique in data analysis, offers a 

comprehensive view of the distribution and dispersion of data points within a dataset. It 

provides a clear depiction of the median, quartiles, and any potential outliers present 

across various features. 

In the context of the Credit Card fraud dataset, employing box plots allows for a 

detailed examination of each feature's distribution in relation to the "Class" variable, 

which denotes whether a transaction is genuine or fraudulent. By plotting box plots for all 

features against the "Class" variable, researchers can discern any significant deviations or 

outliers that may exist within the dataset. 

These box plots provide valuable insights into the spread of data points within 

each feature and how they correlate with the occurrence of fraudulent transactions. Visual 

inspection of the box plots can help identify any anomalies or irregularities that warrant 

further investigation, ultimately enhancing the robustness and reliability of the analysis 

conducted on the dataset. 
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Figure 3.8 

Boxplots – before treatment of outliers 
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The figure above distinctly illustrates that several features exhibit outliers when 

compared against the "Class" values of 0 and 1. Therefore, it becomes imperative to 

address these outliers in order to enhance the dataset's suitability for a wide range of 

Machine Learning algorithms. 

In this research, Inter Quartile Range (IQR) method is used for the detection and 

treatment of outliers. In this method, data is sorted in ascending order and then divided 

into 4 equal parts. 

First part:  0 to 25th percentile of data 

Second part:  25th to 50th percentile of data 

Third part:  50th to 75th percentile of data 

Fourth part:  75th to 100th percentile of data 

The data at 25th, 50th and 75th percentiles are denoted by Q1, Q2 and Q3 

respectively. 

Inter Quartile Range (IQR) is calculated as the difference between Q3 (75th 

percentile) and Q1 (25th percentile) of the dataset. 

The IQR can be used to identify outliers by defining limits on the data points that 

are a factor "k" of the IQR below the 25th percentile (Q1) or above the 75th percentile 

(Q3). This method sets up the normal data range with lower limit as (Q1 – k * IQR) and 

upper limit as (Q3 + k * IQR). Any data point that is outside this data range is considered 



 

 

52 

as outliers. The common value for the factor "k" is the value 1.5. A factor “k” of 3 or 

more can be used to identify values that are extreme outliers. 

In the Credit Card fraud dataset, fraudulent records are very less in the numbers. 

So, a high value of “k” needs to be applied. This way only very extreme outliers in the 

fraudulent records will be treated. For genuine records, a lower value of “k” is being 

used. 

For this research, “k” values of 1.5 and 3 are used for genuine and fraudulent 

records respectively. 

Outlier identification and treatment is a multi-step process. At high level, below 

are the main steps: 

1) Identification of outliers for each feature against the column “Class” using 

IQR method 

2) Capture the feature name, “Class” value and the outlier percentage for 

each pair of feature and “Class” values where outliers are present in the dataset 

3) Treat the outliers captured in the above Step 2 using the Quantile based 

flooring and capping 

4) Repeat Step 1 & 2 to identify and capture the extreme outliers present in 

the dataset after the treatment carried out in Step 3 

5) Remove the extreme outliers from the dataset identified in Step 4 
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Step 1: Using the IQR method as described above, outliers are identified in the 

dataset against the feature “Class”. First outliers % in each feature of the dataset 

calculated using the IQR method for Class=0 (Genuine records) and Class=1 (Fraudulent 

records). For the features where the outliers % is higher than the pre-defined Outliers 

Threshold then those features are considered for outliers treatment in Step 2. For this 

research, Outliers Threshold for Genuine records (Class=0) and Fraudulent records 

(Class=1) are 1% and 10% respectively. So, if any feature having more than 1% data 

identified as outliers by IQR method for Class=0 then that feature is identified for the 

outliers treatment. Similarly, if any feature having more than 10% data identified as 

outliers by IQR method for Class=1 then that feature would be treated for outliers. 

Step 2: Result of above Step 1 captured below. 

Outliers % in features evaluated for Genuine records (Class=0) (Outliers 

Threshold: 1%) 

Sl. No. Feature Name Outliers % 

1 V27 13.72 

2 Amount 11.21 

3 V28 10.62 

4 V20 9.72 

5 V8 8.43 

6 V6 8.03 

7 V23 6.48 

8 V12 5.29 

9 V21 5.02 
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10 V14 4.85 

11 V2 4.69 

12 V5 4.26 

13 V4 3.84 

14 V19 3.56 

15 V10 3.21 

16 V7 3.05 

17 V9 2.85 

18 V16 2.78 

19 V18 2.58 

20 V17 2.48 

21 V1 2.43 

22 V26 1.97 

23 V25 1.87 

24 V24 1.68 

25 V13 1.18 

26 V3 1.09 

27 V15 1.01 

 

Table 3.6 

Outliers % in features for Genuine records 

 

Outliers % in features evaluated for Fraudulent records (Class=1) (Outliers 

Threshold: 10%) 

Sl. No. Feature Name Outliers % 

1 V8 11.38 

 

Table 3.7 

Outliers % in features for Fraudulent records 
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Boxplots for the identified features against Class values of 0 or 1 given below. 

 

 
 

Figure 3.9 

Boxplots for features which need outliers treatment 

 

Step 3: To treat the outliers identified in the above Step 2, we would use Percentile 

based flooring and capping method. In this method, outliers are capped at a certain value 
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above or equal to the 90th percentile value or floored at a factor below or equal to the 10th 

percentile value. These limits are called Upper Percentile and Lower Percentile 

respectively. Any data points that are lesser than the Lower Percentile are replaced with 

the Lower Percentile value and any data points that are higher than the Upper Percentile 

are replaced with the Upper Percentile value. This method applied on each pair of 

features and “Class” from the identified list in Step 2. 

For this research, below mentioned limits are considered. 

Genuine records (Class=0):  

Upper Percentile = 90% Lower Percentile = 10% 

Fraudulent records (Class=1): 

Upper Percentile = 95% Lower Percentile = 5% 

Step 4: after the outlier treatment in Step 3, above Steps 1 & 2 repeated to identify 

and capture the extreme outliers present in the dataset. List of extreme outliers given 

below: 

Sl. No. Feature Name Class Value Outliers % 

1 Amount 0 11.21 

Table 3.8 

Extreme Outliers % in features after outliers treatment 

 

These extreme outliers remain in the dataset even after performing the Percentile 

based Capping and Flooring in Step 3. 
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Step 5: Extreme outliers are removed from the dataset using the Inter Quartile 

Range (IQR) method as described above. In total, 31,861 genuine records are removed 

from the dataset as part of the treatment of the extreme outliers. Dataset size reduced 

from 284,807 to 252,946. Genuine and Fraudulent records count changed from 284,315 

and 492 to 252,454 and 492 respectively. 

After implementing outlier treatment techniques, such as removing or adjusting 

extreme values, we can examine the boxplots of all the features in the Credit Card dataset 

in relation to the "Class" variable. These boxplots provide a visual representation of the 

distribution of each feature for both fraudulent and genuine transactions. 
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Figure 3.10 

Boxplots – after treatment of outliers 
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After the treatment of outliers, the Boxplots demonstrate a considerable 

enhancement in the dataset's outlier situation. This enhancement is especially prominent 

in the depiction of genuine transactions (Class=0), where the identification and handling 

of outliers were more thorough in comparison to fraudulent transactions (Class=1). The 

reason behind this less stringent approach towards fraudulent transactions lies in their 

lower frequency within the dataset, as opposed to genuine transactions. Consequently, 

there's a greater likelihood of sacrificing valuable insights from fraudulent transactions if 

outlier treatment is excessively aggressive. 

 

3.3 Data Correlation 

 

The figure above illustrates the correlation among the different features in the 

Credit Card fraud dataset. Correlation analysis helps in understanding the relationships 

between variables, which is crucial for building accurate predictive models. A correlation 

value close to 1 indicates a strong positive correlation, while a value close to -1 indicates 

a strong negative correlation. Features with a correlation value close to 0 indicate little to 

no correlation. 

Examining the correlation matrix allows us to identify potential multicollinearity 

issues, where two or more features are highly correlated with each other. 

Multicollinearity can lead to unstable and unreliable model estimates. Therefore, it's 
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essential to address multicollinearity by either removing one of the correlated features or 

using dimensionality reduction techniques such as principal component analysis (PCA). 

Additionally, understanding the correlation structure of the dataset helps in feature 

selection, as highly correlated features may provide redundant information to the model. 

By selecting features that are less correlated with each other but highly correlated with 

the target variable (fraudulent transactions in this case), we can improve the model's 

predictive performance. 
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Figure 3.11 

Correlation in the dataset 

 

Below plot displays the correlation of all features in the Credit Card fraud dataset against 

the column “Class”. 
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Figure 3.12 

Correlation of features with “Class” variable 

 

After analyzing the plots, it's evident that some features exhibit correlations with 

each other. However, none of these feature pairs have a correlation coefficient exceeding 

0.6, which is the threshold considered for identifying strong correlations. As a result, 

there's no notable multicollinearity concern in this dataset that would necessitate further 

attention or treatment. 

 

3.4 Data Imbalance 

The imbalance in the Credit Card fraud dataset, with only 492 out of 252,946 

records being fraudulent, raises concerns about the effectiveness of Machine Learning 

algorithms. When such a significant disparity exists between the number of fraudulent 

and genuine transactions, it can skew the algorithm's ability to accurately detect 

fraudulent activity. With the vast majority of transactions being legitimate, the model 

may struggle to identify the relatively rare instances of fraud. This imbalance underscores 

the importance of addressing class imbalance issues in the dataset preprocessing stage to 

ensure the robustness and reliability of the Machine Learning model. 
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Table 3.9 

Data imbalance in the dataset 

 

The following figure illustrates the imbalance in the dataset concerning the target 

column "Class": 

 

Genuine Transactions 252,454 99.81 % 

Fraudulent Transactions 492 0.19 % 

Total Transactions 252,946  
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Figure 3.13 

Data imbalance in the dataset 

 

In an imbalanced dataset, the distribution of classes is heavily skewed, with one 

class significantly outnumbering the other. This creates a challenge for Machine Learning 

algorithms because they are trained to minimize errors during predictions. When faced 

with imbalanced data, classifiers tend to prioritize accuracy on the majority class at the 

expense of the minority class. 

In our specific case, where only 0.19% of transactions are fraudulent while the 

rest are genuine, classifiers may become overly biased towards predicting transactions as 

genuine. This bias arises because predicting all transactions as genuine would result in a 

high overall accuracy due to the overwhelming dominance of the majority class. For 

instance, if the classifier simply labels every transaction as genuine, it would be correct 

about 99.81% of the time, just by guessing the majority class. 

However, this approach completely overlooks the minority class of fraudulent 

transactions, resulting in poor detection of actual fraud. As a result, the classifier's 

performance in identifying fraudulent transactions, which is often the primary concern, 

may suffer significantly. 

Achieving a balanced dataset isn't just a preference; it's strongly advised before 

utilizing any Machine Learning algorithm. 

To tackle the problem of data imbalance, we predominantly use following 

techniques: 
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1) Under sampling 

This technique, known as undersampling, aims to create a more balanced 

distribution of classes by reducing the number of instances belonging to the majority 

class. By selectively removing instances from the majority class, the dataset's class 

distribution becomes more equitable, with a closer alignment between the number of 

instances in the majority and minority classes. Undersampling is a strategy commonly 

employed to address imbalanced datasets, particularly when the majority class vastly 

outnumbers the minority class. 

2) Over sampling 

In oversampling, the goal is to bolster the representation of the minority class in 

the training dataset. This can be accomplished by either replicating existing instances of 

the minority class or by generating new synthetic examples that resemble the minority 

class instances. By increasing the number of minority class examples, the dataset 

becomes more balanced, mitigating the effects of class imbalance and improving the 

performance of machine learning models. 

These techniques help to bring appropriate balance in the training dataset before 

the dataset is fed into Machine Learning algorithms. 

 

Combining over-sampling and under-sampling techniques creates a more 

balanced approach to tackling class imbalance in the dataset. While under-sampling 

reduces the majority class instances to level the playing field, it risks losing crucial 

information inherent in those samples. On the other hand, over-sampling duplicates 
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minority class instances to ensure their representation, potentially leading to an 

overemphasis on these instances and model overfitting. However, by employing both 

methods simultaneously, we mitigate these drawbacks and achieve a more nuanced 

solution. This hybrid approach preserves essential information from the majority class 

while adequately representing the minority class, thereby enhancing the model's 

robustness and accuracy in addressing class imbalance issues. 

In this study, we implemented the SMOTEENN technique from the imbalanced-

learn library. SMOTEENN combines two approaches: SMOTE, an over-sampling 

method, and ENN, an under-sampling technique. 

SMOTE, or Synthetic Minority Oversampling Technique, is a popular method 

employed to tackle class imbalance in datasets. SMOTE’s functioning detailed below: 

1. Selection of Instances: SMOTE begins by randomly selecting an instance from 

the minority class, which is the class with fewer samples. 

2. Nearest Neighbors: Once an instance is chosen, SMOTE identifies its k nearest 

neighbors from the same class. The value of k is a parameter set by the user. 

3. Synthetic Sample Creation: From the selected neighbors, SMOTE randomly 

picks one neighbor and creates a synthetic sample. This synthetic sample is generated by 

calculating the difference between the selected neighbor and the chosen instance. The 

difference is then multiplied by a random value between 0 and 1, and added to the chosen 

instance's feature values. This process effectively generates a new sample that lies 
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somewhere along the line connecting the chosen instance and its selected neighbor in the 

feature space. 

By repeating this process for multiple instances in the minority class, SMOTE 

effectively increases the number of samples in the minority class, thereby helping to 

balance the dataset. 

The Edited Nearest Neighbors Rule (ENN) is a technique utilized to identify and 

eliminate ambiguous and noisy examples within a dataset. Here's how ENN operates: 

1. Nearest Neighbors Calculation: ENN begins by computing the three nearest 

neighbors for each record in the dataset. These neighbors are determined based on their 

similarity in feature space. 

2. Misclassification Detection: Once the nearest neighbors are identified, ENN 

checks if the selected record is misclassified by its three nearest neighbors. If the selected 

record is incorrectly classified by its neighbors, indicating ambiguity or noise in the dataset, 

it is flagged for removal. 

3. Under-sampling Procedure: ENN is primarily applied to the examples of the 

majority class. Any majority class examples that are misclassified as belonging to the 

minority class by their nearest neighbors are removed from the dataset. This helps in 

balancing the class distribution by eliminating potentially misleading majority class 

examples. 
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SMOTEENN, which stands for Synthetic Minority Oversampling Technique 

combined with Edited Nearest Neighbours, is a powerful approach employed in this 

research to address the issue of imbalanced datasets. By integrating the capabilities of 

both SMOTE and ENN, SMOTEENN effectively generates synthetic examples of the 

minority class while also eliminating noisy and ambiguous instances from the majority 

class. This comprehensive technique ensures that the training dataset maintains a 

balanced representation of both classes, thereby enhancing the performance and 

reliability of machine learning models. 

 

3.5 Data Preparation 

 

Partitioning the dataset into training and test datasets is a crucial step in machine 

learning model development. It involves splitting the available data into two subsets: one 

for training the model and the other for evaluating its performance. 

The training dataset is used to train the machine learning model, allowing it to 

learn patterns and relationships within the data. This involves feeding the model with 

input data and corresponding target labels, enabling it to adjust its parameters to 

minimize prediction errors. 

On the other hand, the test dataset is kept separate from the training data and is 

used to assess the model's performance. It serves as a proxy for real-world data that the 

model has not seen before. By evaluating the model's predictions on this unseen data, we 

can estimate how well it generalizes to new, unseen instances. 
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Splitting the dataset into training and test sets helps prevent overfitting, where the 

model learns to memorize the training data rather than generalize to new data. It also 

allows us to obtain an unbiased estimate of the model's performance on unseen data, 

which is crucial for assessing its real-world applicability. 

First the test dataset is carved out of the main dataset using the below logic. 

In preparing the test dataset, we adopted a specific approach. We extracted half of 

the fraudulent transactions while tripling the number of genuine transactions. 

Consequently, the test dataset comprised a total of 246 fraudulent transactions and 738 

genuine transactions. This strategy ensured a balanced representation of both types of 

transactions for effective testing of our machine learning models. Distribution of the test 

dataset is given below: 

 

 

 

 

 

Table 3.10 

Distribution of “Class” in the Test dataset 

 

The distribution of the test dataset, comprising 246 fraudulent transactions and 

738 genuine transactions, is visualized in the figure below. 

Genuine Transactions 738 75 % 

Fraudulent Transactions 246 25 % 

Total Transactions 984  
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Figure 3.14 

Distribution of “Class” in the Test dataset 

 

For the training dataset, we've picked 251,716 genuine transactions and included 

the remaining 50% of fraudulent transactions, making sure to cover a wide range of 

deceptive behaviors. We carefully selected genuine transactions from the entire dataset, 

excluding those already set aside for testing. So, our training set has 251,716 genuine 

transactions and 246 carefully chosen fraudulent transactions. 

The distribution of the training dataset before balancing is illustrated below: 
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Table 3.11 

Distribution of “Class” in the Train dataset before balancing 

 

The distribution is illustrated in the figure below. 

 

 

 

Figure 3.15 

Distribution of “Class” in the Train dataset before balancing 

Genuine Transactions 251,716 99.90 % 

Fraudulent Transactions 246 0.10 % 

Total Transactions 251,962  
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After partitioning the training dataset, it's subjected to SMOTEENN processing, a 

technique that tackles class imbalance. First, SMOTE is used to oversample the minority 

class, generating synthetic instances. Then, ENN is applied to remove noisy examples 

from the majority class. This results in a balanced dataset, with 251,693 genuine 

transactions and 83,905 fraudulent transactions. The distribution of the training dataset 

after balancing is illustrated below: 

 

 

 

 

 

 

Table 3.12 

Distribution of “Class” in the Train dataset after balancing 

 

The distribution is illustrated in the figure below. 

 

Genuine Transactions 251,691 75 % 

Fraudulent Transactions 83,905 25 % 

Total Transactions 335,596  
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Figure 3.16 

Distribution of “Class” in the Train dataset after balancing 

 

 

After removing the "Class" column from both our training and test datasets, we 

proceed to structure our data into arrays. This process involves organizing our data into 

four distinct arrays: X_train, X_test, y_train, and y_test. These arrays will serve as the 

input and output data for our Machine Learning algorithms and classifiers, enabling us to 

effectively train and evaluate our models.  
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CHAPTER IV:  

RESULTS AND IMPLEMENTATION 

In this study, the following Machine Learning algorithms/classifiers are used to 

train and predict credit card fraud using the prepared dataset. 

 

4.1 Machine Learning Algorithms/Classifiers 

4.1.1 Logistic Regression 

 

Logistic Regression is a versatile Machine Learning tool commonly used for 

tackling binary classification tasks. It works by taking various independent variables as 

input and then estimating the likelihood that a given data point belongs to a specific class. 

This algorithm scrutinizes the connections between these independent variables and the 

binary outcome of interest. In logistic regression, this outcome is typically binary, 

representing two distinct classes such as genuine or fraudulent transactions, denoted as 0 

and 1 respectively. 

The algorithm doesn't just provide a simple classification; instead, it offers 

probabilistic predictions, assigning each data point a probability score between 0 and 1. 

These scores reflect the likelihood that the data point falls into one class or the other. To 

finalize the classification, a predefined threshold is applied to these probabilities. If the 

predicted probability exceeds the threshold, the data point is labeled as belonging to one 

class; otherwise, it's assigned to the other class. This flexible approach allows for 

nuanced decision-making, making logistic regression a valuable tool in various domains, 

including fraud detection in financial transactions. 
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4.1.2 Gaussian Naïve Bayes 

 

Naive Bayes is a classification algorithm known for its simplicity, speed, and 

effectiveness. It's dubbed "naïve" because it operates under the assumption that each 

feature in the dataset contributes independently and equally to the final classification. 

Despite this oversimplified approach, Naive Bayes often performs well in practice. It's 

based on the Bayes' theorem, a fundamental concept in probability theory that deals with 

conditional probabilities. 

 

4.1.3 KNeighbors Classifier 

 

K Nearest Neighbors (KNN) is a simple yet powerful classification algorithm. For 

a given data point, KNN helps find its closest neighbors. The algorithm calculates 

distances (usually Euclidean distance) between the new point and all other points in the 

dataset. KNN selects the K nearest points based on these distances. These neighbors form 

a neighborhood for the data points under consideration. Once the neighborhood 

identified, the data point gets a label based on the majority vote among its K neighbors. 

So, if most of the neighbors out of K neighbors are “genuine” records then the data point 

gets labeled as “genuine”. 

 

4.1.4 Linear Support Vector Classifier 
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Linear Support Vector Classifier (LSVC) is a straightforward yet effective tool for 

classifying data, especially when the classes can be separated by a straight line or plane. 

Its flexibility and robustness make it a popular choice in machine learning applications. 

The goal of the Linear SVC is to categorize data points into different classes. It 

achieves this by finding the best straight line or plane that separates these classes. This 

separation is based on the features (attributes) of the data points. 

The SVC aims to maximize the margin between the decision boundary (the 

separating line/plane) and the nearest data points from each class. A larger margin helps 

in robust generalization, meaning the model performs well on unseen data. 

The support vectors are the data points that lie closest to the decision boundary. 

These points are crucial because they significantly influence the position of the decision 

boundary. The model focuses on these support vectors during training. 

Regularization Parameter is an important hyperparameter of LSVC which affects 

the trade-off between margin size and classification accuracy. A smaller value of this 

hyperparameter allows for a wider margin which might lead to more misclassifications. 

On the other hand, a higher value allows better accuracy of classifications but might 

result in overfitting. 

Linear SVC works well when classes are linearly separable (meaning they can be 

separated by a straight line or plane). Despite its simplicity, Linear SVC is a powerful 

algorithm for binary classification. Its ability to handle large datasets and high-

dimensional feature spaces makes it widely applicable across various domains. 

4.1.5 Decision Tree Classifier 
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A Decision Tree is a supervised machine learning algorithm primarily used for 

classification tasks. It operates by recursively splitting the dataset into subsets based on 

features that effectively separate different classes. 

Key components of a Decision Tree: 

Decision Nodes: These points in the tree split the data into branches based on 

feature values. Each decision node represents a question about a feature. 

Leaf Nodes: These are the endpoints of the tree where the final class label 

decision is made. Each leaf node corresponds to a specific class. 

The algorithm selects the best feature to split the data at each decision node. It 

evaluates criteria like Gini impurity or information gain to determine the most 

informative feature. 

The tree is constructed recursively, repeatedly splitting the data until stopping 

criteria are met (e.g., maximum depth, minimum samples, or purity improvement). 

To classify a new data point, it traverses the tree from the root node down to a leaf 

node, following the decision paths based on feature values. 

Decision trees are interpretable and suitable for tasks where human understanding 

matters. They handle both numerical and categorical data and are robust to outliers. 

However, overfitting can occur if the tree grows too deep or when the dataset is noisy. 

Techniques like pruning help mitigate overfitting. 

Decision Trees strike a balance between interpretability and performance, making 

them valuable tools in various domains. 
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4.1.6 Keras Classifier 

 

Keras is a popular and easy-to-use deep learning library that works on 

TensorFlow, CNTK, or Theano. It's designed for fast experimentation and focuses on 

being user-friendly, modular, and customizable. For classification tasks, we use the 

KerasClassifier wrapper, which simplifies building and training models. It requires a 

function to create the model and accepts settings like epochs and batch size. Typically, a 

basic classification model includes input, hidden, and output layers, with "ADAM" as the 

optimizer and "binary_crossentropy" as the loss function. Overall, Keras makes deep 

learning accessible even for beginners, enabling quick model creation and training. 

 

4.1.7 Random Forest Classifier 

 

A Random Forest Classifier is a popular machine learning algorithm used for 

classification tasks. It belongs to the ensemble learning methods, which combine the 

predictions of multiple individual models to improve the overall performance. 

A Random Forest Classifier is constructed from a group of decision trees. Each 

decision tree is trained on a random subset of the training data and makes decisions based 

on features to classify instances into different classes. 

To create multiple subsets of the original dataset, Random Forest uses a technique 

called bootstrapping. This involves randomly selecting samples with replacement. Some 

instances may appear multiple times in a subset, while others may not appear at all. 
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At each node of each decision tree, a random subset of features is considered for 

splitting. This randomness ensures that the trees in the forest are diverse and not highly 

correlated. 

When predicting a new instance, each decision tree independently predicts the 

class. The class with the most votes among all the trees is chosen as the final prediction. 

Random Forest algorithm is robust to overfitting because they combine 

predictions from multiple models, reducing the variance of the overall model. They can 

handle large datasets with high dimensionality. They provide estimates of feature 

importance, which can be useful for understanding the data. 

 

4.1.8 Isolation Forest 

 

The Isolation Forest is an anomaly detection algorithm with the primary purpose 

of identifying outliers within large datasets by isolating them within a tree-based 

framework.  

The algorithm starts by randomly selecting a feature from the dataset. Next, it 

chooses a split value within the range of that feature. This process creates a partition that 

separates data points into two groups. The data undergoes recursive partitioning based on 

the selected feature and split value. At each step, the algorithm continues to split the data 

into smaller subsets. This recursive process repeats until each data point is isolated or 

until a predefined maximum tree depth is reached. 

For each data point, the algorithm computes an anomaly score. The anomaly score 

reflects the number of partitions (splits) needed to isolate that data point. Generally, 
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anomalies (outliers) require fewer partitions because they significantly deviate from the 

majority of data points. Finally, the algorithm applies a threshold to the computed 

anomaly scores. Data points with scores above the threshold are classified as anomalies, 

while those below it are considered normal. 

Isolation Forest efficiently identifies anomalies, making it suitable for large 

datasets. It is robust against outliers. Unlike some other methods, it doesn’t rely on 

specific data distributions. 

The Isolation Forest algorithm provides an effective way to detect anomalies 

without assuming any specific data distribution. 

 

4.1.9 Adaboost Classifier 

 

Adaptive Boosting (AdaBoost) is an ensemble method that constructs a robust 

classifier by combining multiple weak classifiers. This begins by training an initial model 

(often a simple decision tree) on the training data. Subsequent models focus on correcting 

errors made by the previous ones. These models are added iteratively until either the 

training set is perfectly predicted or a maximum number of models is reached. 

AdaBoost assigns weights to instances in the training data. Instances that are 

difficult to classify receive higher weights, emphasizing their importance. Well-classified 

instances receive lower weights. 
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Weak learners in AdaBoost are typically decision trees with just one split, known 

as “decision stumps”. These simple models contribute to the ensemble by focusing on 

specific features. 

AdaBoost sequentially adds weak models, each trained using the weighted 

training data. The process continues until a predetermined number of weak learners is 

reached or no further improvement can be made. 

AdaBoost adapts dynamically, emphasizing challenging instances and gradually 

improving classification accuracy. 

 

4.1.10 LightGBM Classifier 

 

LightGBM (Light Gradient Boosting Machine), made by Microsoft, is a powerful 

tool for machine learning. It's great for ranking and classification tasks. LightGBM 

creates decision tree algorithms for ranking and classification. It's based on gradient 

boosting, which is a strong way to combine many weak models into a powerful one. 

LightGBM puts together weak learners, like decision trees, to make a strong 

classifier. It's really fast, especially when using a GPU. 

Multiple parameters can be selected to tune the performance of the model like 

boosting type, maximum number of leaves in a tree, learning rate etc. 

LightGBM is used in finance, healthcare, marketing, and recommendation 

systems. Its flexibility and accuracy make it a popular choice for predicting outcomes. 



 

 

82 

The key difference between LightGBM and other decision tree-based algorithms 

lies in their tree growth strategy. While traditional methods usually expand trees 

horizontally (level-wise), LightGBM takes a vertical approach (leaf-wise). In practical 

terms, this means that LightGBM constructs trees by adding more leaves rather than 

growing them horizontally across levels. Consequently, leaf-wise growth often results in 

lower loss compared to level-wise growth. However, it’s essential to keep in mind that 

LightGBM might tend to overfit when dealing with small datasets. 

 

4.1.11 CatBoost Classifier 

 

CatBoost, developed by Yandex, is an open-source boosting library used for 

classification, regression, and ranking tasks. It simplifies preprocessing by automatically 

handling categorical features and utilizes Symmetric Weighted Quantile Sketch (SWQS) 

to handle missing data and prevent overfitting. 

With its default settings, CatBoost achieves outstanding performance, reducing 

the need for extensive parameter tuning. It even includes built-in cross-validation for 

selecting optimal parameters. This model employs robust techniques to prevent 

overfitting and generalize well to new data. Additionally, it simplifies modeling by 

internally scaling all columns. 

CatBoost also offers a fast GPU-accelerated version, making it suitable for 

training on large datasets. It's a powerful and user-friendly tool for various predictive 

tasks, especially well-suited for multiclass classification. 
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4.1.12 XGBoost Classifier 

 

XGBoost, short for eXtreme Gradient Boosting, is a powerful and flexible 

gradient boosting library designed for efficiency and versatility. XGBoost combines 

predictions from multiple models, like decision trees, to create a strong classifier. It 

improves accuracy by iteratively correcting errors made by previous models. 

XGBoost efficiently constructs trees for solving various data science problems. It 

can handle massive datasets and works on major distributed environments like Hadoop. 

This is widely used for regression and classification tasks due to its reliability and 

competitive performance. 

XGBoost is a go-to choice for accurate predictive modeling, especially when 

dealing with complex datasets and ensemble techniques. 

 

4.1.13 MLP Classifier 

 

The MLP Classifier, also known as the Multi-layer Perceptron classifier, is a 

neural network-based algorithm that resides within the Scikit-Learn library. This 

classifier operates using the multilayer perceptron (MLP) architecture. Data flows 

unidirectionally through its layers, from input to output. Each layer consists of neurons 

that process the input data. 

The primary focus of the MLP Classifier is to learn non-linear relationships 

between input features and output labels. During training, it adjusts weights associated 

with connections between neurons to minimize the loss function. 
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The MLP Classifier comprises multiple hidden layers, each fully connected to the 

next. Neurons within these layers apply nonlinear activation functions to transform input 

data. The MLP Classifier is primarily used for classification tasks, where it assigns input 

data to predefined classes. 

The versatility of the MLP Classifier lies in its ability to handle complex data 

relationships. As an integral part of Scikit-Learn, it's widely accessible and commonly 

used in various machine learning applications. 

The MLP Classifier is a valuable tool for creating neural network-based 

classifiers, especially when dealing with intricate data patterns. Its ease of use and 

competitive performance make it a popular choice among data scientists and 

practitioners. 

 

4.1.14 Bagging Classifier 

 

A Bagging Classifier is a machine learning technique used for classification tasks. 

It works by creating multiple subsets of the original dataset through a process called 

bootstrapping, where data is randomly sampled with replacement. Each subset is used to 

train a separate base classifier, such as a decision tree.  

The key idea behind Bagging is to reduce variance and improve accuracy by 

combining the predictions of multiple classifiers. This is achieved through a voting 

mechanism, where the most common prediction among all classifiers is chosen as the 

final prediction. 
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Bagging classifiers offer several benefits. First, they help prevent overfitting by 

training on different subsets of data. Second, they improve accuracy by aggregating 

predictions from multiple classifiers. Third, they are robust to noisy data and outliers 

since they average out their effects across multiple models. 

 

4.1.15 Dynamic Ensemble 

 

Dynamic Ensemble Selection (DES) is a method in ensemble learning used for 

classification predictions. Unlike traditional ensemble methods, which combine 

predictions from multiple models, DES dynamically chooses the best-suited model for 

each new example based on its unique characteristics. 

1. Model Training: Initially, multiple machine learning models are trained using 

the training dataset. These models form a pool of potential choices for making 

predictions. 

2. Example-Specific Selection: When a prediction is needed for a new example, 

DES identifies instances in the training data that are most similar to the new example. It 

accomplishes this by using a k-nearest neighbor model, which finds the closest examples 

in the dataset. 

3. Evaluation: Once the similar instances are identified, all models in the pool are 

evaluated based on their performance on this subset of similar examples. 

4. Best Model Selection: Finally, the model that performs the best on this subset 

of similar examples is selected to make the prediction for the new example. 
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Because of the architecture, DES often outperforms any single model in the pool 

by selecting the most suitable model for each example. This adaptability helps improve 

classification accuracy. Also, unlike traditional ensemble methods that rely on averaging 

predictions from multiple models, DES provides an alternative approach by selecting the 

best-performing model for each example. This can lead to more accurate predictions, 

especially in cases where models in the ensemble have different strengths and 

weaknesses. 

 

4.1.16 Stacking 

 

Stacking, also known as Stacked Generalization, is an ensemble technique in 

machine learning. Like other ensemble methods, it blends multiple machine learning 

algorithms to achieve superior performance compared to any individual algorithm used 

alone.  

Stacking divides participating machine learning algorithms into two layers. The 

first layer, known as the base model layer, comprises two or more diverse machine 

learning models. These base models are trained independently on the same dataset. 

The second layer, called the meta model, acts as the final model in the ensemble, 

producing the ultimate prediction. The predictions made by the base models serve as 

input for the meta model, which learns to combine them for a more accurate overall 

outcome. 
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Stacking typically opts for varied and sophisticated models as base models. These 

could include decision trees, neural networks, support vector machines, or other robust 

algorithms. 

Simple models are favored for the meta model. Linear models like logistic 

regression or linear regression are commonly employed. The meta model learns to 

effectively weigh the predictions from the base models. 

In essence, stacking harnesses the strengths of different models by integrating 

them in a hierarchical structure, resulting in enhanced predictive performance. 

 

4.2 Performance Evaluation Criteria 

 

The Confusion Matrix serves as a crucial metric for evaluating the accuracy and 

efficacy of machine learning models, especially in classification tasks involving multiple 

distinct classes. Below are the key points related to this tool: 

• Structure: Represented as a two-dimensional table, the Confusion Matrix 

consists of "Actual" and "Predicted" dimensions, each containing sets of 

class labels. 

• Rows and Columns: Rows correspond to actual classifications, while 

columns denote predicted classifications. 

• Performance Metrics: From the Confusion Matrix, essential performance 

metrics such as accuracy, precision, recall, and F1-score can be derived. 
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In essence, the Confusion Matrix offers a comprehensive insight into the 

performance of a classification model across various classes. 

 

 
 

Figure 4.1 

Confusion Matrix 

 

Output of the above-mentioned Machine Learning Algorithms are evaluated using 

the four basic parameters viz. 

TP – True Positive – fraudulent transactions classified as fraudulent 

 TN – True Negative – genuine transactions classified as genuine 

 FP – False Positive – genuine transactions classified as fraudulent 

 FN – False Negative - fraudulent transactions classified as genuine 

 

Major performance metrics for Machine Learning Algorithms are as below: 
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Accuracy is a fundamental metric in evaluating the performance of a machine 

learning model. It provides insight into how well the model predicts outcomes correctly 

across all classes.  

To calculate accuracy, we look at the number of correct predictions made by the 

model and compare it to the total number of predictions. Specifically, in the numerator, 

we consider the sum of True Positives (TP) and True Negatives (TN), which are instances 

where the model correctly predicts the positive and negative classes, respectively. In the 

denominator, we include the total number of predictions, which is the sum of True 

Positives, True Negatives, False Positives (FP), and False Negatives (FN). False Positives 

occur when the model incorrectly predicts the positive class, while False Negatives occur 

when the model incorrectly predicts the negative class. 

By dividing the number of correct predictions by the total number of predictions, 

accuracy provides a simple and intuitive measure of the model's overall correctness. It is 

expressed as a percentage, with higher values indicating better performance. However, 

accuracy may not be the most suitable metric in imbalanced datasets, where one class 

dominates the others, as it may give a misleading impression of the model's performance. 

Therefore, it is essential to consider other metrics, such as precision, recall, and F1-score, 

in conjunction with accuracy to obtain a comprehensive evaluation of the model's 

effectiveness. 
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Precision is a crucial metric that assesses the precision or exactness of a machine 

learning model's positive predictions. It provides valuable insight into the model's ability 

to correctly identify positive instances, especially in scenarios where false positives can 

be costly. 

To calculate precision, we focus on the number of correct positive predictions 

made by the model and compare it to the total number of positive predictions. 

Specifically, in the numerator, we consider True Positives (TP), which are instances 

where the model correctly identifies positive cases. In the denominator, we include the 

total number of positive predictions, which is the sum of True Positives and False 

Positives (FP). False Positives occur when the model incorrectly predicts a positive case 

when it is actually negative. 

By dividing the number of correct positive predictions by the total number of 

positive predictions, precision quantifies the model's precision in identifying positive 

cases. It is expressed as a percentage, with higher values indicating a more precise model. 

Precision is particularly useful in scenarios where the cost of false positives is significant, 

as it helps ensure that positive predictions are accurate and reliable. 

 

 

 

Recall, also known as Sensitivity, is a critical metric in evaluating the 

effectiveness of a machine learning model, especially in scenarios where the cost of false 
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negatives is high. Recall measures the model's ability to correctly identify all positive 

instances out of all actual positive cases. 

To calculate recall, we focus on the number of correct positive predictions made 

by the model and compare it to the total number of positive instances in the dataset. 

Specifically, in the numerator, we consider True Positives (TP), which are instances 

where the model correctly identifies positive cases. In the denominator, we include the 

total number of positive instances, which is the sum of True Positives and False 

Negatives (FN). False Negatives occur when the model incorrectly predicts a negative 

case when it is actually positive. 

By dividing the number of correct positive predictions by the total number of 

positive instances, recall quantifies the model's ability to capture all positive cases. It is 

expressed as a percentage, with higher values indicating a higher proportion of positive 

instances correctly identified by the model. Recall is particularly valuable in applications 

where missing positive instances can have significant consequences, as it ensures that the 

model identifies as many positive cases as possible. 

 

 

 

The F1 Score is a comprehensive metric that integrates both Recall and Precision 

into a single measure of a machine learning model's performance. Unlike Recall and 

Precision, which focus on specific aspects of prediction accuracy, F1 considers both false 
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positives and false negatives, making it particularly effective in scenarios with 

imbalanced classes. The F1 Score is calculated as the harmonic mean of Precision and 

Recall. 

To calculate the F1 Score, we use the formula:  

 

 

In the numerator, we compute twice the product of Recall and Precision, while in 

the denominator, we sum Recall and Precision. By taking the harmonic mean, the F1 

Score strikes a balance between Precision and Recall, giving equal weight to both 

metrics. 

The F1 Score is especially useful in situations where accuracy alone may be 

misleading due to class imbalances. For instance, in medical diagnostics, where the 

prevalence of a disease may be low, the F1 Score provides a more accurate assessment of 

a model's performance by considering both false positives and false negatives. In 

summary, the F1 Score offers a comprehensive evaluation of a model's predictive 

capability, making it a valuable metric for assessing performance in classification tasks, 

particularly in scenarios with imbalanced classes. 

RECALL gives us information about a classifier’s performance with respect to 

FALSE NEGATIVES (how many fraudulent transactions model missed to classify 

correctly), while PRECISION gives us information about its performance with respect to 

FALSE POSITIVES (how many fraudulent transactions model predicted correctly). F1 
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SCORE is a balance between RECALL and PRECISION. This combines both these 

metrics into one metric as weighted average of the two. 

 

AUROC, or "Area Under the Receiver Operating Characteristics," is a widely 

used evaluation metric for classification tasks. It comprises two key components: AUC, 

short for "Area Under the Curve," and ROC, which stands for "Receiver Operating 

Characteristics." 

The ROC curve is a probability curve, while AUC represents the degree of 

separability between different classes. A higher AUC indicates a better ability of the 

model to distinguish between target classes, with positive instances correctly identified as 

positive and negative instances correctly identified as negative. 

In essence, AUROC quantifies how effectively a model can discern between 

different classes, making it a crucial metric for evaluating classification models. Higher 

AUC values signify superior predictive performance in classifying positive and negative 

instances. 

The ROC curve is graphed with the True Positive Rate (TPR) plotted against the 

False Positive Rate (FPR), with TPR represented on the y-axis and FPR on the x-axis. 

 

The True Positive Rate (TPR), also known as sensitivity, is a critical metric in 

classification tasks. It measures the proportion of positive instances that are correctly 

identified by the model out of all actual positive instances. 
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Mathematically, TPR is calculated as the ratio of True Positives (TP) to the sum of True 

Positives and False Negatives (FN), represented as: 

 

 

In practical terms, TPR tells us how well the model captures positive instances 

among all the positive examples present in the dataset. A higher TPR indicates that the 

model is effective at correctly identifying positive cases, making it an essential measure 

of the model's sensitivity to positive instances. 

The False Positive Rate (FPR) is a crucial metric in classification analysis, 

providing insights into the model's propensity to incorrectly classify negative instances as 

positive. It quantifies the proportion of negative data points that are erroneously classified 

as positive among all actual negative instances. 

Mathematically, FPR is calculated as the ratio of False Positives (FP) to the sum 

of False Positives and True Negatives (TN), expressed as: 
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In practical terms, FPR helps assess the model's specificity by indicating the rate 

of false alarms or false positives generated by the model. A lower FPR signifies that the 

model is better at distinguishing between negative instances and positive ones. Therefore, 

minimizing the FPR is essential in scenarios where correctly identifying negative 

instances is critical, such as in medical diagnostics or fraud detection. 

The True Positive Rate (TPR) and False Positive Rate (FPR) are both metrics that 

fall within the range of [0, 1]. These values are computed at various threshold levels, 

typically ranging from 0.00 to 1.00, with increments such as 0.02 or 0.04. By computing 

TPR and FPR at different threshold values, we can plot them on a graph known as the 

Receiver Operating Characteristic (ROC) curve. 

The ROC curve depicts the relationship between TPR (sensitivity) and FPR (1 - 

specificity) across different threshold levels. Specifically, TPR is plotted on the y-axis, 

while FPR is plotted on the x-axis. Each point on the ROC curve represents the TPR and 

FPR values obtained at a specific threshold level. 

The Area Under the Curve (AUC) of the ROC curve quantifies the overall 

performance of the classification model. It represents the area under the ROC curve, 

which ranges from 0 to 1. A higher AUC value indicates better discrimination ability of 

the model, with values closer to 1 indicating superior performance. 

In summary, the ROC curve is a graphical representation of the trade-off between 

TPR and FPR at various threshold levels. The AUC provides a single metric to evaluate 

the overall performance of the classification model based on the ROC curve, with higher 

AUC values indicating better performance. 
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A model with an AUC close to 1 signifies excellent performance, indicating a 

high degree of separability between the positive and negative classes. In other words, the 

model demonstrates a strong ability to distinguish between the two classes effectively. 

For example, if a model achieves an AUC value of 0.7, it implies that there is a 

70% chance that the model can correctly discriminate between instances belonging to the 

positive class and those belonging to the negative class. This indicates a reasonably good 

ability to differentiate between the two classes, although there is still room for 

improvement. 

The AUC value serves as a valuable metric for evaluating the discriminative 

power of a classification model. Higher AUC values suggest better model performance, 

with values approaching 1 indicating a higher likelihood of accurate classification. 

 

In the context of Credit Card Fraud detection, the emphasis is placed on detecting 

fraudulent transactions (Positives) rather than accurately identifying genuine transactions 

(Negatives). The primary goal is to develop a model that excels in identifying instances 

of fraud, as the consequences of missing fraudulent activity can be severe for both the 

cardholder and the financial institution. 

In this scenario, the performance of the model in detecting fraudulent transactions 

takes precedence over its ability to accurately classify genuine transactions. While it's 

essential to minimize false positives (misclassifying genuine transactions as fraudulent), 

the priority lies in maximizing true positives (correctly identifying fraudulent 

transactions). 
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A model is considered more suitable for fraud detection if it demonstrates high 

sensitivity in detecting fraudulent activity while maintaining an acceptable level of false 

positives. Therefore, the focus is on optimizing the model's ability to detect fraudulent 

transactions, even if it results in a slightly higher rate of false positives in genuine 

transactions. 

In Credit Card Fraud detection, the primary objective is to develop a model that 

effectively identifies fraudulent transactions while ensuring that genuine transactions are 

not excessively misclassified as fraudulent. This approach prioritizes the detection of 

fraud to mitigate financial losses and protect cardholders from fraudulent activities. 

The overall "Accuracy" of a model reflects its ability to correctly identify both 

True Positives and True Negatives among all instances. It provides a broad assessment of 

the model's performance across all classes. 

On the other hand, "Precision" places greater emphasis on minimizing False 

Negatives, aiming to ensure that the positive predictions made by the model are indeed 

accurate. Conversely, "Recall" focuses on reducing False Positives, striving to capture as 

many positive instances as possible from the actual positives. 

When both "Precision" and "Recall" are equally important, the "F1" score 

becomes crucial. This metric represents the harmonic mean of Precision and Recall, 

providing a balanced evaluation of the model's performance. By considering both 

Precision and Recall simultaneously, the F1 score effectively captures the trade-off 

between these two metrics, ensuring a comprehensive assessment of the model's 

effectiveness. 
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In the realm of Credit Card Fraud detection, the primary objective is to accurately 

identify fraudulent transactions while minimizing false negatives. Detecting a fraudulent 

transaction is of paramount importance, as failure to do so can lead to significant 

financial losses and reputational damage for the financial institution. 

When a transaction is erroneously classified as fraudulent, the financial institute 

may need to address the concerns of the affected customer. However, there are typically 

no direct financial repercussions associated with such misclassifications. On the other 

hand, if the model fails to detect a fraudulent transaction, allowing it to be processed as a 

genuine transaction, the consequences can be far-reaching. 

Misclassifying fraudulent transactions as genuine can result in substantial 

financial losses for the institution, followed by a loss of trust and confidence from 

customers. This erosion of trust can have profound implications for the organization's 

business operations, as customer confidence in the institution's ability to safeguard their 

financial assets would be severely undermined. 

Given these risks, financial institutions prioritize the accurate detection of 

fraudulent transactions, even if it means that a small number of genuine transactions may 

be incorrectly flagged as fraudulent. The overarching goal is to maintain the integrity of 

the financial system and preserve customer trust by minimizing the occurrence of 

undetected fraudulent activity. 

In evaluating the performance of models for Credit Card Fraud detection, the 

significance of various metrics differs. Among these metrics, "Recall" holds the highest 
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importance, followed closely by "Precision." While "Accuracy" and "AUC" are also 

considered, they are accorded lesser importance compared to "Recall" and "Precision." 

"Recall" is of paramount importance in Credit Card Fraud detection as it measures 

the model's ability to correctly identify fraudulent transactions among all actual 

fraudulent instances. Maximizing Recall ensures that the model captures as many 

instances of fraud as possible, thereby minimizing the risk of undetected fraudulent 

activity. 

Following "Recall," "Precision" holds significant importance. Precision focuses 

on minimizing False Positives, ensuring that the transactions flagged as fraudulent are 

indeed fraudulent. High Precision indicates that the model accurately identifies fraudulent 

transactions, reducing the occurrence of false alarms and unnecessary investigations. 

While "Accuracy" is a fundamental metric that assesses overall model 

performance, it may not provide a complete picture in the context of imbalanced datasets, 

such as those encountered in Credit Card Fraud detection. Similarly, "AUC" evaluates the 

model's ability to discriminate between classes, but its significance may be overshadowed 

by the critical need to maximize Recall and Precision in fraud detection scenarios. 

In summary, for Credit Card Fraud detection, prioritizing Recall and Precision 

over Accuracy and AUC ensures that the model effectively identifies fraudulent 

transactions while minimizing false alarms. This strategic emphasis reflects the critical 

importance of accurately detecting fraud to mitigate financial losses and maintain 

customer trust. 
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Based on the insights outlined above, this research will utilize a composite metric 

called "Model Score" to evaluate the performance of the models. "Model Score" will be 

derived from a weighted combination of "Accuracy," "Precision," "Recall," and "AUC" 

scores, reflecting their respective importance in the context of the research. 

To calculate the "Model Score," priority will be given to "Recall" followed by 

"Precision," acknowledging their critical roles in Credit Card Fraud detection. 

"Accuracy" and "AUC" will be accorded lesser weightage compared to "Recall" and 

"Precision" due to their secondary significance in fraud detection scenarios. 

The "Model Score" will be computed using the following weightage scheme: 0.35 

for "Recall," 0.25 for "Precision," 0.2 for "Accuracy," and 0.2 for "AUC." This 

distribution of weightage reflects the research's emphasis on maximizing the model's 

ability to accurately detect fraudulent transactions while balancing overall performance 

across multiple metrics. 

Notably, the "F1" score will not be included in the evaluation criteria for model 

ranking. This decision is based on the consideration that both "Precision" and "Recall" 

are already accounted for in the calculation of the "Model Score," rendering the "F1" 

score redundant in this context. 

The proposed approach ensures a comprehensive assessment of model 

performance by integrating multiple key metrics into the "Model Score," with a tailored 

weightage scheme that aligns with the research objectives and priorities in Credit Card 

Fraud detection. 

Formula used to calculate “Model Score” is given below: 
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MODEL SCORE = 0.35 * RECALL + 0.25 * PRECISION + 0.2 * ACCURACY + 0.2 * AUC 

 

Therefore, the "Model Score" gets calculated using the below weightage: 

RECALL: 35% 

PRECISION: 25% 

ACCURACY: 20% 

AUC: 20% 
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4.3 Model Evaluation 

4.3.1 Logistic Regression 

4.3.1.1 Confusion Matrix 

 

 
Figure 4.2 

Logistic Regression: Confusion Matrix (without Normalization) 
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Figure 4.3 

Logistic Regression: Confusion Matrix (Normalized) 

 

In Logistic Regression, 99.46% of genuine transactions (representing 74.59% of all 

transactions) and 94.72% of fraudulent transactions (comprising 23.68% of all 

transactions) are accurately detected. However, it fails to identify 5.28% of fraudulent 

transactions (accounting for 1.32% of all transactions) and 0.54% of genuine transactions 

(equating to 0.41% of all transactions).  

 

4.3.1.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 
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Logistic Regression 98.27% 98.31% 94.72% 98.64% 97.11% 

 

Table 4.1 

Logistic Regression – Performance Metrics 

 

 
Figure 4.4 

Logistic Regression – Performance Metrics 
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4.3.2 Gaussian Naïve Bayes 

4.3.2.1 Confusion Matrix 

 

 
Figure 4.5 

Gaussian Naïve Bayes: Confusion Matrix (without Normalization) 
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Figure 4.6 

Gaussian Naïve Bayes: Confusion Matrix (Normalized) 

 

Gaussian Naïve Bayes exhibited slightly lower performance compared to Logistic 

Regression. It successfully identified all genuine transactions, accounting for 75% of all 

transactions, while accurately detecting 92.68% of fraudulent transactions, which 

constituted 23.17% of all transactions. However, it failed to detect 7.32% of fraudulent 

transactions, representing 1.83% of the total transactions. This failure to identify 

fraudulent transactions is concerning in the context of Credit Card Fraud detection, 

highlighting the importance of improving the model's ability to detect such instances. 
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4.3.2.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Gaussian Naïve Bayes 98.17% 100.00% 92.68% 98.67% 96.81% 

 

Table 4.2 

Gaussian Naïve Bayes – Performance Metrics 

 

 
 

Figure 4.7 

Gaussian Naïve Bayes – Performance Metrics 
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4.3.3 Linear Support Vector Classifier 

4.3.3.1 Confusion Matrix 

 

 
Figure 4.8 

Linear Support Vector Classifier: Confusion Matrix (without Normalization) 
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Figure 4.9 

Linear Support Vector Classifier: Confusion Matrix (Normalized) 

 

The Linear Support Vector Classifier successfully identified 99.32% of genuine 

transactions, representing 74.49% of all transactions, and accurately detected 95.53% of 

fraudulent transactions, constituting 23.88% of the total transactions. However, it missed 

detecting 4.47% of fraudulent transactions, amounting to 1.12% of all transactions, and 

0.68% of genuine transactions, which accounted for 0.51% of the total transactions. 

4.3.3.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Linear Support Vector 

Classifier 

98.37% 97.92% 95.53% 97.43% 97.07% 
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Table 4.3 

Linear Support Vector Classifier – Performance Metrics 

 

 
 

Figure 4.10 

Linear Support Vector Classifier – Performance Metrics 
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4.3.4 KNeighbors Classifier 

4.3.4.1 Confusion Matrix 

 

 
Figure 4.11 

KNeighbors Classifier: Confusion Matrix (without Normalization) 
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Figure 4.12 

KNeighbors Classifier: Confusion Matrix (Normalized) 

 

The KNeighbors Classifier achieved a perfect detection rate for genuine transactions, 

capturing 75% of the total transactions. However, its performance in identifying 

fraudulent transactions was slightly lower, with an accuracy of 92.68%, representing 

23.17% of the total transactions. Notably, it failed to detect 7.32% of fraudulent 

transactions, amounting to 1.83% of the total transactions. 

4.3.4.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

KNeighbors Classifier 98.17% 100.00% 92.68% 96.94% 96.46% 
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Table 4.4 

KNeighbors Classifier – Performance Metrics 

 

 
 

Figure 4.13 

KNeighbors Classifier – Performance Metrics 
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4.3.5 Random Forest Classifier 

4.3.5.1 Confusion Matrix 

 

 
Figure 4.14 

Random Forest Classifier: Confusion Matrix (without Normalization) 
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Figure 4.15 

Random Forest Classifier: Confusion Matrix (Normalized) 

 

The Random Forest Classifier exhibited exceptional performance in detecting genuine 

transactions, achieving a perfect detection rate of 100%, which accounted for 75% of all 

transactions. Moreover, it demonstrated remarkable accuracy in identifying fraudulent 

transactions, with a detection rate of 99.19%, representing 24.8% of the total transactions. 

Impressively, this model missed only 0.81% of fraudulent transactions, equivalent to just 

0.2% of the total transactions. 
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4.3.5.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Random Forest Classifier 99.80% 100.00% 99.19% 99.75% 99.63% 

 

Table 4.5 

Random Forest Classifier – Performance Metrics 

 

 
 

Figure 4.16 

Random Forest Classifier – Performance Metrics 
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4.3.6 Isolation Forest 

4.3.6.1 Confusion Matrix 

 

 
Figure 4.17 

Isolation Forest: Confusion Matrix (without Normalization) 
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Figure 4.18 

Isolation Forest: Confusion Matrix (Normalized) 

 

Isolation Forest was able to detect 99.46% of genuine records and 95.12% of fraudulent 

records correctly which denotes 74.59% and 23.78% of the total records respectively. 

However, this model failed to detect 4.88% of the fraudulent records and 0.54% of the 

genuine records correctly. 

 

4.3.6.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Isolation Forest 98.37% 98.32% 95.12% 97.29% 97.01% 
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Table 4.6 

Isolation Forest – Performance Metrics 

 

 
 

Figure 4.19 

Isolation Forest – Performance Metrics 

 

 

 

 

 

 

 

4.3.7 Bagging Classifier 

4.3.7.1 Confusion Matrix 
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Figure 4.20 

Bagging Classifier: Confusion Matrix (without Normalization) 
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Figure 4.21 

Bagging Classifier: Confusion Matrix (Normalized) 

 

The Bagging Classifier excelled in identifying genuine transactions, achieving a flawless 

detection rate of 100%, which comprised 75% of all transactions. Additionally, it 

demonstrated strong performance in detecting fraudulent transactions, with an accuracy 

of 97.97%, representing 24.49% of the total transactions. However, the model missed 

detecting 2.03% of fraudulent transactions, accounting for 0.51% of the total transactions. 

4.3.7.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Bagging Classifier 99.49% 100.00% 97.97% 99.95% 99.18% 
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Table 4.7 

Bagging Classifier – Performance Metrics 

 

 
 

Figure 4.22 

Bagging Classifier – Performance Metrics 
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4.3.8 Decision Tree Classifier 

4.3.8.1 Confusion Matrix 

 

 
Figure 4.23 

Decision Tree Classifier: Confusion Matrix (without Normalization) 
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Figure 4.24 

Decision Tree Classifier: Confusion Matrix (Normalized) 

 

The Decision Tree Classifier effectively identified all genuine transactions, achieving a 

perfect detection rate of 100%, which constituted 75% of the total transactions. 

Moreover, it demonstrated strong performance in detecting fraudulent transactions, with 

an accuracy of 98.37%, representing 24.59% of the total transactions. However, the 

model misclassified 1.63% of fraudulent transactions, accounting for 0.41% of the total 

transactions. 
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4.3.8.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Decision Tree Classifier 99.59% 100.00% 98.37% 99.19% 99.19% 

 

Table 4.8 

Decision Tree Classifier – Performance Metrics 

 

 
 

Figure 4.25 

Decision Tree Classifier – Performance Metrics 
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4.3.9 Keras Classifier 

4.3.9.1 Confusion Matrix 

 

 
Figure 4.26 

Keras Classifier: Confusion Matrix (without Normalization) 
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Figure 4.27 

Keras Classifier: Confusion Matrix (Normalized) 

 

The Keras Classifier accurately classified all genuine records, achieving a perfect 

classification rate of 100%, which constituted 75% of the total transactions. Additionally, 

it demonstrated strong performance in classifying fraudulent transactions, with an 

accuracy of 91.06%, representing 22.76% of the total transactions. However, the model 

incorrectly classified 8.94% of fraudulent transactions, accounting for 2.24% of the total 

transactions. 
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4.3.9.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Keras Classifier 97.76% 100.00% 91.06% 97.87% 96.00% 

 

Table 4.9 

Keras Classifier – Performance Metrics 

 

 
 

Figure 4.28 

Keras Classifier – Performance Metrics 
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4.3.10 Adaboost Classifier 

4.3.10.1 Confusion Matrix 

 

 
Figure 4.29 

Adaboost Classifier: Confusion Matrix (without Normalization) 
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Figure 4.30 

Adaboost Classifier: Confusion Matrix (Normalized) 

 

The Adaboost Classifier performed remarkably well in identifying both genuine and 

fraudulent transactions. It correctly flagged all genuine records, which constituted 75% of 

the total transactions, achieving a flawless detection rate. Furthermore, it exhibited an 

impressive accuracy of 98.78% in identifying fraudulent transactions, encompassing 

nearly a quarter of the total transactions. Despite its high accuracy, the model 

encountered a minor setback as it misclassified 1.22% of fraudulent records, equivalent to 

only 0.3% of the total transactions. 
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4.3.10.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Adaboost Classifier 99.70% 100.00% 98.78% 99.39% 99.39% 

 

Table 4.10 

Adaboost Classifier – Performance Metrics 

 

 
 

Figure 4.31 

Adaboost Classifier – Performance Metrics 
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4.3.11 LightGBM Classifier 

4.3.11.1 Confusion Matrix 

 

 
Figure 4.32 

LightGBM Classifier: Confusion Matrix (without Normalization) 
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Figure 4.33 

LightGBM Classifier: Confusion Matrix (Normalized) 

 

The LightGBM Classifier demonstrated impressive accuracy in distinguishing between 

genuine and fraudulent transactions. It performed flawlessly in detecting all genuine 

records, which constituted 75% of the total dataset. Additionally, it showed strong 

capability by accurately identifying 97.56% of fraudulent transactions, accounting for 

nearly a quarter of the total records. Despite its overall high accuracy, the model 

encountered a slight challenge as it misclassified 2.44% of fraudulent records, equivalent 

to 0.61% of the total records. 
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4.3.11.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

LightGBM Classifier 99.39% 100.00% 97.56% 99.77% 98.98% 

 

Table 4.11 

LightGBM Classifier – Performance Metrics 

 

 
 

Figure 4.34 

LightGBM Classifier – Performance Metrics 
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4.3.12 Catboost Classifier 

4.3.12.1 Confusion Matrix 

 

 
Figure 4.35 

Catboost Classifier: Confusion Matrix (without Normalization) 
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Figure 4.36 

Catboost Classifier: Confusion Matrix (Normalized) 

 

The Catboost Classifier demonstrated impressive precision in distinguishing between 

genuine and fraudulent transactions. It flawlessly identified all genuine records, which 

comprised 75% of the total transactions. Additionally, it displayed a commendable 

accuracy of 93.09% in identifying fraudulent transactions, representing nearly a quarter 

of the total transactions. However, the model encountered a notable challenge as it 

exhibited a higher misclassification rate for fraudulent records, reaching 6.91%, 

equivalent to 1.73% of the total transactions. 
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4.3.12.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Catboost Classifier 98.27% 100.00% 93.09% 99.59% 97.15% 

 

Table 4.12 

Catboost Classifier – Performance Metrics 

 

 
 

Figure 4.37 

Catboost Classifier – Performance Metrics 
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4.3.13 XGboost Classifier 

4.3.13.1 Confusion Matrix 

 

 
Figure 4.38 

XGboost Classifier: Confusion Matrix (without Normalization) 
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Figure 4.39 

XGboost Classifier: Confusion Matrix (Normalized) 

 

The XGBoost Classifier showcased impressive precision in distinguishing between 

genuine and fraudulent transactions. It flawlessly identified all genuine records, 

constituting 75% of the total transactions. Additionally, it demonstrated robust accuracy 

by successfully detecting 97.97% of fraudulent transactions, which comprised nearly a 

quarter of the total transactions. Despite its overall accuracy, the model encountered a 

slight challenge as it misclassified 2.03% of fraudulent transactions, accounting for 

0.51% of the total transactions. 
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4.3.13.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

XGboost Classifier 99.49% 100.00% 97.97% 99.91% 99.17% 

 

Table 4.13 

XGboost Classifier – Performance Metrics 

 

 
 

Figure 4.40 

XGboost Classifier – Performance Metrics 
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4.3.14 MLP Classifier 

4.3.14.1 Confusion Matrix 

 

 
Figure 4.41 

MLP Classifier: Confusion Matrix (without Normalization) 
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Figure 4.42 

MLP Classifier: Confusion Matrix (Normalized) 

 

The MLP Classifier demonstrated strong accuracy in distinguishing between genuine and 

fraudulent transactions. It successfully classified all genuine transactions, comprising 

75% of the total records, with 100% accuracy. Moreover, it displayed a commendable 

performance by correctly identifying 93.9% of fraudulent transactions, which constituted 

23.48% of the total records. However, the model encountered a notable challenge in 

classifying 6.1% of fraudulent records, accounting for 1.52% of the total records. 

 

 

4.3.14.2 Performance Metrics 
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Model Name Accuracy Precision Recall AUC Model Score 

MLP Classifier 98.48% 100.00% 93.90% 98.73% 97.31% 

 

Table 4.14 

MLP Classifier – Performance Metrics 

 

 
 

Figure 4.43 

MLP Classifier – Performance Metrics 
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4.3.15 Dynamic Ensemble 

4.3.15.1 Confusion Matrix 

 

 
Figure 4.44 

Dynamic Ensemble: Confusion Matrix (without Normalization) 
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Figure 4.45 

Dynamic Ensemble: Confusion Matrix (Normalized) 

 

The Dynamic Ensemble model demonstrated exceptional accuracy in discerning between 

genuine and fraudulent transactions. It successfully identified all genuine transactions, 

which made up 75% of the total transactions, achieving a flawless detection rate. 

Additionally, it displayed robust performance by accurately detecting 98.78% of 

fraudulent transactions, representing nearly a quarter of the total transactions. Despite its 

overall accuracy, the model encountered a minor issue, misclassifying 1.22% of 

fraudulent transactions, which accounted for 0.3% of the total transactions. 
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4.3.15.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Dynamic Ensemble 99.70% 100.00% 98.78% 99.96% 99.50% 

 

Table 4.15 

Dynamic Ensemble – Performance Metrics 

 

 
 

Figure 4.46 

Dynamic Ensemble – Performance Metrics 
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4.3.16 Stacking 

4.3.16.1 Confusion Matrix 

 

 
Figure 4.47 

Stacking: Confusion Matrix (without Normalization) 
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Figure 4.48 

Stacking: Confusion Matrix (Normalized) 

 

The Stacking model showcased exceptional accuracy in distinguishing between genuine 

and fraudulent transactions. It flawlessly detected all genuine transactions, which 

comprised 75% of the total transactions. Additionally, it demonstrated robust 

performance by accurately identifying 99.19% of fraudulent transactions, representing 

nearly a quarter of the total transactions. Despite its high accuracy, the model 

encountered a minor issue, as it misclassified only 0.81% of fraudulent transactions, 

accounting for 0.2% of the total transactions. 

 

 



 

 

149 

4.3.16.2 Performance Metrics 

 

Model Name Accuracy Precision Recall AUC Model Score 

Stacking 99.80% 100.00% 99.19% 99.66% 99.61% 

 

Table 4.16 

Stacking – Performance Metrics 

 

 
 

Figure 4.49 

Stacking – Performance Metrics 
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4.4 Models Performance Evaluation 

 

The following table illustrates the comparison of all models across various metrics 

including "Accuracy," "Precision," "Recall," "AUC," and "Model Score." 

 

Model Name Accuracy Precision Recall AUC Model Score 

Logistic Regression 98.27% 98.31% 94.72% 98.64% 97.11% 

Gaussian Naïve Bayes 98.17% 100.00% 92.68% 98.67% 96.81% 

Linear Support Vector Classifier 98.37% 97.92% 95.53% 97.43% 97.07% 

Kneighbors Classifier 98.17% 100.00% 92.68% 96.94% 96.46% 

Random Forest Classifier 99.80% 100.00% 99.19% 99.75% 99.63% 

Isolation Forest 98.37% 98.32% 95.12% 97.29% 97.01% 

Bagging Classifier 99.49% 100.00% 97.97% 99.95% 99.18% 

Decision Tree Classifier 99.59% 100.00% 98.37% 99.19% 99.19% 

Keras Classifier 97.76% 100.00% 91.06% 97.87% 96.00% 

Adaboost Classifier 99.70% 100.00% 98.78% 99.39% 99.39% 

LightGBM Classifier 99.39% 100.00% 97.56% 99.77% 98.98% 

Catboost Classifier 98.27% 100.00% 93.09% 99.59% 97.15% 

XGboost Classifier 99.49% 100.00% 97.97% 99.91% 99.17% 

MLP Classifier 98.48% 100.00% 93.90% 98.73% 97.31% 

Dynamic Ensemble 99.70% 100.00% 98.78% 99.96% 99.50% 

Stacking 99.80% 100.00% 99.19% 99.66% 99.61% 

 

Table 4.17 

Performance Metrics Comparison for all models in tabular format 
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In the above table, highest value for each performance metrics highlighted in “light 

green” and lowest value highlighted in “light orange”. 

 

The performance comparison details of the models are presented in the following figure. 

 

 
Figure 4.50 

Performance Metrics Comparison for all models in graphical format 
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In the sections below, we'll examine how the models compare in terms of individual 

performance metrics. 

4.4.1 ACCURACY Comparison 

 

Model Name Accuracy 

Logistic Regression 98.27% 

Gaussian Naïve Bayes 98.17% 

Linear Support Vector 

Classifier 
98.37% 

Kneighbors Classifier 98.17% 

Random Forest Classifier 99.80% 

Isolation Forest 98.37% 

Bagging Classifier 99.49% 

Decision Tree Classifier 99.59% 

Keras Classifier 97.76% 

Adaboost Classifier 99.70% 

LightGBM Classifier 99.39% 

Catboost Classifier 98.27% 

XGboost Classifier 99.49% 

MLP Classifier 98.48% 

Dynamic Ensemble 99.70% 

Stacking 99.80% 

 

Table 4.18 

Comparison of “Accuracy” of Models 
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Figure 4.51 

Comparison of “Accuracy” of Models 

 

 

Accuracy is a metric that gauges the overall correctness of a model's predictions 

by comparing them to all predictions generated by the model. It doesn't differentiate 

between the effectiveness of the model in predicting genuine transactions versus 

fraudulent ones. 

The accuracy of the models falls within a range of 97.76% to 99.80%. Among all 

evaluated models, Random Forest Classifier and Stacking achieved the highest accuracy 

scores, while Logistic Regression performed the least accurately. Adaboost and Dynamic 

Ensemble with accuracy of 99.70% followed closely.  
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4.4.2 PRECISION Comparison 

 

Model Name Precision 

Logistic Regression 98.31% 

Gaussian Naïve Bayes 100.00% 

Linear Support Vector 

Classifier 
97.92% 

Kneighbors Classifier 100.00% 

Random Forest Classifier 100.00% 

Isolation Forest 98.32% 

Bagging Classifier 100.00% 

Decision Tree Classifier 100.00% 

Keras Classifier 100.00% 

Adaboost Classifier 100.00% 

LightGBM Classifier 100.00% 

Catboost Classifier 100.00% 

XGboost Classifier 100.00% 

MLP Classifier 100.00% 

Dynamic Ensemble 100.00% 

Stacking 100.00% 

 

Table 4.19 

Comparison of “Precision” of Models 
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Figure 4.52 

Comparison of “Precision” of Models 

 

Precision assesses the precision of the model by focusing on the accuracy of 

positive predictions. It measures what percentage of all positive predictions are correct. 

This metric is particularly important in evaluating the effectiveness of the model in 

minimizing false positives. In the context of Credit Card Fraud detection research, 

precision measures how accurately the model identifies fraudulent transactions. 

The precision scores of the models vary between 100.00% and 97.92%. Notably, 

the Gaussian Naïve Bayes, KNeighbors Classifier, Random Forest Classifier, Bagging 

Classifier, Decision Tree Classifier, Keras Classifier, Adaboost Classifier, LightGBM 

Classifier, Catboost Classifier, XGBoost Classifier, MLP Classifier, Dynamic Ensemble, 

and Stacking all achieved a perfect precision score of 100.00%. However, Linear Support 
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Vector Classifier exhibited the lowest precision score at 97.92%. It's worth mentioning 

that precision is the only evaluation metric where models achieved a perfect score of 

100%. 

 

4.4.3 RECALL Comparison 

 

Model Name Recall 

Logistic Regression 94.72% 

Gaussian Naïve Bayes 92.68% 

Linear Support Vector 

Classifier 
95.53% 

Kneighbors Classifier 92.68% 

Random Forest Classifier 99.19% 

Isolation Forest 95.12% 

Bagging Classifier 97.97% 

Decision Tree Classifier 98.37% 

Keras Classifier 91.06% 

Adaboost Classifier 98.78% 

LightGBM Classifier 97.56% 

Catboost Classifier 93.09% 

XGboost Classifier 97.97% 

MLP Classifier 93.90% 

Dynamic Ensemble 98.78% 

Stacking 99.19% 

 

Table 4.20 

Comparison of “Recall” of Models 
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Figure 4.53 

Comparison of “Precision” of Models 

 

 

Recall evaluates the sensitivity of the model by assessing its effectiveness in 

predicting fraudulent transactions. It measures the proportion of all positive cases that are 

correctly predicted. This metric is particularly valuable in understanding the model's 

ability to minimize false negatives. In the context of Credit Card Fraud detection 

research, recall quantifies how many fraudulent transactions the model failed to classify 

accurately. 

Recall, the most crucial metric for this research, measures how effectively models 

identify fraudulent transactions. Scores range from 91.06% to 99.19%. The Random 
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Forest Classifier and Stacking top the list with a recall score of 99.19%. In contrast, the 

Keras Classifier scored the lowest at 91.06%. The Gaussian Naïve Bayes and 

KNeighbors Classifier closely trailed behind at 92.68%. Notably, recall is the only metric 

where some models fell below the 96% mark. 

 

4.4.4 AUC Comparison 

 

AUC (Area under the ROC curve) is a crucial metric linked to the ROC (Receiver 

Operating Characteristic) curve, a standard tool in evaluating the predictive performance 

of Machine Learning models. The ROC curve visually illustrates how a model's 

classification threshold affects its performance. It comprises two key aspects: True-

Positive Rate (TPR) and False-Positive Rate (FPR). TPR signifies the probability of 

correctly identifying fraudulent transactions, while FPR indicates the likelihood of 

misclassifying genuine transactions as fraudulent. 

The ROC curve plots the TPR against the FPR across various classification 

thresholds. An ideal classifier's ROC curve aligns perfectly along the upper-left corner of 

the chart, reflecting consistently high TPR (equal to 1) regardless of the FPR value. This 

scenario signifies optimal performance, where the model effectively identifies fraudulent 

transactions while minimizing misclassifications of genuine ones. 

Below are the ROC curves for the Machine Learning models assessed in this study: 
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Figure 4.54 

Receiver Operating Characteristic (ROC) Curve 

 

Given that the ROC curves of the evaluated models predominantly cluster towards the 

upper left corner of the plot, the image below presents an alternative version of the chart, 

focusing on a zoomed-in view of the upper left corner. 
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Figure 4.55 

Receiver Operating Characteristic (ROC) Curve – Upper Left Corner Zoomed 

 

 

AUC, short for Area Under the ROC Curve, serves as a comprehensive measure 

of a model's performance. It ranges between 0 and 1, with higher values indicating better 

performance. When the AUC is higher, it signifies that the model achieves higher True-

Positive Rates and lower False-Positive Rates across various classification thresholds. 

AUC of the evaluated models are given below: 

Model Name AUC 

Logistic Regression 98.64% 

Gaussian Naïve Bayes 98.67% 

Linear Support Vector 

Classifier 
97.43% 

Kneighbors Classifier 96.94% 

Random Forest Classifier 99.75% 

Isolation Forest 97.29% 

Bagging Classifier 99.95% 

Decision Tree Classifier 99.19% 

Keras Classifier 97.87% 

Adaboost Classifier 99.39% 

LightGBM Classifier 99.77% 

Catboost Classifier 99.59% 

XGboost Classifier 99.91% 

MLP Classifier 98.73% 

Dynamic Ensemble 99.96% 
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Stacking 99.66% 

 

Table 4.21 

Comparison of “AUC” of Models 

 

 
Figure 4.56 

Comparison of “AUC” of Models 

 

The AUC values for all evaluated models ranged from 96.94% to 99.96%. 

Dynamic Ensemble (99.96%) achieved the highest scores, while KNeighbors Classifier 

(96.94%) scored the lowest. Additionally, Random Forest Classifier (99.75%), Bagging 

Classifier (99.95%), Decision Tree Classifier (99.19%), Adaboost Classifier (99.39%), 

LightGBM Classifier (99.77%), CatBoost Classifier (99.59%), XGBoost Classifier 

(99.91%), and Stacking (99.66%) achieved AUC scores above 99%. 
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4.4.5 MODEL SCORE Comparison 

 

Model Name 
Model 

Score 

Logistic Regression 97.11% 

Gaussian Naïve Bayes 96.81% 

Linear Support Vector 

Classifier 
97.07% 

Kneighbors Classifier 96.46% 

Random Forest Classifier 99.63% 

Isolation Forest 97.01% 

Bagging Classifier 99.18% 

Decision Tree Classifier 99.19% 

Keras Classifier 96.00% 

Adaboost Classifier 99.39% 

LightGBM Classifier 98.98% 

Catboost Classifier 97.15% 

XGboost Classifier 99.17% 

MLP Classifier 97.31% 

Dynamic Ensemble 99.50% 

Stacking 99.61% 

 

Table 4.22 

Comparison of “Model Score” of Models 
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Figure 4.57 

Comparison of “Model Score” of Models 

 

Model Score is a comprehensive evaluation metric that combines the weighted 

averages of the "Accuracy," "Precision," "Recall," and "AUC" scores of the models. It 

provides a holistic assessment of the model's overall performance. The formula used to 

calculate the Model Score is as follows: 

 

MODEL SCORE = 0.35 * RECALL + 0.25 * PRECISION + 0.2 * ACCURACY + 0.2 * AUC 

 

So, “Model Score” gives 35%, 25%, 20% and 20% weightage to “Recall”, 

“Precision”, “Accuracy” and “AUC” respectively. 
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CHAPTER V:  

DISCUSSION 

5.1 Analysis of Models’ Performance 

 

In this study, 16 Machine Learning models were analyzed and compared based on 

several performance metrics such as “Accuracy”, “Precision”, “Recall” and “AUC”. 

Subsequently, a derived evaluation criterion was developed to rank the performance of all 

models for the Credit Card Fraud detection task using the provided dataset. This metric, 

termed "Model Score," was calculated using the formula provided below. 

 

MODEL SCORE = 0.35 * RECALL + 0.25 * PRECISION + 0.2 * ACCURACY + 0.2 * AUC 

 

Before running the models, thorough preparation of the data was carried out. This 

included tasks like splitting the data into training and testing sets and addressing any 

imbalances in the data, as discussed in the paper. To optimize the performance of each 

model and minimize bias, we conducted exhaustive hyperparameter tuning using Grid 

Search. Eventually, each model was trained using the best combination of parameters 

found through Grid Search. These meticulous steps in data preparation and parameter 

tuning ensured that all models performed to their fullest potential. 

The performance evaluation revealed that the majority of the evaluated models 

achieved scores above 95% across all performance metrics. However, a few models fell 

short of the 96% mark in the "Recall" metric. 
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Random Forest Classifier emerged as a standout performer, closely trailed by 

Stacking. Both models exhibited remarkable performance across key metrics such as 

“Accuracy”, “Precision”, and “Recall” with Random Forest Classifier holding a slight 

edge over Stacking in terms of “AUC”. However, when it comes to “AUC”, Dynamic 

Ensemble took the lead, securing the highest score among all evaluated models. 

In terms of “Accuracy” and “Recall” Keras Classifier achieved the lowest scores 

among all models. Linear Support Vector Classifier obtained the lowest score for 

“Precision” while KNeighbors Classifier performed the least in terms of “AUC”. 

Interestingly, thirteen out of the sixteen models evaluated in this study attained a 

perfect score of 100% for “Precision”. 

Among the sixteen models evaluated, eight achieved impressive scores of over 

99% for “Accuracy” and nine models scored above 99% for “AUC”. However, only two 

models—the Random Forest Classifier and Stacking—managed to surpass the 99% 

threshold for “Recall”. 

All evaluated sixteen models scored above 96% for “Model Score”, seven scored 

above 99%. 

From the test outcomes outlined in this paper, it's evident that Random Forest 

Classifier excelled as the top performer among all sixteen models, achieving the highest 

“Model Score” of 99.63%. Stacking closely followed with a score of 99.61%, while 

Dynamic Ensemble secured the third position with a score of 99.50%. Conversely, the 

least effective model was the Keras Classifier, with a “Model Score” of 96.00%. 
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In general, Ensemble models or Boosted models outperformed individual 

Machine Learning models. These ensemble approaches, which combine the predictions 

of multiple models, showed enhanced predictive capabilities. Moreover, all evaluated 

models achieved higher scores for “Precision” compared to “Recall”. This indicates that 

these models were more successful in correctly identifying positive cases while 

minimizing false positives. 

 

5.2 Limitations of the Study 
 

Here are the limitations encountered throughout this study: 

 

Limited access to real data: Credit card transaction data is laden with sensitive 

information regarding individuals' financial behaviors. However, accessing this data 

directly for research purposes is restricted due to stringent privacy regulations and ethical 

considerations. Financial institutions prioritize safeguarding customer privacy and data 

security above all else. Consequently, there's a significant scarcity of publicly available 

datasets concerning credit card fraud, compelling researchers to rely on anonymized or 

synthetic datasets. 

Anonymization entails the removal of personal identifiers such as names and 

account numbers from consumer data, while retaining transaction patterns intact. 

Alternatively, synthetic data involves the creation of simulated datasets that mimic real-
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world transactions. This approach allows researchers to train Machine Learning models 

without jeopardizing consumer privacy. 

Despite these efforts, both anonymized and synthetic datasets may fall short in 

capturing the intricate nuances of actual fraud. Consequently, the effectiveness of trained 

models in real-world applications could be compromised. 

 

Feature selection: In the realm of Credit Card fraud studies, feature selection 

entails the meticulous process of sifting through the available transaction dataset to 

identify the most relevant features. It's crucial to recognize that not all features contribute 

equally to fraud detection; some may introduce noise or prove irrelevant. Effective 

feature selection is paramount as it can significantly enhance model performance and 

mitigate the risk of overfitting. 

However, Credit Card fraud datasets tend to be complex and high-dimensional, 

making the task of feature selection challenging. The presence of irrelevant or redundant 

features can obscure patterns and hinder model accuracy. Therefore, it's essential to 

pinpoint the most meaningful features to ensure robust fraud detection. 

Complicating matters further, privacy concerns dictate that most publicly 

available Credit Card fraud datasets are either anonymized or synthetic. This means that 

all real features are either concealed or modified to preserve consumer privacy. As a 

result, this constraint imposes limitations on proper feature selection during model 

training, ultimately impacting both the effectiveness and interpretability of the models. 
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Evolving fraud profiles: Credit card transaction profiles are not static; they 

undergo constant change over time. What might have been considered a legitimate 

transaction in the past could now be flagged as fraudulent. As time progresses, fraudsters 

adapt their strategies, often imitating legitimate behaviors to evade detection. In this 

rapidly evolving landscape, static models fall short in keeping up with the dynamic nature 

of fraud. 

To address this challenge, adaptive models are essential. These models have the 

capability to continuously learn and adjust based on new data inputs. They are crucial in 

ensuring that our fraud detection systems remain effective over time. By continuously 

ingesting real-time data, adaptive models can adapt their weights, recalibrate thresholds, 

and remain vigilant in identifying anomalies even as the underlying patterns change. 

As technology advances, so do the tactics employed by fraudsters. Therefore, it's 

imperative that our fraud detection models evolve in tandem. Only by embracing adaptive 

approaches can we effectively combat the ever-evolving landscape of fraud. 

 

Benchmarking challenges:  Acquiring credit card fraud datasets poses a 

considerable challenge, as they are often closely guarded by financial institutions. The 

availability of publicly accessible datasets containing authentic credit card transactions is 

extremely limited, making it arduous for researchers to obtain the necessary data for 

testing and refining their models. Despite ongoing efforts, access to such datasets remains 

restricted, hindering progress in fraud detection research. 
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Adding to the complexity, even when researchers within financial organizations 

publish their findings, they tend to do so selectively, disclosing only partial insights into 

their methodologies. Consequently, the comprehensive details essential for meaningful 

research often remain elusive to the broader research community. This lack of 

transparency stems from concerns surrounding privacy and regulatory constraints, 

compelling researchers to navigate a delicate balance between sharing insights and 

protecting sensitive information. 

The absence of a transparent benchmarking framework further compounds the 

issue. Without access to shared datasets and collaborative platforms, researchers face 

significant challenges in evaluating the effectiveness of their fraud detection models 

against real-world data. As a result, the advancement and refinement of fraud detection 

algorithms are impeded by the inability to establish standardized benchmarks and 

facilitate meaningful comparisons across different methodologies and approaches. 

 

Infrastructure challenges: Machine learning algorithms, particularly deep 

learning models, rely heavily on computational resources for both training and inference 

stages. Having access to ample computational power is pivotal in the development and 

deployment of robust fraud detection systems. Furthermore, one of the primary factors 

that contributes to the effectiveness of machine learning models is the fine-tuning of 

hyperparameters. However, fine-tuning involves exploring a vast range of values for 

multiple hyperparameters simultaneously, a task that demands high-end computational 

capabilities to execute efficiently. 
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5.3 Enhancements pursued in this study 

  

Credit card fraud is a major threat to financial organizations. Risk landscape is very 

vast, ranging from financial to reputational. Considering the huge impact of this menace 

on the society, many researchers have tried exploiting Machine Learning algorithms to 

build an effective model to detect fraudulent transactions from a set of valid Credit Card 

transactions. Researchers tried various types of Machine Learning algorithms with 

different data preparations steps. Multiple performance metrics were used to evaluate the 

effectiveness of models in detecting credit card fraud. 

However, during study of many of the past research papers, few areas were 

identified which can be optimized further to increase the effectiveness of Machine 

Learning models in analyzing the transactions dataset and detecting fraudulent 

transactions from the dataset. This study attempted some of the potential improvements 

areas to enhance the quality of the outcome. These steps are detailed below: 

1) Analysis and comparison of Machine Learning models from various categories 

explored in this study. This enabled a detailed study of the strengths and 

weaknesses of different categories of models. Previous researchers explored 

subset of the available types of models. 
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Classical ML algorithms - Logistic Regression, Gaussian Naïve Bayes, 

KNeighbors Classifier, Linear Support Vector Classifier, Decision Tree 

Classifier and Isolation Forest 

Ensemble model - Random Forest Classifier, Bagging Classifier, Dynamic 

Ensemble and Stacking 

Neural Network model - Keras Classifier and MLP Classifier 

Boosting models – Adaboost Classifier, LightGBM Classifier, Catboost 

Classifier and XGboost Classifier 

2) Multi-steps detailed outlier treatment. In general, outliers get treated by removing 

the concerned records to make data manageable. Majority of the papers studied 

where outlier treatment carried out, followed this method. However, removal of 

records has the potential to remove some meaningful data from the dataset which 

might reduce quality of the outcome. This challenge is more prominent in case 

of fraudulent records where volume is much less compared to genuine records. 

So, any reduction of data from fraudulent records should be well thought through 

and should be the last resort in outlier treatment. In this study, outlier 

identification and treatment carried out in multiple phases using Inter Quartile 

Range (IQR) method. Different IQR factors were considered for genuine and 

fraudulent records. This enabled less aggressive outlier identification approach 

for fraudulent records. With the help of multi-step identification approach and 

different IQR factors for genuine and fraudulent records, there was no data 
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deletion from the fraudulent records. This helped in preserving the vital 

information in the dataset, particularly in case of scarce fraudulent records. 

3) Optimum class imbalance handling. Class imbalance can heavily impact the 

efficiency of Machine Learning models. Normally any transaction fraud related 

dataset will be acutely imbalance as the number of fraudulent records would be 

much less compared to genuine records. Generally, class imbalance get treated 

either by under sampling of majority class or over sampling of minority class. 

Both these approaches aim to bring balance between genuine records and 

fraudulent records in the dataset before we feed the data to Machine Learning 

models. While over sampling of minority class can introduce noise in the dataset, 

under sampling of majority class can lead to vital information loss from the 

dataset. Most of the research papers studied as part of the preparation of this 

research, opted for majority class under sampling to bring balance between 

genuine records and fraudulent records in the dataset. This approach can fit well 

in the case where we don’t have problem related to data availability. However, 

in case of Credit Card transactions data, each record is vital and losing any data 

can seriously affect the quality of the model training. So, in this study, a balance 

of over sampling of minority class (fraudulent records) and under sampling of 

majority class (genuine records) was maintained to take benefit from the best of 

both worlds. 

4) Exhaustive hyperparameters tuning. For almost all the Machine Learning models 

(except very few like Gaussian Naïve Bayes), hyperparameters tuning is 
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mandatory to align the model’s effectiveness with the problem statement. Each 

of the hyperparameters play a different role for different types of data. There 

cannot be a standard model for all business requirements. However, 

hyperparameters tuning is not always given the importance which it deserves 

which in turn doesn’t allow the model to perform optimally for a given business 

requirement. Majority of the research carried out related to Credit Card fraud 

detection are either silent on hyperparameters tuning or this subject is dealt like 

a footnote. From the research papers, it was not visible that due importance was 

given to this step in the execution phase. In this study, most of the execution time 

was spent on hyperparameters tuning for all the evaluated Machine Learning 

models except for Gaussian Naïve Bayes. Each of the available hyperparameters 

were tuned individually and then the combinations of the hyperparameters were 

tuned to get the best performance metrics for all the models. All these tunings 

helped the evaluated Machine Learning models to achieve higher Recall value 

which was the main performance metrics targeted in this study. 

5) Model evaluation basis a derivative metrics. In general, Machine Learning 

models get evaluated for their effectiveness using the standard performance 

metrics like Accuracy, Precision, Recall or AUC. However, not all these metrics 

will have same significance to assess models for all the business problems. 

Depending on the need of the task, importance of these metrics will change. In 

case of Credit Card fraud detection scenario, meaning of these metrics are given 

below: 
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Accuracy: depicts the capability of the model to detect genuine transactions as 

genuine (True Negative) and fraudulent transactions as fraudulent (True Positive) 

Precision: denotes how many fraudulent transactions model predicted correctly 

Recall: indicates how many fraudulent transactions model missed to classify 

correctly 

Area Under the Curve (AUC): tells how much a particular model is capable of 

distinguishing between target classes 

For a fraud detection model, successfully detecting a fraudulent transaction is 

much more important than wrongly classifying a genuine transaction as 

fraudulent. Performance related to detection of genuine transactions is of lesser 

priority in case of fraud detection. 

In previous studies, many of the researchers considered Accuracy as the measure 

to evaluate the effectiveness of a Machine Learning model. Some researchers 

considered all standard metrics like Accuracy, Precision, Recall and AUC. 

However, considering detection of fraudulent transactions is most important in a 

fraud detection system, this study considered Recall as the most important metric 

for performance evaluation of Machine Learning models. Precision was 

considered as the next important metric. Accuracy and AUC were given equal 

importance after Recall and Precision. 
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So, instead of going with any of the standard available performance metrics to 

measure the effectiveness of the evaluated Machine Learning models, this study 

considered a weighted combination of “Accuracy”, “Precision”, “Recall” and 

“AUC” for models’ performance measurement. Weightage of 0.35, 0.25, 0.2 and 

0.2 were given to “Recall”, “Precision”, “Accuracy” and “AUC” scores 

respectively and a derived metric called “Model Score” was calculated. This 

method of measuring the effectiveness of Machine Learning models for Credit 

Card fraud detection is more aligned with the actual requirements to find out a 

model which is good in detecting both genuine and fraudulent transactions with 

higher focus on fraudulent cases. 

6) Visualization of results. Programming languages like Python provide default 

graphs and charts to visualize the results of analysis or model output. But the 

visualization of results always takes less priority than the actual analysis and 

execution. However, visualization of results should be given due importance to 

make the visuals more appealing and understandable to the end users. 

Visualization bridges the gap between raw data and actionable insights. Visuals 

make complex information digestible, engaging, and understandable for end 

users. In this study, leveraging Python’s visualization capabilities, each graph, 

chart, and data table was meticulously plotted to help decision making. 
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CHAPTER VI:  

CONCLUSION 

6.1 Summary 

 

This paper delved deeply into evaluating the effectiveness of various Machine 

Learning Models in detecting Credit Card Fraud using a publicly available dataset. The 

dataset used in the paper is available through Kaggle. Almost all the features of the 

downloaded dataset were anonymized because of security reasons. Also, the dataset was 

highly imbalanced. There were 99.83% genuine records and only 0.17% fraudulent 

records in the available dataset. Imbalanced situation was handled using a combination of 

Over-sampling and Under-sampling techniques. For this, SMOTEENN function was used 

on the training dataset. Test dataset was consisting of half of the fraudulent transactions 

and thrice number of genuine transactions from the original dataset. Outliers were 

removed from the highly correlated variables and final train and test dataset were fed into 

sixteen Machine Learning Models. All these models were tuned for hyper-parameters. 

The final performance of these models was checked using “Accuracy”, “Precision”, 

“Recall” and “AUC” scores. 

Based on the tests conducted in this paper, Random Forest Classifier was found to 

be the best performing model and Keras Classifer performed worst. For Random Forest 

Classifier, the scores of “Accuracy”, “Precision” and “Recall” were highest among all the 

models evaluated in this paper. Whereas Keras Classifier scored least for “Accuracy”, 

“Precision” and “Recall”. 
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This paper considered a weighted sum of “Accuracy”, “Precision”, “Recall” and 

“AUC” scores to rank the effectiveness of the sixteen models in detecting Credit Card 

fraud. Weightage given were 35%, 25%, 20% and 20% to “Recall”, “Precision”, 

“Accuracy” and “AUC” respectively. Considering this criteria, the top three performing 

models in the descending order are Random Forest Classifier, Stacking and Dynamic 

Ensemble. 

Availability of limited dataset related to Credit Card fraud in the public domain 

and anonymity of the features in the available dataset constrained the research activities 

like feature selection, correlation between features etc. A more detailed dataset would 

surely increase the effectiveness of the Machine Learning models. 

 

6.2 Recommendations for future research 

 

Drawing from the insights gained in this study, several recommendations are 

provided below to guide future research endeavors. 

1) In this study, Ensemble and Boosted Machine Learning models stood out for 

their strong performance across different metrics. However, the Neural 

Network-based models, specifically the Keras Classifier and MLP Classifier, 

didn't perform as well, with their "Model Score" values below 96%. To 

enhance future research, a more focused effort is recommended to fine-tune 

Neural Network-based classifiers for improved performance. This could 

involve exploring different architectures, optimizing hyperparameters, and 
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refining training techniques to maximize their effectiveness in fraud detection 

tasks. 

2) For the next phase of research, it's recommended to utilize a more robust 

GPU-enabled server with greater RAM capacity for executing Machine 

Learning models. This upgrade will allow for the exploration of wider ranges 

of hyperparameters, enhancing the fine-tuning process. Furthermore, consider 

experimenting with resource-intensive models like Support Vector Machine 

(SVM) using oversampled datasets. This approach could offer valuable 

insights into SVM's effectiveness in fraud detection tasks and help optimize 

its performance. 

3) The absence of high-quality real-time Credit Card fraud datasets publicly 

available presents a significant hurdle in developing versatile Machine 

Learning models. To overcome this challenge, future researchers could 

explore the possibility of obtaining more comprehensive and diverse datasets 

from financial institutions. By collaborating with these institutions and 

leveraging their data resources, researchers can access richer datasets that 

better reflect the complexities of real-world fraudulent activities in the 

banking sector. This approach will enable the development of more effective 

and adaptable Machine Learning models for detecting Credit Card fraud. 

4) Researchers should delve into privacy-preserving techniques that play a 

crucial role in safeguarding the confidentiality of consumers' sensitive 

information. By implementing such techniques, Machine Learning models can 
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operate effectively on real-world credit card transaction data without 

jeopardizing the privacy of credit card users. This exploration could involve 

the development and adoption of advanced encryption methods, secure 

multiparty computation, or differential privacy frameworks. By prioritizing 

privacy preservation, researchers can ensure that their fraud detection models 

uphold ethical standards while effectively combating Credit Card fraud.. 
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