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ABSTRACT 

SMARTCROPCNNLITE: REAL-LIFE TOMATO CROP DISEASE DETECTION USING 

DEEP LEARNING AND SMART DEVICES 

 

 

Chandrashekhar Purandare 

2024 

 

 

Dissertation Chair: <Chair’s Name> 

Co-Chair: <If applicable. Co-Chair’s Name> 
 

 

Today agriculture industry is going through a fundamental transformation to adopt “High-Tech 

Farming” and “Precision Agriculture” leveraging sophisticated technologies such as robotics, IoT 

sensors, Computer Vision, GPS, and aerial images to improve crop yield. However, it is projected 

that the world population will reach 9.9 billion by 2050 from the current 8.1 billion population in 

the year 2024. Currently, nearly 800 million people suffer from hunger worldwide and 8% of the 

overall world population is expected to be undernourished by 2030. The agriculture industry is 

continuously challenged by climate changes and the draining of natural resources. Crop yield 

security is threatened by various diseases, which are caused by fungal, viral, and bacterial 

organisms. This research focuses on the detection of six types of adverse diseases that are 

commonly impacting Tomato crops using Computer Vision and Deep Learning classification 

methods. The research takes advantage of the proven benchmark performance of simple and lighter 

Convolution Neural Network (CNN) models with Transfer Learning. To suggest appropriate 

treatment, this research further predicts the degree of disease spread using Machine Learning and 

Deep Learning techniques. The trained CNN model deployed onto Android smartphones can detect 

tomato crop diseases in the actual farm (plantation) field with acceptable performance. The solution 

implemented as a part of this research can allow small and mid-scale farmers to detect the plant 

diseases along with disease severity to control disease spread. This research has the potential to 

enhance tomato crop yield per hectare, directly influencing global GDP and making a valuable 

contribution to the overall agricultural economy. 

Keywords: AI in agriculture, Computer Vision, Deep Learning and CNN, Real-time Tomato 

Crop Disease Identification, Disease Severity Detection, Android Mobile App
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CHAPTER I: 

 

INTRODUCTION 

 

1.1  Background of the study 

Currently, the agriculture industry is going through a fundamental transformation to adopt “High-

Tech Farming” and “Precision Agriculture” leveraging sophisticated technologies such as robotics, 

IoT sensors, Computer Vision, GPS, and aerial images to improve crop yield. However, it is 

projected that the world population will reach 9.8 billion by 2050 from the current 7.8 billion 

population in the year 2020 (United Nations, 2019). Currently, nearly 800 million people suffer 

from hunger worldwide and 8% of the overall world population is expected to be undernourished 

by 2030 (FAO | IFAD | UNICEF | WFP and WHO, 2021). As per the World Bank Group (2020), 

the agriculture sector plays an important role in economic growth which contributed to 4% of 

Global GDP in 2018. In the case of some developing countries, agriculture contributes to more 

than 25% of GDP, and hence, the development of the agriculture sector can be a crucial factor in 

reducing poverty and improving economic prosperity. Tomato (Lycopersicon esculentum) is one 

of the most important crops worldwide with many nutritional values and contributing largely to an 

agricultural economy. This annual growing crop has a short growth period of 90 to 150 days and 

grows well on a wide range of soils (though well-drained, red loam soil with a 5 to 7 pH range is 

an ideal one) (Indian Council of Agricultural Research, 2017). India is one of the largest producers 

of tomatoes. In the year 2021, tomato production in India approximated to over 21 million metric 

tons (“Statista Research: Production volume of tomatoes in India FY 2015-2021,” 2021).  

 

In recent years, the agriculture sector witnessed many technological advancements, and it is heavily 

relying on precision agriculture and high-tech farming to increase crop yield, given the ever-

increasing food demands. Despite increased crop yield, food security is always threatened due to 

climate changes, reducing natural resources, and the outbreak of various crop diseases (Savary et 

al., 2012). For traditional plant disease methods, expertise in plant diseases is necessary for 

individuals to be able to identify the diseased leaves accurately. Furthermore, measurement of the 

correct degree of disease demands a sophisticated lab infrastructure (Singh et al., 2020). Usually, 

there is a lack of Plant Pathology experts and Labs in the remote regions of developing countries, 

which makes it difficult for small-scale farmers to detect the plant disease early and control the 

potential crop yield loss. In the past, due to a lack of early detection of crop diseases or 
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misinterpretation of the degree of diseases, heavy losses were caused to the farmers. In absence of 

these details, fertilizers used in low volume than required will not be able to control disease spread 

and over usage of fertilizers impact the crop and soil quality (Tm et al., 2018). The frequent changes 

in climatic conditions coupled with crop sensitivity affected tomato crops during all the growth 

stages. 

 

Early detection of tomato plant diseases, along with correct measurement of the degree of the 

disease spread, helps to control the disease, and save huge crop yield losses. The common 

symptoms of fungal, viral, and bacterial plant diseases are visible in the tomato plant leaves. The 

large population of small-scale farmer communities can be benefited from an automated plant 

disease diagnosis system that can recognize these visual changes in the plant foliage. The advances 

in computer vision and the application of ML & AI in the agriculture field are promising to detect 

plant diseases. Considering the growth and adoption of smartphones even in developing countries, 

a computer vision solution leveraging smartphones proposed a cost-effective solution with a wide 

reach. The previous research work primarily focused on training machine learning and deep 

learning model keeping the focus on improving the mode accuracy. However, most of these models 

were trained on image datasets from controlled fields which do not perform well in actual farm 

fields with real-world images. Further, there were separate models trained for the classification of 

different tomato crop diseases, and few separate models were trained to predict the degree of 

disease. Therefore, the primary objective of this research is to develop a combined neural network 

model to classify six types of common critical diseases with the prediction of the degree of disease. 

This can act as a decision tool to recommend accurate plant disease treatment. The model built as 

a part of this research will be deployed using an Android smartphone for real-world tomato crop 

disease detection. 

 

1.2  Problem Statement 

Plant diseases impact global agricultural yield by 20%-30% yearly. According to the National Bank 

for Agriculture and Rural Development (NABARD) survey of 2013, around 30% of crop yield (an 

estimated Rs. 60,000 crores) is lost every year in India due to crop diseases. So, there is a direct or 

indirect impact of such diseases on the Indian economy and population which depends on 

agriculture. This demands on-time and accurate plant disease detection. 
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In the traditional method, bare eye observation is carried out with a team of experts for disease 

identification, which is time-consuming and expensive. To address the inefficiencies of the 

traditional methods, automated image processing techniques can play a vital role in plant disease 

identification. It provides a robust solution that can perform automatic plant disease detection 

without requiring a team of experts. In the field of plant disease detection, digital images captured 

are being used by plant pathologists to conduct diagnosis, research, etc.  

The raw images without any associated metadata result in additional time to perform disease 

diagnosis and impact the quality of diagnosis. Furthermore, some of the tomato plant diseases show 

similar symptoms, due to which farmers are unable to decide the correct disease type. In several 

previous instances, it was noticed farmers were unable to measure accurate disease spread. This 

potentially leads to incorrect treatment involving either misuse of fertilizers and fungicides or 

inappropriate quantities. It can lead to severe crop yield and quality losses and can also degrade 

soil fertility. 

 

1.3  Aim and Objectives 

The primary goal of this research is to come up with a practical solution to detect and classify six 

types of tomato crop diseases in the agricultural field (farm) in real-time. This research is focused 

on four main objectives considering real-world solution deployment.  

• To identify six types of tomato diseases leveraging the deep Convolution Neural Network 

model. 

• To improve the model performance with the Transfer Learning technique on real-world 

plant images (instead of images from a controlled (lab) environment). 

• To identify CNN architecture with fewer parameters with equivalent accuracy, which is 

suitable for deployment on low compute devices (Smartphones, UAVs, and FPGAs). 

• To predict the degree of crop disease spread, enabling decision-making for treatment of the 

disease. 
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1.4  Research Questions 

This research work addresses three important research questions. 

1. What role can a lighter Convolution Neural Network model play in detecting tomato crop 

diseases in the farm field, using commonly available compute devices such as 

Smartphones? 

2. How is the performance of the lighter CNN model architecture compared with the existing 

state-of-the-art deep CNN networks? 

3. Can Machine Learning techniques enable accurate prediction of the degree of tomato crop 

disease using extracted features from plant leaves, which will allow us to build a 

remediation solution?   

 

1.5  Scope of the Study 

The scope of this research work is to detect 6 types of commonly observed critical diseases in the 

Tomato plant using images of leaves. Crop disease symptoms can be detected through monitoring 

the stem, fruit, and even the root of the plant. However, plant leaves show early symptoms, which 

helps to decide the appropriate treatment to avoid losses to crop yield due to the spread of the 

disease. Hence, this research focuses on plant leaves only. Due to the lack of a sufficiently large 

number of annotated images from the actual plantation field, the research work considers only 6 

types of tomato crop diseases for which enough data points are available to train and test neural 

networks. To detect the degree of disease, the research performs feature extraction and experiments 

with various types of features to ensure acceptable accuracy for a real-world solution. Hence, the 

scope is limited to only one or two types of diseases to predict disease spread (other disease types 

can be considered as the scope of future work). Lastly, the scope of model deployment is limited 

to the Android platform only (which makes sense considering the Android phone adoption rate 

among farmers who will be the end-users for the proposed solution) and deployment on iOS can 

be the future scope of work.  

 

1.6  Significance of the Study 

Considerable research work has been conducted in this area using machine learning and deep 

learning techniques on various crops. However, most of the work is based on image datasets from 

a controlled (lab) environment and not from an actual field (farm) which does not result in a good 

performance with real-life model deployment on Smartphones. The previous research work mainly 
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focused on improving classification model accuracy with a variety of deep learning and machine 

learning techniques and limited consideration for model deployment in real-world solutions which 

can help the end-users, i.e., farmers, to control crop yield losses due to widespread diseases. The 

primary contribution of this research work is an end-to-end real-world solution to – (A) detect 6 

types of common tomato plant diseases leveraging real-life images; (B) showcase the potential 

solution to recommend accurate treatment by predicting the degree of tomato crop disease, and (C) 

evaluate simple and light CNN models using transfer learning methods to be deployed on smart 

devices. 

 

1.7  Structure of the Study 

The structure of the dissertation is as follows. Chapter 1 provides the background of Tomato Crop 

Disease Detection research work. The problem statement in Section 1.2 highlights the adverse 

impact of crop diseases and why timely detection of crop diseases is important to avoid major crop 

yield losses. The aim and objectives are called out in Section 1.3 which tries to address the research 

questions mentioned in Section 1.4. The details on the scope of the study along with details on 

what is not covered as a part of this research work are mentioned in Section 1.5. It shows how this 

research work intended to contribute to the existing body of knowledge. Section 1.6 highlights the 

significance of the research work in the field of tomato disease detection. 

 

Chapter 2 starts with an explanation of various plant pathogens and commonly observed diseases 

that impact tomato plants. Section 2.3 discusses and compares the traditional and modern crop 

disease detection methods. Further, it provides details on the evolution of the computer vision field. 

It further provides statistical details on the exponential growth of the Smartphone market share and 

highlights the role of Android OS in emerging markets. Section 2.4 covers the details of publicly 

available datasets for training Deep Learning models to detect tomato crop diseases. The important 

details on previous related research work are covered in section 2.5. The following subsections 

review and compare various traditional and modern deep learning approaches, data pre-processing 

techniques, feature engineering aspects, and finally, model training and evaluation processes. 

Section 2.6 discusses the gaps identified based on the detailed literature review and highlights the 

importance of this research work to fulfill those research gaps. 
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Chapter 3 starts with an explanation of the research methodology which provides a structured 

process for this research work. Section 3.3 provides details on the dataset selection which is then 

followed by Section 3.4 on data processing techniques. The feature engineering process, which 

includes both automatic and manual feature extraction, is mentioned in section 3.5 and its 

subsections. Section 3.6 covers the model training process details for a simple and lighter CNN 

model which is suitable for deployment on Smartphone devices. A dedicated subsection on CNN 

with Transfer Learning highlights the challenges in training deep CNN models from scratch. It then 

explains the transfer learning approach followed by this research work to overcome those 

challenges. The model evaluation metrics for the image classifier CNN model are discussed along 

with the reasoning on why those specific evaluation metrics are considered. Finally, Section 3.7 

explains the approach for deploying the trained CNN model on Android mobile to predict the 

tomato crop diseases in actual plantation/ farm fields. 

 

Chapter 4 focuses on important aspects of the research, which include data exploration and 

analysis, data preparation, model training, and model evaluation. It begins with section 4.2 which 

contains the first subsection on data loading followed by a subsection on data cleansing and image 

annotations. The subsequent sections explain how the cropped image dataset and plant severity 

dataset are derived from the original PlantVillage and PlantDoc datasets. The following section 

covers image resizing and rescaling aspects to optimize the model training process. A subsection 

on image augmentation explains how image datasets are augmented using the Keras data 

processing APIs. Section 4.3 explains the details of high-level EDA for class distribution analysis 

followed by image EDA details leveraging the “basic-image-eda” tool. The section also provides 

details of interferences made and arrived at conclusions based on the analysis details. Next, section 

4.4 covers the details of class balancing techniques and provides data descriptions for balanced 

datasets. Section 4.5 contains subsections that cover the CNN model designing and implementation 

steps in detail. The subsections cover the details on the process for selection of base models, the 

architecture of the CNN model, and hyperparameters tuning. Section 4.6 covers details of model 

evaluation and explains the process of final model selection for deployment. Next, section 4.7 

covers the details on the creation of the TFLite model using Python APIs and integration of the 

TFLite model with the Android app. The process of designing and implementing the Android app 

is covered along with the details on inferencing flow. The final section 4.8 covers the approach for 

plant disease severity detection using global (color, shape, and texture) and local (ORB keypoint 
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and feature descriptors) features and by leveraging machine learning classification algorithms 

including Random Forest and Support Vector Machine. The section also covers the CNN model 

implementation details for plant disease severity detection. 

 

Chapter 5 discusses the evaluation results obtained from multiple experiments carried out in this 

research study and the analysis of the results. Section 5.2 initially explains the overall evaluation 

process followed in this study and the classification metrics being used for the evaluation. The 

following eight subsections cover the evaluation of multiple CNN models against multiple 

variations of PlantVillage and PlantDoc datasets, which include original datasets, balanced 

datasets, and cropped image dataset. Each subsection focuses on individual SOA mobile CNN 

model architectures including MobileNet V1 & V2, EfficientNet B0, and NasNetMobile. For the 

MobileNet family of models, a separate subsection provides details of performance monitored with 

models trained using 100% parameters and 50% parameters (reduced model width). Section 5.2.8 

finally compares the performance of the lighter CNN models with deep CNN models trained using 

ResNet50 V2 model architecture. Section 5.3 provides details of comparative model performance 

analysis of all CNN models. A table in subsection 5.3.1, which contains the details of CNN models’ 

performance metrics trained with various SOA CNN base models on PlantDoc original dataset, 

provides a complete comparative analysis view. Section 5.3.2 compares different trained CNN 

models’ sizes which are fine-tuned using the PlantDoc dataset. Next section 5.4 validates the final 

model performance against the PlantDoc and PlantVillage test datasets. The plant severity 

detection model details cover two approaches followed in this research study. It first explains the 

process of manual feature extraction including global (color, shape, and texture) and local (ORB 

features) image features. Then it evaluates the performance of classical ML models trained using 

these feature vectors which include Random Forest Classifier and SVM. The next subsection 4.8.2 

covers the second approach of leveraging the CNN model to detect plant disease severity. It 

compares the MobileNet V2 default (100% parameters) model with a reduced model trained using 

50% parameters. It also compares the performance of CNN models trained to detect plant disease 

severity with ML classification models trained in approach 1. The final section discusses the 

inferencing process flow using mobile phones. It provides the details about inferencing duration 

using SmartCropCNNLite mobile application. 
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Chapter 6 summarizes the entire research study process and explains important conclusions drawn 

from the analysis of the results obtained. Subsection 6.3 covers the details of the contribution of 

this study to the existing body of knowledge. Lastly, section 6.4 discusses the future 

recommendations which show the way for improving the model performance and enhancing the 

solution scope to Tomato Plant Disease Treatment Recommender System. 
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CHAPTER II:  
 

LITERATURE REVIEW 

 

2.1  Introduction 

This chapter will contain the details of an existing literature review conducted as a part of this 

research work and summarise the analysis of referenced research papers, journals, and web articles. 

The section will begin with details on common plant pathogens and commonly observed Tomato 

plant diseases which are covered in this research work. It will be followed by an overview of 

various approaches and methods used for crop disease detection and how those evolved due to 

technological advancements. The next subsection will provide details about publicly available 

datasets in the field of plant pathology. The importance of real-world image datasets is then 

compared with a dataset from a controlled field (lab) environment. The next subsection will discuss 

the role of machine learning in plant pathology and various techniques used for feature extraction 

along with commonly used machine learning algorithms in this field. The following subsections 

will cover how the increased computational power and the availability of large datasets are helping 

to design and implement deep artificial neural networks (ANNs) with multiple layers. The 

following subsections will provide details on the role of computer vision and deep learning models 

such as CNN in the agriculture sector. It will be followed by a comparative analysis of various 

CNN architectures used for crop disease detection considering deployment on smartphones. The 

following subsection will discuss the various feature extraction algorithms, which extract features 

such as color, shape, and texture to measure the degree of disease speared. The last subsection will 

cover reference details on the deployment of a trained CNN model onto the Android mobile devices 

for detecting tomato crop diseases in the actual field. 

 

2.2  Plant Pathogens and Tomato Plant Diseases 

Plant diseases prevent the natural growth of plants, causing them not to perform to their maximum 

potential. There are mainly two types of plant diseases – (1) abiotic or non-infectious diseases and 

(2) biotic or infectious diseases (“Plant Disease: Pathogens and Cycles | CropWatch,” 2021). 

Abiotic plant diseases are caused by non-living agents and conditions which are external to the 

plant. These diseases do not spread from one plant to another plant and are usually caused due to 

nutritional deficiencies, soil compaction, salt injury, ice, and sun scorch. Biotic or infectious 

diseases, which are also known as plant pathogens after affecting the plant are caused by living 
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organisms. Plant pathogens affect plant tissues of the various parts of the plant which include 

leaves, fruit, stems, crowns, roots, and vascular tissues. The common types of plant pathogens are 

fungi and fungal-like organisms, bacteria, phytoplasmas, viruses and viroids, nematodes, and 

parasitic higher plants. 

 

Tomato crop diseases impact yield adversely and affect crop quality. Commonly observed diseases 

include wilts, leaf spots/blights, fruit spots, and rots. Most of these germs are fungi, with bacterial 

and viral infections whose symptoms vary according to the diseases (Janakiraman Aarthi, 2019). 

Fungal diseases are a type of plant pathogen that is very common in vegetables which impacts plant 

cells. The infected soil, seed, crop, and weeds are the main source of fungal diseases. It is spread 

by the wind and water and through the movement of contaminated soil, animals, workers, 

machinery, and tools. Early & Late Blight, Leaf Mold, and Septoria Leaf Spot are common tomato 

plant disease examples that are caused by fungus. In viral disease, a virus enters the plant through 

a lesion that affects the natural growth of the plant, causes mechanical injury to the plant or leaf, 

or causes the plant infections. Tomato Yellow Leaf Curl Virus (TYLCV) is an example of a viral 

disease. There are some definitive symptoms visible in the tomato plant leaves, which can help in 

the identification of the target pathogen. This research work focuses on the identification of six 

types of critical tomato diseases for which sufficient images from the farm field are available (or 

absence thereof). 

 

Types of Tomato Diseases (covered in this research) 

• Early Blight (Alternaria solani) is the most common disease caused by the fungi Alternaria 

tomatophila and Alternaria solani (Kluepfel et al., 2020). Early symptoms of the disease 

are small, brown lesions, mainly on the older foliage. Spots grow bigger and concentric 

rings in a bull's-eye pattern can be spotted in the middle of the infected regions. It affects 

the leaves, fruits, and stems of the tomato plant.  

• Late Blight is a critical disease. The fungus Phytophthora infestans causes it  (Kluepfel et 

al., 2020). It affects almost every part of the plant. Young leaf lesions are tiny and look like 

dark, water-soaked spots which can quickly turn into a white mold, appearing at the edges 

of the affected region, on the bottom layers of the leaves. 

• Bacterial Spot occurs due to Xanthomonas Vesicatoria, which infects the plant, including 

leaves, stems, and fruits (Kluepfel et al., 2020). Several small, angular to irregularly shaped, 
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water-soaked spots on the leaves and slightly raised, scabby spots on the fruit are the 

common symptoms. 

• Tomato Yellow Leaf Curl Virus (TYLCV) transmitted by whiteflies is immensely 

damaging to fruit yield. The symptoms are upward twine of leaves, yellowish (chlorotic) 

borders of the leaves, small-sized leaves, plant stunting, and flower drop (Kluepfel et al., 

2020). 

• Leaf Mold is caused by the fungus Passalora fulva which impacts older leaves of the plant 

close to the ground which lacks fresh air movement, resulting in increased humidity 

(Kluepfel et al., 2020). Initially, light green/ yellowish spots are seen on the upper surface 

of a leaf, which increases and turns into peculiar yellow. 

• Septoria Leaf Spot is a rapidly spreading disease that adversely impacts foliage, petioles, 

and stems of the tomato plant. The fungus Septoria lycopersici is the cause of this disease 

(Kluepfel et al., 2020). Normally, this infection can be seen at the lower leaves near the 

soil, once plants start getting fruits. Several circular spots with dark edges covering a beige-

colored center appear on the old leaves. Minute black spore-producing bodies are visible in 

the middle of the spots. 

 

Figure 1 – Healthy and diseased tomato leaf samples (extracted from PlantVillage image dataset) 
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2.3  Crop Disease Detection Methods 

The crop disease detection methods evolved from traditional manual and expert-based systems to 

more automated systems using Machine Learning, Deep Learning, IoT, and Computer Vision 

technologies in the last few decades. 

 

2.3.1  Traditional methods and their limitations 

To control crop yield losses due to plant diseases, a timely and careful diagnosis is required. There 

are many instances in the past when late identification of crop diseases resulted in difficulties to 

control the spread of diseases, which also increased the financial burden on the agricultural 

industry, especially small-scale farmers. The common methods used for crop disease detection 

include human experts performing visual analysis of affected areas of plants, evaluating 

morphology features using the microscopic method, as well as molecular, serological, and 

microbiological diagnostic techniques (Mahlein, 2016). The traditional methods involving human 

experts to identify crop diseases pose a lot of challenges due to a lack of a sufficient number of 

plant pathologists and their accessibility in remote locations. This clearly indicates a very high 

demand for a fully automated Computer-based expert system to detect crop diseases, which can be 

easily accessible even to small-scale farmers (who are the largest segment of the agriculture 

economy). By combining an automated computer-based crop detection system with aerial, satellite, 

and drone images, it is possible to cover large farm/ plantation fields which is difficult with the 

current manual verification process. This can support precision agriculture adoption by enabling 

identification of specific disease-affected farm areas, which can be focused to control the spread of 

plant diseases. This ultimately helps in better utilization of time, efforts, and financial resources to 

improve the overall crop yields via targeted crop disease detection and pest control management. 

 

2.3.2  Computer Vision Evolution 

Computer Vision (CV) evolved as a subset of Artificial Intelligence (AI) in the late 1960s, where 

researchers and scientists tried to mimic the human visionary system. It was believed that 

processing data from digital images to achieve a high-level understanding of it and unraveling 

symbolic data from the image data was an easy task – namely the "visual input" problem (Richard 

Szeliski, 2011). The complexity of transforming retina input into symbolic information was 

grasped by the researchers shortly afterward. With the evolution of the CV field in the 80s, 

researchers changed their focus on using mathematical models and techniques to analyze images, 



13 

 

like edge and contour detection. During this time, researchers noticed correlations between various 

algorithms in Computer Vision, and algorithms were unified to a higher extent. In the later 2000s, 

the domain of Machine Learning (ML) models for visual recognition emerged, and is currently 

dominating the field of CV.  

 

The amount of labeled data, sophisticated algorithms, and the level of computational power are 

increasing day by day, enabling these ML models to categorize objects without the supervision of 

human beings. The MNIST dataset was commonly used to evaluate the performance of ML models 

for visual recognition. Currently, the most used algorithm for object detection in CV is CNN, which 

has surpassed human-level performance on image classification (He et al., 2015). The 

characteristics of Artificial Neural Networks (ANN) computations are like the characteristics of 

real-time graphics computations in video game rendering, where operations such as matrix 

multiplication and division are executed per pixel in parallel. Around 2005, researchers realized 

the potential advantages of performing ANN computations on Graphics Processing Unit (GPU) 

rather than Central Processing Unit (CPU), which resulted in higher performance and quicker 

computations. This allowed researchers to increase the number of layers in neural networks to 

create deeper ANNs and use more data while maintaining a reasonable execution time. 

 

Image classification and image understanding are the most prominent subfields of computer vision 

and will evolve further in upcoming years due to computer hardware commoditization and robust 

software library support for these tasks. Today many personal laptops and desktops have GPU 

hardware acceleration along with multi-core CPUs, which can execute complex computational 

operations in considerably less time. There are many high-level software libraries such as Keras 

(with support of TensorFlow and Theano as backend), PyTorch (based on the Torch library), 

MXNet (specializes in distributed, multi-machine learning), and OpenCV (provides real-time 

image processing capabilities). Most of these libraries are written in C/C++ with Python bindings 

which are performance oriented. Also, many cloud providers (AWS, Azure, GCP, FloydHub, 

Google Collab) today provide GPU compute resources along with all required machine learning 

and deep learning libraries pre-configured with the “Pay-as-you-go” model which allows to quickly 

get started with minimal upfront CAPEX requirement. 
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This research work explores the probability of using a CV to find cost-efficient and scalable 

solutions for tomato plant disease detection. Training a large neural network may take a lot of time, 

but once the models are trained, they can perform image classification instantly, making them an 

ideal solution for consumer applications on smartphones. Computer Vision paved way for solving 

current agricultural problems using recent advancements in the field of Deep Learning. This allows 

agricultural improvement resulting in automated disease control and increased crop yields. Hence, 

this research leverage Computer Vision and Deep Convolutional Neural Network for automated 

tomato plant disease detection. 

 

2.3.3  Smartphone current and future trends 

As of date, the number of smartphone users surpasses the 3 billion marks, and it is predicted to 

further increase by several hundred million in the coming years. China, India, and the United States 

are leading this race with large numbers of smartphone users crossing the 100 million user mark. 

Out of the 7.7 billion worldwide population, there are 3.2 billion smartphone users globally 

indicating penetration of smartphone usage of 41.5% (“Statista | Smartphone penetration 

worldwide,” 2024). Nowadays, high-resolution display screens, high-performance processors, and 

HD cameras are commonly available with most smartphones enabling building computer vision 

applications and AR apps. Android phones hold a 72.92% mobile market share keeping a 

worldwide leadership position in October 2020 (O’Dea, 2022). In developing countries (especially 

rural areas) Android phone adoption over iPhone (with iOS) is considerably higher due to cost 

consideration, which makes Android-based smartphones a choice of platform for this research 

work. 

 

2.4  Plant Disease Detection Datasets 

Real-world solution for plant disease detection needs to be validated with a quality dataset with 

appropriate volume. There are very few large public image datasets are available for plant disease 

detection. In the past, most of the research work gathered the plant images using digital and mobile 

cameras and annotated the images using either human experts or automated image labeling tools. 

However, those datasets are proprietary and not available in the public domain. In the next 

subsections, these public image datasets are analyzed for their suitability for this research study.  
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2.4.1  PlantVillage Dataset 

The PlantVillage project carried out by Mohanty et al. (2016) resulted in the creation of a large 

plant leaves dataset of 14 crop species. The dataset contains 38 classes that span 26 plant diseases. 

The researchers trained a deep convolutional neural network to identify 14 crop species and 26 

diseases using AlexNet (Krizhevsky et al., 2012) and GoogLeNet (Szegedy et al., 2015) 

architectures. The research work carried out involves training with 60 experimental configurations 

by combining CNN model architectures, which include AlexNet and GoogLeNet; two types of 

training mechanisms which are leveraging transfer learning and training CNN model from scratch; 

three types of dataset types which include color, greyscale, and leaf segmented; and five different 

choices of training and testing set distribution. The model trained using GoogLeNet architecture 

on color images dataset with 80%-20% train-test split proved to be the best performing model on 

PlantVillage dataset. The trained CNN model achieved an accuracy of 99.35% on a hold-out test 

set, which demonstrates the use of the PlantVillage dataset for crop disease detection. 

 

The PlantVillage dataset encompasses photos captured under controlled settings which filtered the 

background noise. This dataset is not quite effective in the real world for plant images containing 

several leaves with varying background conditions and different types of lighting conditions. 

 

2.4.2  PlantDoc Dataset 

Singh et al., (2020) as a part of their research, curated real-world images of infected and non-

infected crops downloaded from Google Images and Ecosia to create a PlantDoc dataset. The 

dataset contains 2,598 images spanning 27 classes covering 13 plant species. These images are 

captured from the actual field (plantation) instead of a controlled (lab) environment (which was the 

case of the PlantVillage dataset (Mohanty et al., 2016)) which impacts the model efficacy in real-

world images classification scenarios. To prove the impact of the PlantDoc real-world dataset, the 

researchers trained 3 CNN models using the dataset and compared the results with PlantVillage 

Dataset. The research claimed that using the PlantDoc images dataset increased the classification 

accuracy by 31%. The researchers also created another cropped image dataset (Cropped-PlantDoc) 

using the bounding box information. This dataset contains only images of leaves like the 

PlantVillage Dataset; however, the images are low-quality with varying backgrounds which is the 

usual scenario in a farm field. The CNN models are trained using VGG 16, InceptionV3, and 

InceptionResNet V2 architectures and compared the classification accuracy and F1-Score. The 



16 

 

analysis confirms that when the CNN model is trained using images from a controlled field such 

as the Plant Village dataset and then tested with real-world images, the model performance is not 

up to the mark. To improve the CNN model performance, training needs to happen with real-world 

images from the actual farm/plantation field. The research work also included leaf detection using 

PlantDoc Dataset by leveraging the MobileNet model and an efficient R-CNN model based on 

InceptionResnetV2 architecture. 

 

Though, the PlantDoc dataset has been curated by experts and images are labeled following 

appropriate process and guidelines, still, there are chances of some images classified wrongly due 

to the absence of extensive domain expertise. Furthermore, some of the classes do not contain a 

sufficiently large number of images which are required for accurate model training for disease 

detection. The PlantDoc dataset's usefulness can be further enhanced by applying proper image 

segmentation techniques to take out the leaf from the images to overcome the background noise in 

real-world plant images. 

 

2.5  Related Research 

Based on the existing literature review, it is evident that Crop Disease Detection is an area of 

interest of the research community for the past few decades. There are two main approaches for 

automated crop disease detection using Computer Vision, which include the traditional machine 

learning approach and modern deep learning approach, which are reviewed and compared in the 

next subsections. 

 

2.5.1  Traditional ML/ DL modelling 

The first traditional approach followed is based on image processing techniques such as 

segmentation, clustering, and filtering. It involves manual feature extraction using Python libraries 

such as OpenCV to find interesting regions to detect the changes in plant leaves due to disease. 

Once the various features of interest are extracted, including color, shape, and texture, the 

traditional ML models, such as K-Nearest Neighbour, SVM, and Logistic Regression, are used to 

classify the images in various types of disease classes. 

 

In the past research, plant images were segmented into multiple, non-overlapping regions using 

edge detection techniques, region extraction, and clustering. The image segmentation groups the 
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different objects of an image with the same color and texture. The image segmentation was 

performed, leveraging a genetic algorithm, which resulted in the detection of various plant diseases 

for fruits and vegetable crops in the early stage of disease with less computational resources (Arya 

et al., 2018; Singh et al., 2015; Singh and Misra, 2017). The research highlighted that genetic 

algorithm-based segmentation clubbed with Bayes classifier, ANN classifier, Fuzzy Logic, and 

hybrid algorithms increased classification efficiency to detect plant diseases. Al Bashish et al. 

(2011) performed image segmentation leveraging K-Means clustering and classification using 

neural network and detected five types of plant diseases. The research used RGB images of plant 

leaves to create a color transformation structure that is segmented using K-Means clustering. The 

texture features were extracted to detect infected parts of the leaf and then passed to the neural 

network classifier. Though, a model trained using K-means clustering is guaranteed to converge, 

the solution quality is largely dependent on the choice of the value of K and the initial set of 

clusters. K-Nearest Neighbor (KNN) classifier was used after image segmentation and color and 

texture feature extraction for various plant types of disease classification (Hossain et al., 2019; 

Vaishnnave and Devi, 2019). However, K-Nearest Neighbor (KNN) classifier is computationally 

expensive and is not suitable for large datasets. The research from Islam et al. (2017); Meena 

Prakash et al. (2018); Padol and Yadav (2016) leveraged the SVM classifier after segmenting the 

images using K-Means Clustering. SVM helped to train robust classification models even on 

datasets with high bias. In the past research work, a common practice adopted was to try out 

different classifier models such as KNN, SVM, Naive Bayes, and Decision Tree. The overall 

classification model performance using the traditional machine learning is directly dependent on 

how well feature engineering techniques were adopted to extract and select features for plant 

disease detection.  

 

With the advancements in the Deep Learning field to classify plant diseases, multiple researchers 

leveraged deep neural networks with multiple hidden layers and GPU-based compute for parallel 

processing. Multilayer Perceptron (MLP) using back-propagation algorithm was used to train 

the classification models to detect various plant diseases. These deep learning models used similar 

approaches for image segmentation such as K-means clustering and extracted color, shape, and 

texture features using HOG, GLCM, SIFT, SURF, and so on. After feature extraction and selection, 

feature vectors are passed to the Back Propagation Neural Networks (BPNN) classifier instead of 

traditional Machine Learning classifier models such as SVM, Naive Bias, and KNN (Dhakate and 
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B, 2015; Ramakrishnan and Sahaya, 2015). BPNN requires more training time as compared to ML 

models, however, the model accuracy is higher for these models when an appropriate number of 

layers and neurons are used in hidden layers. Khan and Narvekar (2019) used Multiclass Support 

Vector Machine (MSVM) classifier and neural networks to classify the tomato plant diseases using 

extracted hybrid features. The research can be further enhanced by using CNN to extract the 

features in an automated way and compare the impact on classifier performance. With the objective 

of detecting and classifying tomato and cotton leaf diseases, Kumari et al. (2019) focused on their 

research work to perform image segmentation using k-means clustering. They extracted the 

features such as Contrast, Correlation, Energy, Homogeneity, Mean, Standard Deviation, and 

Variance to detect tomato and crop diseases. The research used a neural network to classify the 

images in four categories which include Bacterial Leaf Spot & Target Spot for cotton leaves and 

Septoria Leaf Spot & Leaf Mold for tomato leaves. This research work is carried out with very 

limited number of image datasets which includes 20 images for tomato diseased leaves and 20 

images for cotton plant spanning across four disease classes. Hence, the higher accuracy numbers 

need to be investigated for overfitting scenario. 

 

2.5.2  Data Acquisition and Processing 

In the past, researchers used multiple methods to acquire an image dataset with enough data points 

and then annotated the image dataset using manual and automated techniques. The methods include 

capturing the plant images from mobile or digital cameras and downloading the images from the 

internet by searching for specific plant disease types. Labeling and cleaning of image datasets for 

various disease types require domain expertise in Plant Pathology and requires a considerable 

amount of time and effort. Due to this many research studies in the past relied on the PlantVillage 

dataset which contains 54,306 images of 14 crops infested with 26 diseases  (Mohanty et al., 2016). 

However, this dataset was curated using images taken from a controlled (lab) environment. After 

loading the data, multiple pre-processing techniques were used to normalize, center, and 

standardize the image dataset.  

 

The research work by Wang et al. (2017) used the healthy and black rot apple images from the 

PlantVillage dataset and botanists further annotated the black rot apple leaf images into four disease 

severity classes which included healthy, early, middle, and end stages. The images were rescaled 
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as per the requirements of each CNN architecture for transfer learning and to 256 X 256 pixels for 

a shallow network. Normalization is applied to achieve standard normal distribution data which 

improved the model training efficiency. To prevent overfitting, various image augmentation 

techniques were applied such as flipping, shearing, zooming, and randomly rotating images. In the 

previous research work from Owomugisha and Mwebaze (2017), National Crops Resources 

Research Institute (NaCRRI) collected the cassava leaf images using smartphones which were then 

manually labeled by experts. The dataset included 7,386 cassava plant leaves images which were 

divided into 5 classes including healthy leaf images and 4 types of diseases. Durmus et al. (2017) 

used PlantVillage dataset by taking a subset of the only tomato leaves images for the research work 

to evaluate suitable lighter CNN models for deployment on mobile devices. The data set considered 

had 10 different types of tomato image classes which included healthy and 9 types of tomato 

diseases. Sladojevic et al. (2016) collected the images from the internet by searching with specific 

disease names for different types of plants in different languages. The research work also 

considered creating a new class with only background images using the Stanford background 

dataset (Gould et al., 2009) to increase the classifier accuracy. After cropping the images to get the 

interesting plant leaf region, the researchers resized the resulted image dataset to 256 X 256 pixels 

using Python script and OpenCV framework. Then images were augmented using simple image 

rotations and various transformation techniques, such as affine transformation and perspective 

transformation. The research carried out by  Rqjodl et al. (2018) used the 54,306 images from 

PlantVillage dataset spanning across 38 categories. The images were resized to 64 × 64 pixels for 

model training and making predictions. The pre-processing was only limited to scaling images to 

the range of the tank activation function [-1, 1]. The research done by Ramcharan et al. (2017) 

gathered several cassava genotypes and stages of maturity plant images from experimental fields 

which contained 2,756 images after data set cleaning. The researchers then manually cropped 

original images into individual leaflets to build the second dataset with15,000 images of cassava 

leaflets (containing 2,500 images per class). The images were then labeled into six classes including 

a healthy class and 5 types of Cassava disease classes. To demonstrate the feasibility of leveraging 

deep CNN model to classify five tomato plant diseases, Ashqar and Abu-Naser (2018) 

experimented with 2 types of models built using 9000 images of infected and healthy Tomato 

leaves collected under controlled conditions from public data set. They resized the images to 

150×150 pixels without compromising on image quality. 
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2.5.3  Important Features and Feature Extraction Techniques  

The previous research studies leveraged multiple feature extraction techniques to extract various 

features such as color, texture, shape, and spot size details. After extracting the features, any 

redundant features need to be discarded to avoid data redundancy. Only those features need to be 

selected which contribute to model prediction capability. The previous study has shown that usually 

hybrid features such as a combination of color, shape, and texture are efficient to detect multiple 

patterns in the images for plant disease detection. 

 

In the research work done by Owomugisha and Mwebaze (2017) 4 types of cassava plant diseases 

are classified based on features extracted using the ORB algorithm (Rublee et al., 2011) and color 

features. As Cassava plant diseases can be noticed easily using shape and color deformations on 

the plant leaves, the research extracted those representative features from the input images. 

Intending to leverage Open Source and freely available feature extraction algorithms, this research 

leveraged the color features and the Oriented FAST and Rotated BRIEF (ORB). To extract color 

features, the research performed the HSV color transformation of the image and calculated the 

normalized hue histogram of the image using 50 bins. The ORB features provided the best 

combinations of two algorithms which included Features from Accelerated Segment Test 

(FAST) keypoint detector algorithm and Binary Robust Independent Elementary Features (BRIEF) 

feature descriptor. The ORB algorithm solves the computation of orientations problem of the FAST 

algorithm and the major drawback of poor performance on rotation with BRIEF. The ORB 

identifies interest key points in the image. The key points are scattered throughout the image with 

most of the points centered on the section of the leaf which is damaged. Each point has 32 vectors 

that describe the key point at that location uniquely. To get a uniform representative feature vector 

of the image, the research applied the bag-of-visual words technique to form 120 clusters with 

different key points to represent the image. This forms a dictionary that is used to train uniquely 

for each disease class. To represent a new image using ORB features, keypoint descriptors were 

extracted from the image and then mapped to the cluster centers in the dictionary. The research 

created two extracted datasets containing a 7386×50 dataset representing color hue histograms and 

a 7386×120 dataset representing the generated ORB feature vectors. 
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The survey conducted by Khan and Narvekar (2019b) reviewed and compared the various feature 

extraction techniques. They reviewed Gray Level Co-Occurrence Matrix (GLCM) which includes 

texture-based features such as entropy, energy, contrast, and homogeneity statistical measures. The 

research then reviewed color-based features using color histograms which converted images from 

RGB color spaces to HSV and YCbCr color spaces. To represent local structures and object 

contours, the research work included the Histograms of Oriented Gradient (HOG) algorithm which 

is a shape-based feature extraction technique. Finally, the research focused on automated feature 

extraction using deep learning techniques. The research work also recommended a hybrid feature 

set for tomato leaf disease detection, which included color information extracted from the color 

histogram, Local Binary Pattern (LBP) as a texture descriptor, and Zernike Moments (ZM) as a 

shape descriptor.  

 

2.5.4  CNN Training (from Scratch) 

The approach of the deep learning neural networks, to automatically extract various features and 

then perform image classification, is gaining more popularity due to its high accuracy rate. The 

most common neural network architectures are Convolutional Neural Networks which are very 

effective in object detection and classification tasks for image datasets. 

 

The research performed by Sardogan (2018) focused on detecting 5 types of tomato diseases using 

CNN with the Learning Vector Quantization (LVQ) algorithm wherein they extracted 500 feature 

vectors from input images. The research used the CNN model for automatic feature extraction and 

LVQ is used for classifying the tomato leaf images into five classes. LVQ combines competitive 

learning with supervised learning, resulting in a simple and adaptive model which can classify a 

fixed number of classes efficiently (Mokbel et al., 2015).  

 

The research work by Wang et al. (2017) focused on diagnosing the apple plant leaf black rot 

disease severity using a deep convolutional neural network. The networks were trained from 

scratch by researchers with different numbers of convolutional layers (2, 4, 6, 8, & 10). The 

network used 32 filters of 3 X 3 size with ReLU activation function in convolution layer followed 

by 2 X 2 max pooling layer, two fully connected layers, and finally a SoftMax layer. The shallow 

network model used a dropout ratio of 50% to avoid overfitting the model. The different CNN 

architectures had shown impressive results in image classification and object detection tasks. 



22 

 

Sladojevic et al. (2016) built a CNN model to detect 13 types of plant diseases. The research 

leveraged CaffeNet architecture by adjusting the SoftMax layer to support 15 classes (13 plant 

disease classes and a healthy and background images class each). The model was built by 

sequencing convolutional layers with ReLU activation function, max pooling layers, fully 

connected output layers, and finally SoftMax as a classifier. To fine-tune, the model and control 

overfitting, the research used lower learning rates in later layers. Agarwal (2019) in their research 

paper proposed a convolution neural network model in which they stacked 3 convolution layers, 

then 3 max pooling layers providing inputs to 2 completely connected layers to identify a disease 

for the corn crop. They trained the model on a publicly available PlantVillage Dataset (Mohanty et 

al., 2016). The research work compared the proposed CNN model with the traditional machine 

learning models such as Naïve Bayes, Decision Tree, Random Forest, Logistic Regression, k-NN 

by extracting Hu-moments, Harlick, LBP-histogram, and HSV-histogram features manually. 

 

To demonstrate the feasibility of leveraging the deep CNN model to classify five tomato plant 

diseases, Ashqar and Abu-Naser (2018) created two types of models. The first model considered 

images with 3 color channels (RGB) and the second one with a single Gray-Scale channel. They 

considered four convolutional layers with ReLU activation function followed by max pooling layer 

in the future extraction layer for both the models. For both types of models, in the flatten layer, two 

dense layers were added. However, they considered different numbers of hidden units for color 

(256) and grey-scale (128) models resulting in almost twice the number of trainable parameters for 

the full-color model. In the classification layer, the model used the SoftMax activation function to 

classify the final output into 6 different types of classes. The full-color model outperformed in 

terms of classification accuracy as compared to the grey-scale model with very high accuracy of 

99.84%. As the model is trained from scratch by using images from a controlled environment, there 

is scope for future enhancements to optimize the model training time using transfer learning and 

validate the model with real-world images. 

 

2.5.5  Transfer Learning 

In recent years, multiple research studies used a transfer learning approach to train the CNN models 

to optimize the training time. For plant disease detection, the transfer learning process provided a 

huge benefit due to leveraging state-of-the-art CNN models on large image datasets like ImageNet 

and COCO. The CNN models trained with the transfer learning approach in past studies resulted 
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in the highest model performance as compared to deep learning or machine learning model trained 

from scratch.  

 

For transfer learning, research performed by Wang et al. (2017) used VGGNet, Inception-v3, and 

ResNet50 architectures as base models. The research relied on ImageNet trained weights for 

training new transfer learning models by freezing initial all layers except the fully connected layers. 

Further, the top convolutional block for VGG16 and VGG19, the top two inception blocks for 

Inception-v3, and the top residual block for ResNet50 were unfrozen to train a new fully connected 

network with a small learning rate. A trained CNN model using the transfer learning approach by 

Ramcharan et al. (2017) as a part of their research used the existing weights from the ImageNet 

database to retrain the Inception v3 CNN model to classify the cassava image datasets. During 

model training, the final layer of the CNN model Inception v3 was retrained for the cassava image 

datasets with 3 different architectures, which involved using the original inception SoftMax layer, 

Support Vector Machines (SVM), and K-nearest Neighbor (K-NN). Based on the model validation 

results, the SVM model had the highest prediction accuracies for four disease classes. The best 

model resulted in overall 93% validation accuracy on the Cassava images dataset. The results of 

this study showed that image classification with transfer learning from the CNN Inception v3 model 

can be used in the field for accurate automated cassava disease detection. The usage of SVM and 

K-NN in final classification layer also justified that transfer learning can apply traditional machine 

learning classifiers for retraining the vectors produced by the trained CNN model on new class 

data. The proposed CNN model with transfer learning, however, needs to be enhanced with larger 

image dataset to improve model performance and to expand for other crop disease detection. 

 

The research work carried out by Suryawati et al. (2018) compared the performance of the base 

CNN model, AlexNet, VGGNet, and GoogLeNet architectures. The research analyzed the impact 

of the depth level of CNN architecture on the model performance. The research leveraged a subset 

of the publicly available PlantVillage dataset which contained 18,160 tomato leaves images 

covering 10 different class labels. Before using the images for the training model, those were 

resized into 64 x64 pixels and RGB values were extracted from the image. The base CNN model 

had 2 convolutional layers and 2 fully connected layers. Max Pooling was applied to the second 

convolutional layer and dropout was applied to the first convolutional and fully connected layers. 

AlexNet CNN architecture proposed by Krizhevsky et al. (2012) used 5 convolutional layers and 
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3 fully connected layers. AlexNet used the ReLU activation function in each convolutional layer 

along with max pooling applied in the first, second, and fifth layers. AlexNet used 5 convolutional 

layers with varying filter sizes of the 11x11 filter, the 5x5 filter, and the 3x3 filter. To overcome 

the problem of model overfitting, they have applied dropout and data augmentation techniques. 

Figure 2 – AlexNet Architecture  from the AlexNet research paper shows the architecture of the 

AlexNet.  

 
Figure 2 – AlexNet Architecture (Krizhevsky et al., 2012) 

The research used the same AlexNet model architecture with the PlantVillage dataset which was 

originally trained on the ImageNet database as a part of the ILSVRC-2012 competition. Then the 

study leveraged the VGGNet architecture for training another model which surpassed the 

performance of AlexNet through increased network depth and reduced filter sizes of 3x3-sized 

filters as compared to AlexNet filter sizes of 11x11, 5x5, and 3x3. The VGGNet 16 architecture 

contains a total of 13 convolutional layers with 5 max pooling layers of 2x2 filters with stride 2 

placed after convolutional layers processing. It contains three fully connected layers followed by 

the SoftMax layer as shown in Figure 3 – VGGNet Architecture. 

 

Figure 3 – VGGNet Architecture (Suryawati et al., 2018) 
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Finally, the researchers tried to build a model for Tomato plant disease detection leveraging 

GoogLeNet's (Szegedy et al., 2015) model architecture which won the 2014 ILSVRC competition 

by bringing down the training error rate to 6.67% on the ImageNet dataset. The distinctive factor 

of GoogLeNet model architecture as compared to previous state-of-the-art CNN architectures such 

as AlexNet and VGGNet is to explore both depth and width factors of CNN network to learn a 

better representation of image data. GoogLeNet solved the problem of determining the correct 

kernel size to perform the convolution process according to the location information (locally or 

globally) as per the image size variations by introducing the concept of the inception module. The 

inception module reduced the number of input channels and added the 1x1 convolution layer before 

the 3x3 and 5x5 convolution layers and after the 3x3 max-pooling layer on each inception module. 

The inception module supported parallel convolutions by using multiple filters of sizes 1x1, 3x3, 

and 5x5. GoogLeNet architecture supported low computational devices with the help of a reduced 

number of network parameters as it reduced the number of parameters from 60 million (AlexNet) 

to 4 million. Figure 4 – Inception module  shows the naive version of the inception module along 

with the inception module with dimension reduction. 

 
Figure 4 – Inception module (Szegedy et al., 2015) 

The research work carried out by Tm et al. (2018) aimed to build a CNN model using a simple 

approach that leverages minimal computing resources to achieve results that were comparable with 

the state-of-the-art (SOA) techniques. The researchers experimented with a slight variation of the 

convolutional neural network model called LeNet to detect and classify 10 tomato leaf diseases. 

The research used a subset of the Plant Village public dataset which included around 18160 images 

of tomato leaf diseases spanning 10 different diseases, and healthy leaves. As a part of data pre-

processing the images are downsized to 60 X 60 pixels and image augmentation techniques such 

as random image rotation, horizontal and vertical flipping, and shifting of images with a small 
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degree was applied. The images were also normalized to bring all the pixel values in the same range 

by using the mean and the standard deviation (Z-score). As a slight variation to the original LeNet 

architecture, the model was consisting of an additional block of convolutional, activation, and 

pooling layers. The filters of size 5X5 were gradually increased in the three convolutional blocks 

stacked sequentially to compensate for the reduction in the size of the feature maps due to max-

pooling layers. The features map was zero-padded to maintain the same image size. Dropout 

regularization was applied to avoid the overfitting scenario. The researchers used the ReLU 

activation function in the convolution layer and the SoftMax activation function in the final 

classification layer to classify the images in 10 different classes. 

 

2.5.6  Light CNN models (for “Low Compute” devices) 

For computer vision applications on mobile apps, the most important factors are the smaller size 

of the model and quick inference time which drive the usability, performance, and future updates 

over the wire. To that end, some interesting research work has been conducted to implement small 

but performant neural nets. The two proven approaches for implementing suitable network models 

for mobile devices and embedded computer vision applications are either to train smaller networks 

with a lesser number of parameters or to compress already trained large models using various 

techniques.  

 

In recent years, there is a focus on building deep learning models, which can be deployed on 

smartphones and used in the plantation field for timely detection of diseases. The research done by 

Majumder and Shirvaikar (2020) focused on training the transfer learning model leveraging 

ResNet50 (Yun, 2015) architecture to perform maize crop disease detection in real-time in the field 

using the smartphone app. They trained their model on a subset of the PlantVillage dataset 

(Mohanty et al., 2016) and tested it on the Northern Corn Leaf Blight dataset (Hanks et al., 2018), 

and deployed it on an iOS device for real-time crop disease detection in an actual field. The research 

leveraged the pre-trained model on the ImageNet dataset (Jia Deng et al., 2009) which is a 

benchmark computer vision dataset.  

 

The research carried out by Iandola et al. (2016) focused on the design-space exploration of 

convolutional neural networks using microarchitecture and microarchitecture patterns to compress 

the CNN model. They have proposed new CNN Architecture called SqueezeNet which has 50 
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times lesser parameters than AlexNet, however, it still maintains the same accuracy on the 

ImageNet dataset. Further, it experiments with compressing the SqueezeNet model to less than 0.5 

MB size (510 times smaller than AlexNet) which makes it ideal for deployment on devices with 

limited computing resources such as smartphones and FPGAs. The proposed smaller CNN 

architecture provides many advantages such as less communication across servers during 

distributed training, efficiency in providing frequent updates over-the-wire connected devices and 

suitability of model deployment on FPGAs or devices with low computational hardware. The 

SqueezeNet model is trained and evaluated with an ImageNet dataset. The research applied three 

main architectural design strategies which include – (1) replacement of 3X3 filters with 1X1 filters; 

(2) decrement of the input channel numbers to 3X3 filters; and (3) ensuring large activation maps 

downsampling. The research introduced the Fire module which is comprised of a “squeeze” 

convolutional layer with 1 X 1 filters feeding into an “expand” layer which has a mix of 1 X 1 and 

3 X 3 convolutional filters. The research work also explored three different types of 

microarchitectures of SqueezeNet, which included – simple SqueezeNet architecture, SqueezeNet 

with simple bypass connections between some Fire modules, and SqueezeNet with complex bypass 

connections between the remaining Fire modules. Both simple and complex bypass 

microarchitectures showed improvements in accuracy compared to simple vanilla SqueezeNet 

architecture while simple bypass microarchitecture resulted in the best accuracy. As a future 

research enhancement, the SqueezeNet model needs to be applied for other problem areas and 

evaluated against other than the ImageNet data set. To detect tomato plant diseases in farm fields 

or greenhouses in real-time using robots, Durmus et al. (2017) compared two deep learning model 

performances with a focus on the suitability of the model to run on mobile devices. The research 

analyzed the possibility of detecting tomato plant diseases in the field by training the model on 

limited compute resources using a dataset from a controlled environment. The research work 

indicated that SqueezeNet is a potential candidate for the mobile deep learning classification 

because of its lightweight and low computational requirements. The research leveraged 

SqueezeNet and AlexNet to detect the diseases. AlexNet has 5 convolutional layers. After every 

convolution layer, there is a ReLU layer. The addition of Normalization layers helped in the 

generalization of the model. Features at the 5th convolutional layer were fed to a fully connected 

network after pooling. The fully connected layers were responsible for calculating the class 

probability. To control overfitting, a dropout layer was added after the fully connected layers. The 
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SoftMax classifier finally classified the input images into 10 different classes. Another model 

leveraged SqueezeNet architecture for reducing the model size using 3 design strategies. Those 

strategies were - reducing filter size, decreasing the input channels, and down sampling late in the 

network. The proposed neural network started with a convolutional layer, then having eight fire 

modules, followed by the next convolutional layer, and lastly, the SoftMax classifier.  

 

The research paper on MobileNets (Howard and Wang, 2012) proposed a new model architecture 

based on depth-wise separable convolutions to evaluate a class of efficient models for embedded 

vision and mobile applications. The study demonstrated how effective MobileNets are in various 

use cases (like object detection, fine-grain classification, face attributes, and large-scale geo-

localization) and applications. The study also compared the performance of MobileNets with 

existing state-of-the-art transfer learning algorithms. Research showed a novel way to implement 

faster and smaller CNN architecture by tunning width and resolution multiplier hyper-parameters 

with equivalent model accuracy of state-of-the-art deep neural network. The research used various 

popular image datasets, which included ImageNet, Stanford Dogs, Im2GPS, PlaNet, Yfcc100m, 

and COCO. The study used depthwise convolutions for the application of a single filter for every 

input channel (input depth) and then pointwise (simple 1 X 1) convolution for creating a linear 

combination of the depthwise layer’s output. The proposed MobileNets architecture used ReLU 

and batch norm nonlinearities for both layers and SoftMax in the final output layer. MobileNet has 

28 layers considering depthwise and pointwise convolutions as separate layers. The training of the 

MobileNet models was done in TensorFlow with the help of RMSprop using asynchronous 

gradient descent, which is like Inception V3. As smaller models have fewer problems of overfitting, 

the model used less regularization and data augmentation techniques. The research introduced a 

simple width multiplier to make a network uniformly thin at every layer. Width multiplier effects 

reduce the number of parameters and the computational cost quadratically. It can be applied to any 

model structure for defining a new, smaller model having reasonable latency, accuracy, and size 

trade-off. The 2nd hyper-parameter in the reduction of a neural network’s computational cost was 

the resolution multiplier. The researchers applied this to the input image and the internal 

representation of every layer is subsequently reduced by the same multiplier. The CNN model 

based on MobileNet architecture was adapted in research carried by Elhassouny and Smarandache 

(2019) to diagnose ten types of Tomato leaf diseases. The model implemented based on MobileNet 

architecture was able to detect the tomato crop diseases using popular mobile phones and 
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leveraging the mobile phone camera with acceptable performance. The research used a dataset 

containing 7176 tomato leaves images by resizing those to 224 X 224 pixels to train the model. 

The model consists of a series of Depthwise Separable convolutions with Depthwise and Pointwise 

layers followed by batch norm (BN) and ReLU. One layer corresponds to 3 X 3 Depth wise Conv, 

BN, 1 X 1 Convolution, BN, and ReLU activation function. To get the classification of diseases, 

the model was ended by average Pooling of pooling layers, fully connected layers, and the SoftMax 

function with 10 classes. The proposed CNN Model has been tested with many optimization 

algorithms such as Stochastic gradient descent, adadelta optimizer, adagrad, adagradDA, 

Momentum, Adam, Ftrl, proximaladagrad, and RMSprop optimizers. Hyperparameter tuning is 

performed on the model to improve the model performance such as adjustments in learning rate. 

The accuracy was noticed between 85% to 90% for the various models with different optimizers 

and learning rates. The model can be further improved with large-quality image data set and newer 

CNN architectures targeted for low compute devices. 

 

2.5.7  Prediction of Spread of Disease 

For crop disease management and control, it is important to know the degree of disease spread to 

recommend appropriate solutions such as pesticides or rotational crop patterns. There have been 

instances previously when due to inadequate knowledge or misinterpretation of the intensity of the 

plant diseases, over-dosage or under-dosage of the pesticide has resulted in severe crop damages. 

Traditionally, trained experts used to examine plant tissues to detect the plant disease severity 

manually. This manual assessment method for measuring plant disease severity was expensive and 

not efficient due to a lack of expert support system which blocked the rapid modernization of the 

agriculture field to a certain extent (Mutka and Bart, 2015).  

 

The research carried out by Owomugisha and Mwebaze (2017) classified disease severity levels 

on a scale of 1 to 5, where indicating 1 being a healthy cassava plant and 5 being a critically 

diseased cassava plant. As a part of the research work, the android application is built based on a 

client-server architecture that captured the images using smartphones and uploaded them to the 

server for classification of cassava disease types and severity. The research showed a high accuracy 

level when the Linear SVC classification model with a cross-validation technique on ORB feature 

vectors was used to predict the severity of the disease. The deployed model on a smartphone as a 

part of this research requires a smartphone to have a live internet connection which can be a 
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constraint sometimes in remote locations. As a future enhancement, there can be a compact version 

of the model which can work in offline mode to perform preliminary diagnosis and then be backed 

by further detailed diagnosis once the mobile phone is connected to the internet. 

 

Rqjodl et al. (2018) proposed a Deep Convolutional Generative Adversarial Networks (DCGANs) 

extract discriminative features automatically from plant images using an end-to-end pipeline to 

predict the disease severity. DCGANs (Goodfellow et al., 2014) contain two networks - a generator 

that generates an image from a noise vector, and a discriminator which discriminates between a 

generated image and a real image. After the network is trained, the generator can generate an image 

from random noise that looks “real” which the discriminator should detect as “fake.” The research 

leveraged Adam optimizer with a learning rate of 0.0002. The researchers initialized the weights 

from a zero-centered Normal distribution with a standard deviation of 0.02. The research compared 

the quality of the representations learned by DCGANs for supervised tasks and then using the 

discriminator's convolutional features within all layers. The trained model was able to achieve an 

accuracy of 89.83%. The model performance can be enhanced using a large image dataset from the 

real world and trying out different hyperparameter tuning.  

 

2.5.8  Model Evaluation and Testing 

The previous research work used different model evaluation techniques. The researchers used 

various evaluation metrics depending on dataset imbalance percentage and type of classification 

model such as binary or multi-class classifier. The research work used different data splitting 

techniques such as hold-out and K-fold cross-validation. The trained models targeted for low 

compute devices, such as smartphones, were evaluated for latency, size, and power consumption. 

  

The research from Sladojevic et al. (2016) used 10-fold cross-validation to verify model 

performance. The research work resulted in a precision score of 91% to 98% for separate class tests 

with an overall training accuracy of 96.3%. Based on the model validation results it was concluded 

that model fine-tuning did not impact the overall accuracy much, however, the augmentation 

process helped to improve the model performance a lot. The proposed model can be enhanced 

using large image data set covering wider land areas wherein images are captured using aerial 

photographs of farm fields by drones and a CNN model for object detection. The research 

performed by Sardogan (2018) was able to average an accuracy rate of 86% across 5 classes, which 



31 

 

can be further improved by training a model with different filters and convolutions sizes. The 

research carried by Agarwal (2019) used various metrics including accuracy, specificity, F1-Score, 

and Cohen-Kappa to compare the model performances. Though their model performance is not 

equivalent to the accuracy level of VGG 16, it scores more in terms of overall model size and image 

classification time needed which are important factors to build lighter models. The proposed model 

needs to be compressed by maintaining the accuracy and inference time for deployment of a model 

on devices with lower computational power such as mobile phones. The two-class image 

classification model trained by Majumder and Shirvaikar (2020) resulted in 0.99 accuracy and F1-

Score. However, the model could classify the images only into two classes i.e., Healthy and 

Northern Corn Leaf Blight, and misclassified the other diseases such as Common Rust disease. 

The second part of the research focused on model deployment on iOS which though limits the 

applicability in rural areas of developing countries, as most of the farmers have android phones due 

to price advantage. Tm et al. (2018) verified various quantitative metrics such as accuracy, 

precision, recall, and F1-score to validate model performance. The training accuracy of 99.3% and 

validation accuracy of 94.8% was reported for the model. As a part of future enhancements of the 

model, different learning rates and optimizers can be experimented along with the newer 

architectures of CNN to improve the model performance. The research conducted by Wang et al. 

(2017) resulted in 79.3% test accuracy for the CNN model trained from scratch and 80.0% to 90.4% 

of test accuracy for models trained using the transfer learning approach (with VGG16 resulting in 

90.4% test accuracy). The results of the research work proved that transfer learning helps to 

overcome the problem of insufficient training data. Durmus et al. (2017) did test of their trained 

models using the validation set was done on Nvidia Jetson TxI board which is used for robotic 

systems. Based on the accuracy-test results, the performance level of SqueezeNet was slightly 

inferior to AlexNet. According to the study, lowered accuracy compared to PlantVillage research 

work (Mohanty et al., 2016) was mainly caused due to smaller batch size of 20 which was selected 

due to less RAM size. The proposed model based on SqueezeNet architecture was almost 80 times 

smaller than AlexNet making it suitable to deploy on the low computational hardware of real-time 

inferences in the field or greenhouse. 

 

In the research conducted by Suryawati et al. (2018), all the CNN architectures resulted in an 

accuracy rate above 89%. However, VGGNet outperforms the other CNN models by achieving a 
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95.24 % accuracy rate with a loss of 0.17. Table 1 shows the comparative analysis of CNN model 

performance. 

Table 1 - Accuracy and Loss Metrics (Suryawati et al., 2018) 

 

The results of the study suggested that CNN with deeper architecture such as VGGNet 

outperformed CNN base model, AlexNet, and surprising GoogLeNet as well for plant disease 

classification task with PlantVillage dataset.  

 

2.6  Discussion 

This research project plans to leverage the PlantVillage dataset due to its large number of image 

availability and the PlantDoc dataset to evaluate model performance on real-world images from 

the actual plantation field. It is evident based on the literature review, that the ORB features provide 

the best combinations of two algorithms which included Features from Accelerated Segment Test 

(FAST) keypoint detector algorithm and Binary Robust Independent Elementary Features (BRIEF) 

feature descriptor. Hence, this research will be extracting Color and ORB features during feature 

extraction. The study will be using various data pre-processing techniques which include 

normalization, centering, and standardization of image data. Based on a comparative analysis of 

traditional ML models and CNN, it justifies the use of CNN with transfer learning to achieve the 

objective of this study. 

 

In the past research from “The Evolution Of Mobile CNN Architectures | Weights & Biases” 

(2020), a variety of smaller CNN model architecture performance was compared, that includes 

EfficientNet-B0, MobileNet, NasNetMobile, GhostNet, MobileNetV2 as shown in Figure 5. 
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Figure 5 – CNN models analysis (“The Evolution Of Mobile CNN Architectures | Weights & Biases,” 2020) 

Based on previous CNN model comparative performance analysis, this research work will be 

leveraging MobileNet V1, V2, EfficientNet-B0, and NasNetMobile as backbone CNN models for 

Transfer Learning. 

 

2.7  Summary 

This chapter provided details on the extensive literature review conducted for this research project. 

It explained commonly found Tomato plant diseases and various methods to detect those and how 

those evolved in the past few decades. The chapter also covered details about publicly available 

image datasets for automated plant disease detection and reviewed their performances with various 

models. The chapter covered the evolution of Computer Vision and Machine Learning models 

which have played a crucial role in the agriculture field. The literature review then focused on 

review and performance analysis of various CNN architectures and transfer learning techniques 

followed by how models are shrunk in sizes keeping the same accuracy level to make them suitable 

for deployment on low compute devices such as smartphones. This chapter also contained details 

about feature extraction techniques that can be leveraged for measuring the degree of disease 

severity to predict the spread of disease. Finally, the discussion section summarized the 

significance and performance benchmarks of various research papers and journals reviewed during 

the literature review. 

  



34 

 

CHAPTER III:  

 

RESEARCH METHODOLOGY 

 

3.1  Introduction 

This chapter will contain the details of the research methodology adopted for this research project. 

The first subsection will explain the systematic research approach framework leveraged during 

each stage of research experimentation. The next subsection section will discuss the characteristics 

of the datasets which will be used for this research work and how a subset of the dataset will be 

selected for this research study. The subsequent section on data pre-processing will include the 

details on techniques used for image acquisition, scaling and transformations, data normalization, 

and various image augmentation techniques which will be applied to handle data imbalances in the 

original dataset. The feature extraction subsection will explain how the automatic feature extraction 

will be carried out as a part of convolutional neural network training and required features for 

measuring the degree of plant disease will be extracted using various feature extraction algorithms.  

 

The model training section will contain the details of the proposed CNN image classification model 

to detect tomato plant details. It will explain the model architectures to be considered as a base 

model for this experimentation along with reasoning on why those model architectures are 

preferred for real-world solution deployment on mobile devices. The section will further cover the 

details on how the transfer learning techniques will be used in the research work and will provide 

details on the convolution neural network layers and training parameters. It will be followed by the 

details on which hyperparameters are tunned as a part of model optimization. Then the subsequent 

section will explain the model evaluation process and which statistical metrics will be used to 

evaluate trained model performance. The subsection on predicting the degree of the disease will 

explain the algorithms to be used for extracting important features such as color, shape, and texture 

to measure the spread of the disease and how the input images will be further classified based on 

the degree of disease.  

 

The next section will cover the details on how the model will be deployed on an Android mobile 

phone for real-time inferencing in the actual tomato plantation field. The last subsection will 

provide details of research tools and utilities being leveraged for model training and evaluation 

which includes hardware as well as software resources.  
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3.2  Research Approach 

The research methodology adopted for this study will include the standard machine learning 

processes. They are data acquisition & processing, data standardization & transformations, handle 

class imbalance, split the training and test data, model training and evaluation, model optimization 

using hyperparameter tuning, and model testing. It will be followed by model deployment and 

inferencing in an actual production environment. The research process will begin with the loading 

of images from two public datasets (PlantVillage and PlantDoc) during the Image acquisition step 

and then prepare the data using pre-processing methods as a part of the “Data Processing” stage. 

After the necessary data pre-processing is done and the dataset is standardized, necessary features 

to identify plant disease will be extracted automatically using the CNN model and even manually 

by leveraging different feature extraction techniques. The manually extracted features will help to 

predict the actual degree of disease. Next, in the “Model Training” stage, the various CNN models 

will be trained using different CNN architectures suitable for low compute devices such as mobile 

phones and their performance will be evaluated. Then the trained models will be optimized by 

performing hyperparameters tuning. In the third and final stage, the best model will be identified, 

which then will be deployed into the production environment i.e., in Android App for this research 

and interferences will be carried out in the actual farm field.  

 

These key process steps will be grouped into three stages as shown in Figure 6.  

 
Figure 6 – Research Methodology Process 

Feature Extraction** - The manual feature extraction is not required for the CNN model as automatic feature extraction will take 

place as a part of the learning process. However, the required features will be manually extracted for predicting the degree of disease. 
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The process flow diagram in Figure 7 explains the exact steps which will be performed in sequence 

for this research project. 

 
Figure 7 – Process Flow  

All the individual steps in the Process Flow are explained in detail in the subsequent sections. 

 

3.3  Dataset Selection 

To implement a real-world plant disease detection solution, the model needs to be trained on 

enough plant leaves images of high quality. A robust CNN model will be trained by taking into 

consideration the varied background conditions such as different angles, lighting arrangements, 

and backgrounds. The plant background includes other plants, weeds, flowers, fruits, stems, and 

human hands. This study will leverage two public plant image datasets including the PlantVillage 

dataset (Mohanty et al., 2016), which contains the high number of images gathered from a 

controlled (lab) environment. The second PlantDoc (Singh et al., 2020) dataset contains images 

from real plantation fields with the presence of different types of background noise. However, there 

are a smaller number of tomato plant leaf images as compared to the PlantVillage dataset. Initially, 

the training process will start by using 14,707 Tomato crop color images from the PlantVillage 

dataset which is distributed across 7 different classes as shown in Table 2 – PlantVillage extracted 

Dataset Class Distribution. 
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Table 2 – PlantVillage extracted Dataset Class Distribution 

# Class Image Count 

1 Tomato_Bacterial_Spot 2127 

2 Tomato_Early_Blight 1000 

3 Tomato_Healthy 1591 

4 Tomato_Late_Blight 1909 

5 Tomato_Leaf_Mold 952 

6 Tomato_Septoria_Leaf_Spot 1771 

7 Tomato_Yellow_Leaf_Curl_Virus 5357 

 

The model trained with the PlantVillage dataset will be then used for further classifying the real-

world images from the PlantDoc dataset which contains 2,598 images having a total of 27 classes 

spanning over 13 species. This research will use the subset of the PlantDoc dataset with 7 types of 

image classes that are mapping with the trained CNN model on the PlantVillage dataset. The 

PlantDoc dataset structure is organized into training and test datasets as shown in Table 3 – 

PlantDoc extracted Dataset Class Distribution. 

Table 3 – PlantDoc extracted Dataset Class Distribution 

# Class Train Image Count Test Image Count 

1 Tomato_Bacterial_Spot 86 15 

2 Tomato_Early_Blight 76 17 

3 Tomato_Healthy 51 17 

4 Tomato_Late_Blight 100 19 

5 Tomato_Leaf_Mold 78 15 

6 Tomato_Septoria_Leaf_Spot 126 20 

7 Tomato_Yellow_Leaf_Curl_Virus 68 15 

 

It is expected that the accuracy level will decrease with the PlantDoc dataset due to background 

noise in the actual field images, such as other leaves, stems, and other background objects. As a 

next experiment, the PlantDoc dataset will be used for fine-tuning the trained CNN model with 

transfer learning and validate the model performance. 
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3.4  Data Processing 

PlantVillage and PlantDoc datasets are already annotated and curated by experts and hence don’t 

require any data cleansing and labeling. The research work will load the images and perform the 

pre-processing as per the details mentioned in the next subsections. 

 

3.4.1  Load Image Dataset 

To train the CNN model, image data needs to be either converted to a NumPy array or tensor object. 

Image data can be loaded manually using the OpenCV library and then converted into pixel arrays. 

Similarly, output class labels need to be converted to integer values. However, this research will 

be leveraging Keras's inbuilt ImageDataGenerator class library to perform this task. Since there 

are two datasets with varying sizes, it will be beneficial to use the Keras ImageDataGenerator 

class, which will allow loading a single dataset in batches. The Keras ImageDataGenerator class 

supports progressive image loading. It will load only the required number of images in memory for 

the current and few next mini batches while training and evaluating a CNN model. The Keras 

ImageDataGenerator provides the flow_from_directory() function, which accepts the image 

dataset folder as an input parameter and then iteratively loads images. 

 

3.4.2  Resize Images 

In a convolutional neural network training, resizing images to an appropriate size plays an 

important role as it will directly impact the model training time and model performance. For 

different CNN model architectures based on MobileNet, EfficientNet, and NasNetMobile, different 

common input image resolutions such as 224 X 224 pixels, 128 X 128, and 192 X 192 pixels will 

be experimented to check which resolution improves model performance. The research will use 

either the OpenCV library to resize the images to the required resolution or will leverage Keras 

ImageDataGenerator class functions to resize the images. 

 

3.4.3  Normalize, Center, and Standardize Image Dataset 

The pixel values in the image range from 0 to 255 which are required to be normalized, centered, 

and standardized before using for CNN model training. Using larger pixel values will impact the 

speed of model training due to increased calculation complexities. Therefore, in this study, image 

pixel values will be normalized between 0 and 1 or -1 and 1 depending on the base model 

requirements for faster model training. To center images for PlantVillage and PlantDoc dataset, the 
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first mean pixel value for each of the datasets will be calculated and then it will be subtracted from 

each image within the dataset. It will result in pixel values distribution being centered on the zero 

value. The mean pixel value can be calculated for the entire dataset or a mini-batch or even for 

each of the images. There are two types of centering methods – Global Centering, where the mean 

pixel value is calculated and subtracted across color channels; and Local Centering, where the 

centering is performed at per color channel. The image dataset will be standardized to have a zero 

mean value and standard deviation of one, which follows the Gaussian distribution. The 

standardized image dataset will improve the training and evaluation process as the dataset will sum 

to zero and input values will range between -3.0 to 3.0 by following standard normal distribution 

or empirical rule. The image dataset can be standardized at the image level, mini-batch level, or at 

the entire dataset level like the centering of images. 

  

There are multiple ways to apply image scaling techniques to normalize, center, and standardize 

the images. It can be done manually using NumPy and OpenCV libraries. As in this research, 

images will be loaded using the Keras ImageDataGenerator class, it will use the same class even 

for scaling the images. It will allow the application of the required data scaling just in time while 

training and evaluating the model. During the instantiation of the ImageDataGenerator class, 

required arguments will be passed for normalizing, centering, and standardizing the image dataset. 

 

3.4.4  Data Augmentation 

The subset of the PlantDoc image dataset contains a lower number of images i.e., a total of 690 

images and only 631 images as training data. There is even a class imbalance observed for some 

of the disease categories. For example, Tomato_Yellow_Leaf_Curl_Virus class contains more than 

double the number of images and the Leaf_Mold class contains a smaller number of images. 

Usually, a deep neural network model requires a greater number of images to generalize well and 

avoid overfitting scenarios. This research will be using various image augmentation techniques 

such as horizontal flipping, rotation, shifting, zoom, and change in brightness. Unlike, image 

scaling processes, image data augmentation will be only applied to training datasets and not to 

validation and test datasets. This study will consider the training dataset characteristics (such as 

class imbalance ratio) and knowledge of the problem domain i.e., plant disease detection to choose 

appropriate configurations for image data augmentation. In this research, dynamic in-place image 
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augmentation will be performed using ImageDataGenerator class from Keras Deep Learning 

library. 

 
Figure 8 – In-place dynamic data augmentation (Adrian Rosebrock, 2019) 

The ImageDataGenerator class will apply in-place data augmentation as a part of the training 

process itself on the batches of the dataset and will return the transformed dataset to the deep neural 

network model during every epoch. The research will experiment with different settings of image 

data augmentation to analyze the impact on the model performance.  

 

3.5  Feature Extraction and Selection  

After completing data acquisition and data processing steps, the research will perform the most 

important steps of Feature Extraction and Feature Selection in Deep Learning process flow as 

shown in Figure 7. During this step, required features will be extracted from images for both the 

datasets which will help to classify tomato plant diseases and predict the degree of disease. The 

common features which will be extracted from the plant leaf images include color, shape, texture, 

and spot size details. The research work will consider various feature extraction techniques such 

as processing color histograms to extract color and texture features and Grey Level Co-occurrence 

Methodology (GLCM) to extract shape features. Also, Spatial Gray-level Dependence Matrices 

(SGDM) will be used to extract energy, contrast, correlation, and local homogeneity features 

(Chapaneri et al., 2020). The study will be aiming to experiment with a combination of various 

feature extraction algorithms and by performing automatic feature extraction using CNN with a 

transfer learning approach. 

 

3.5.1  Automatic Feature Extraction 

This research will be leveraging pre-trained CNN base models from Keras Application API as an 

arbitrary feature extractor and using transfer learning techniques to perform automatic feature 
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extraction. Figure 9 shows the indicative approach this study will be adopting for automatic feature 

extraction. The left-hand side is the original VGG16 network architecture, which will be updated 

by removing a fully connected layer, which is shown in the right-hand side model. 

 

As shown by general CNN architecture in Figure 9, this research work uses convolution layers + 

ReLU activation function + pooling layers which are commonly known as “Convolution Base” to 

learn the features from input plant leaf images.  

 
Figure 9 – CNN as Feature Extractor (Rosebrock, 2017) 

 

3.5.2  Manual Feature Extraction 

For predicting a degree of disease, features such as deformation in color, shape, and texture of 

tomato leaves play an important role. Even, the previous research work commonly used HOG, 

SIFT, and SURF features for the Plant Disease Detection task. Histograms of Oriented Gradient 

(HOG) (Dalal and Triggs, 2005) were used to get Hue histograms. Scale Invariant Feature 

Transforms (SIFT) (Lowe, 1999) extracts scale-invariant features by applying a staged filtering 

approach. Speeded Up Robust Features (SURF) (Bay et al., 2008) detects feature which is scale 

and rotation invariant using Hessian matrix-based measure and distribution-based descriptor. 

Based on the literature review performed, it is evident that color and SIFT features have shown 

good performance for plant disease detection tasks. However, SIFT and SURF algorithms are 
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patented and cannot be freely used for a mobile app that is distributed through Android App Store. 

Therefore, this study will be extracting color features and ORB feature vectors to predict the 

severity of the disease. The ORB features will provide the best of two algorithms which include 

Features from Accelerated Segment Test (FAST) keypoint detector algorithm and Binary Robust 

Independent Elementary Features (BRIEF) feature descriptor. This study will be performing 

feature extraction using traditional computer vision algorithms for image features extraction and 

compare the classification model trained with these features with the CNN model trained with 

transfer learning. 

 

3.5.3  Feature Selection 

Feature selection will be the next important step after feature extraction, as not all features will 

contribute equally to plant disease detection. The research work will focus on removing data 

redundancy by selecting those important features or a combination of feature vectors that contribute 

to improving the model efficacy. For the task of plant disease detection using leaf images, every 

feature will have certain advantages and disadvantages. Based on the review of previous work 

done, it is clear that a higher number of features will increase the complexity of the trained model. 

However, it will help to identify interesting regions containing key points to measure the degree of 

disease accurately. To strike a balance between the accuracy and complexity of a model, this study 

will experiment with different features and select a few common features such as color and texture 

which will be contributing higher. 

 

3.6  Model Training 

This section explains details on the proposed model training approach for this research work. 

 

3.6.1  Proposed CNN Model 

To achieve the objective of identifying six types of commonly found tomato crop diseases, the 

research work will be designing and implementing the deep convolutional network. Also, this 

research will further train a model to predict the degree of disease spread and classify the input 

plant images within each disease category. These four sub-categories for the degree of the disease 

will include – L0-Healthy, L1-Early stage, L2-Middle stage, and L3-Severe Damage stage. Image 

classification is a supervised machine learning technique, which assigns a label to an input image 

based on the predefined set of categories (Rosebrock, 2017). This research will classify the input 
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images into 19 different categories, which will be a combination of disease types (or healthy) and 

level of degree of disease as shown in Table 4. 

Table 4 – Classification models Categories (classes) 

# Category Labels # Category Labels 

1 Healthy-L0 2 Bacterial_spot-L1...L3 

3 Early_blight- L1...L3 4 Late_blight-L1...L3 

5 Leaf_mold-L1...L3 6 Septoria_leaf_spot-L1...L3 

7 Yellow_Leaf_Curl_Virus-L1…L3 

 

The traditional image classification approach involves the extraction of hand-crafted features using 

various techniques and applies machine learning algorithms such as K-Nearest Neighbor (KNN) 

or SVM classifier. However, with recent advancements in the field of deep learning and 

convolutional neural networks with transfer learning, remarkable results are achieved in various 

computer vision problem areas such as image classification and object detection. This research 

work will leverage Convolutional Neural Network (CNN) based solution for tomato disease 

classification. Figure 10 shows the CNN general architecture applied for this research, which can 

be divided into three main stages, which include acquisition of input image data along with data 

processing, feature learning, and image classification. 

 
Figure 10 – CNN General Architecture 
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After data acquisition and applying the data pre-processing techniques as mentioned in section 3.4 

 Data Processing to normalize and standardize the image dataset, the research experiment 

will pass the resulted data set through the convolutional neural network. The CNN structure design 

will contain five types of layers which include convolutional layers followed by the activation 

function, pooling layers, flatten layers, fully connected layers, and finally a SoftMax Classification 

Layer. In the feature learning stage, the CNN model will extract and learn the features from the 

input image. It will start with learning generic features such as edges and corners of the tomato 

plant leaf images and then use these generic features to learn specific features using convolution 

layers at the end. This research will make use of a flatten out and fully connected layer for 

performing actual image classification in healthy and the six types of tomato plant diseases. 

 

3.6.1.1 Convolutional Layer 

The Convolutional Layer is the core building block of the proposed CNN model, which will apply 

a convolution operation to the input image, and then it will pass the result to the next layer. A 

convolutional layer will shrink the input by extracting features of interest. For responding to 

different feature detectors, it will be creating feature maps. As it is practically not possible to 

connect neurons to all the neurons in the previous layer due to large spatial dimensions, each 

convolutional neuron will process data only for its receptive field. The Convolutional Layer will 

consist of a set of learnable filters (also known as “kernels”) with the same width and height i.e., 

of a square shape. The output size after applying the convolution operation will be dependent on 

depth, stride, and padding parameters. The depth of the output volume will control the number of 

neurons i.e., filters in the Convolutional layer that will connect to a local region of the input volume. 

A convolution operation will slide a small matrix across a large matrix, stopping at each coordinate, 

computing an element-wise multiplication and sum, then storing the output. A “Stride” (denoted 

by “S”) will decide how much a filter matrix will slide from left to right and then top to bottom. 

This research will experiment with a Stride step size of S = 1 for smaller input image resolutions 

(<200 pixels) and S = 2 for bigger input image resolutions (>200 pixels). The smaller strides will 

lead to overlapping receptive fields and larger output volumes and larger strides will result in less 

overlapping receptive fields and smaller output volumes. The research will use zero paddings to 

ensure the output volume size is matching with the input volume size. The padding technique will 

help to control the speed of decrease in spatial dimensions so that deep neural networks can learn 

useful patterns from input images. The output volume can be calculated using the input volume 
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size (W), the size of the receptive field (F), the Stride (S), and the amount of padding (P) using the 

equation [1]. It will be ensured that equation [1] results in an integer value. 

 

((W – F + 2P)/ S) + 1  [1] 

  

The convolutional layer will allow reducing the free parameters of the deep CNN model which will 

result in fewer network parameters. As this study focuses on deploying the solution on low compute 

devices, the number of network parameters and overall model size play a very important role. 

 

3.6.1.2 Activation Function 

After applying the Convolution operation, the output (weighted sum + bias) will be passed to the 

non-linear ReLU activation function. ReLU activation function will convert any negative input 

value to zero and positive value to the same input number using the equation [2]. 

 

𝑓(𝑥) = max(0, 𝑥)  [2] 

 

A non-linear activation function like ReLU will ensure that a neural network becomes a universal 

approximator of continuous functions in a Euclidean space. 

 

3.6.1.3 Pooling Layer 

The pooling layer will serve two main purposes for the proposed CNN model. First, it will allow 

reducing the spatial size dimensions (width and height) of input volume progressively. Second, it 

will allow controlling the overfitting with pooling window, concentrating local data. Also, the 

pooling layer will introduce translation, scale, and rotational invariance which will ensure slight 

scaling or dislocations do not make any differences. This research will try applying max pooling 

or average pooling as per the base network architecture and evaluate model performance. 

 

3.6.1.4 Flattening Layer 

The flattening layer will perform the key operation of transforming two-dimensional matrix output 

from the convolutional layer into a single-dimensional vector which will be passed to a fully 

connected layer. This layer will be added in between the convolutional layer and the fully 

connected layer.  

 

3.6.1.5 Fully Connected Layer with SoftMax 
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This research experiment will place one or two fully connected layers at the end of network 

architecture, which will be fully connected to all activations in the previous layer. The fully 

connected layer(s) will be added before the SoftMax classifier. Finally, the SoftMax classifier will 

compute class probabilities for each disease type in scope to perform the disease detection. 

 

3.6.1.6 Batch Normalization Layer 

Batch Normalization layers are used to standardize the inputs to a deep neural network layer for 

each mini batch. Batch normalization will increase the model efficacy by reducing the number of 

epochs it takes to train a CNN model. It will also stabilize the training by allowing a larger variety 

of learning rates and providing regularization strengths. However, it might increase the time taken 

for training the neural network model because of additional computations needed per batch and the 

normalization process. As per the original paper by Ioffe and Szegedy (2015), Batch Normalization 

(BN) layer is added before applying the activation function. However, based on the literature 

review, this research will consider adding the BN layer after the ReLU activation function. 

 

3.6.1.7 Dropout Layer 

Dropout is a regularization technique that increases test accuracy by avoiding overfitting for trained 

neural network models (Srivastava, 2014). For each mini batch, the dropout layer will randomly 

disconnect inputs from the previous layer to the next layer during the training process. A dropout 

layer will be added between two fully connected layers in the CNN model with a drop probability 

ratio of 50% (𝑝 = 0.5). Since this research will be using a transfer learning approach and will not 

train the CNN model from scratch, all the above parameters will apply to only a trainable layer of 

network architecture.   

 

The visualization of the CNN model structure will be included for the final dissertation model after 

completion of model training experimentations and identification of the best CNN model 

architecture.  

 

3.6.2  CNN with Transfer Learning 

Training a Convolutional Neural Network from scratch requires a lot of computational resources 

and considerable training time. Also, achieving state-of-the-art model performance by training 

CNN from scratch requires a large image dataset. Due to absence of such a large image dataset for 
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tomato leaf images from the actual field and to ensure the image classification model converges 

faster with a higher classification accuracy rate, this research work will leverage Transfer Learning. 

The transfer learning approach refers to a process in which a pre-trained deep learning network on 

a large dataset (ImageNet or COCO) will be utilized in some way for another related problem. This 

research work will be using the transfer learning process as an integrated feature extractor and fine-

tune the CNN model for the disease classification task. 

Based on the detailed literature review about previous CNN model comparative performance 

analysis, this research work shortlisted MobileNet V1, V2, EfficientNet-B0, and NasNetMobile as 

backbone CNN models for Transfer Learning. The experiment will be using the trained weights on 

the ImageNet dataset. Initial convolution layers of the network from the pre-trained model on the 

ImageNet dataset will extract generic features which are – edges, corners, and color intensity. As 

the model will evolve, the later convolution layers will identify more specific and complex features 

such as the texture of the plant leaves images. Considering the difference between the ImageNet 

dataset and plant leaves datasets used for this research and further considering size variations for 

these datasets, the model will be re-training some of the top (later) layers while leaving initial layers 

frozen in the network architecture.  

 

The research experiment will first train a CNN model on the PlantVillage dataset using the transfer 

learning approach where a short-listed lighter CNN network architecture will be used as a feature 

extractor. The different CNN models based on selected backbone networks will be evaluated to 

identify the best model. Only fully connected layers will be replaced with new FC layers keeping 

all convolutional layers freeze as shown in Figure 111. 

 

 
Figure 11 – Transfer Learning Model as a Feature Extractor 
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As a next step, an experiment will be performed to unfreeze some of the Convolutional Layers and 

re-train the CNN model to tune the model performance on the PlantVillage dataset as shown in 

Figure 12. 

 

 
Figure 12 – Transfer Learning to fine tune CNN model 

The best CNN-trained model with the PlantVillage dataset will then be used to test against 

PlantDoc dataset images, which contains real-world images with various types of background 

noise. In case of drop-in model performance (which is an expected scenario), a new CNN model 

will be fine-tuned using the PlantDoc dataset. The CNN model with the PlantDoc dataset will 

leverage the already trained best CNN model with the PlantVillage dataset as the backbone model 

as shown in Figure 7 – Process Flow. As the PlantDoc dataset is small in size and does not differ 

much from the PlantVillage dataset, a larger number of layers will be locked as untrainable and 

will not be re-trained to avoid overfitting.  

 

3.6.3  Model Evaluation and Testing 

This section explains various model evaluation considerations and lists down the classification 

matrix used by this research. 

 

3.6.3.1 Model Evaluation Considerations 

This research will be training and evaluating multiple models for classifying the input plant images 

into seven different categories (healthy + six types of disease categories) and then further 

subclassify as per the degree of disease spread (L0 to L3). During the model training and 

evaluation, various parameters will experiment which include - choice of activation functions, 

optimizer method with different momentum values, learning rate, weight initialization techniques, 
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batch size, and several epochs. As the research will be leveraging the transfer learning approach, 

the models will be evaluated with different short-listed CNN model architectures as backbone 

networks such as MobileNet V1, V2, and EfficientNet B0. During the transfer learning process, 

the model will be trained and evaluated with different input sizes for images, filter sizes, stride and 

padding values, number of freeze and trainable convolutional layers, and dropout ratio. Further, 

important features such as color, shape, and texture will be manually extracted and evaluated to 

measure the degree of disease for selected disease type(s). These models will be evaluated using 

different classification metrics which are explained in the following sections. The trained classifier 

models will be evaluated using different ratios of train test splits and k-Fold Cross-Validation 

technique by experimenting with different values of k-fold. 

 

3.6.3.2 Model Evaluation Metrics 

The choice of correct model evaluation metrics plays an important role in improving Classification 

model performance. As not all the metrics will work equally well for different types of datasets 

and modeling techniques, the research will consider the appropriate metrics mentioned in this 

section. For example, overall accuracy will not be a good fit for an imbalanced dataset 

(Datacourses.com, 2020).  

 

In the multi-class classification task for this research, overall accuracy will be calculated as the 

ratio of a total number of correct predictions to all the input samples, which is calculated using 

equation [3]. 

  

[3] 

To evaluate model performance, training and validation accuracy will be compared. 

 

The Loss function balancing is used to improve model accuracy while ensuring that the model is 

not overfitting and plays a critical role in neural network model building. In this research, the output 

class labels will be integers and hence it will make use of sparse categorical cross-entropy. It 

optimizes time in memory and computation due to the use of integer values for a class instead of a 

vector. 

 

[4] 
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During the evaluation process, training and test loss will be plotted and compared with the training 

and test accuracy plot. 

 

Precision is the ratio between correct positive predictions compared against total positive 

predictions made by the classifier which includes true and false positives as indicated by equation 

[5]. 

 

[5] 

Recall or Sensitivity matrix will evaluate the fraction of positive samples which are correctly 

predicted as positive. In multi-class classification, it will indicate the probability of detection of 

correct healthy and different types of disease classes. It will be calculated using the equation [6]. 

 

[6] 

F1 Score will measure test accuracy and is an indicator of harmonic mean between precision and 

recall. It indicates the precision and recalls trade-off i.e., the preciseness (number of instances 

classified correctly) and robustness (a significant number of instances not missed) of the classifier. 

 
[7] 

 

3.6.3.3 Data Splitting 

This research will experiment with different techniques of splitting data to evaluate the model 

performance on “unseen data.” Initially, it will start with a hold-out strategy by leveraging the 

train_test_split method from the ScikitLearn library. The research will experiment with different 

percentages of the train and test splits such as 80-20, 70-30, and 67-33. It will also allocate 10-20% 

for the validation dataset on which hyperparameters tunning will be performed. 

 

Considering that the dataset size is not large, the next experiment will leverage the k-Fold Cross-

Validation technique with different values of k such as 5 or 10. It will split the training dataset into 

k partitions of equal size and train the model on all partitions of data except the one which is held 

out. This process will be repeated for k times with different partition held out. The experiment will 

be using StratifiedKFold class from the ScikitLearn library to perform k-Fold Cross-Validation.  
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As the PlantDoc dataset is already divided into train and test datasets, the above experiments will 

be carried out with the PlantVillage dataset only. 

 

3.7  Model Deployment & Prediction 

This research will be implementing a disease detection deep learning model using Keras open-

source library with TensorFlow backend. After training and evaluating various model 

performances, it will select the best model for deployment onto the Android app. To deploy the 

TensorFlow model onto mobile phones or other low compute embedded devices, such as 

microcontrollers, the model needs to be optimized for deployment. This includes compressing the 

model size to reduce memory consumption and shorten the download time. The computation 

required to perform predictions by model needs to be minimized and optimized to ensure low 

latency and reduced battery usage which can avoid battery heating.  

 

This research will leverage TensorFlow Lite tools to deploy and run the SmartCropCNNLite model 

into Android Smartphones. TensorFlow Lite provides two important components – TensorFlow 

Lite interpreter and TensorFlow Lite converter. To start with model deployment, the TensorFlow 

model will be extracted from the backend of Keras, and it will be saved as a TensorFlow Lite 

model. The Keras API used from Python code will convert the Keras model to a TensorFlow Lite 

model (*.tflite). The *.tflite file will then be imported into Android Studio by creating a project. 

Android Studio is an Integrated Development Environment (IDE) for creating Android apps. The 

Android app will be using TensorFlow Lite interpreter Java APIs to execute the model and perform 

inferences using smartphones in the plantation field. This flow is explained in Figure 13. 

 
Figure 13 – CNN Model Deployment Flow 
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The research will then further experiment with TensorFlow Optimization Toolkit to apply 

quantization and perform model pruning. The quantization will reduce the precision of the numbers 

used to represent model parameters which will reduce the model size further. The model pruning 

technique will remove those parameters which have a minor impact on model predictions which 

can compress the model for reduced download size. 

 

3.8  Tools and Utilities 

This section provides details of research tools and utilities used for model training and evaluation 

which includes hardware as well as software resources. 

 

3.8.1  Software Libraries 

The research work utilized the following software libraries for data loading, processing, feature 

extraction, model training, evaluation, and deployment. 

 

TensorFlow is open-source software for Machine Learning which is developed and maintained by 

Google. Though it can be used for multiple ML tasks, it primarily focuses on the training and 

inference of deep neural networks. TensorFlow expresses computations as a stateful data flow 

graph, enabling easy scaling of ANN training with parallelization and replication. It is widely 

adopted as it provides an interface to express common ML algorithms and executable code of the 

models. Models created in TensorFlow can be ported to heterogeneous systems with little or no 

change, which supports multiple devices, ranging from mobile phones to distributed servers. This 

research work has trained various CNN models on computational servers and later ported the best-

performing model to mobile devices, which makes TensorFlow highly suitable. In this research, 

TensorFlow 2.4.1 stable release is used. 

 

Keras is a primary deep learning library used to train the CNN models for this research which 

provides a user-friendly Python interface on top of the TensorFlow machine learning platform. The 

Keras Application APIs are widely used to implement all the CNN models and to apply transfer 

learning techniques in addition to data loading, processing, and augmentation capabilities. 

 

TensorFlow Lite library contains a set of tools to embed and run the machine learning models on 

mobile, embedded, and IoT devices. This research has used TF Lite Converter to convert the pre-
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trained Keras models with TensorFlow background to optimized FlatBuffer TFLite format which 

is then integrated into the Android App using the Android Studio. 

 

OpenCV is a real-time image processing library which is originally developed by Intel. The 

OpenCV library is written in C/C++ programming language, however, it provides Python bindings 

which makes it easy to use in Python code. It is mainly used in this research work for image data 

analysis and implementing manual feature extraction functionality to predict the degree of tomato 

plant disease. 

 

Mahotas image processing library is used to complement the OpenCV as Mahotas interface for 

some of the feature extraction algorithms, such as color, shape, and edge are easier to use. 

 

Scikit-learn is a free machine learning library that provides various classification, regression, and 

clustering ML algorithms. It also provides the capabilities to process data and evaluates model 

performance using various metrics. In this research, the Scikit-learn library is used to implement a 

hold-out strategy (train-test split) and evaluate the performances of CNN image classifier models. 

 

Matplotlib and Seaborn graphic libraries are used for creating and visualizing many graphs and 

charts to analyze the image datasets and compare the models’ performances. 

 

Python programming language is being used for data loading, data processing, manual feature 

extraction, EDA, and model development. Python language has intuitive syntax, and it is very easy 

to understand Python code due to the similarity of keywords with native English language. This 

made Python a perfect choice for this research project. 

 

Java programming language is used for creating Android applications as it is widely accepted for 

cross-platform code development. Android Studio is used to import the CNN model, design the 

UI screens, and integrate the CNN model with the app. 

 

3.8.2  Hardware Configuration 

The CNN models are trained using the below compute resources. 

• CPU: 9th Generation i7-9700 Processor with 16 GB of memory  

• GPU: NVIDIA T4 GPUs with 16 GB of memory 
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The model deployment and testing are done on an Android Studio Emulator with the below 

configuration.  

• Android OS 4.4 (KitKat) compatibility 

• Pixel 2 Device with API level 30 

 

3.9  Summary 

This chapter provided a detailed explanation of the research methodology adopted for this study. 

The chapter started with details of research process flow components which are then covered in the 

next subsections. The data loading subsection provided the details on which datasets will be 

acquired for performing tomato crop disease detection along with the prediction of the degree of 

disease spread. The data pre-processing section explained the process for resizing the image 

datasets and then apply various data scaling techniques including normalization, centering, and 

standardization to improve the training performance and speed. The section on data augmentation 

contained the details on various techniques used for augmenting image datasets to avoid class 

imbalance and to control overfitting which can lead to better model generalization. The next section 

covered the important aspects of feature engineering including feature extraction and feature 

selection.  

 

The model training section explained the details on the CNN model network architecture and 

building blocks of the CNN model trained. The following section mentioned the advantages of 

transfer learning instead of training the CNN model from scratch and then explained the process 

of applying transfer learning for this research work. The next section listed the procedure for 

evaluating and testing the CNN models. The steps for selecting the best model for deployment and 

performing prediction in the field are explained later in this section. The next section on model 

deployment provided a process flow on how to deploy this model onto an Android app that can 

perform the inferences in the actual farm field using a smartphone device. The last subsection 

provided the details of tools and utilities used for this research work including hardware and 

software resources. 
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CHAPTER IV: 

 

ANALYSIS AND DESIGN 
 

4.1  Introduction 

This chapter will provide details on data analysis, data processing, model training, and 

hyperparameter tuning. The chapter begins with the data preparation section which contains a 

subsection on data loading followed by a subsection on the analysis performed to validate the 

correctness of image annotations. Based on this analysis, data cleaning activities will be performed. 

The next two subsections will explain how cropped image dataset is created using bounding box 

information from PlantDoc dataset Pascal VOC XML annotations. The following subsection will 

explain the approach and steps followed for the creation of the disease severity dataset, which is 

created using the PlantDoc dataset. The important steps of data normalization performed by 

resizing and rescaling images will be covered in the next subsection. The data augmentation 

subsection will explain the steps performed for image data augmentation to avoid model 

overfitting.  

 

The section on Train and Test dataset splitting will explain how the original dataset is split into 

train and test datasets by applying the hold-out strategy. The next important section on Exploratory 

Data Analysis (EDA) starts by explaining high-level data analysis to be carried out on both 

PlantVillage and PlantDoc datasets. The next subsection provides details of basic EDA conducted 

on both datasets. The analysis from the first two sections combined will help to decide on the data 

imbalance percentage and how it will be treated while model training and evaluation. The following 

section explains the details on how class imbalance is handled for both the datasets and which class 

imbalance techniques are used, such as oversampling and under-sampling.  

 

The next section on model training explains the details of how various CNN classifier models are 

trained using transfer learning. This section further discusses the network architecture adopted for 

the best-selected model. The subsequent section explains the steps performed for hyperparameter 

tuning to avoid overfitting of the model and improve the model performance. It includes 

hyperparameter details such as different input image sizes, optimizers with various learning rates, 

learning rate decay (learning rate schedules), momentum, early stopping callback, and so on.  
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The section on model evaluation will discuss the metrics used for the evaluation model and how 

the best model is selected to deploy onto the Android App. The section on model deployment will 

explain the steps performed to create the TFLite model, which is then integrated with Android App. 

The final section on disease severity prediction will explain the details of manual feature extraction 

and machine learning classification models (Random Forest and SVM). Further, it will explain the 

second approach to classify the tomato plant images based on disease type and its severity. 

 

4.2  Dataset Preparation 

To begin with dataset loading and preparation, first, both the datasets were downloaded from the 

public links mentioned in Table 5 – Dataset Links. 

Table 5 – Dataset Links 

Dataset Name Public Link (URL) 

PlantVillage  https://www.kaggle.com/abdallahalidev/plantvillage-dataset 

PlantDoc https://github.com/pratikkayal/PlantDoc-Dataset 

 

4.2.1  Load Dataset 

After downloading the image dataset, the images were loaded using ImageDataGenerator class 

from Keras Data Processing API which allows the creation of batches of tensor image data and 

applies the data augmentation techniques while training the model in real-time. The research has 

leveraged the flow_from_directory() method which accepts the directory path as a parameter and 

then generates batches of tensor image data. Figure 14 shows the sample images loaded from both 

PlantVillage and PlantDoc datasets. 

https://www.kaggle.com/abdallahalidev/plantvillage-dataset
https://github.com/pratikkayal/PlantDoc-Dataset
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Figure 14 – Sample images from PlantVillage (left) dataset and PlantDoc (right) dataset 

As observed from Figure 14, the PlantVillage dataset images are taken from a controlled 

environment and contain only the leaf image with no background and with consistent lighting. On 

the contrary, the images from the PlantDoc dataset on the right are taken from the real world i.e., 

either from farm or plantation fields. The PlantDoc dataset images contain other leaves, steams, 

tomato fruits, weeds, and other plants. These images are taken in varied lighting conditions. 

 

4.2.2  Dataset Annotation and Cleansing  

Although PlantVillage and PlantDoc datasets were already annotated and cleansed by experts, a 

high-level exploration was carried out as a part of this research work to ensure the images were 

labeled properly and there were no wrong annotations. There were no issues observed with the 

PlantVillage dataset. However, there were some instances of wrong labeling for the PlantDoc 

dataset which are listed below. 

• A Tomato_Bacterial_Spot class folder also contains images for other disease types such as 

bacterial canker and bacterial speck which were not included in the scope of this research 

and Septoria leaf spot images. 

• There were a couple of images labeled as Early blight that was not correct and show the 

symptoms of Late blight. 

• The image “tomato.early.blightH.jpg” was wrongly labeled as Late blight. 

• It was noticed that “early+blight+on+leaf+yel+halo+IMG_2313.JPG” and “tomato-early-

blight-e1437503226856.jpg” images were classified as Septoria leaf spot. 
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The PlantDoc dataset was cleaned to address the above-listed and similar wrong annotation issues 

before starting data processing, analysis, and model training activities.  

 

4.2.3  Create Cropped Image Dataset 

As a part of this research work, multiple CNN models have been trained on both datasets. To 

eliminate background noise from the PlantDoc dataset, a new “Cropped” image dataset was created 

using bounding box details which were available in PascalVOC XML format as a part of the 

PlantDoc Object Detection dataset (Singh et al., 2020). The pascalvoc-to-image Python script 

(“pascalvoc-to-image · PyPI,” 2022) was used to crop the images using bounding box details. As 

seen in Figure 15 – PlantDoc Cropped Dataset, this dataset contains the cropped images of leaves 

using the bounding box details. 

 
Figure 15 – PlantDoc Cropped Dataset 

Although this dataset contains the cropped plant leaves images, still it differs from the PlantVillage 

dataset. The images in the cropped dataset are captured from different angles, in varying lighting 

conditions, and with varied sizes. 
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4.2.4  Create Disease Severity Dataset  

One of the important objectives of this research project is to predict the spread of disease after 

identifying the disease type. To achieve this objective a balanced dataset has been created using 

plant leaves images from the PlantVillage dataset as the PlantDoc dataset was not containing 

sufficient images in each class which can be further subclassified based on the spread of the disease. 

This research shortlisted two common tomato plant disease types to predict the degree of disease 

spread which includes “Tomato Bacterial Spot” and “Tomato Late Blight.” The images for these 

disease types were further classified based on the severity levels of the disease into 3 sub-

categories, which include – L1: Low Spread, L2: Medium Spread, 3: High Spread. The details of 

the classes and their respective image counts are provided in Table 6 - Plant-Severity-Dataset 

Description. 

 

Table 6 - Plant-Severity-Dataset Description 

# Class Train Image Count Test Image Count 

1 Tomato_Healthy_L0 150 50 

2 Tomato_Bacterial_Spot_L1 150 50 

3 Tomato_Bacterial_Spot_L2 150 50 

4 Tomato_Bacterial_Spot_L3 150 50 

5 Tomato_Late_Blight_L1 150 50 

6 Tomato_Late_Blight_L2 150 50 

7 Tomato_Late_Blight_L3 150 50 

 

4.2.5  Resize and Rescale Datasets (Normalization and Standardization) 

Different base models downloaded using Keras Application API expect specific input sizes for 

images passed for training the model. This research experimented with many base models which 

are lighter and suitable to deploy on low compute devices such as mobile phones. This research 

leveraged MobileNet V1, MobileNet V2, EfficientNet B0, and NasNetMobile with ImageNet 

trained weights. All of these base models can accept the input image size of (224, 224, 3), where 

width and height are 224 pixels and contains 3 channels (RGB). In addition,  transfer learning 

models based on MobileNet V2 architecture with an input size of (128, 128, 3) have been trained 
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during the model experimentation to compare the model performance with down-sized input image 

resolution. 

 

The pixel values for images with RGB channel ranges between 0-255, which needs to be 

normalized either between 0 to 1 or -1 to 1 depending on the base model used. The rescaling of 

pixel values in these ranges helps to improve the model training speed due to the reduced 

complexity of mathematical calculations. As each different base model expects a specific kind of 

input pre-processing, the respective preprocess_input method from Keras Application API was 

used (such as “tf.keras.applications.mobilenet_v2.preprocess_input” for MobileNetV2 model and 

“tf.keras.applications.efficientnet.preprocess_input” for EfficientNet B0). Then it was passed to 

the preprocessing_function parameter of ImageDataGenerator class. 

 

4.2.6  Data Augmentation 

The PlantDoc Dataset contains very few images for model training. Hence, it was decided to apply 

image augmentation to increase the size of the dataset, which can help to reduce the overfitting of 

the model. Image augmentation makes the trained model more robust to the variations in the images 

such as images with different angles (sheer range), zoom ratio, and different rotations. To decide 

on which type of transformations to apply on both datasets, the first few sample images were 

carefully analyzed. Based on this sample image analysis, it was decided to apply random rotations 

with a degree of 20, apply sheer range and a zoom range of 20% and apply horizontal flip. The 

research leveraged ImageDataGenerator class from Keras API and applied “just-in-time” image 

augmentation techniques while training the CNN models. As ImageDataGenerator class applied 

the image augmentation on each of the training batches, it resulted in optimized usage of available 

memory. 

 

Then the flow() method was applied before training the model to save the images to disk during the 

training process. Figure 16 shows the sample augmented images from PlantVillage and PlantDoc 

datasets. 
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Figure 16 – Sample augmented images from PlantVillage (left) dataset and PlantDoc (right) dataset 

 

4.2.7  Training and Test dataset splitting  

The last important step of data preparation before training a model on the dataset was splitting the 

data into train, test, and validation datasets. One of the important objectives of this research is to 

validate the CNN model with a real-world image dataset which can ensure its adoption in the actual 

plantation field. To achieve this goal a trained CNN model was tested using real-world images 

from the PlantDoc dataset. Hence, the PlantVillage dataset was split between Train and Validation 

datasets which were used during model training and hyperparameters tuning. A hold-out 

methodology was used to split the PlantVillage dataset by applying an 80% (train) - 20% (test) 

ratio. 

 

The original PlantDoc dataset was already split between train and test datasets, and it did not require 

any further processing. 

 

4.3  Exploratory Data Analysis (EDA) 

Though this research leveraged the unstructured image data and not the structured data, performing 

data exploration and analysis helped a lot to gain the required understanding of the dataset 

characteristics. The EDA was performed to finalize important decisions about data loading, input 

tensor size to be considered for various CNN models, ideal batch size selection for model training 
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with PlantVillage and PlantDoc datasets, evaluation of class imbalance ratio, and decide on the 

model evaluation metrics. 

 

4.3.1  Dataset Class Distribution 

The first step of understanding the data distribution for different classes in both datasets can help 

to understand the degree of class imbalance by iterating through the dataset folder structure using 

Python code. 

 
Figure 17 – PlantVillage Dataset Class Distribution 

 

As seen from Figure 17 – PlantVillage Dataset Class Distribution, it was evident that the 

“Tomato_Yellow_Leaf_Curl_Virus” class contains more than double images as compared to other 

diseases classes and healthy image class. 

 

Next, the PlantDoc dataset class distribution was analyzed using Python code and visualized using 

the Matplotlib library. The PlantDoc dataset was already split between the train and test datasets. 
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Figure 18 – PlantDoc Dataset Class Distribution 

As seen in Figure 18, for the training dataset the number of images for 

“Tomato_Septoria_Leaf_Spot” is more as compared to other classes. The healthy image class 

(Tomato_Healthy) contains comparatively a smaller number of images. For the test dataset, there 

is no noticeable class imbalance and all the classes range between 13% to 17% distribution of 

image data. 

 

Based on the dataset class distribution analysis, it was decided to create derived “Balanced” 

datasets for both PlantVillage and PlantDoc datasets. To evaluate model performance against these 

imbalanced datasets, appropriate metrics were considered such as Precision, Recall, F1 Score, 

AUC/ ROC, and Confusion Matrix in addition to Accuracy metrics. 

 

4.3.2  Basic Image EDA 

After a high-level analysis of PlantVillage Dataset Class Distribution to understand the class 

imbalance ratio for both the datasets, the next step performed was to conduct EDA on both the 

datasets to check the basic properties of the image data. The research leveraged the “basic-image-

eda” tool to perform this analysis. As the first step of EDA, the PlantVillage original dataset was 

analyzed by passing a folder path along with other parameters such as file extensions, number of 

threads, and so on. The results from basic-image-eda tools were considered to decide the input 

image resolution, resizing, and applying normalization to the image dataset. 
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Figure 19 – PlantVillage Dataset EDA Results 

As per the Basic EDA analysis from Figure 199, the PlantVillage dataset contains a total of 14707 

images representing 7 classes. All the images size is consistent, i.e., 256 pixels width and 256 pixels 

height with mean and median height/width ratio of 1. The recommended input size for this dataset 

is 256 pixels X 256 pixels of height and width which is in the multiples of 8, 16, and 32. The mean 

for the red channel is 0.3929381, for the green channel it is 0.4646508 and for the blue channel, it 

is 0.44374096. The standard deviation ranges between 0.16 to 0.20.  

 

The scatter plot of height/ width shows that all the PlantVillage dataset images have identical height 

and width of 256 pixels and hence mean is also 256 pixels. As seen from the channel-wise pixel 

value histogram, all three channels have a peak between 100 pixels to 150 pixels. The green channel 

shows the highest intensities which represents the plant leaf in the center of each image. The red 

and blue pixel intensities represent the background of the images. The histogram contains a slight 

peak at the beginning for a blue and red channel which might be due to darker backgrounds for few 
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images. Their frequency is lower in the pixel range of 200 to 256 indicating no white color 

dominance in any of the images.  

 

The basic EDA was also conducted for PlantVillage train and test datasets after applying the hold-

out strategy with the 80-20 split ratio. The results of the basic EDA tool were almost identical with 

only a difference in the number of images as seen in Table 7. 

Table 7 – PlantVillage Train and Test Dataset EDA 

PlantVillage Train Dataset Basic EDA PlantVillage Test Dataset Basic EDA 

  

 

After completing the EDA of the PlantVillage dataset, the “basic-image-eda” tool was leveraged 

to perform image data analysis for the PlantDoc dataset. As the original downloaded PlantDoc 

dataset was already split into train and test datasets, the tool was executed by passing the folder 

path of the train and test datasets separately. The results of basic EDA tool execution are shown in 

Table 8 followed by the height/ width scatter plots and channel-wise pixel value histograms for 

PlantDoc Train and Test datasets. 

Table 8 – PlantDoc Train and Test Dataset EDA 

PlantDoc Train Dataset Basic EDA PlantDoc Test Dataset Basic EDA 
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Figure 20 shows the height and width scatter plot and channel-wise pixel value histogram for the 

PlantDoc train dataset. 

 

  

Figure 20 – PlantDoc Train Dataset EDA Results 

 

Figure 21 shows the height and width scatter plot and channel-wise pixel value histogram for the 

PlantDoc test dataset. 

 
 

Figure 21 – PlantDoc Test Dataset EDA Results 

 

Based on the analysis of basic image EDA results, it is clear that the PlantDoc train dataset contains 

images from varied resolutions. The height ranges from 85 to 4000 pixels with an average (mean) 

height of 809.11 pixels and a median value of 598 pixels. The width of the PlantDoc train dataset 

ranges between 115 to 6000 pixels with a mean value of 958 and a median value of 667. The 
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recommended input size based on the mean in multiples of 8, 16, and 32 is between 800 pixels for 

height and 960 pixels for width. The height/ weight scatter plot for the PlantDoc train dataset shows 

that most images are having height and width between 100 to 1000 pixels and some of the images 

fall within a range of 1000 to 2000 pixels. The number of images having more than 2000 pixels of 

height and width is very less and there are hardly a few images having more than 4000 pixels of 

height and width. The channel-wise pixel values histogram for PlantDoc training data indicates 

that all three channel pixel intensities are widely distributed from 0 to 255 pixels. The pixel 

frequency for the red and blue channels starts decreasing after 100 pixels and for the green channel, 

it starts decreasing from a 150-pixel value. The peak can be observed for a red channel at a 100-

pixel value. For the green channel, the highest peak can be noticed at a 140-pixel value. The blue 

channel shows the peak at a 75-pixel value and then there is a steep increase in the frequency at 

255, which is representing dark background details in the image.  

 

As per the results of the image basic EDA for the PlantDoc test dataset, the image height varies 

from 137 to 4032 pixels, and the width ranges from 150 to 6000 pixels. The mean (average) height 

is 771 pixels, and the mean width is 927 pixels. The height median value is 567 and the width 

median value is 660. The recommended input size is 768 pixels in height and 928 pixels in width 

by the basic image EDA tool. As observed in the height/ width scatter plot for the test dataset, the 

majority of the image’s height and width ranges between 100 pixels to 1000 pixels. There are very 

few images with a height and width of more than 2000 pixels. The channel-wise pixel values 

histogram for PlantDoc training data analysis shows that blue and red channels skewed towards 

the left indicating dark blue backgrounds such as sky or soil. The peak value for blue and red 

channels ranges between 50 to 100 pixels indicating darker shades of these colors. The green 

channel shows the widely distributed spread from 0-255 with a sudden steep frequency increase at 

255-pixel value. The channel histogram represents the plant leaves dominance in the images. The 

peak for a green channel can be seen at a 130-pixel value.  

 

4.4  Class Balancing 

Based on the class distribution analysis, it was clear that both datasets have a considerable degree 

of class imbalance. However, the PlantVillage dataset which was generated from a controlled 

environment already contains the augmented images. Hence, it was decided not to apply the 

oversampling technique for this dataset, which can result in duplicate images causing overfitting 
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of the model. As the PlantVillage dataset contains a sufficient number of images (14707), it was 

decided to evaluate the CNN classifier performance before applying any oversampling technique 

and check if the CNN model can handle the class data imbalance for this dataset. It was decided to 

first monitor the performance of the CNN model with classification metrics other than Accuracy 

(such as Precision, Recall, AUC/ROC, and Confusion Matrix). As the model performance was not 

optimal, class balancing techniques were applied. 

 

For the PlantDoc dataset, it was decided to handle the class imbalance using two types of 

techniques, which include oversampling and undersampling. Oversampling was applied using 

image augmentation techniques for selected classes which were having fewer images for only the 

train dataset. The images were augmented using the OpenCV image library. The oversampling 

leveraged OpenCV and Python scripts. Table 9 shows the comparison between the original 

PlantDoc Train dataset and oversampled balanced dataset. 

Table 9 – PlantDoc Balance Dataset (Oversampled) 

Class Name 
Train Image Count 

Original Updated 

Tomato_Bacterial_Spot 86 500 

Tomato_Early_Blight 76 500 

Tomato_Healthy 51 500 

Tomato_Late_Blight 100 500 

Tomato_Leaf_Mold 78 500 

Tomato_Septoria_Leaf_Spot 126 500 

Tomato_Yellow_Leaf_Curl_Virus 68 500 

 

As another experiment, the research has also created a new balanced dataset version using under-

sampling techniques. The images were randomly removed from the PlantVillage and PlantDoc 

train datasets using Python script to match with the lowest class image count. Table 10 shows the 

original image count and the updated reduced image count in the balanced datasets. 

Table 10 – PlantDoc Balance Dataset (Under sampled) 

Class Name 
PlantVillage  PlantDoc  

Original Updated Original Updated 
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Tomato_Bacterial_Spot 2127 952 86 51 

Tomato_Early_Blight 1000 952 76 51 

Tomato_Healthy 1591 952 51 51 

Tomato_Late_Blight 1909 952 100 51 

Tomato_Leaf_Mold 952 952 78 51 

Tomato_Septoria_Leaf_Spot 1771 952 126 51 

Tomato_Yellow_Leaf_Curl_Virus 5357 952 68 51 

 

4.5  CNN Model Design and Implementation 

This research leveraged a supervised transfer learning technique to train a CNN classifier that can 

identify six types of common tomato plant diseases along with healthy plant leaves. The below 

subsections explain the implementation details for the model training process flow explained in 

Figure 7. 

 

4.5.1  Feature Engineering 

After completing data loading, data pre-processing, and data splitting into train and test datasets,  

the next important step in model training workflow is feature engineering. For CNN models, feature 

extraction and selection steps are managed automatically. However, for Disease Severity 

Predictions, feature extraction and selection were done manually, which is explained in the further 

subsection 4.8  Disease Severity Prediction - Design and Implementation which covers the details 

of the Disease Severity Prediction model. 

 

4.5.2  CNN Model Training using Transfer Learning 

In this research, the CNN classifier model is trained using a transfer learning approach. This 

research leveraged pre-trained state-of-the-art modern CNN mobile architectures as a feature 

extractor and then further fine-tuned those models to adapt to the PlantVillage and PlantDoc 

datasets and their derived variations. 

 

4.5.2.1 Base model selection 

As the final solution was planned to integrate with the Android mobile application for real-time 

inferencing in the tomato plantation field, the research focused on the lighter CNN model 

architectures which are suitable for deployment on low compute devices. Based on the detailed 
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literature study conducted, four different CNN model architectures were selected as a base model 

for transfer learning and their different variations were used. 

1. MobileNet V1 

2. MobileNet V1 (50% parameters) 

3. MobileNet V2 

4. MobileNet V2 (50% parameters) 

5. EfficientNet B0 

6. NasNetMobile 

Keras Application API allows setting the alpha value for MobileNet class of models which can 

decide how many parameters to be used in various layers. This hyperparameter was helpful to 

reduce the model size which helps to update the deployed model on mobile phones using an internet 

connection.  

 

4.5.2.2 Feature Extractor CNN model 

Keras Application API was used to load the base model along with the ImageNet trained weights. 

The classification layer for the base CNN model was removed by setting the include_top parameter 

to false and the custom classification layer was defined as per the requirements of this research 

work. The transfer learning approach leveraged the pre-trained model on the ImageNet dataset as 

a convolutional base which was used to train the Feature Extractor model on the PlantVillage 

dataset. This research leveraged four different CNN models during experimentation to train the 

feature extraction models and their performance details are discussed in CHAPTER V:  

 

RESULTS AND DISCUSSIONS. 

 

4.5.2.3 Fine-tuned CNN model 

The pre-trained CNN model with ImageNet weights was used to extract generic features, such as 

edge detection and color intensity using early (left-most) layers of the network. With the gradual 

model evolution, the later layers of the network were used to identify more complex features such 

as texture. Finally, the classification layers at the last were leveraged to identify class-specific 

features i.e., detection of specific tomato plant disease types. 
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The plant leaves datasets used in this research had a considerable difference from the ImageNet 

dataset. Furthermore, the PlantDoc dataset contains very few images. To handle these dataset 

differences and to adopt the different problem domain of plant disease detection, it was decided to 

retrain some of the later layers of the pre-trained CNN model. The selected base networks are 

divided into multiple blocks. The model architecture design followed the approach to gradually 

unfreeze the layers starting from the last block. After retraining layers from the last block, the 

model performance was observed and compared again by unfreezing some more layers from the 

next immediate previous block. The number of layers was carefully chosen from the point when 

model performance stopped improving.  

 

4.5.3  CNN Model Architecture 

This research work leveraged pre-trained CNN models which are suitable to deploy on mobile 

which accept the input image of size 224 X 224 with three (RGB) channels. Although multiple 

experiments were conducted to identify the best suitable model with variations applied to network 

design, this section explains the architecture for the “best” selected model based on MobileNet V2 

pre-trained model. CHAPTER V:  

 

RESULTS AND DISCUSSIONS explains evaluation metrics and criteria being used to select the 

best model. 

 

MobileNet V2 network design consists of a series of Depthwise Separable convolutions with 

Depthwise (3×3), and Pointwise (1×1) layers followed by batchnorm (BN) and ReLU. In the 

updated model architecture classification layer was updated, but no changes were made in the 

“Convolutional Base” as shown in Figure 22. 
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Figure 22 – MobileNetV2 (Final) model updated architecture 

The GlobalAveragePooling2D layer was added which flattens the output (7 X 7 X 1280 = 62720) 

returned by the MobileNetV2 model’s last Convolutional layer. To control the overfitting and 

ensure better generalization of the model, the Dropout layer is added with a rate of 0.5. A new 

Dense layer was created with an output size of 1280. Finally, the original SoftMax activation 

function with 1000 classes was replaced with a new SoftMax Activation layer with seven classes 

(6 disease types + healthy). A model summary from Figure 23 shows these layers, their output 

shape, and the number of parameters. 

 
Figure 23 – MobileNetV2 (Final) model Input and Output Layers 

The best model contains of total 2,354,871 parameters (706,224 + 1,639,680 + 8967) out of which 

2,233,511 parameters are trainable and 121,360 parameters are non-trainable.  
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During the experimentation, various combinations of layers were tried for the classification layer 

which includes the addition of one more Dense layer between the GlobalAveragePooling2D layer 

and the Dropout layer. Also, model performance was verified by changing various dropout rates 

such as 0.2, 0.3, and 0.4 before finalizing the dropout rate of 0.5. 

 

4.5.4  Hyperparameter selection and tunning 

After finalizing the CNN model architecture, various models were trained using PlantVillage and 

PlantDoc original dataset, cropped dataset, and balanced dataset using this CNN model. The model 

performance was evaluated against the validation dataset and the hyperparameter was tuned to 

improve model performance. This section covers the details of hyperparameters tuned during the 

research experimentations. 

 

 

1) Image input size 

Based on the analysis of basic EDA, it was clear that the PlantVillage dataset contains all the 

images with a uniform resolution of 256 X 256 pixels. However, the PlantDoc dataset contains 

images with varied image resolution where height ranging between 85 to 4000 pixels and width 

ranging between 115 to 6000 pixels. The MobileNetV2 model was trained with three different 

input images sizes. 

• (224, 224, 3) 

• (192, 192, 3)  

• (128, 128, 3) 

The best performance was achieved with an input image size of (224, 224, 3) which was finalized 

for the final model training. 

 

2) Batch size 

For the PlantVillage dataset, two batch sizes of 32 and 64 were tried, and based on the results 

achieved it was decided to go with 64 as batch size for this dataset. For PlantDoc original dataset, 

cropped dataset, and balanced dataset, the batch sizes considered were 32 and 16 due to the smaller 

number of images in the dataset. It was decided to go with 16 as batch size for all the variants of 

the PlantDoc dataset based on the performance achieved from multiple model execution 

experiments. 
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3) Fine-tune layers 

Due to dataset differences, it was critical to set the correct number of layers to fine-tune so that 

model can learn the complex features which are specific to tomato plant diseases for plant leaves 

images. This research experimented with different base model architectures which contain different 

numbers of layers depending on the network design. The approach adopted to fine-tune layers for 

multiple CNN models is explained in the second subsection of section 4.5.2  CNN Model 

Training using Transfer Learning. For details on the number of fine-tune layers chosen for different 

models, please refer to  Table 11 – Hyperparameters used for training “Best Model”. 

 

3) Optimizer 

During the experimentation phase for this research, more than 50 models have been trained and 

evaluated. The research leveraged multiple optimizers which include SGD, RMSprop, and Adam 

with different learning rates, decay, and momentum settings. Although, model training speed was 

improved with the choice of Adam optimizer, based on the model evaluation results it was noticed 

that model trained with the SGD optimizer generalized best. Hence, it was decided to go with SGD 

optimizer with a learning rate schedule to apply “learning rate decay” and EarlyStop callback.  

 

4) Loss function 

The CategoricalCrossentropy loss function was used to compute the cross-entropy loss between 

the labels and predictions for multi-class CNN classifiers. The research has used 

ImageDataGenerator.flow_from_directory() method to load the image dataset in batches while 

training the CNN model, which returns 2D one-hot encoded labels. Hence, the 

CategoricalCrossentropy loss function was used for all the models. 

 

5) Learning rate 

Learning rate is the most important hyperparameter to tune during the model training process. 

When a very low learning rate is set then the model will not be able to learn anything meaningful 

from data and it will also result in a long model training duration as a model. A large learning rate 

will allow a model to learn faster, but it might result in the sub-optimal final set of weights. During 

the initial model training process, multiple fixed learning rates were tried out with a combination 

of different optimizers as the same learning rate will not work best with different optimizers. Even 
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for the SGD optimizer, the “momentum” parameter was set to 0.9 which adds inertia to the weight 

update procedure. It causes past updates in one direction to continue in that direction in the future, 

which can avoid the learning process getting stuck or oscillating. The final selection of learning 

rates for various models is listed in Table 11.  

 

6) Learning rate decay/ Learning rate schedules 

A varying learning rate over a time interval which is called “learning rate decay” or “learning rate 

schedule” was used instead of a fixed learning rate. This allowed setting the initial learning rate 

arbitrarily and then adopt the appropriate learning rate based on the learning rate schedule defined 

by the monitoring validation loss matrix. As an initial experiment, the “decay” setting for the SGD 

optimizer was set to the initial learning rate divided by the number of epochs which is usually a 

recommended practice. Thereafter, different values of decay rate were tried, and model 

performance was analyzed. 

 

As a next step, the researchers used the Keras Callbacks API to set the learning rate schedule. A 

ReduceLROnPlateau callback was set to adjust the learning rate when a plateau in model 

performance is detected, i.e., no reduction in validation loss for 10 training epochs. This callback 

reduced the learning rate when model performance stops improving. 

 

The LearningRateSchedule from Keras Learning rate schedule API was then leveraged to apply 

an exponential decay schedule. To lower the learning rate while model training, it applied the 

exponential decay function to an SGD optimizer step based on the initial learning rate of 0.0001. 

The decay steps were set to 10000 and the decay rate to 0.96. Based on the satisfactory results 

obtained by using keras.optimizers.schedules.ExponentialDecay, it was decided to use this 

learning rate schedule for the final model training. 

 

8) Number of Epochs 

As the number of images is very less for the PlantDoc dataset, it tends to overfit the model if 

training is performed for a longer duration with multiple epochs. On the contrary, if a model is 

trained for too few epochs, it will not learn the accurate mappings between input features and output 

classes. Hence, deciding on the number of epochs for both feature extraction and fine-tuned models 

was an important step in the research. During the model training, a different number of epochs 

were trained, and model performance was analyzed. For the PlantVillage dataset, feature extractor 



76 

 

and fine-tuned models were trained using 10 epochs, which resulted in the best model performance. 

For the PlantDoc dataset, additional consideration was made to apply the EarlyStopping callback. 

 

9) Early stopping 

The early stopping technique was used for the model trained on the PlantDoc dataset. To start 

with the training process, a large number of training epochs (500) were set. The validation loss 

matrix was monitored, and training was stopped once the model performance was not improving 

on a hold-out validation dataset. Keras callbacks API provides support for early stopping of 

training using an EarlyStopping callback method. The patience parameter was set to 20 to wait 

for those many epochs before stopping the training. The restore_best_weights setting was set to 

“True,” which allowed restoring model weights from the epoch with the best value of the 

monitored quantity i.e., epoch with lowest val_loss. 

 

The various combinations of hyperparameters tunning were tried out and the best 

hyperparameters settings with optimal model performance were finalized, which are listed in 

Table 11 – Hyperparameters used for training “Best Model”. 

Table 11 – Hyperparameters used for training “Best Model” 

Phase Hyperparameter MobileNetV1 MobileNetV2 EfficientNetB0 NasNetMobile 

F
ea

tu
re

 E
x
tr

a
ct

io
n

 Input image size (224, 224, 3) (224, 224, 3) (224, 224, 3) (224, 224, 3) 

Optimizer SGD (Default) SGD (Default) SGD (Default) SGD (Default) 

Loss Function Categorical 

Crossentropy 

Categorical 

Crossentropy 

Categorical 

Crossentropy 

Categorical 

Crossentropy 

Learning Rate 0.1 0.1 0.1 0.1 

Decay LR NA NA NA NA 

Early Stopping No No No No 

F
in

e 
T

u
n

in
g
 

Input image size (224, 224, 3) (224, 224, 3) (224, 224, 3) (224, 224, 3) 

Optimizer SGD SGD SGD SGD 

Loss Function Categorical 

Crossentropy 

Categorical 

Crossentropy 

Categorical 

Crossentropy 

Categorical 

Crossentropy 

Learning Rate 0.0001 0.0001 0.0001 0.0001 

Decay Type Exponential Exponential Exponential Exponential 

Decay Steps 10000 10000 10000 10000 

Decay Rate 0.9 0.9 0.9 0.9 

Early Stopping Yes Yes Yes Yes 

Fine-tuned layers 50 94 20 173 
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4.6  CNN Model Evaluation 

During the research implementation phase, multiple CNN classifier models were built leveraging 

selected SOA base models suitable for mobile devices. In addition, models were trained using 

different datasets which include PlantVillage original and balanced datasets and PlantDoc original, 

cropped, and balanced datasets. CNN models were evaluated using various classification metrics. 

A confusion matrix was used to analyse true positives, false positives, true negatives, and false 

negatives. Based on the confusion matrix, various other matrices were calculated such as accuracy, 

precision, and recall (sensitivity), precision-recall curve, AUC, and F1-score. 

 

The evaluation metrics for trained CNN models were compared and the best CNN model was 

selected for deployment using the Android mobile application. 

 

4.7  CNN Model Deployment using Android App 

The final stage after performing the final CNN model evaluation against the test dataset was to 

create the TensorFlow Lite (.tflite) model and integrate the model into the Android application. 

This research leveraged the TensorFlow Python API to create the TFLite model. A 

tf.lite.TFLiteConverter.from_keras_model() method was called to create a converter object by 

passing the Keras model and then the model was converted using the TFLite Converter object. 

After the creation of the TFLite model, it was imported into the SmartCropCNNLite android 

mobile application using Android Studio. A SmartCropCNNLite provided two options to capture 

the images which can then be passed to the CNN model to predict the disease type. The first option 

allowed the user to start the camera from the Android device. The Intent class from Android 

Camera API is used to invoke the default camera application in Android devices. The capture image 

byte array was then converted to Bitmap and passed to the CNN model to detect the disease type. 

Also, permission to use a camera is requested by adding an appropriate declaration in the Manifest 

of the Android Application. Another method provided allowed users to select the image from the 

Image Gallery and perform the inferencing using the CNN model. 

 

4.8  Disease Severity Prediction - Design and Implementation 

After the classification of tomato plant diseases using the CNN classifier model, the next important 

step was to predict the disease spread, which can play an important role to decide on the appropriate 
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treatment recommendation for the tomato plant diseases. The research tied two approaches to 

predict the probabilities for disease spread and accordingly further classify the images into 

additional subclasses (L1, L2, and L3). In the first approach, manual feature extraction was 

performed, and traditional ML classification algorithms were tried to classify the images based on 

plant disease and the degree of disease spread. In the second approach, the research leveraged the 

CNN model with transfer learning for automatic feature extraction and selection and then trained 

a classification model to classify the images based on the disease type and disease severity. Both 

the classifier models were then evaluated, and the final model was selected based on the model 

performance. 

The process flow of the Disease Severity Detection model is explained in Figure 24. 

 

Figure 24 - Disease Severity Detection Process Flow 

The next subsection explains the implementation details for both approaches. 

 

4.8.1  Approach 1: Traditional ML model to detect Plant Disease Severity 

In this approach, the derived dataset for Plant-Disease-Severity was used to extract color, shape, 

and key points feature details from the images. The tomato plant diseases result in color changes 

such as turning the leaves into yellow or brown from green, shape deformations such as curling or 
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molding of the leaves and showing the symptoms in form of brown spots on patches on the leaves. 

The research has leveraged two types of features to identify plant disease symptoms and their 

severity – (1) the global features which include color and shape (2) the local feature containing key 

regions and points of interest details. 

 

OpenCV is used to extract color histogram and shape features to calculate HuMoments. The 

mahotas.features.haralick method from the mahotas image processing library was used to extract 

texture features. Then these global features were combined, and feature vectors were created using 

the NumPy package from the Scikit-learn library. After feature extraction, those were standardized 

using MinMaxScaler and divided into train (0.8) and test (0.2) datasets. ML models were trained 

using Support Vector Machine (SVM) and Random  Forest Classifiers on combined Global 

Features Train dataset and evaluation was carried out against Test dataset to compare the model 

performance.  

 

As a next step, keypoint and feature descriptor details were extracted using ORB features. After 

extracting ORB features that describe keypoint at a particular location in the image, a bag-of-visual 

words (BOVW) technique was applied to get a uniform representation of feature vectors computed 

by ORB features. A MinMaxScaler was applied to these extracted ORB features and then the 

KMeans clustering technique was used to group the key points using 120 clusters that represented 

an image. The computed centroids by the KMeans algorithm were used as the visual dictionary’s 

vocabularies. Labels were encoded using LabelEncoder and then the dataset was divided into train 

and test. SVM classifier and Random Forest classifier were used on this dataset to classify those 

images in seven classes. The model performance was analyzed and based on that; it was decided 

to also experiment with the CNN model to detect the severity of the tomato plant diseases. 

 

Figure 25 shows sample plant leaves images (left), the calculated histogram for BGR channels 

(middle) and ORB keypoint indicated (right) for all the classes.  
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Figure 25 – Plant Images with Color histogram and ORB interest keypoint identified 

In the sample image of Bacterial Spot Image, small (less than 1/8 inch) water-soaked circular or 

even irregular spots can be noticed. Those spots are initially yellowish green which turns brown 

with aging. The color histogram with BGR channels shows that blue color pixels are concentrated 
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between pixel value range of 50 to 150, which is contributed by the dark background. The red color 

pixels show a peak between 100 to 150 which represents the brown and reddish bacterial spots on 

the leaf. The green color peak can be noticed from 150 to 200 which is primarily due to the light 

green color of the leaves. ORB features correctly identified the key points in the images, which are 

the bacterial spots on the leaf. The green channel shows wide distribution with a peak at 150 

representing leaves color in the image. ORB features are indicating the disease area of the plant 

leaves as key interest points. 

 

The early blight sample image shows small brown lesions and some enlarged concentric rings in a 

bull's-eye pattern in the center of the disease area. The red and blue channel displays a peak at 

pixel-value 100 indicating the disease-affected areas. The histogram of healthy plant leaves shows 

the green channel is widely distributed but skewed towards higher pixel values at the right which 

indicated the light-green color of plant leaves. The blue and red channel distribution is skewed 

towards the left which represents soil and dark background colors in the image. ORB features have 

not detected any key point on the plant leaves indicating an absence of any noticeable area or region 

on the plant leaves. Tomato late blight sample images show enlarged water-soaked areas which are 

of greenish-black color. The color histogram indicates that all three channels are left-skewed 

indicating the dominance of dark colors in the image. The ORB features images show the identified 

key interest areas representing the diseased areas of the plant foliage.  

 

The Tomato leaf mold sample image shows the yellow spots on the upper surface of the leaves. 

The color histogram shows the wide distribution for green color pixels with a peak of 150 which 

might be because of the yellow spots on the leaves. The blue and red channels show peaks between 

50-pixel and 100-pixel values indicating the solid and background objects. The ORB features are 

highlighting the yellow spots and molds on the edges of the leaves. The sample image of the 

Septoria leaf spot image contains many small circular spots with dark brown margins. The blue 

and red color pixel distribution in the histogram is skewed towards the left because of these dark 

spots on the leaf and some background shades. The green channel shows the peak at the center of 

pixel value i.e., at 125 pixels. The ORB image highlights these spots accurately with exception of 

also indicating the text “Septoria Leaf Spot” written in white at the bottom right-hand side of the 

image. The Yellow leaf curl virus leaves show yellow leaf edges with upward leaf curling which 

results in reduced leaf size. The color histogram shows all the channels are skewed towards the left 
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which might be due to dark background colors in the image. The ORB features show the key points 

on the edges of the leave accurately which are the affected areas of the leaves due to the disease. 

 

4.8.2  Approach 2: CNN with Transfer Learning to detect Plant Disease Severity 

As the performance of manual feature extraction and models trained with Global (Color, Shape, 

and Texture) and Local (ORB key points) separately were not optimal, it was decided to leverage 

the CNN model to perform automatic feature extraction and train the CNN classifier model using 

Plant Severity dataset. Since the number of images was less, it was decided to use the Transfer 

Learning techniques instead of training a shallow (from scratch) CNN model. MobileNetV2 model 

architecture was selected as a base model and two models were trained on the Plant Severity data 

set, which included – (1) Feature Extraction model (2) Fine-tune Model. 

The model performance was analyzed compared to classic ML models trained earlier. Based on 

the analysis, it was decided to use CNN fine-tune model to be used for final deployment. 

 

4.9  Summary 

In a nutshell, this chapter explained the detailed steps carried out during data analysis, model 

training, and evaluation as a part of this research work. The chapter started with details of the data 

preparation process which included loading of the dataset and the considerations for image 

annotations and data cleaning. The next subsection provided details of newly curated datasets, 

which included Cropped Image Dataset and Plant Severity Dataset. Then the steps of resizing and 

rescaling the dataset images were discussed. The subsection on data augmentation provided details 

on data augmentation techniques applied using ImageDataGenerator provided by Keras Data 

Processing APIs to avoid overfitting of the model due to a smaller number of images. The next 

section explained how the datasets were divided into train and test data set by applying the hold-

out strategy.  

 

The next section on Exploratory Data Analysis (EDA) covered the details of data analysis 

conducted for different datasets. It started with a high-level EDA to check the class distribution 

and analyzed the class imbalance ratio which indicated the existence of class imbalance that needs 

to be addressed. Then EDA was performed on actual images from multiple datasets using the 

“basic-image-eda” tool. The inferences derived from the data analysis were explained clearly 

which helped to make important decisions on input image size for the training process, the batch 



83 

 

size for training CNN model, and evaluation matrices to be used during model evaluation. The 

section on class balancing explained the decisions for handling the class imbalance and the steps 

performed to create balanced datasets. This subsection also provided dataset descriptions for 

balanced datasets which included various classes and respective image sizes in those classes and 

compared those with original datasets. 

 

The section on CNN model design and implementation started with an explanation of the approach 

for feature engineering including automatic feature extraction and selection using the base CNN 

model. The following subsection on CNN model training using transfer learning explained the base 

models selected for this research. Then it explained the CNN model architecture and updates which 

were applied to the original CNN model network design. The subsection on hyperparameter 

tunning covered all the hyperparameters and their combinations which were tuned to improve the 

model performance. This section also provided the details of final hyperparameter settings for 

different CNN models in a table which included the selection of SGD optimizer with a learning 

rate of 0.0001, learning rate schedule using ExponentialDecay, and EarlyStop callback applied to 

avoid overfitting of the model. After model training, the next section provided details of how the 

various CNN models were evaluated using different classification metrics such as confusion 

matrix, precision, recall, F1-score, and AUC/ROC in addition to Accuracy. The final model was 

selected based on the comparative analysis of various model performances. 

 

Finally, the last section covered the details of plant disease severity model training which includes 

two approaches. The first approach performed manual feature extraction for global features (color, 

shape, and texture) and local features (ORB key points and descriptors). The subsection covered 

details on how different ML classification models were trained such as Random Forest Classifier 

and Support Vector Machine (SVM) and model evaluation. The next subsection covered the second 

approach, in which the CNN model was used to perform automated feature extraction, and the 

model was trained using transfer learning. The CNN model evaluation process was explained later, 

and it concluded with a final decision of model selection to detect plant disease severity. 
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CHAPTER V:  

 

RESULTS AND DISCUSSIONS 
 

5.1  Introduction 

This chapter will explain the results of all the experiments conducted during this research and will 

discuss the interpretation of the evaluation results. The chapter will begin with a section on the 

approach followed for the evaluation of CNN models. The further subsections will provide details 

of evaluation metrics for various CNN models trained using different base models, which include 

MobileNet V1, MobileNet V2, EfficientNet B0, NasNetMobile, and ResNet50 V2. After analysis 

of individual CNN models, the next section will explain the process of the final model selection, 

where the performance of CNN models against the PlantDoc dataset with various base models will 

be compared. The following subsection will also provide details of model sizes which play an 

important role in the selection of the final model with a goal of final model deployment to the 

mobile platform. The next section will explain the evaluation results using the final selected model 

against the PlantDoc test dataset. The section on the evaluation of the Plant Disease Severity model 

will provide details of model performance evaluation for classical ML models and will compare 

those with CNN models. Finally, the last section in this chapter will discuss the results obtained 

while making inferences using the Android Mobile application in the real plantation field.  

 

5.2  CNN Models Evaluation and Results 

During the research implementation phase, the first CNN model with transfer techniques was used 

as the Feature Extractor model by updating the classification layer of network architecture. This 

model was trained initially on PlantVillage (PVD) original dataset. The performance of the Feature 

Extractor model was evaluated by comparing training and validation accuracy and loss values. 

Based on the performance analysis, various hyperparameters were tweaked such as selection of 

optimizer, learning rate, and the number of epochs. After getting a satisfactory performance for the 

Feature Extractor model, a CNN model was fine-tuned by gradually unfreezing the last layers of 

the network. The performance of the fine-tuned model with the PVD dataset was monitored using 

a comparison of training and validation accuracy and loss. Next, the model performance was 

verified against a PVD test dataset using predict and evaluate methods. The research used various 

performance metrics to evaluate model performance, which included accuracy, precision, recall, 

AUC/ROC, Precision-Recall-Curve, and F1-Score. The classification report was generated to 
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understand the performance for each class in the dataset for these metrics. Finally, a confusion 

matrix was generated and plotted using Heatmap to compare the True Positive (TP), True Negative 

(TN), False Positive (FP), and False Negative (FN) values.  

 

After ensuring optimal performance for Fine-tuned model against the PVD dataset, the same model 

was evaluated using PlantDoc (PD) original dataset. As expected, model performance was 

drastically degraded against the PD dataset due to the difference between the controlled 

environment (PVD Dataset images) and images that were taken from the actual farm field. Then 

model containing ImageNet + PlantVillage (PVD) trained weights was fine-tuned against the PD 

dataset which showed significant model performance improvements. There were additional CNN 

models trained against PlantVillage Balanced Dataset (PVD-BAL) and PlantDoc Balanced Dataset 

(PD-BAL) and their performance was evaluated using similar metrics. Next, CNN models trained 

against PlantDoc Cropped Dataset were evaluated and their performance was compared with the 

CNN model trained against the original PlantDoc dataset.  

 

As both PVD and PD original datasets are imbalanced, Precision, Recall, and Precision-Recall-

Curve are important measures to evaluate model performance. This research focused on the 

identification of Tomato Plant Diseases using the CNN models and therefore high precision score 

indicates diseases are classified accurately by the model. A high recall score indicates the model is 

predicting most disease classes. The preferred model needs to have high precision and high recall 

values which is indicated by a higher value of precision-recall-curve (PRC) and high F1-Score 

which indicates a balance between the precision and recall values. This indicates the model is 

returning all positive (disease classes) cases accurately. This will ensure tomato plant diseases are 

identified in the early stage accurately. Further, it will help to avoid any excessive use of fertilizers, 

which not only impacts the crop yield but also adversely impacts the soil quality.  

 

5.2.1  MobileNet V1 model with 100% parameters 

CNN models built using MobileNet V1 architecture will 100% parameters (alpha=1) were 

evaluated against various datasets and using different performance metrics. Table 12 shows the 

evaluation results for these evaluations. 
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Table 12 – MobileNet V1 (100%) Model Evaluation Results 

Dataset 
Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score PRC AUC 

PVD (Train & Test) 0.99 0.99 0.99 0.99 1.00 1.00 

PVD (Train) + PD (Test) 0.23 0.24 0.23 0.24 0.26 0.64 

PD (Train & Test) 0.66 0.65 0.66 0.64 0.76 0.93 

PVD-Bal (Train & Test) 0.98 0.98 0.98 0.98 1.00 1.00 

PVD-Bal (Train) + PD-Bal (Test) 0.22  0.23 0.22 0.22 0.22 0.62 

PD-Bal (Train & Test) 0.63 0.65 0.63 0.62 0.69 0.89 

PD-Cropped (Train & Test) 0.63 0.64 0.63 0.62 0.71 0.93 

 

The CNN model trained on PVD original dataset showed high accuracy, precision, recall, and F1-

score values of 0.99. The AUC and PRC area were almost 1.00 because the images are uniform in 

size and do not contain any background noise. When the fine-tuned model trained with PVD dataset 

was used to predict against PD dataset, it showed significant performance decrease with accuracy 

and recall values of 0.23 and precision and F1-Score of 0.24. After re-training a model against the 

PD dataset by fine-tuning the last 50 layers, model performance was improved. The fine-tuned 

model was able to achieve higher accuracy (0.66), precision (0.65), recall (0.66), and f1-score 

(0.64). The AUC area was 0.93 and the PRC area was 0.76. Similar evaluation results were 

observed for PVD and PD balanced datasets. The result shown for balanced datasets were slightly 

on the lower side as compared to the original dataset. This is due to the reduced number of images 

for these datasets. The results for the Plant-Doc Cropped dataset showed a slightly lower accuracy, 

precision, and recall rate resulting in a slightly lower f1-score (0.62), and PRC area (0.71). 

 

5.2.2  MobileNet V1 model with 50% parameters 

The MobileNet class of models allowed to control the width of the network, which is mentioned 

as width multiplier in the MobileNet Architecture paper (Howard and Wang, 2012) using an alpha 

parameter. In this research, CNN models were trained using an alpha value of 0.5 which decreased 

the number of filters in the layers by 50%. This resulted in a smaller size of the trained CNN model 

which is more suitable for mobile deployment. The model evaluation results for these reduced-size 

models are listed in Table 13. 
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Table 13 – MobileNet V1 (50%) Model Evaluation Results 

Dataset 
Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score PRC AUC 

PVD (Train & Test) 0.98 0.98 0.98 0.98 1.00 1.00 

PVD (Train) + PD (Test) 0.25 0.25 0.25 0.25 0.22 0.59 

PD (Train & Test) 0.60 0.62 0.60 0.59 0.70 0.90 

PD-Cropped (Train & Test) 0.56 0.57 0.56 0.57 0.65 0.90 

 

As expected, the fine-tuned PVD model evaluation resulted in higher accuracy, precision, recall, 

and f1-score of 0.98 with AUC and PRC reaching a value of almost 1.00. However, the same model 

did not perform well against the PD dataset and obtained accuracy (0.25), precision (0.25), recall 

(0.25), f1-score (0.25), PRC (0.22), and AUC (0.59) values were significantly lower. The fine-

tuned model with PlantDoc original dataset improved the model performance with an accuracy 

value of 0.60 and the f1-score of 0.59. AUC score was improved to 0.90 and the PRC area was 

0.70. Next, a CNN model with MobileNet 50% parameters was trained using a PD-Cropped 

dataset. The results were on the lower side for this model as compared to the model trained with 

the PD original dataset. This indicates the MobileNet V1 model with reduced filters lowered the 

performance evaluation metrics as compared to the default MobileNet V1 model for the PlantDoc 

dataset. 

 

5.2.3  MobileNet V2 model with 100% parameters 

After model training with MobileNet V1, research experimented with the MobileNet V2 base 

model which enhanced the MobileNet V1 architecture by using residual connections between the 

bottleneck layers and by adding shortcut connections between those bottleneck layers (Sandler et 

al., 2018). Table 14 shows the results achieved using MobileNet V2 default model. 

Table 14 – MobileNet V2 (100%) Model Evaluation Results 

Dataset 
Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score PRC AUC 

PVD (Train & Test) 0.98 0.98 0.98 0.98 1.00 1.00 

PVD (Train) + PD (Test) 0.40 0.40 0.39 0.40 0.40 0.72 

PD (Train & Test) 0.67 0.66 0.67 0.65 0.74 0.92 

PVD-Bal (Train & Test) 0.88 0.92 0.88 0.88 0.94 0.98 

PVD-Bal (Train) + PD-Bal (Test) 0.32 0.33 0.30 0.31 0.35 0.69 

PD-Bal (Train & Test) 0.64 0.71 0.64 0.64 0.66 0.90 
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PD-Cropped (Train & Test) 0.63 0.63 0.63 0.62 0.72 0.92 

 
 

The CNN model trained on the PlantVillage dataset resulted in a high accuracy rate, precision, 

recall, and f1-score of 0.98 with an AUC & PRC area of almost 1.00. However, the performance 

of the model degraded when it was used to predict against the PlantDoc dataset. The model was 

able to achieve an accuracy of only 40% with an AUC area of 72%. Hence, the model was fine-

tuned using the PlantDoc dataset which showed significant improvement in model performance. 

The accuracy was increased to 0.67 with a precision of 0.66 and recall of 0.67. The f1-score 

achieved using this model was 0.65, the PRC area was 0.74, and AUC increased to 0.92. Then the 

CNN models were trained using a balanced PD dataset, which showed slightly lower results as 

compared to the original PlantDoc dataset. The accuracy, recall, and f1-score were less by 0.03 i.e., 

at 0.64. However, the precision value increased to 0.71. Finally, a model trained with PlantDoc 

cropped image dataset has resulted in accuracy, precision, and recall values of 0.63 and the f1-

score of 0.62. AUC achieved was 0.92 and PRC area was 0.72. The evaluation results indicated 

that the CNN model trained against the original PlantDoc dataset was able to achieve better results 

as compared to the model trained with other variations of the PlantDoc dataset such as the PD 

balanced dataset and PD cropped dataset. 

 

5.2.4  MobileNet V2 model with 50% parameters 

In the attempt of limiting a model footprint by reducing the size of the CNN model, an experiment 

was conducted to train multiple models using the MobileNet V2 base model with a 50% reduced 

number of parameters. The model evaluation results obtained from the experiment are listed in 

Table 15. 

Table 15 – MobileNet V1 (50%) Model Evaluation Results 

Dataset 
Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score PRC AUC 

PVD (Train & Test) 0.97 0.97 0.97 0.97 1.00 1.00 

PVD (Train) + PD (Test) 0.34 0.33 0.30 0.32 0.36 0.70 

PD (Train & Test) 0.67 0.69 0.67 0.67 0.72 0.92 

PD-Bal (Train & Test) 0.58 0.64 0.58 0.58 0.63 0.88 

PD-Cropped (Train & Test) 0.62 0.64 0.62 0.62 0.68 0.91 
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A model trained on the PVD dataset resulted in higher evaluation metrics values, reaching 

accuracy, precision, recall, and f1-score to 0.97 and the AUC & PRC area of almost 1.00. As 

expected, performance was degraded with the PlantDoc dataset for the model trained with the 

PlantVillage dataset where the accuracy achieved was just 0.34. When the model was fine-tuned 

with the PlantDoc dataset, it resulted in slightly better results as compared to the CNN model 

trained with 100% parameters. The CNN model was able to achieve accuracy, recall, an f1-score 

of 0.67, and precision of 0.69 with an AUC of 0.92. The CNN model trained with a balanced dataset 

resulted in lower values of accuracy (0.58), precision (0.64), recall (0.58), f1-score (0.58), and 

AUC of 0.88. The same results were observed with a model trained on PlantDoc cropped dataset 

where accuracy, recall, and f1-score were slightly reduced to 0.62 and precision value of 0.64. 

 

Based on the analysis of results obtained with CNN models with 50% parameters, it was concluded 

that the results were at par with the CNN models trained using the MobileNet V2 default model 

(100% parameters). The performance was even slightly better against the PlantDoc original dataset. 

 

5.2.5  MobileNet V2 (50% parameters) model with lower input image sizes 

As a part of this research work, CNN models were trained with different input image sizes to 

understand the impact of change in input image size on model performance. As the previous 

experiments proved that the CNN model trained with MobileNet V2 with 50% parameters yields 

the best results, it was selected as a base model to experiment with the different image input sizes. 

The CNN models were trained by resizing the input images to 192 X 192 pixels height and width. 

Then images were again resized to 128 X 128 pixels height and width and models were trained on 

the different datasets. Table 16 shows the results of the CNN models evaluated using various 

classification metrics. 

Table 16 – MobileNet V2 Model Evaluation Results with different input sizes 

In
p

u
t 

S
iz

e 

Dataset 

Performance Evaluation Metrics 

Accuracy Precision Recall F1-

Score 

PRC AUC 

(1
2
8
, 

1
2
8
, 

3
) PVD (Train & Test) 0.96 0.96 0.96 0.96 0.99 1.00 

PVD (Train) + PD (Test) 0.32 0.33 0.32 0.33 0.33 0.64 

PD (Train & Test) 0.61 0.65 0.61 0.62 0.67 0.90 

PD-Cropped (Train & Test) 0.65 0.65 0.65 0.65 0.68 0.91 
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(1
9
2
, 

1
9
2
, 

3
) PVD (Train & Test) 0.96 0.96 0.96 0.96 0.99 1.00 

PVD (Train) + PD (Test) 0.32 0.30 0.29 0.29 0.29 0.68 

PD (Train & Test) 0.67 0.69 0.67 0.67 0.73 0.92 

PD-Cropped (Train & Test) 0.64 0.66 0.64 0.64 0.71 0.92 

 

The CNN model trained using a lower input image size of (128, 128, 3) showed slightly reduced 

performance against PVD and PD dataset variations as compared to the model trained with an input 

image size of (224, 224, 3). The classification metrics against the PVD dataset were able to achieve 

a 0.96 value for accuracy, precision, recall, and f1-score. The accuracy and recall with PD original 

dataset were also decreased to 0.61 and precision value to 0.65.  As a next experiment, CNN models 

were trained using an input image size of (192, 192, 3). The model performance has shown a 

reduction in performance metrics for the PlantVillage dataset as compared to the higher input size. 

However, for PlantDoc original dataset, the model achieved the same performance as the model 

trained with 224 X 224-pixel size. Based on the performance evaluation of these models trained 

with different input sizes, it was decided to use an input image size of (224, 224, 3) for final model 

training.  

 

5.2.6  Evaluation of EfficientNet B0 CNN model 

EfficientNet (Tan and Le, 2019) models provide a combination of efficiency and accuracy by 

introducing various scales for model scaling. This research leveraged the smallest base model (B0) 

from the EfficientNet model family which is suitable for this research objective. Table 17 shows 

results obtained from various CNN models by using the EfficientNet B0 base model. 

Table 17 – EfficientNet B0 Model Evaluation Results 

Dataset 
Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score PRC AUC 

PVD (Train & Test) 0.97 0.97 0.97 0.97 1.00 1.00 

PVD (Train) + PD (Test) 0.27 0.29 0.22 0.25 0.26 0.67 

PD (Train & Test) 0.66 0.69 0.66 0.66 0.76 0.93 

PVD-Bal (Train & Test) 0.95 0.95 0.95 0.95 0.99 1.00 

PVD-Bal (Train) + PD-Bal (Test) 0.26 0.31 0.21 0.25 0.25 0.68 

PD-Bal (Train & Test) 0.59 0.63 0.59 0.59 0.69 0.91 

PD-Cropped (Train & Test) 0.64 0.65 0.64 0.64 0.72 0.93 
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A fine-tuned model trained on PVD original dataset with EfficientNet B0 base model was able to 

achieve accuracy, precision, recall, and f1-score of 0.97, which is lower by 0.02 as compared to 

MobileNet family models trained for the same dataset. Similar results were monitored for PVD 

balanced dataset which was able to achieve a 0.95 score for all evaluation metrics which is less by 

0.03 as compared to MobileNet models. The CNN model fine-tuned using PD original dataset was 

able to achieve accuracy, recall, and f1-score of 0.66 and precision score of 0.69. The CNN models 

trained with PD Balanced dataset were able to achieve lower performance (accuracy, recall, and 

f1-score of 0.59 and precision of 0.63) due to the reduced number of images in the dataset. The 

CNN model trained on the PD cropped image dataset produced slightly lower results with accuracy, 

recall, and f1-score of 0.64 and precision of 0.65 with an AUC score of 0.93. Overall, model 

performance analysis indicated slightly reduced performance of EfficientNet B0 models on 

variations of both the dataset as compared to MobileNet model family. 

 

5.2.7  Evaluation of NasNetMobile CNN model 

This research leveraged the NasNetMobile CNN base model and trained various models on 

different variations of PlantVillage and PlantDoc datasets. The evaluation results for those models 

are listed in Table 18. 

Table 18 – NasNetMobile Model Evaluation Results 

Dataset 
Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score PRC AUC 

PVD (Train & Test) 0.95 0.96 0.95 0.95 0.99 1.00 

PVD (Train) + PD (Test) 0.23 0.24 0.22 0.23 0.20 0.58 

PD (Train & Test) 0.54 0.57 0.54 0.54 0.59 0.88 

PVD-Bal (Train & Test) 0.91 0.93 0.91 0.91 0.97 0.99 

PVD-Bal (Train) + PD-Bal (Test) 0.27 0.30 0.26 0.28 0.26 0.62 

PD-Bal (Train & Test) 0.66 0.69 0.66 0.66 0.59 0.87 

PD-Cropped (Train & Test) 0.55 0.57 0.55 0.55 0.64 0.90 

 

Based on the analysis of results obtained from CNN models trained using NasNetMobile base 

model was slightly on the lower side as compared to CNN models trained with MobileNet (V1 & 

V2) and EfficientNet B0 models. A fine-tuned CNN model with the PlantVillage dataset was able 

to achieve 95% of accuracy, recall, and f1-score, and 96% of precision value. A model trained on 

the PlantDoc dataset resulted in lower accuracy, recall, and f1-score metrics of 0.54 and precision 

of 0.57. However, a model trained on a balanced PlantDoc dataset resulted in higher accuracy 
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(0.66), precision (0.69), recall (0.66), f1-score (0.66) as compared to other CNN models trained on 

this dataset. The CNN model trained using cropped images dataset showed almost similar results 

as PlantDoc original dataset. 

 

5.2.8  Evaluation of ResNet50 V2 CNN model 

To compare the performance of large deep CNN architecture on PlantVillage and PlantDoc datasets 

with smaller architectures suitable for mobile, CNN models were trained using the ResNet50 V2 

base model. Table 19 shows the summary of evaluation metrics for various CNN models trained 

using the ResNet50 V2 base model. 

 

Table 19 – ResNet50 V2 Model Evaluation Results 

Dataset 
Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score PRC AUC 

PVD (Train & Test) 0.99 0.99 0.99 0.99 1.0 1.00 

PVD (Train) + PD (Test) 0.27 0.28 0.26 0.27 0.24 0.63 

PD (Train & Test) 0.67 0.69 0.67 0.66 0.70 0.90 

PVD-Bal (Train & Test) 0.98 0.98 0.98 0.98 1.00 1.00 

PVD-Bal (Train) + PD-Bal (Test) 0.28 0.28 0.27 0.28 0.25 0.66 

PD-Bal (Train & Test) 0.56 0.59 0.56 0.56 0.64 0.90 

PD-Cropped (Train & Test) 0.65 0.67 0.65 0.65 0.73 0.92 

 

CNN model fine-tuned with PVD original dataset resulted in high accuracy, precision, recall, and 

F1 score of 0.99 and AUC & PRC area almost reaching to value 1.00. When the same model was 

used to classify the tomato plant disease using the PlantDoc dataset, as expected results were poor 

with a lower value of accuracy (0.27), precision (0.28), recall (0.26), f1-score (0.27), PRC (0.24), 

and AUC (0.63). The same model was then retrained using the PlantDoc train dataset and accuracy 

was improved to 0.67 with an AUC score of 0.90. The precision (0.69), recall (0.67), and f1-score 

(0.66) metrics also showed significant improvements. The results obtained with the PlantDoc 

Balanced dataset were on the lower side as compared to PD original dataset with accuracy, recall, 

f1-score values of 0.56, and precision value of 0.59. CNN model trained with PlantDoc cropped 

dataset resulted in all classification metrics values smaller by 0.02 except AUC which was 

increased by 0.02. 
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Based on the analysis of evaluations performed and results obtained with the ResNet50 V2 model, 

it was evident that for both the PlantVillage and PlantDoc datasets, there were no significant model 

performance improvements by using a large deep CNN network instead of lighter CNN model 

architecture such as MobileNet, EfficientNet, NasNetMobile. 

 

5.3  Final CNN model selection  

During the research implementation, more than 50 CNN models were trained using different 

variations of the PlantVillage and PlantDoc dataset and with different hyperparameter 

combinations. This subsection provides the comparative analysis of the evaluation metrics carried 

out to select the final best model for deployment. 

  

5.3.1  Comparison of CNN models performance 

The results obtained from various CNN models were analyzed together by combining the 

performance metrics values from those models. To meet the objective of detecting tomato plant 

diseases using the mobile application in the plantation field, the analysis was focused on the model 

performance evaluation with the PlantDoc dataset, which contains real-world images as opposed 

to the PlantVillage dataset, which contains the images from controlled (lab) environment. The 

comparative analysis helped to select the best performing model as the “Final Model” to integrate 

with the Android Mobile App and deployed in the field to carry out inferences.  

Table 20 – Performance evaluation metrics of CNN models  

Models 

Performance Evaluation Metrics 

Accuracy Precision Recall F1-

Score 

PRC AUC 

MobileNet V1 (100% parameters) 0.66 0.65 0.66 0.64 0.76 0.93 

MobileNet V1 (50% parameters) 0.60 0.62 0.60 0.59 0.70 0.90 

MobileNet V1 (Balanced Dataset) 0.63 0.65 0.63 0.62 0.69 0.89 

MobileNet V1 (Cropped Dataset) 0.63 0.64 0.63 0.62 0.71 0.93 

MobileNet V2 (100% parameters) 0.67 0.66 0.67 0.65 0.74 0.92 

MobileNet V2 (50% parameters) 0.67 0.69 0.67 0.67 0.72 0.92 

MobileNet V2 (Balanced Dataset) 0.64 0.71 0.64 0.64 0.66 0.90 

MobileNet V2 (Cropped Dataset) 0.63 0.63 0.63 0.62 0.72 0.92 

MobileNet V2 (128 px input size) 0.61 0.65 0.61 0.62 0.67 0.90 

MobileNet V2 (192 px input size) 0.67 0.69 0.67 0.67 0.73 0.92 

EfficientNet B0 0.66 0.69 0.66 0.66 0.76 0.93 
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EfficientNet B0 (Balanced Dataset) 0.59 0.63 0.59 0.59 0.69 0.91 

EfficientNet B0 (Cropped Dataset) 0.64 0.65 0.64 0.64 0.72 0.93 

NasNetMobile  0.54 0.57 0.54 0.54 0.59 0.88 

NasNetMobile (Balanced Dataset) 0.66 0.69 0.66 0.66 0.59 0.87 

NasNetMobile (Cropped Dataset) 0.55 0.57 0.55 0.55 0.64 0.90 

ResNet50 V2 0.67 0.69 0.67 0.66 0.70 0.90 

ResNet50 V2 (Balanced Dataset) 0.56 0.59 0.56 0.56 0.64 0.90 

ResNet50 V2 (Cropped Dataset) 0.65 0.67 0.65 0.65 0.73 0.92 

 

The performance evaluation metrics in Table 20 indicate that CNN models leveraging MobileNet 

family and EfficientNet B0 base models resulted in better performance as compared to 

NasNetMobile on PlantDoc dataset variations.  There were no significant improvements with a 

cropped or balanced version of PlantDoc datasets indicated that CNN models were able to learn 

similar feature mapping from the original PlantDoc dataset. The CNN model trained using (192, 

192, 3) input image size was able to achieve similar results as the model trained using (224, 224, 

3) input size. However, model performance was degraded when input size was further reduced to 

(128, 128, 3). The models trained using reduced width multiplier factor (50% model parameters) 

for the MobileNet family indicated similar results as a model trained with 100% parameters. As 

seen in Table 20, CNN models trained with MobileNet V2 using 224 X 224 pixels height and width 

and 192 X 192 pixels input sizes performed best on PlantDoc original dataset. The performance 

metrics were almost similar with a minor difference of 0.01 for the PRC area. Hence, the CNN 

model trained with MobileNet V2 network architecture having image input size of (224, 224, 3) 

was considered as the final model based on performance evaluation metrics analysis. 

 

5.3.2  Comparison of CNN model size 

After completing the analysis of evaluation metrics to compare model performance, the next step 

was to compare the model sizes. As the objective of this research is to integrate the final model 

with the Android mobile app, the model size was one of the important considerations. A smaller 

model size helps to optimize the mobile resource consumption such as memory usage. It is also 

easier to update the Android app with a newly trained model to improve the model efficacy in the 

future with new data points when the model size is smaller. During the research implementation 

phase, various CNN models were saved using Keras SavedModel format, which is the 
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recommended approach for saving the model architecture, weights, and all model configurations. 

Table 21 shows the details of various saved model files with their size details.  

Table 21 – Model File Size Details 

Models File Name Size (in MB) 

MobileNet V1 (100% parameters) PD-MobileNet-FT.h5 17 

MobileNet V1 (50% parameters) PD-MobileNet-FT-Alpha-0.5.h5 8 

MobileNet V1 (Balanced Dataset) PD-MobileNet-FT-Balanced.h5 17 

MobileNet V1 (Cropped Dataset) PD-CD-MobileNet-FT 17 

MobileNet V2 (100% parameters) PD-MobileNetV2-FT.h5 15 

MobileNet V2 (50% parameters) PD-MobileNetV2-FT-Alpha-0.5.h5 9 

MobileNet V2 (Balanced Dataset) PD-MobileNetV2-FT-Balanced.h5 15 

MobileNet V2 (Cropped Dataset) PD-CD-MobileNetV2-FT 15 

MobileNet V2 (128 px input size) PD-MobileNetV2-FT-Alpha-0.5-

128px.h5 

9 

MobileNet V2 (192 px input size) PD-MobileNetV2-FT-Alpha-0.5-

192px.h5 

9 

EfficientNet B0 PD-EfficientNet-B0-FT.h5 22 

EfficientNet B0 (Balanced Dataset) PD-EfficientNet-B0-FT-Balanced.h5 22 

EfficientNet B0 (Cropped Dataset) PD-CD-EfficientNet-B0-FT.h5 22 

NasNetMobile  PD-NasNetMobile-FT.h5 23 

NasNetMobile (Balanced Dataset) PD-NasNetMobile-FT-Balanced.h5 23 

NasNetMobile (Cropped Dataset) PD-CD-NasNetMobile-FT.h5 23 

ResNet50 V2 PD-ResNet50V2-FT.h5 106 

ResNet50 V2 (Balanced Dataset) PD-ResNet50V2-FT-Balanced.h5 106 

ResNet50 V2 (Cropped Dataset) PD-CD-ResNet50V2-FT.h5 106 

 

As observed from model size details, the CNN models trained using MobileNet family architecture 

resulted in smaller model sizes ranging between 15 to 17 MB of size on disk. The model size was 

further optimized with the models trained using 50% of parameters resulting in the MobileNet V1 

model of 8 MB and Mobile V2 model size of 9 MB. After comparing the model evaluation results 

based on the various classification metrics and model size comparison, it was decided to select a 

CNN model trained with 50% parameters using MobileNet V2 architecture as the “Final Model”. 
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5.4  Evaluation on validation datasets using Final Model  

The final model was evaluated against the PlantDoc test dataset and against the PlantVillage test 

dataset to check if a single model can be leveraged for tomato plant disease detection using real-

world and controlled (lab) environment images. The evaluate() method called for the final model 

resulted in Figure 26.  

 

Figure 26 – Final CNN model evaluation results (PlantDoc Dataset) 

The model resulted in an accuracy of 0.68 against the PlantDoc test dataset with an AUC area of 

0.91 and a PRC area of 0.73. To analyze the performance for each disease class type, a classification 

report was generated using the Scikit-learn metrics package. The classification results are shown 

in Figure 27.  

 
Figure 27 – Final CNN mode classification report (PlantDoc Dataset) 

The precision, recall, and f1-scores comparison for different classes show that there were some 

misclassifications between Tomato_Early_Blight and Tomato_Late_Blight classes. It is due to the 

similarity of the symptoms for these two diseases. Tomato_Yellow_Leaf_Curl_Virus and 

Tomato_Leaf_Mold showed overall good performance with higher precision, recall, and f1-score 

values. To analyze the misclassification rate further, a confusion matrix was generated and plotted 

using a heatmap which is shown in Figure 28. 
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Figure 28 – Final CNN model Confusion Matrix (PlantDoc Dataset) 

As seen from the Confusion Matrix heatmap, for Tomato_Early_Blight the FP value is 6 and FN 

value is 5 while TP is 11 and TN is  90. For Tomato_Late_Blight TP value is 8 and the TN value 

is 92, whereas FP value is 8 and the FN value is 4. That indicates for Tomato_Early_Blight, the 

final CNN model misclassified 11 instances and for Tomato_Late_Blight total misclassification 

was 12. The total misclassification instances for Tomato_Yellow_Leaf_Curl_Virus were 5 where 

the FP value was 2 and the FN value was only 3. Based on the analysis of the confusion matrix, it 

is evident that the model misclassified very few instances of Tomato_Yellow_Leaf_Curl_Virus 

disease class. There were more misclassification instances observed for Tomato_Early_Blight and 

Tomato_Late_Blight due to similarity in disease symptoms for these two classes. The behaviour 

was observed for Tomato_Bacterial_Spot and Tomato_Septoria_Leaf_Spot due to the similarity of 

disease symptoms. 

The final CNN model performance was also verified against the PlantVillage dataset. Figure 29 

shows the classification report generated which contains various classification metrics for this 

evaluation. 
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Figure 29 – Final CNN mode classification report (PlantVillage Dataset) 

The final CNN model was able to achieve the overall 43% accuracy rate with a precision value of 

0.62 and a recall value of 0.43. The f1-score resulted in 0.42. This evaluation metrics indicates that 

the performance of a fine-tuned model with PlantDoc real-world images is degraded for the 

PlantVillage dataset. This is due to the difference in images in both datasets. Based on this analysis, 

it can be concluded that a single CNN model cannot be leveraged for two different types of images 

i.e., images from a controlled environment and images from a real-world plantation field.  

 

5.5  Evaluation of Plant Disease Severity Model 

One of the important objectives of the research is to detect the severity of plant disease. To meet 

this objective, the research adopted two different approaches. In the first approach, features were 

extracted manually, and machine learning models were trained. In the second approach, research 

leverage the CNN model to detect plant disease severity. The next subsections will explain the 

results obtained for both approaches and compare those against each other. 

 

5.5.1  Machine Learning Models  

In this approach, multiple models were trained using the feature vectors created by combining 

Global (color, shape, and texture) features and local (ORB key points and feature descriptors). In 

this research, two types of Machine Learning classification models were trained using Random 

Forest and SVM classifier. Table 22 shows the evaluation results for ML models achieved during 

those experiments.  
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Table 22 – Plant Disease Severity ML Models Evaluation Results 

Features 
ML 

Algorithm 

Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score 

Raw Image features 
Random Forest 0.54 0.54 0.54 0.53 

SVM classifier 0.65 0.68 0.65 0.65 

Global Features (color, 

shape, and texture) 

Random Forest 0.80 0.82 0.80 0.80 

SVM classifier 0.37 0.30 0.37 0.27 

ORB features + Bag of 

Visual Words (BOVW)  

Random Forest 0.33 0.35 0.33 0.33 

SVM classifier 0.34 0.22 0.34 0.24 

 

The model trained using Random Forest classifier on raw image features resulted in a low accuracy 

rate of 0.54, precision and recall value of 0.54, and f1-score of 0.53. However, the SVM classifier 

trained on the raw image features improved the accuracy, recall, and f1-score values to 0.65 and 

precision value to 0.68. The model trained on combined global feature vectors using Random 

Forest classifier resulted in a good performance with a high accuracy rate, recall and f1-score of 

0.80, and precision value of 0.82. On the contrary, the SVM model trained on the same combined 

global feature vectors shown significantly lower performance with decreased accuracy (0.37), 

precision (0.30), recall (0.37), and f1-score (0.27) values. The model trained using a combination 

of ORB features extracted and visual vocabulary created using Bag of Visual Words (BOVW) 

technique resulted in degraded model performance with both Random Forest and SVM classifiers. 

The Random Forest model has achieved accuracy, recall, and f1-score of 0.33 and precision value 

of 0.35, whereas SVM classifier resulted in accuracy and recall of 0.34, the precision value of 0.22, 

and the f1-score of 0.24.  

 

Due to schedule constraints, this research could not try an approach to combine global features 

with the local feature, which expected to be achieved even better results.  

 

5.5.2  CNN Model with Transfer Learning (MobileNet V2) 

After training machine learning models (Random Forest and SVM) on hand-engineered features, 

research focused on training CNN classifier models leveraging transfer learning techniques to 

detect disease severity. The research leveraged the MobileNet V2 base model and trained the 

classifier using the default version of MobileNet V2 with 100% parameters as well as a 50% 

reduced width model. The results from both experiments are listed in Table 23. 
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Table 23 – Plant Disease Severity CNN Models Evaluation Results 

Model 
Performance Evaluation Metrics 

Accuracy Precision Recall F1-Score AUC 

MobileNet V2 (100% parameters) 0.81 0.82 0.81 0.81 0.98 

MobileNet V2 (50% parameters) 0.78 0.80 0.78 0.78 0.98 

 

A CNN model with 100% parameters was able to achieve an accuracy of 0.81, a precision of 0.82, 

a recall rate of 0.81 resulting in the f1-score of 0.81. AUC obtained was 0.98. However, a trim-

down version of the CNN model with 50% parameters shown slightly lower values of accuracy 

(0.78), precision (0.80), recall (0.78), and f1-score (0.78) with the same AUC score (0.98). This 

indicated that CNN models performed better as compared to traditional ML classification models 

with a manual feature engineering approach.  

 

5.6  Inferences using Android Mobile App 

As the end state of the study is to publish the Android Application in Android Play Store 

Marketplace, the research conducted model performance versus inference speed trade-off analysis. 

Figure 30 shows the navigation flow to carry out inferences using the SmartCropCNNLite mobile 

application. 

 

 
Figure 30 – Inferencing flow for Android Mobile App 

The model size of deployed TFLite model was 9 MB, which ensured optimal resource usage for 

mobile devices. The mobile application is designed to capture a single image using the default 
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camera app or by selecting it from Photo Gallery. Hence, it was decided not to analyze FPS (Frames 

per seconds) rate during the evaluation process (which can be considered later when the app can 

be enhanced to work with continuous video stream). The inference time was measured from the 

point of triggering the prediction using the CNN model by submitting the image. During the 

multiple evaluation iteration with a varied range of images, the results returned were within 30 to 

45 seconds. This confirmed that the SmartCropCNNLite mobile application can be leveraged by 

farmers to perform disease identification in real-time in actual plantation fields.  

 

5.7  Summary 

To summarize, this chapter discussed the results obtained using various evaluation metrics for 

multiple CNN models trained based on different CNN model architectures suitable for the mobile 

platform. Initially, results obtained using feature extractor models against the PlantVillage dataset 

and fine-tuned models against variations of the PlantDoc dataset were analyzed. The results showed 

MobileNet family of models and EfficientNet B0 models performed well against both datasets. 

After individual model evaluation, a comparative analysis was performed using evaluation metrics 

details obtained from various base CNN models. As the next step, the model file sizes were also 

compared. Based on these analysis details, the MobileNet V2 model with 50% parameters was 

selected as the final model and it was used to evaluate against the PlantDoc Test dataset. To achieve 

the objective of detecting plant disease severity, models trained using trading ML classification 

algorithms such as Random Forest and SVM were evaluated. The model trained using consolidated 

global features (color, shape, and texture) and a Random Forest classifier were able to achieve the 

best results. Further, CNN models were trained using MobileNet V2 default base model as well 

with 50% parameters. The CNN model trained with 100% parameters obtained comparatively good 

results with a high accuracy rate of 81% and AUC of 98%. Finally, the best CNN model integrated 

with the Android mobile application was used to carry out inferences with a new set of tomato 

plant images and results were analyzed. 
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CHAPTER VI:  

 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1  Introduction 

In this chapter, the conclusions for this research study will be drawn based on the data analysis 

findings, model training process, and model evaluation conducted. The section about discussion 

and conclusion will provide a summary of the overall process adopted in this study including data 

preparation, data analysis, data processing, model training, and model validations. The conclusions 

drawn from these stages will justify the objectives of this study and will indicate if the overall aim 

of this study is achieved or not. The next section will discuss the contributions made by this study 

to an existing body of knowledge. Finally, a section on future recommendations will show the path 

on how this study can be enhanced in the feature to ensure better model performance and implement 

the end-to-end solution for plant disease type identification, severity detection, and to recommend 

treatment for tomato plant diseases.  

 

6.2  Discussion and Conclusion 

This research work began with the identification of suitable datasets which can be leveraged to 

detect six common types of tomato plant diseases which have the most adverse impact on the 

tomato crop yield. The PlantVillage dataset containing images from a controlled (lab) environment 

was selected due to enough images for training CNN models. As one of the important objectives 

of this research is to design and implement a real-world solution which can be used by farmers in 

actual farm plantation field, it was important to train and validate the proposed models on the real-

world images. This leads to the selection of the PlantDoc dataset which contains a smaller number 

of images as compared to the PlantVillage dataset, however, those images are taken from actual 

farm fields. The images part of this dataset is of varied sizes which were taken from different angles 

and captured in varied lighting conditions. The images also contain background noise such as other 

plants, fruits, weeds, person hands, and other objects. It also contains images with a combination 

of diseased and healthy plant foliage, which is not the case for the PlantVillage dataset. After 

downloading the datasets, a quick validation was performed to ensure the correctness of image 

annotations and to find any issues with image labeling and address those. The image data analysis 

was conducted, and important decisions were made about input sizes of images and batch size to 

be considered for model training. As a part of EDA, the class imbalance ratio was analyzed, and it 



103 

 

was found that each dataset had a considerable degree of imbalance. It was decided to apply both 

oversampling and undersampling techniques and verify model performance against those derived 

datasets. As the PlantVillage dataset already contains augmented images, it was decided not to 

apply oversampling techniques which could potentially result in duplicate image leading model to 

overfit. For the PlantDoc dataset, images were augmented using the OpenCV image library to 

balance the dataset using oversampling. During this research, cropped image dataset was curated 

using the PlantDoc object detection dataset and PascalVOC XML notations. A separate dataset 

was derived for the detection of plant disease severity using the PlantVillage dataset due to the 

availability of required sample images with various degrees of disease spread. In the data pre-

processing stage, images were resized and rescaled using Keras APIs rather than custom python 

scripts. The images were also normalized to ensure optimal training performance for CNN models. 

To avoid overfitting and ensure trained CNN models generalized well with unseen image data, 

various image augmentation techniques were applied such as random zoom, rotations, sheer, and 

horizontal flip. Finally, the processed dataset was split into training (80%) and validation (20%) 

dataset using a hold-out methodology. 

 

The research evaluated two approaches of features engineering – (1) automatic feature extraction 

using CNN models and (2) manual feature extraction and selection process for plant severity 

detection. During the CNN model training with transfer learning, first SOA modern CNN 

architectures were shortlisted which are suitable for building lighter CNN models which can be 

deployed onto the Android mobile application. After the selection of base CNN models, various 

feature extraction models were trained by replacing the classification layer of the CNN network to 

fit the requirements of this research. The feature extraction models were trained against the 

PlantVillage dataset first. As the next step, the model was fine-tuned by gradually unlocking the 

last layers and making those trainable. The model performance was found to be optimal when 

almost half of the last layers of the CNN network are retrained. Based on this observation, it can 

be concluded that for the dataset with plant images, the middle layers of the CNN model are 

learning some important complex features which differ between the ImageNet dataset and both the 

datasets used for this research. At every iteration, a model was evaluated by comparing training 

accuracy plots with validation accuracy and training loss with validation loss. It was decided to 

rely on performance evaluation metrics which worked best with imbalanced datasets such as 

confusion matrix, precision, recall, f1-score, AUC, and PRC areas rather than only validating the 
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model accuracy. The fine-tune model performance was then evaluated using real-world images 

from the PlantDoc dataset which resulted in degraded performance almost by 60% to 70%. As next 

experimentation, models trained using ImageNet and PlantVillage dataset training weights were 

fine-tuned using the PlantDoc training dataset. This resulted in significant improvements in overall 

model performance. The model validation accuracy was increased almost double from 

approximately 0.30 to 0.65 for various models and all the other classification evaluation metrics 

showed the same improvements. During this research, multiple experiments were carried out and 

more than 50 CNN models were trained and evaluated. The different variations of both datasets 

which include over-sampled / under-sampled balanced datasets and cropped image datasets were 

used to train these various CNN models. In addition, MobileNet family models (V1 & V2) were 

trained using different parameter sizes to evaluate the performance of smaller size models with the 

various datasets. It was concluded that the model trained with 50% parameters for the MobileNet 

family of models has similar or for some models even better performance against the dataset 

variations used in this research. sss 

 

During the hyperparameter tunning, different input image sizes were considered to train and 

evaluate the models. The research performed extensive hyperparameters tunning by trying multiple 

combinations of parameter settings. The important model parameters considered were multiple 

optimizer options (SGD, RMSprop, and Adam) with different learning rates, learning rate decay 

and schedules, number of fine-tune layers, number of epochs, and early stopping techniques while 

model training to control overfitting of the models. Although the RMSprop and Adam optimizers 

improved the training duration, the models trained using SGD optimizer with momentum were 

generalized best. The exponential decay schedule along with the early stopping method proved to 

be the best approach to train the CNN models for exact required iterations and helped to control 

the overfitting of the models. After finalizing the optimal hyperparameter values, CNN models 

were trained using those settings and evaluated. During the evaluation phase, models’ performance 

was validated individually and then all the performance evaluation metrics were compared together 

for all CNN models. Further, trained CNN model sizes were compared. Based on this comparative 

analysis of various classification performance metrics and model sizes, it was finalized to select a 

CNN model trained using MobileNet V2 50% parameters as the “Best Model”. The final CNN 

model had achieved accuracy, recall, and f1-score of 0.67. It resulted in a precision value of 0.69 

with a higher AUC area of 0.92 against the PlantDoc test dataset. After achieving satisfactory 
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results against PlantDoc original dataset, model performance was tested against the PlantVillage 

dataset. It was noticed that the performance of the final model was decreased on the PlantVillage 

dataset due to the differences in images from controlled (lab) setting and real-world plantation 

field. From this experiment, it was concluded that a single fine-tuned model cannot be leveraged 

for both PlantVillage and PlantDoc datasets. As the objective of this research is to focus on real-

world plant disease detection, this model was considered for deployment. The final model was then 

converted into a TFLite model using Keras Python API and imported into Android studio. The 

final model was integrated with SmartCropCNNLite Android Application and inferences were 

carried out using the mobile device. Based on the inferences carried out using the mobile phone 

and results obtained, it can be concluded that the lighter CNN model trained using MobileNet V2 

architecture and transfer learning has a lot of potentials to perform tomato disease identification in 

the plantation field. 

 

This research also focused on plant severity detection which is the next important consideration 

after the identification of tomato disease. To limit the scope of experimentation due to schedule 

constraints for this research work, only two tomato disease classes were considered. Accurate 

identification of the degree of disease spread once the specific tomato plant disease type is detected 

can help to build the “Tomato Plant Disease Treatment Recommendation System.”  The first step 

to detect plant disease severity was to select which features to be analyzed. This research decided 

to experiment with both global image features such as Color, Shape, and Texture and local image 

features which include key points and feature descriptors extracted using the ORB algorithm. The 

choice of ORB algorithm made instead of SIFT proprietary methods due to its better performance 

and alignment with the OSS distribution model, which made it a preferred option to integrate with 

the Android mobile app which can be freely distributed from the Android PlayStore marketplace. 

Initially, classical ML classification algorithms such as Random Forest and SVM were used to 

classify the plant severity levels. The evaluation of those models indicated that the Random Forest 

model trained using feature vectors combining global features resulted in better model performance 

(accuracy rate, recall, and f1-score of 0.80) as compared to models trained using ORB features. 

Further, CNN models were trained using the MobileNet V2 SOA base model to classify the severity 

levels of two pre-selected Tomato plant diseases. The CNN model trained using MobileNet V2 

default (100% parameters) resulted in the best performing model with an accuracy rate of 0.81, a 

precision of 0.82, a recall rate of 0.81, f1-score of 0.81, and a high AUC area of 0.98 for plant 
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severity classification problems. This indicates that the trained CNN model can be leveraged for 

plant disease severity classification. 

 

To conclude, the SmartCropCNNLite Android App leveraging the CNN model can be used by 

farmers as a reliable solution to identify the tomato plant diseases in an actual farm field. In addition 

to the identification of specific tomato plant diseases, this research has shown significant potential 

to detect the plant disease severity levels which can be a foundation layer to build the “Tomato 

Plant Disease Treatment Recommendation System.” 

  

6.3  Contributions to Knowledge 

This research project on tomato plant disease identification and severity detection leveraging public 

datasets with different characteristics made three important contributions to the existing body of 

knowledge. The previous research work for tomato plant disease detection was focused primarily 

on improving deep learning model accuracy using the public image dataset from a controlled (lab) 

environment. The focus of this research, however, was on implementing a real-world solution that 

can be leveraged by farmers in the tomato plantation field for the early identification of common 

tomato plant diseases. The CNN models were trained using real-world images with varied sizes, 

different angles, different lighting conditions, without removing any background noise from the 

images intentionally to resemble the real-world scenario. The focus of this research was not only 

improving the model accuracy but also enhancing the overall model efficacy by reducing the model 

size and optimizing inference time. This resulted in a lighter CNN model which is suitable to deploy 

on mobile devices. Another important contribution to knowledge based on this research study 

includes combining the tomato plant disease identification and severity detection in a single 

solution that can be deployed on mobile devices (which was not covered in the previous research 

work based on a literature study). Furthermore, this research work also compared the state-of-the-

art modern CNN architecture suitable for mobile platforms against the real-world tomato plant 

images dataset and recommended the best model architecture based on multiple model performance 

evaluations. 

 

6.4  Future Recommendations 

This research work can be enhanced by improving the CNN model performance against the real-

world image dataset which contains a greater number of images as compared to the PlantDoc 
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dataset which has a very limited number of images. The research can be further extended to include 

the other types of tomato plant diseases in addition to six common diseases considered in this study. 

The study considered only two types of diseases to detect the severity of the disease, which can be 

extended to include additional plant disease types. This requires plant pathology experts to annotate 

the images based on disease type and severity. The new dataset with real-world images to identify 

plant disease and further classify severity level can help to improve model performance, making it 

a more robust solution for farmers to use in the tomato plantation field. The CNN model trained to 

detect tomato plant disease type and severity can be used as a foundation to build a complete 

solution to recommend treatment for tomato plant diseases which can help to reduce huge crop 

yield losses. This can improve the lifestyle of small-sector farmers, which will directly contribute 

to the small and medium-scale agriculture sector and finally the overall economy of developing 

countries in the world. 
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APPENDIX A: DATASETS AND SOURCE CODE DETAILS 

 

Due to the large size of datasets, those are uploaded into Google Drive and shared. This table 

provides the details of all the datasets used in this research study. 

 

# Datasets  Location Details Size (MB) 

1 PlantVillage 

Original Dataset 

https://drive.google.com/drive/folders/1XCQMHC

76xys-FzP82WM6Fc7hrQ3Jd2EE?usp=sharing 

239 

2 PlantDoc Original 

Dataset 

https://drive.google.com/drive/folders/1yozH54yD

qjgAmRydDN2o_Qb-jvJNcs7y?usp=sharing 

224 

3 PlantDoc Cropped 

Dataset 

https://drive.google.com/drive/folders/1QcmYlu9

yYITrIPRvWa2-ueCIXSo2bT31?usp=sharing 

111 

4 PlantVillage 

Balanced Dataset 

(Under-sampled) 

https://drive.google.com/drive/folders/1VbtlUYW

UK_s5n1FaH4PhD6dZLPX44na3?usp=sharing 

142 

5 PlantDoc Balanced 

Dataset (Under-

sampled) 

https://drive.google.com/drive/folders/10Mb15hdx

HAAmawXQG2NTDnaKMqaR-

M8a?usp=sharing 

161 

6 PlantDoc Balanced 

Cropped Dataset 

(Over-sampled) 

https://drive.google.com/drive/folders/1gmzLYeB

kvTiGZr3JTBKtSXiI0GXWsmB-?usp=sharing 

482 

7 PlantDoc Severity 

Dataset 

https://drive.google.com/drive/folders/1UMBeDb

WRF08xhCBlugag9vrOunluut3X?usp=sharing 
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The source code for all the notebooks created for Data Preparation, Data Exploration, and Analysis, 

60+ CNN models for Disease Identification, Machine Learning Classifier models, and CNN 

models for Plant Severity Detection are included in the uploaded ZIP file (Source Code.zip) along 

with the Final Thesis Report. This table provides the details of each notebook and the intention of 

building the notebook (what it covers). 

 

# Notebook File Name Description 

1 Step1A-Data-Preparation.ipynb Create dataset variations such as a balanced 

dataset using the over-sampling technique. 

2 Step1B1-Exploratory-Data-

Analysis.ipynb.ipynb 

Conduct Exploratory Data Analysis using 

PlantVillage and PlantDoc datasets. 

3 Step1B2-Exploratory-Data-

Analysis.ipynb.ipynb 

Additional Exploratory Data Analysis using 

PlantVillage and PlantDoc datasets to generate the 

preview of sample images and augmented images. 

https://drive.google.com/drive/folders/1XCQMHC76xys-FzP82WM6Fc7hrQ3Jd2EE?usp=sharing
https://drive.google.com/drive/folders/1XCQMHC76xys-FzP82WM6Fc7hrQ3Jd2EE?usp=sharing
https://drive.google.com/drive/folders/1yozH54yDqjgAmRydDN2o_Qb-jvJNcs7y?usp=sharing
https://drive.google.com/drive/folders/1yozH54yDqjgAmRydDN2o_Qb-jvJNcs7y?usp=sharing
https://drive.google.com/drive/folders/1QcmYlu9yYITrIPRvWa2-ueCIXSo2bT31?usp=sharing
https://drive.google.com/drive/folders/1QcmYlu9yYITrIPRvWa2-ueCIXSo2bT31?usp=sharing
https://drive.google.com/drive/folders/1VbtlUYWUK_s5n1FaH4PhD6dZLPX44na3?usp=sharing
https://drive.google.com/drive/folders/1VbtlUYWUK_s5n1FaH4PhD6dZLPX44na3?usp=sharing
https://drive.google.com/drive/folders/10Mb15hdxHAAmawXQG2NTDnaKMqaR-M8a?usp=sharing
https://drive.google.com/drive/folders/10Mb15hdxHAAmawXQG2NTDnaKMqaR-M8a?usp=sharing
https://drive.google.com/drive/folders/10Mb15hdxHAAmawXQG2NTDnaKMqaR-M8a?usp=sharing
https://drive.google.com/drive/folders/1gmzLYeBkvTiGZr3JTBKtSXiI0GXWsmB-?usp=sharing
https://drive.google.com/drive/folders/1gmzLYeBkvTiGZr3JTBKtSXiI0GXWsmB-?usp=sharing
https://drive.google.com/drive/folders/1UMBeDbWRF08xhCBlugag9vrOunluut3X?usp=sharing
https://drive.google.com/drive/folders/1UMBeDbWRF08xhCBlugag9vrOunluut3X?usp=sharing
https://drive.google.com/file/d/1xELkGBqG8pzJsys6wzhDMgdNZJU62XOq/view?usp=sharing
https://colab.research.google.com/drive/1QANGZwoQ00hO5h40S9wrwq7aSWBH0_EK?usp=sharing
https://colab.research.google.com/drive/1QANGZwoQ00hO5h40S9wrwq7aSWBH0_EK?usp=sharing
https://colab.research.google.com/drive/1SCa7bL0jiPhhAs9O032zPHWKIh7UxQw8?usp=sharing
https://colab.research.google.com/drive/1SCa7bL0jiPhhAs9O032zPHWKIh7UxQw8?usp=sharing
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4 Step2-Split-Dataset.ipynb Split PlantVillage dataset into Train and 

Validation datasets. 

5 Step3A1-Model-Training-

MobileNet(Default).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V1 default 

architecture. 

6 Step3A2-Model-Training-

MobileNet(Alpha-0.5).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V1 reduced width 

(50% parameters) architecture. 

7 Step3A3-Model-Training-

MobileNet(Balanced).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V1 default 

architecture against PlantVillage and PlantDoc 

Balanced datasets. 

8 Step3B1-Model-Training-

MobileNet-V2(Default).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V2 default 

architecture. 

9 Step3B2-Model-Training-

MobileNet-V2(Alpha-0.5).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V2 reduced width 

(50% parameters) architecture. 

10 Step3B3-Model-Training-

MobileNetV2(Balanced).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V2 default 

architecture against PlantVillage and PlantDoc 

Balanced datasets. 

11 Step3B4-Model-Training-

MobileNet-V2(Balanced-Alpha-

0.5).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V2 default 

architecture against PlantVillage and PlantDoc 

Cropped Balanced datasets which are created 

using over-sampling techniques. 

12 [128px]Step3B2-Model-

Training-MobileNet-V2(Alpha-

0.5).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V2 reduced width 

(50% parameters) architecture with input image 

size of (128,128,3). 

13 [192px]Step3B2-Model-

Training-MobileNet-V2(Alpha-

0.5).ipynb 

Train and evaluate the plant disease identification 

CNN models using MobileNet V2 reduced width 

(50% parameters) architecture with input image 

size of (192,192,3). 

14 Step3C1-Model-Training-

EfficientNet-B0(Default).ipynb 

Train and evaluate the plant disease identification 

CNN models using EfficientNet B0 architecture. 

15 Step3C2-Model-Training-

EfficientNet-

B0(Balanced).ipynb 

Train and evaluate the plant disease identification 

CNN models using EfficientNet B0 against 

PlantVillage and PlantDoc Balanced datasets. 

https://colab.research.google.com/drive/1RiGqiCp1n1ZH3-EYL9O8SGtJLbafbYjS?usp=sharing
https://drive.google.com/file/d/1E6aZU3MSug9uIp_6tr75YGPijlABjQak/view?usp=sharing
https://drive.google.com/file/d/1E6aZU3MSug9uIp_6tr75YGPijlABjQak/view?usp=sharing
https://drive.google.com/file/d/18hfTe37qKoN8-RnaKiPqUFIAG6Iztm7I/view?usp=sharing
https://drive.google.com/file/d/18hfTe37qKoN8-RnaKiPqUFIAG6Iztm7I/view?usp=sharing
https://drive.google.com/file/d/1lkiIIy-8CPENVgAlv38iZuCVlrZ629h-/view?usp=sharing
https://drive.google.com/file/d/1lkiIIy-8CPENVgAlv38iZuCVlrZ629h-/view?usp=sharing
https://drive.google.com/file/d/1QTJZ_ROSKlt_VyDN9ThTuK3qHq1y2vhc/view?usp=sharing
https://drive.google.com/file/d/1QTJZ_ROSKlt_VyDN9ThTuK3qHq1y2vhc/view?usp=sharing
https://drive.google.com/file/d/1AqYLhIYNts_F3zlLuHstMgolhvhgNdgR/view?usp=sharing
https://drive.google.com/file/d/1AqYLhIYNts_F3zlLuHstMgolhvhgNdgR/view?usp=sharing
https://drive.google.com/file/d/1V9J2cvHPMWFXw8LO9iY1RqYThm7Kpq4D/view?usp=sharing
https://drive.google.com/file/d/1V9J2cvHPMWFXw8LO9iY1RqYThm7Kpq4D/view?usp=sharing
https://drive.google.com/file/d/173j5TrbrZCPrUbuV9EBFy7qEDgbENE2T/view?usp=sharing
https://drive.google.com/file/d/173j5TrbrZCPrUbuV9EBFy7qEDgbENE2T/view?usp=sharing
https://drive.google.com/file/d/173j5TrbrZCPrUbuV9EBFy7qEDgbENE2T/view?usp=sharing
https://drive.google.com/file/d/1tgeiAe23jGFxcT2GEK0ey7ELQtFwXiGu/view?usp=sharing
https://drive.google.com/file/d/1tgeiAe23jGFxcT2GEK0ey7ELQtFwXiGu/view?usp=sharing
https://drive.google.com/file/d/1tgeiAe23jGFxcT2GEK0ey7ELQtFwXiGu/view?usp=sharing
https://drive.google.com/file/d/1CjxZWUIf450m5GmoOKZkpCAU3M7c9xsH/view?usp=sharing
https://drive.google.com/file/d/1CjxZWUIf450m5GmoOKZkpCAU3M7c9xsH/view?usp=sharing
https://drive.google.com/file/d/1CjxZWUIf450m5GmoOKZkpCAU3M7c9xsH/view?usp=sharing
https://drive.google.com/file/d/1TE9Vemd5YNidUsEaN9DgbYTw5lpPOQmR/view?usp=sharing
https://drive.google.com/file/d/1TE9Vemd5YNidUsEaN9DgbYTw5lpPOQmR/view?usp=sharing
https://drive.google.com/file/d/14To2YjQvCUrhgzKzcekWzswjhjnTCmT6/view?usp=sharing
https://drive.google.com/file/d/14To2YjQvCUrhgzKzcekWzswjhjnTCmT6/view?usp=sharing
https://drive.google.com/file/d/14To2YjQvCUrhgzKzcekWzswjhjnTCmT6/view?usp=sharing
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16 Step3D1-Model-Training-

NasNetMobile(Default).ipynb 

Train and evaluate the plant disease identification 

CNN models using NasNetMobile architecture. 

17 Step3D2-Model-Training-

NasNetMobile(Balanced).ipynb 

Train and evaluate the plant disease identification 

CNN models using NasNetMobile against 

PlantVillage and PlantDoc Balanced datasets. 

18 Step3E1-Model-Training-

ResNet50V2(Default).ipynb 

Train and evaluate the plant disease identification 

CNN models using ResNet50 V2 architecture. 

19 Step3E2-Model-Training-

ResNet50V2(Balanced).ipynb 

Train and evaluate the plant disease identification 

CNN models using ResNet50 V2 against 

PlantVillage and PlantDoc Balanced datasets. 

20 Step4-Model-Evaluation-

Prediction-TFLite-Export.ipynb 

Validate the "Final" CNN model performance 

with PlantDoc and PlantVillage test dataset and 

convert the final model in TensorFlow Lite model. 

21 Step5A-Disease-Severity-

Prediction-ML-

Models(RFC&SVM).ipynb 

Perform Exploratory Data Analysis (EDA) and 

train the Machine Learning Model to predict 

Tomato Plant Disease Severity using Global 

(color, shape, and texture) and local (ORB) 

features. 

22 Step5B1-Disease-Severity-

Prediction-MobileNet-

V2(Default).ipynb 

Train and evaluate the CNN models to predict 

Tomato Plant Disease Severity using MobileNet 

V2 Default architecture. 

23 Step5B2-Disease-Severity-

Prediction-MobileNet-

V2(Alpha-0.5).ipynb 

Train and evaluate the CNN models to predict 

Tomato Plant Disease Severity using MobileNet 

V2 reduced (50% parameters) architecture. 
 

  

https://drive.google.com/file/d/1HjPQBteVE0oWf_CaH9KgbORNqCGlcHzp/view?usp=sharing
https://drive.google.com/file/d/1HjPQBteVE0oWf_CaH9KgbORNqCGlcHzp/view?usp=sharing
https://drive.google.com/file/d/1hieH0sCyzZdi1b8bAM_rOp-4KsyDKMzW/view?usp=sharing
https://drive.google.com/file/d/1hieH0sCyzZdi1b8bAM_rOp-4KsyDKMzW/view?usp=sharing
https://drive.google.com/file/d/1dr6qejIQ9nUtb0l_OtSRVlnqL73WQmR5/view?usp=sharing
https://drive.google.com/file/d/1dr6qejIQ9nUtb0l_OtSRVlnqL73WQmR5/view?usp=sharing
https://drive.google.com/file/d/1aTQ0iW6hF5nv_i0mVFDKGYQFIfRpwrA8/view?usp=sharing
https://drive.google.com/file/d/1aTQ0iW6hF5nv_i0mVFDKGYQFIfRpwrA8/view?usp=sharing
https://colab.research.google.com/drive/1qOgRXYKM2dYJ3sPY3CS9-KpJePhEY309?usp=sharing
https://colab.research.google.com/drive/1qOgRXYKM2dYJ3sPY3CS9-KpJePhEY309?usp=sharing
https://drive.google.com/file/d/1v_Red4R3rg6Yz8pEpt9eI6CIgvIHvP9K/view?usp=sharing
https://drive.google.com/file/d/1v_Red4R3rg6Yz8pEpt9eI6CIgvIHvP9K/view?usp=sharing
https://drive.google.com/file/d/1v_Red4R3rg6Yz8pEpt9eI6CIgvIHvP9K/view?usp=sharing
https://drive.google.com/file/d/1cr42ffAtOk5bxEtrHXWv7sFqgefjTl6p/view?usp=sharing
https://drive.google.com/file/d/1cr42ffAtOk5bxEtrHXWv7sFqgefjTl6p/view?usp=sharing
https://drive.google.com/file/d/1cr42ffAtOk5bxEtrHXWv7sFqgefjTl6p/view?usp=sharing
https://drive.google.com/file/d/1_0_B-uecTLROB2uo_-RH1cHzwryLU1Y-/view?usp=sharing
https://drive.google.com/file/d/1_0_B-uecTLROB2uo_-RH1cHzwryLU1Y-/view?usp=sharing
https://drive.google.com/file/d/1_0_B-uecTLROB2uo_-RH1cHzwryLU1Y-/view?usp=sharing
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APPENDIX B: CNN MODEL EVALUATION RESULTS AND ANALYSIS FOR ALL 

RESEARCH EXPERIMENTS 

 

MobileNet V1 Models 

 

Fine-tuned model (PlantVillage Dataset) – Train and Validation Accuracy & Loss 

 

  

 

Fine-tuned model (PlantVillage Dataset) – Classification Report 

 

 

 
 

 

Fine-tuned model (PlantVillage Dataset) – Confusion Matrix Heatmap 

 



118 

 

 

Fine-tuned model (PlantDoc Dataset) – Train and Validation Accuracy & Loss 

 
 

  

 

Fine-tuned model (PlantDoc Dataset) – Classification Report 

 

 

 
 

 

Fine-tuned model (PlantDoc Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Cropped Dataset) – Train and Validation Accuracy & Loss 

 

  

 

Fine-tuned model (PlantDoc Cropped Dataset) – Classification Report 
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Fine-tuned model (PlantDoc Cropped Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

 

Fine-tuned model (PlantVillage Balanced Dataset) – Train and Validation Accuracy & Loss 

 

 

 

 

Fine-tuned model (PlantVillage Balanced Dataset) – Classification Report 
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Fine-tuned model (PlantVillage Balanced Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

 

 

Fine-tuned model ( PlantDoc Balanced Dataset) – Train and Validation Accuracy & Loss 
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Fine-tuned model ( PlantDoc Balanced Dataset) – Classification Report 

 

 

 
 

 

Fine-tuned model ( PlantDoc Balanced Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

 

MobileNet V1 Alpha 0.5 (50%) Models 

 

Fine-tuned model (PlantVillage Dataset) – Train and Validation Accuracy & Loss 
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Fine-tuned model (PlantVillage Dataset) – Classification Report 

 

 

 
 

 

Fine-tuned model (PlantVillage Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Original Dataset) – Train and Validation Accuracy & Loss 

 

  

 

Fine-tuned model (PlantDoc Original Dataset) – Classification Report 

 

 

 
 

 

Fine-tuned model (PlantDoc Original Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Cropped Dataset) – Train and Validation Accuracy & Loss 

 

  
 

Fine-tuned model (PlantDoc Cropped Dataset) – Classification Report 
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Fine-tuned model (PlantDoc Cropped Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

 

MobileNet V2 Models 

 

Fine-tuned model (PlantVillage Dataset) – Train and Validation Accuracy & Loss 
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Fine-tuned model (PlantVillage Dataset) – Classification Report 

 

 

 

 

 

Fine-tuned model (PlantVillage Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Original Dataset) – Train and Validation Accuracy & Loss 

 

  

 

Fine-tuned model (PlantDoc Original Dataset) – Classification Report 

 

 

 
 

 

Fine-tuned model (PlantDoc Original Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Cropped Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantDoc Cropped Dataset) – Classification Report 
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Fine-tuned model (PlantDoc Cropped Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

 

Fine-tuned model (PlantVillage Balanced Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantVillage Balanced Dataset) – Classification Report 
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Fine-tuned model (PlantVillage Balanced Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

 

Fine-tuned model (PlantDoc Balanced Dataset) – Train and Validation Accuracy & Loss 
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Fine-tuned model (PlantDoc Balanced Dataset) – Classification Report 

 

 

 

 

 

Fine-tuned model (PlantDoc Balanced Dataset) – Confusion Matrix Heatmap 
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MobileNet V2 Alpha 0.5 (50%) Models  

 

Fine-tuned model (PlantVillage Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantVillage Dataset) – Classification Report 

 

 

 

 

 

Fine-tuned model (PlantVillage Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Original Dataset) – Train and Validation Accuracy & Loss 

 

  

 

Fine-tuned model (PlantDoc Original Dataset) – Classification Report 

 

 

  

 

Fine-tuned model (PlantDoc Original Dataset) – Confusion Matrix Heatmap 

 



135 

 

 
 

 

 

Fine-tuned model (PlantDoc Cropped Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantDoc Cropped Dataset) – Classification Report 
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Fine-tuned model (PlantDoc Cropped Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

EfficientNet B0 Models 

 

Fine-tuned model (PlantVillage Dataset) – Train and Validation Accuracy & Loss 
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Fine-tuned model (PlantVillage Dataset) – Classification Report 

 

 

 

 

 

Fine-tuned model (PlantVillage Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Original Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantDoc Original Dataset) – Classification Report 

 

 

 

 

 

Fine-tuned model (PlantDoc Original Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Cropped Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantDoc Cropped Dataset) – Classification Report 
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Fine-tuned model (PlantDoc Cropped Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

 

NasNetMobile Models 

 

Fine-tuned model (PlantVillage Dataset) – Train and Validation Accuracy & Loss 

 

  

 

Fine-tuned model (PlantVillage Dataset) – Classification Report 
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Fine-tuned model (PlantVillage Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

Fine-tuned model (PlantDoc Original Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantDoc Original Dataset) – Classification Report 
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Fine-tuned model (PlantDoc Original Dataset) – Confusion Matrix Heatmap 

 

 
 

 

 

Fine-tuned model (PlantDoc Cropped Dataset) – Train and Validation Accuracy & Loss 
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Fine-tuned model (PlantDoc Cropped Dataset) – Classification Report 

 

 

 
 

 

Fine-tuned model (PlantDoc Cropped Dataset) – Confusion Matrix Heatmap 
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ResNet50 V2 Models 

 

Fine-tuned model (PlantVillage Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantVillage Dataset) – Classification Report 

 

 

 
 

 

Fine-tuned model (PlantVillage Dataset) – Confusion Matrix Heatmap 
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Fine-tuned model (PlantDoc Original Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantDoc Original Dataset) – Classification Report 

 

 

 

 

 

Fine-tuned model (PlantDoc Original Dataset) – Confusion Matrix Heatmap 



146 

 

 

 
 

 

 

Fine-tuned model (PlantDoc Cropped Dataset) – Train and Validation Accuracy & Loss 

 

 
 

 

Fine-tuned model (PlantDoc Cropped Dataset) – Classification Report 
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Fine-tuned model (PlantDoc Cropped Dataset) – Confusion Matrix Heatmap 

 

 
 


