

PRESCRIPTIVE ANALYTICS BASED FRAMEWORK FOR INDIAN STOCK

MARKET THROUGH A DETAILED STUDY OF

DATA SCIENCE TECHNIQUES

by

Sulekha Aloorravi, B.Tech, PGP in Big Data and Machine Learning

DISSERTATION

Presented to the Swiss School of Business and Management Geneva

In Partial Fulfillment

Of the Requirements

For the Degree

DOCTOR OF BUSINESS ADMINISTRATION

SWISS SCHOOL OF BUSINESS AND MANAGEMENT GENEVA

DECEMBER, 2024

PRESCRIPTIVE ANALYTICS BASED FRAMEWORK FOR INDIAN STOCK

MARKET THROUGH A DETAILED STUDY OF

DATA SCIENCE TECHNIQUES

by

Sulekha Aloorravi

APPROVED BY

 __

 Dissertation chair

RECEIVED/APPROVED BY:

Admissions Director

Dedication

 This thesis is dedicated to my loving husband, Dileep V, who has been my

unwavering source of support and encouragement throughout my academic journey.

Your belief in me has been my motivation, and your love has been my strength.

I also dedicate this work to my esteemed professor, Dr. Vijayakumar Varadarajan,

whose guidance and wisdom have shaped my intellectual growth and inspired me to

pursue excellence.

Lastly but most importantly, I dedicate this thesis to my nephew, Sai Sathvik,

whose exceptional brilliance and love always inspires me to do better.

iv

Acknowledgements

 I would like to thank my thesis advisor, Prof. Dr. Vijayakumar Varadarajan, for

his invaluable guidance, patience, and unwavering support throughout the entire research

process. His expertise and mentorship have been instrumental in shaping the direction of

this thesis, and I am truly grateful for his dedication to my academic growth.

I am also indebted to the members of my thesis committee, for their valuable

insights, constructive feedback, and expertise in their respective fields. Their collective

contributions have significantly enriched the quality of this work.

I would like to express my gratitude to my family for their unwavering belief in

me and their constant encouragement. Your love and support have been my anchor

throughout this process.

Finally, I want to acknowledge the numerous authors, researchers, and scholars

whose work I have referenced and drawn upon during my research. Their contributions

have formed the foundation upon which this thesis is built.

v

ABSTRACT

 PRESCRIPTIVE ANALYTICS BASED FRAMEWORK FOR INDIAN STOCK

MARKET THROUGH A DETAILED STUDY OF

DATA SCIENCE TECHNIQUES

Sulekha Aloorravi

2024

Dissertation Chair:

 Co-Chair:

This study will focus on developing a prescriptive framework that applies various

techniques of data science, machine learning and deep learning to help individual

investors understand market opportunities and make educated decisions in the Indian

stock market. The study will review existing methodologies and research available in the

field of Indian stock markets, identifying market opportunities and applying data science

techniques.

The study will rely on publicly available data sets related to stock prices and financial

reports of individual firms. The study will find answers for research questions and will

prescribe a framework for educated decision making in identifying market opportunities.

Finally, the study will conclude the results. The study will also recommend further

studies and identify limitations of the study.

vi

TABLE OF CONTENTS

List of Tables ... viii

List of Figures .. ix

CHAPTER I: INTRODUCTION ... 1

1.1 Introduction ... 1
1.2 Research Problem ... 2
1.3 Purpose of Research .. 2
1.4 Significance of the Study .. 2
1.5 Research Purpose and Questions .. 3

CHAPTER II: REVIEW OF LITERATURE .. 5

2.1 Theoretical Framework ... 5
2.2 Preliminary Literature Review Objectives.. 5
2.3 Methodology Adopted to Perform this Literature Review 6
2.4 Publisher Analysis .. 8
2.5 Relevance to Research Topic .. 9
2.6 Citation Analysis ... 10
2.7 Chronology of Publications .. 12
2.8. Research Question Synthesis ... 15
2.9 Comparative Analysis ... 33
2.10 Summary ... 37

CHAPTER III: METHODOLOGY ... 46

3.1 Overview of the Research Problem .. 46
3.2 Research Question Formulation .. 47
3.3 Research Design.. 47
3.4 Data Collection ... 47
3.5 Data Analysis .. 48
3.6 Framework Development.. 48
3.7 Framework Validation .. 48

CHAPTER IV: SLRPO INVESTMENT FRAMEWORK – DESIGN AND

DEVELOPMENT ... 50

4.1 Introduction ... 50
4.2 Data Acquisition Module .. 52
4.3 Data Load Module .. 55
4.4 Indicators Module ... 56
4.5 Preprocessing Module ... 109

vii

4.6 Weight Generator Module .. 113
4.7 Strength Score Module ... 123
4.8 Utility Functions Module .. 126
4.9 Strategy Domain Classification .. 135
4.10 SLRPO Base Strategies... 137

4.11 Base Strategy – UCB1 Module ... 137

4.12 Base Strategy – Policy Network Module .. 149

4.13 Base Strategy – Policy Gradient Module .. 155

4.14 Main 8 Strategies of SLRPO and Portfolio Creation 160

4.14 Allocation – UI Module .. 173

CHAPTER V: RESULTS .. 181

5.1 Research Question .. 181
5.2 Research Sub Question One.. 182
5.3 Research Sub Question Two ... 183
5.4 Research Sub Question Three ... 183

CHAPTER VI: DISCUSSION .. 185

6.1 Discussion of Results of SLRPO Investment Framework 185
6.2 Summary of Findings .. 186

CHAPTER VII: SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 189

7.1 Summary ... 189
7.2 Implications... 189
7.3 Recommendations for Future Research .. 189
7.4 Conclusion .. 190

REFERENCES ... 192

viii

LIST OF TABLES

Table 4.1 NIFTY 50 Stocks .. 161

Table 4.2 Strategy 1 Portfolio Allocation of all NIFTY 50 Stocks 162

Table 4.3 Strategy 2 Portfolio Allocation of all NIFTY 50 Stocks 164

Table 4.4 Strategy 3 Portfolio Allocation of all NIFTY 50 Stocks 166

Table 4.5 Strategy 4 Portfolio Allocation of all NIFTY 50 Stocks 167

Table 4.6 Strategy 5 Portfolio Allocation of all NIFTY 50 Stocks 169

Table 4.7 Strategy 6 Portfolio Allocation of all NIFTY 50 Stocks 170

Table 4.8 Strategy 7 Portfolio Allocation of all NIFTY 50 Stocks 172

Table 4.9 Strategy 8 Portfolio Allocation of all NIFTY 50 Stocks 173

Table 6.1 Returns and Strategy Metrics .. 185

Table 6.2 Opportunity Cost of Foregoing SLRPO ... 187

ix

LIST OF FIGURES

Figure 1.1 Reasons for Households not Investing in Mutual Funds 1

Figure 1.2 Reasons for Households not Investing in Equities .. 2

Figure 2.1 Total Research Papers by Search Strings .. 6

Figure 2.2 Total Research Papers by Publishers ... 8

Figure 2.3 Total Research Papers by Relevance ... 9

Figure 2.4 Total Relevant Research Papers by Publishers ... 10

Figure 2.5 Top 20 Most Cited Relevant Papers .. 11

Figure 2.6 Total Numbers of Citations of Relevant Papers by Publisher 11

Figure 2.7 Top Publisher Citations of Relevant Papers by Year 12

Figure 2.8 Publisher Citations of Relevant Papers by Recent Time 14

Figure 2.9 Comparative Analysis Topics.. 34

Figure 2.10 Category 1: Comparisons of Author and Year .. 35

Figure 2.11 Category 2: Comparing Areas of Focus .. 36

Figure 2.12 Category 3: Comparing Methodologies Applied .. 36

Figure 2.13 Category 4: Comparing Opportunities for Future Work 37

Figure 4.1 SLRPO Architecture .. 51

Figure 4.2 Stocks Features Data after Preprocessing .. 113

Figure 4.3 Normalized Features of Stocks Data ... 118

Figure 4.4 Strength Scores for NIFTY 50 Stocks ... 126

Figure 4.5 Strategy 1 - Results .. 177

Figure 4.6 Strategy 2 – Results ... 177

Figure 4.7 Strategy 3 – Results ... 178

Figure 4.8 Strategy 4 – Results ... 178

Figure 4.9 Strategy 5 – Results ... 179

Figure 4.10 Strategy 6 – Results ... 179

Figure 4.10 Strategy 7 – Results ... 180

Figure 4.11 Strategy 8 – Results ... 180

1

CHAPTER I:

INTRODUCTION

1.1 Introduction

Indian stock market is an exchange where investors can buy and sell stocks, bonds

and other securities in India. Indian stock market is always buzzing with activities during

the business day starting from the time of its opening bell at 9 am to its closing time at

3:30 pm IST. Stock market is an arena where an Indian house hold can invest money as

an individual investor and gain profits or incur losses. Even though the stock market is

busy during the trading day, SEBI investor survey 2015 states the following:

A number of studies and surveys indicate that a very small proportion of Indian

population invests in securities market while countries with matured stock markets have

participation rates of around 50 percent (SEBI INVESTOR SURVEY 2015, 2015, p. 1).

There are a number of reasons why an Indian household does not invest in the stock

markets either in Mutual Funds or in Equities.

The reasons for why do households not invest in mutual funds are listed in the

following table (SEBI INVESTOR SURVEY 2015, 2015, p. 51):

Figure 1.1 Reasons for Households not Investing in Mutual Funds

The reasons for why households do not invest in equities are listed in the

following table (SEBI INVESTOR SURVEY 2015, 2015, p. 52):

Reason Proportion

Not sure about safety of investments 33.3%

Inadequate returns 25.6%

Inadequate information 14.1%

Lack of expertise 12.6%

Investment not very liquid 8.3%

Others 6.1%

2

Figure 1.2 Reasons for Households not Investing in Equities

Any investment model relies on capital for the investment to grow. The

investment model such as Indian stock market relies on public to invest their savings and

the investments thus acts as a source for the growth of both the individual investor and

the country’s economy. In India, a very small proportion of the population invests in

stock markets while there is a large proportion with capital and do not invest due to the

lack of adequate knowledge or due to the lack of adequate understanding on how to

utilize the public information available on the markets.

1.2 Research Problem

Lack of expertise or inadequate information can lead to Indian households with

capital, losing opportunities to invest in the Indian stock markets. The scope of this

research is to study in detail and apply various techniques of data science and machine

learning to identify the lost opportunities and thus provide a framework that could help in

educated decision-making by making use of publicly available data.

1.3 Purpose of Research

The purpose of this research is to perform a detailed analysis that would

ultimately focus on the research of how to utilize the public information and convert it

into the knowledge required for investing in stock markets and thus studies the research

problem in scope and its corresponding research questions.

1.4 Significance of the Study

Reason Proportion

Not sure about safety of investments 25.6%

Inadequate returns 15.4%

Inadequate information 21.3%

Lack of expertise 15.6%

Investment not very liquid 13.4%

Others 8.6%

3

This study is aimed to address the following critical issues faced by Indian

households holding capital but do not invest at the right time and in the right financial

assets due to lack of adequate information:

Mitigating Financial Losses:

The main problem in man Indian households is that they have that could be

invested in the stock markets, but a lack of expertise or access to adequate information

often leads to missed investment opportunities. This study focuses on identifying these

missed opportunities. By doing so, it has the potential to help households make informed

decisions, thereby reducing the risk of financial losses.

Empowering Individual Investors:

Providing a framework for educated decision-making will be of great help to

individual investors in situationa where they might not have access to expensive financial

advisory services. This study has the potential to democratize investment by enabling

households to independently evaluate and seize investment opportunities in the Indian

stock markets by making use of data and thinking in the right direction.

Using advanced technologies such as data science and machine learning to study

the stock markets and taking informed decisions, not only enables the Indian investors to

make educated decision in the stock markets investment process but also helps in the

economic growth of the country.

1.5 Research Purpose and Questions

How can data science techniques and methodologies help in developing a

decision-making framework that helps in identifying the opportunities to invest in the

Indian stock markets?

1.5.1 Research Sub Questions

4

 1.5.1.1. What are the key aspects/variables that need to be considered in

understanding opportunities?

1.5.1.2. What are the various techniques or algorithms that can be explored to

identify opportunities?

1.5.1.3. How can prescriptive analytics help in developing a decision-making

framework in the domain of Indian stock markets?

5

CHAPTER II:

REVIEW OF LITERATURE

2.1 Theoretical Framework

The main objective of this literature review is to provide a comprehensive review

of literatures and practices in relation to the research questions and come up with a

framework that helps to identify investment opportunities by understanding various

market data parameters and economic factors.

Particularly, the study has the following sub-objectives:

1. To provide a comprehensive review of sources and key aspects/variables that

needs to be considered in understanding investment opportunities in Indian stock

markets;

2. To analyze various techniques or algorithms that can be explored to identify

opportunities in Indian stock markets;

3. To review current methodologies and research in the domain of Indian stock

markets and analytics.

4. To outline a decision-making framework in the domain of Indian stock

markets.

The result of this study will be valuable to the industry practitioners as well as

individual investors in developing better practice and tools for investment decision

making.

2.2 Preliminary Literature Review Objectives

The preliminary literature review focused on researching on the following topics:

1. Understanding the importance of opportunity cost in investments,

2. Exploring the applications of data science and comprehending the key features

in the field of investment analysis

6

2.3 Methodology Adopted to Perform this Literature Review

2.3.1 Search Tokens

Literature review for this research started by searching and exploring for existing

research articles on the following search tokens in google scholar:

1. Machine learning in stock market

2. Deep learning in stock market

3. Data Science in stock market

4. Opportunity analysis in stock markets

5. Stock market

6. Indian stock market analysis

The overall landscape of research materials on the search tokens are distributed as

follows:

Figure 2.1 Total Research Papers by Search Strings

2.3.1.1 Search criteria 1

There were around 10 research materials and existing literature available on the

concept covering opportunity analysis in stock markets that also covers string

combinations such as opportunity + stock + market and opportunity analysis + stock +

market.

7

2.3.1.2 Search criteria 2

There were around 25 research materials and existing literature available on the

concept covering Indian stock market analysis that also covers string combinations such

as Indian + stock + market, Indian + stock + analysis, Indian + market + analysis and

Indian + stock + market + analysis.

2.3.1.3 Search criteria 3

There were around 29 research materials and existing literature available on the

concept covering deep learning in stock market that also covers string combinations such

as deep + learning + stock, deep + learning + stock + market and deep + learning +

market.

2.3.1.4 Search criteria 4

There were around 60 research materials and existing literature available on the

concept covering data science in stock market that also covers string combinations such

as data + science + stock, date + science + stock + market and data + science + market.

2.3.1.5 Search criteria 5

There were around 67 research materials and existing literature available on the

concept covering machine learning in stock market that also covers string combinations

such as machine + learning + stock, machine + learning + stock + market and machine

+ learning + market.

2.3.1.6 Search criteria 6

The last, wider and the most generic search criteria was to find out all possible

existing literature on stock markets or capital markets. There were around 424 research

materials and existing literature available on the concepts covering stock market that also

covers string combinations such as stock + market, capital + market and market +

investment.

8

The preceding statistics is based on the search tokens and the relevance of these

gathered materials will further be discussed in the upcoming sections.

The publishers of the gathered research materials will be analyzed further.

2.4 Publisher Analysis

A total of 615 existing literature in the form of research papers, journals and

books were collected and reviewed to understand the relevance of the existing literature

by analyzing them in relation to my research in scope.

The total numbers of research papers by publishers are listed as follows:

Figure 2.2 Total Research Papers by Publishers

The research papers covering the search tokens for this research are majorly

published by Elsevier, IEEE, Springer, Wiley online library which covers journals on

finance and JSTOR which covers journals of business. In the Figure 2.2, there is also an

assorted list of multiple publishers that covers around a range of 1 to 3 research articles

each. Our focus of study is mainly on the articles published by Elsevier, IEEE, Springer,

Wiley online library and JSTOR.

9

The relevance of these 615 research papers and journals in relationship to the

research in scope will be analyzed further.

2.5 Relevance to Research Topic

The abstract, methodology and conclusion of the 615 research papers identified

for this literature review are studied to understand its relevance to the research in scope.

Post analysis, it is identified that 407 research papers gathered were not relevant to the

research topic under study and 208 have relevance from at least one perspective. The

relevance of topics is represented as follows:

Figure 2.3 Total Research Papers by Relevance

The relevant papers were further reviewed, and the statistics is listed down in the

order of their respective publishers.

10

Figure 2.4 Total Relevant Research Papers by Publishers

The research papers covering the relevance for this research are majorly published

by Elsevier, IEEE, Springer, JSTOR which covers journals of business, and Citeseer and

Wiley online library which covers journals on finance. In the Figure 2.4, there is also an

assorted list of multiple publishers that covers around a range of 1 to 3 research articles

each. Our focus of study is mainly on the articles published by Elsevier, IEEE, Springer,

JSTOR, and Citeseer and Wiley online library.

The number of citations of the relevant literature will be analyzed further.

2.6 Citation Analysis

Number of citations on a research paper denotes the recognition of a research in that field

and a possible implementation of the concepts and a higher scope for enhancements.

Analyzing the citations of various literatures gathered for this research is the next

important step of this literature review.

Top 20 research titles with their corresponding number of citations are represented as

follows.

11

Figure 2.5 Top 20 Most Cited Relevant Papers

The literature citations are further analyzed by reviewing the statistics by publisher in the

Figure 2.6. The maximum numbers of aggregated citations were on the papers published

by JSTOR which publishes journals for business followed by Wiley online library which

publishes journals for finance. This list is further followed by Elsevier, IEEE, Springer

and Citeseer in a descending order.

Figure 2.6 Total Numbers of Citations of Relevant Papers by Publisher

12

The chronology of publications with relevance to the year of publishing will be analyzed

further.

2.7 Chronology of Publications

The greatest number of citations were from JSTOR and Wiley online library as

mentioned in the Figure 2.6. The relevant literatures from these publishers were further

analyzed to identify how recent the research was.

Figure 2.7 Top Publisher Citations of Relevant Papers by Year

13

All the research papers of JSTOR and Wiley that were identified as relevant

papers by studying their abstract, methodology and conclusion happens to be published

between the years 1933 to 2008. This indicates that there were no recent papers or

journals from these publishers that can be shortlisted for this research. However, the

already shortlisted papers will still be studied while synthesizing research questions based

on the knowledge that can be derived from these papers and journals.

The most recent journal publishers were further analyzed for the number of citations.

14

Figure 2.8 Publisher Citations of Relevant Papers by Recent Time

15

Elsevier, IEEE and Springer have the greatest number of citations on literature

that were published between 2001 and 2022.

With these initial efforts to identify, analyze, review and shortlist the most

relevant, most cited, highly reputed and recent literature, further analysis will be

performed to synthesize the research questions.

2.8. Research Question Synthesis

The research questions for this research in scope are already defined in sections

1.5 Level 1 and 1.5.1 Level 2.

The research sub questions under each of the Level 2 Research questions will be

defined as follows and studied in detail:

1. What were the problems studied or researched?

2. What type of data is used to understand opportunities?

3. What methodologies were applied to solve the problem?

4. What were the opportunities for future work?

The Level 2 research questions (Level 2) are divided into three main concepts as

defined below and the related research is synthesized under each concept.

1. Understanding the importance of opportunity cost in investments (covered

in section 2.8.1 – Study 1, 2 & 3).

2. Exploring the applications of data science in the field of investment

analysis (covered in section 2.8.2 – Study 4 to 9).

3. Comprehending the key features considered in the study of investment

decision making (covered in section 2.8.3 – Study 4 to 9).

2.8.1 Understanding the importance of opportunity cost in investments

Study 1

Literature

16

a. What were the problems studied or researched?

The first study focuses on investigating decision making under situations where

there is opportunity-cost time pressure. The authors were interested in how people adapt

their decision-making strategies when faced with opportunity-cost environments and in

the possible limits or even failures in adaptivity that may arise in such environments.

They focused on how people decide when there are conflicts between the processing

implications of opportunity costs and the implications of other variables such as goals

and the degree of conflict (intercorrelation) between outcomes (Payne et al., 1996).

b. What methodologies were applied to solve the problem?

The adaptive decision maker: an effort/accuracy framework is discussed in this

literature. Stronger tests of the effort/accuracy framework have been conducted by using

computer simulations of the effort and accuracy characterizing typical decision strategies

to generate hypotheses about processing patterns and then carrying out experimental

studies of actual decision behavior to test these hypotheses. The focuses of these

experiments were how opportunity-cost time pressure, along with variations in goals and

context factors, influences the details of decision processing. Thus, the authors utilized a

computerized system for collecting process-tracing data as well as choice data.

c. What type of data is used to understand opportunities?

The subjects’ information acquisitions, response times and choices were

monitored using the Mouselab software system. Probabilities and pay offs were captured

for various scenarios and outcomes using this software.

d. What were the opportunities for future work?

The results of the research imply that strategy changes are needed under

opportunity-cost time pressure. When deciding in high-velocity environments, the

decision maker should focus on breadth of evaluation rather than on depth of evaluation.

17

More research which directly examines how alternative prescriptions for decision making

fare in high- and low-velocity environments is needed (Payne et al., 1996).

e. Critical Analysis

The time criticality of decision making is more relevant and directly correlated in

cases of market investment decisions since there is always a time factor involved for

investors either when a decision needs to be made for buying, selling or holding a

security or when a decision needs to be made on investing in the markets itself.

All these decisions come with a cost, and it is the cost of losing an opportunity or

delaying an opportunity which in turn can be derived as the opportunity cost. It is also to

be noted that the data used for this study comes from a simulated environment which

gives an opportunity to study the behavior of real-life data with additional parameters.

Study 2

Literature

a. What were the problems studied or researched?

The second study focuses on opportunity cost and choice. The most important

consequence of the relationship between choice and opportunity cost is the ex-ante or

forward-looking property that cost must carry in this setting. Opportunity cost, the value

placed on the rejected option by the chooser, is the obstacle to choice; it is that which

must be considered, evaluated, and ultimately rejected before the preferred option is

chosen. Opportunity cost in any particular choice is, of course, influenced by prior

choices that have been made, but with respect to this choice itself, opportunity cost is

choice-influencing rather than choice-influenced (Buchanan, 1991).

b. What methodologies were applied to solve the problem?

The research in this study is not focused on data collection and analysis. It is

rather theoretical and focused on explaining the implications of opportunity cost in

18

decision making through economic principals and thought experiments (Buchanan,

1991).

c. What type of data is used to understand opportunities?

The data collection process is not employed in since the author focused on

explaining the theoretical aspects of opportunity cost by presenting a conceptual

framework that combines economic theory, rational choice theory, and the study of

individual preferences and trade-offs (Buchanan, 1991).

d. What were the opportunities for future work?

With the familiar statement that 'sunk costs are irrelevant', economists

acknowledge that the consequences of choices cannot influence choice itself. On the

other hand, by their formalized constructions of cost schedules and cost functions, which

necessarily imply measurability and objectifiability of costs, economists divorce cost

from the choice process.

e. Critical Analysis

One of the strengths of this study is its focus on the theoretical concepts that

influences opportunity cost. Similar to time, choice also is an important variable, rather a

categorical variable, in investment decision making. Choice also influences the

opportunity cost. Opportunity cost varies depending on the choice that was made, and it

can either be directly or inversely correlated to the cost and in turn influences the

decision-making process.

However, the lack of data collection process and empirical studies becomes a limitation

to this study and provides an opportunity to explore further by gathering data that

supports the theory behind the framework derived by the author in this study.

Study 3

Literature

19

a. What were the problems studied or researched?

The study focuses on opportunity cost and behavior. The study was concerned

with whether decision makers would use opportunity cost information, or learn to use it,

when such information was provided explicitly. As part of the issue, the author also

studied whether decision makers’ use of opportunity costs was affected by their risk

attitude (Hoskin, 1983).

b. What methodologies were applied to solve the problem?

The experiment to understand opportunity cost and behavior was designed using

newsboy problem. The experiment is explained as a distinction between ex post and ex

ante opportunity cost information is important in selecting the task. Both kinds of

information can be relevant to the same problem. Consider, for example, the standard

inventory ordering problem, sometimes called the newsboy problem. The newsboy has

information concerning the distribution of demand, the selling price, and the costs of a

newspaper. Accordingly, the expected opportunity costs for a given decision can be

calculated. In an ex-post sense, the newsboy can also determine the actual opportunity

cost at the end of the day by keeping track of the number of customers who ask for the

newspaper when it is out of stock. This assumes, of course, that the stock is not visible to

the customer (Hoskin, 1983).

c. What type of data is used to understand opportunities?

The subjects used were 61 M.B.A. and Ph.D. students in a major business school.

The study was conducted over a period three days in groups of five to ten. Subjects were

randomly assigned to experimental and control groups. There were no significant

demographic differences between the experimental groups (Hoskin, 1983).

d. What were the opportunities for future work?

20

While designing the experiment there were many limitations imposed on the

research and study. Further research might need to look at varying some of the factors

and constraints imposed in the study. Some of the factors suggested by the literature

includes the risk of bankruptcy, reward systems and instability in the environment

(Hoskin, 1983).

e. Critical Analysis

Both opportunity cost and behavior of investors towards opportunity cost is important in

decision making. In most of the cases the uncertainty of risk taking, and its impact makes

the investors not to proceed with an investment. The thought on uncertainty of risk can be

minimized when the information or knowledge about opportunity cost is available to the

investor. The main challenge in understanding opportunity cost comes up due to lack of

enough information on this topic.

2.8.2 Exploring the applications of data science and comprehending the key features

in the field of investment analysis

Study 4

Literature

a. What were the problems studied or researched?

The problem of predicting direction of movement of stock and stock price index

for Indian stock markets is addressed in the paper. The study compares four prediction

models, Artificial Neural Network (ANN), support vector machine (SVM), random forest

and Naive-Bayes with two approaches for input to these models. The first approach for

input data involves computation of ten technical parameters using stock trading data

(open, high, low & close prices) while the second approach focuses on representing these

technical parameters as trend deterministic data (Patel et al., 2015).

b. What type of data is used to understand applications?

21

Ten years of data of total two stock price indices (CNX Nifty, S&P BSE Sensex)

and two stocks (Reliance Industries, Infosys Ltd.) from Jan 2003 to Dec 2012 is used in

this study. All the data is obtained from <http://www.nseindia.com/> and

<http://www.bseindi-a.com/> websites. Ten technical indicators were used as input

variables.

c. What methodologies were applied to solve the problem?

Machine learning algorithms such as Artificial Neural Networks (ANN), Support

Vector Machine (SVM), Random Forest and Naïve Bayes classifier were applied on the

data to learn and predict from the data. Trend Deterministic Data Preparation Layer was

proposed in the literature.

d. What were the opportunities for future work?

Apart from the ten technical indicators used in this literature, other macro-

economic variables like currency exchange rates, inflation, government policies, interest

rates etc. can also be explored. Apart from the categories predicted as ‘up’ or ‘down’ in

this literature, authors are also suggesting to explore multiple categories like ‘highly

possible to go up’, ‘highly possible to go down’, ‘less possible to go up’, ‘less possible to

go down’ and ‘neutral signal’. While this paper deals with short term prediction, the

scope of long-term prediction is also an open item for future work.

e. Critical Analysis

In exploring the applications of data science in the field of investment analysis,

have studied the research paper to understand the areas where data science is applied in

the field of stock markets. The major area discussed in this paper deals with predictive

algorithms of machine learning that are applied to predict upward or downward

movement of specific stocks and stock market indices. This is also an approach that helps

in decision making and this approach also has many opportunities that can lead to future

22

work and future enhancements in the field of machine learning on investment decision

making.

Study 5

Literature

a. What were the problems studied or researched?

The study revolves around utilizing deep learning networks for stock market

analysis and prediction. The authors aim to explore the methodology and data

representations used in deep learning models and their application to forecast stock

market behavior. The study attempts to provide a comprehensive and objective

assessment of both the advantages and drawbacks of deep learning algorithms for stock

market analysis and prediction. The literature explores the effects of three unsupervised

feature extraction methods - principal component analysis, auto encoder, and the

restricted Boltzmann machine—on the network’s overall ability to predict future market

behavior. The literature also offers practical insights and potentially useful directions for

further investigation into how deep learning networks can be effectively used for stock

market analysis and prediction (Chong et al., 2017).

b. What type of data is used to understand applications?

The study uses financial data, including historical stock prices, trading volumes,

and other relevant market indicators, to understand the applications of deep learning

networks in stock market analysis. These data sources provide insights into the patterns

and dynamics of stock market behavior. High-frequency intraday stock returns data from

Korean stock market is used by the authors. The high-frequency data is used to get a

large data set and in turn to overcome data-snooping and over-fitting problems inevitable

in neural network or any other non-linear models.

c. What methodologies were applied to solve the problem?

23

The authors of the study propose a deep feature learning-based stock market

prediction model. From the lagged stock returns data, the authors generate seven sets of

features employing three data representations: principal component analysis,

autoencoder, and restricted Boltzmann machine. Three layer deep neural networks were

constructed to predict the future stock returns.

d. What were the opportunities for future work?

Factors such as trading volume and the price of a derivative linked to a stock can

be considered as variables for future studies. Identifying the relationship between these

factors and future price movements can also be considered further.

e. Critical Analysis

In the process of a more detailed research on the existing literature, the research

paper is analyzed to learn the existing applications of machine learning algorithms at

various stages of investment analysis. This paper deals with predictive analytics on the

stock market returns by applying advanced and deep neural networks for the purpose of

feature engineering and predictions. The advantage of applying such non-linear

algorithms goes a long way in the investment decision making especially when domain

knowledge is lesser or unavailable in the process of investment decision making and

there is also an existence time pressure that impacts the decision-making process.

Study 6

Literature

a. What were the problems studied or researched?

The problems studied or researched in revolve around stock market forecasting

using Bayesian regularized artificial neural networks (BRANNs). The author investigates

the application of BRANNs to address the challenges of over fitting and improve the

accuracy of stock market predictions. The prediction of stock price movement is

24

generally considered to be a challenging and important task for financial time series

analysis. The complexity in predicting these trend lies in the inherent noise and volatility

in daily stock price movement. One day future closing price of individual stocks is

predicted using daily market prices and financial technical indicators (Ticknor, 2013).

b. What type of data is used to understand applications?

The study utilizes historical stock market data, including price movements,

trading volumes, and other relevant financial indicators, to understand applications of

BRANNs in stock market forecasting. The research data used for stock market

predictions in the paper was collected for Goldman Sachs Group, Inc. (GS) and Microsoft

Corp. (MSFT). The total number of samples for this study was 734 trading days, from 4

January 2010 to 31 December 2012. Each sample consisted of daily information

including low price, high price, opening price, close price, and trading volume.

c. What methodologies were applied to solve the problem?

The methodology applied in the research involves the use of artificial neural

networks (ANNs) with Bayesian regularization. The author incorporates Bayesian

inference and regularization techniques into the neural network architecture to mitigate

over fitting issues. The BRANN model is trained using historical data, and Bayesian

techniques are employed to update and refine the model parameters based on the

observed data. A Bayesian regularized artificial neural network is proposed as a novel

method to forecast financial market behavior. The Bayesian regularized network assigns

a probabilistic nature to the network weights, allowing the network to automatically and

optimally penalize excessively complex models. This technique reduces the potential for

over fitting and over training, improving the prediction quality and generalization of the

network.

d. What were the opportunities for future work?

25

The opportunities for future work identified in the research include further

exploration of advanced Bayesian regularization techniques to improve the robustness

and generalization capabilities of the BRANN model. The author suggests investigating

the impact of different hyper parameter choices and regularization priors on the model's

performance. Additionally, future research could focus on comparing the performance of

BRANNs with other forecasting models in different market conditions and exploring the

potential integration of BRANNs with other machine learning techniques, such as

ensemble methods or deep learning architectures. Furthermore, the application of

BRANNs to different financial markets, data points and technical indicators and time

periods present opportunities for future research.

e. Critical Analysis

The study presents a comprehensive analysis of the BRANN model's performance

by comparing it to other forecasting models, such as autoregressive integrated moving

average (ARIMA) and traditional ANNs. The author provides empirical evidence and

evaluation metrics to demonstrate the effectiveness of the BRANN approach,

highlighting its superiority in terms of prediction accuracy. The strength of this study is

the integration of Bayesian regularization with artificial neural networks (ANNs) for

stock market forecasting. The author recognizes the need to address over fitting issues in

neural networks, and Bayesian regularization provides a valuable solution. By

incorporating Bayesian inference and regularization techniques, the study enhances the

generalization capabilities of the model and reduces the risk of over fitting.

However, one limitation of the study is its heavy technical focus and lack of

practical application and real-world case studies. While the study presents the theoretical

framework and demonstrates the model's performance using historical data, further

26

exploration of the model's application in real-time trading scenarios or investment

decision-making would have enhanced the study's practical relevance.

Additionally, the study does not extensively discuss the interpretability of the

BRANN model. Neural networks are known for their black-box nature, and

understanding the model's decision-making process and the significance of input features

is crucial for its practical implementation. Further research could address this limitation

and explore methods to enhance the interpretability of BRANN models.

Study 7

Literature

a. What were the problems studied or researched?

The study revolves around stock market forecasting using ensemble deep Q-

learning agents. The authors in the research aims at proposing an ensemble of

reinforcement learning approaches which do not use annotations (i.e. market goes up or

down) to learn, but rather learn how to maximize a return function over the training stage.

In order to achieve this goal, the authors exploit a Q-learning agent trained several times

with the same training data and investigate its ensemble behavior in important real-world

stock markets (Carta et al., 2021).

b. What type of data is used to understand applications?

The data points collected for this study are mainly the historical stock market

data, including price movements, trading volumes, and other relevant financial indicators.

The chosen markets are related to futures: the Standard & Poor’s 500 (S&P500), and the

German stock index (DAX). These datasets were acquired from a brokerage company,

and the authors used the hourly resolution datasets of prices initially.

c. What methodologies were applied to solve the problem?

27

The methodology of focus for this study is deep Q-learning agents within an

ensemble framework. An ensemble methodology for RL agents, which involves the use

of different models trained at different iterations (epochs), with further analysis of the

behavior of these ensembles through different agreement thresholds. It explores mixing

Deep Q-learning RL strategies in ensemble methods considering different training

iterations to predict different future markets. The final decision consists of an ensemble

of decisions from different agents and is parametric to different levels of agreement

thresholds and agents’ configurations.

d. What were the opportunities for future work?

The opportunities for future work in this study and research include further

exploration of advanced ensemble techniques to enhance the performance of the

ensemble deep Q-learning approach. The authors suggest investigating the effectiveness

of different aggregation methods and fusion techniques to improve the consensus forecast

of the ensemble. Additionally, future research could focus on optimizing the hyper

parameters and architecture of the deep Q-learning agents to further enhance their

individual performance. Furthermore, the application of the ensemble deep Q-learning

approach to different stock markets and the evaluation of its performance in various

market conditions and various other products such as bonds and commodities markets

can present opportunities for future research.

e. Critical Analysis

The study employs real-world stock market data and evaluates the performance of

the proposed Multi-DQN ensemble model. The authors provide empirical evidence and

evaluation metrics to demonstrate the effectiveness of the ensemble approach. This

empirical validation enhances the practical relevance of the study and provides insights

into the performance of the Multi-DQN model in real stock market scenarios.

28

The strength of this study is its focus on the integration of deep Q-learning agents

and ensemble methods for stock market forecasting. The authors recognize the limitations

of individual models and propose a collaborative approach to enhance prediction

accuracy. By combining multiple deep Q-learning agents, the study harnesses the

diversity of models and their collective knowledge to achieve improved forecasting

performance.

However, one limitation of the study is the complexity of the proposed Multi-

DQN ensemble model. The authors provide limited details on the implementation and

training process of the individual deep Q-learning agents and the ensemble mechanism. A

more in-depth explanation of these aspects would have provided a better understanding of

the model and its practical implementation. Additionally, the study could have further

discussed the interpretability of the Multi-DQN ensemble model. Deep Q-learning

models are known for their black-box nature, and understanding the decision-making

process of the ensemble and the significance of input features is essential for practical

application and adoption.

Study 8

Literature

a. What were the problems studied or researched?

The problems studied or researched revolve around stock price direction

forecasting using deep neural networks (DNNs) and technical analysis indicators. The

authors aim to develop a methodology that combines feature selection techniques with

DNNs to improve the accuracy of predicting the direction of stock prices. The authors

discussed feature selection in the context of deep neural network models to predict the

stock price direction. They investigated a set of 124 technical analysis indicators used as

explanatory variables in the recent literature and specialized trading websites. They

29

applied three feature selection methods to shrink the feature set aiming to eliminate

redundant information from similar indicators (Peng et al., 2021).

b. What type of data is used to understand applications?

The study uses historical stock market data, including price movements, trading

volumes, and various technical analysis indicators, to understand applications of feature

selection and DNNs in stock price direction forecasting. These data sources provide the

necessary input for training and testing the DNN models.

The authors collected daily data between January 1st, 2008 and March 1st, 2019

from firms that composed financial market indexes from seven markets, namely: United

States (S&P 100 Index), United Kingdom (FTSE 100 Index), France (CAC 40 Index),

Germany (DAX-30 Index), Japan (Top 50 assets from NIKKEI 225 Index), China (Top

50 assets from SSE 180 Index) and Brazil (Bovespa Index).

c. What methodologies were applied to solve the problem?

The methodologies applied in the research involve the integration of feature

selection techniques with DNNs. The authors employ various feature selection methods,

such as correlation-based measures and mutual information, to identify and select the

most relevant technical analysis indicators. They then utilize DNNs, such as feed forward

neural networks, to capture complex patterns and relationships in the historical stock

market data. The models are trained on the selected features to predict the direction of

stock prices. The authors have tested the empirical performance of deep neural networks

for seven markets by applying different settings of architecture and regularization

techniques.

d. What were the opportunities for future work?

The opportunities for future work identified in the research include further

exploration of advanced feature selection techniques to improve the model's performance

30

in selecting relevant indicators. The authors suggest investigating the impact of different

feature selection algorithms and strategies on prediction accuracy. Additionally, future

research could focus on enhancing the interpretability of the DNN models in stock price

direction forecasting and exploring the combination of feature selection with other

machine learning techniques, such as ensemble methods or deep learning architectures.

Furthermore, the application of the proposed methodology to different financial markets

and the evaluation of its performance across various time periods present opportunities

for future research.

e. Critical Analysis

The study explores various feature selection algorithms, such as correlation-based

measures and mutual information, and evaluates their impact on model performance. This

comprehensive analysis allows for a better understanding of the strengths and limitations

of different feature selection techniques in the context of stock price direction

forecasting. The strength of this study is its focus on incorporating feature selection

techniques into the forecasting process. The authors recognize the importance of

identifying and utilizing the most informative indicators for stock price direction

prediction. By applying feature selection methods, the study enhances the model's ability

to extract meaningful patterns and reduce noise from the data. Moreover, the study

utilizes real-world stock market data and evaluates the performance of the proposed

methodology. The authors provide empirical evidence and evaluation metrics to

demonstrate the effectiveness of their approach. This empirical validation enhances the

credibility and practical applicability of the study's findings.

However, one limitation of the study is its focus solely on technical analysis

indicators without considering other types of data or information. Stock market prices are

influenced by various factors, including fundamental analysis, market news, and

31

macroeconomic indicators. A more comprehensive analysis that incorporates additional

data sources could provide a more holistic view of stock price direction prediction.

Additionally, the study does not extensively discuss the interpretability of the DNN

models. Deep neural networks are known for their black-box nature, and understanding

the underlying reasons for their predictions is essential for practical application and

adoption. Further research could address this limitation and explore methods to enhance

the interpretability of DNN models in stock price direction forecasting.

Study 9

Literature

a. What were the problems studied or researched?

The problems studied or researched revolve around forecasting stock prices using

an ensemble approach that combines deep learning models with technical analysis. The

authors aim to develop a methodology that leverages the strengths of both approaches to

improve the accuracy of stock price predictions (Kamara et al., 2022).

b. What type of data is used to understand applications?

The study utilizes historical stock market data, including price movements,

trading volumes, and various technical analysis indicators, to understand applications of

the ensemble approach in stock price forecasting. These data points provide the necessary

input for training and testing the deep learning models and technical analysis-based

models.

c. What methodologies were applied to solve the problem?

The methodology applied in the research involves the integration of deep learning

models with technical analysis indicators within a boosted hybrid ensemble framework.

The authors employ various deep learning architectures, such as recurrent neural

networks (RNNs) or convolutional neural networks (CNNs), to capture complex patterns

32

in the historical stock market data. They also incorporate technical analysis indicators,

such as moving averages or relative strength index (RSI), to consider the insights from

traditional technical analysis. Boosting techniques are applied to combine the predictions

of individual models into an ensemble, enhancing the overall forecasting performance.

d. What were the opportunities for future work?

The opportunities for future work identified in the research include further

exploration of advanced ensemble techniques to improve the performance of the boosted

hybrid ensemble approach. The authors suggest investigating the impact of different

ensemble algorithms, feature combinations, and model weighting strategies on prediction

accuracy. Additionally, future research could focus on the integration of alternative

technical analysis indicators or the inclusion of external factors, such as news sentiment

or macroeconomic indicators, to enhance the robustness of the ensemble model.

Furthermore, the application of the proposed methodology to different financial markets

and the evaluation of its performance across various time periods present opportunities

for future research.

e. Critical Analysis

The study explores various deep learning architectures, including recurrent neural

networks (RNNs) and convolutional neural networks (CNNs), as well as technical

analysis indicators. By combining these different approaches, the study provides a

comprehensive analysis of the strengths and weaknesses of each model and their

collective performance within the ensemble. The strength of this study is its focus on

combining deep learning models and technical analysis to enhance stock price

forecasting. The authors recognize the limitations and potential biases of individual

models and propose an ensemble approach to mitigate these issues. By leveraging the

33

collective intelligence of multiple models, the study aims to achieve improved prediction

accuracy and robustness.

Also, the study employs real-world stock market data and evaluates the

performance of the proposed ensemble approach. The authors provide empirical evidence

and evaluation metrics to demonstrate the effectiveness of their methodology. This

empirical validation enhances the practical relevance of the study and provides insights

into the performance of the boosted hybrid ensemble in real stock market scenarios.

However, one limitation of the study is the lack of a detailed explanation of the ensemble

mechanism and the weightings assigned to individual models. A more in-depth

discussion of the ensemble approach and its optimization would have provided a better

understanding of how the collective intelligence is harnessed and how individual model

contributions are integrated. Additionally, the study could have further discussed the

interpretability of the ensemble approach. Ensemble models can be considered as black-

box systems, and understanding the decision-making process and the relative importance

of input features in the ensemble would have enhanced the practical implementation and

adoption.

2.9 Comparative Analysis

All the 9 literatures analyzed in this review are compared in a graphical mind map in

the Figure 2.9 and is divided into 4 categories:

• Papers

• Areas of focus

• Methodology applied and

• Opportunities for future work

34

Figure 2.9 Comparative Analysis Topics

The Papers are further divided into three sections and depicted in Figure 2.10.

35

Figure 2.10 Category 1: Comparisons of Author and Year

The Areas of focus are further divided into three sections and depicted in Figure 2.11.

36

Figure 2.11 Category 2: Comparing Areas of Focus

The Areas of focus are further divided into three sections and depicted in Figure 2.12.

Figure 2.12 Category 3: Comparing Methodologies Applied

37

Figure 2.13 Category 4: Comparing Opportunities for Future Work

The comparisons performed from Figures 2.9 to 2.13 gives an overall map of the

studies undertaken in this literature review.

 2.10 Summary

A total of 615 existing literature in the form of research papers, journals and

books were collected and reviewed to understand the relevance of the existing literature

by analyzing them in relation to the current study. Post analysis, it was identified that 407

research papers gathered were not relevant to the research topic under study and 208 have

relevance from at least one perspective. The research papers covering the relevance for

this research are majorly published by Elsevier, IEEE, Springer, JSTOR which covers

journals of business, and Citeseer and Wiley online library which covers journals on

finance.

Understanding the importance of opportunity cost in investments

38

The first part of this research is to analyze the importance of opportunity cost in

investment choices by examining existing literature and to assess on how the existing

literature can be studied, applied or extended further to carry forward by analyzing them

against the problem statements of this research in scope.

The opportunity cost has been studied and discussed in some of the prominent

journals or research papers. For this research sub section, 7 of the relevant research

papers have been selected for this study and after analyzing in detail, 3 out of 7 had some

relevance with respect to this specific research and were studied further.

Timing is very critical when it comes to decision making and it is even more

significant when the decision is related to an investment. When both money and timing

are dependent variables of an investment decisions, the decision need to be made faster

and also accurate. This leads to a situation of dilemma since a decision with a time limit

can also go wrong.

Decision-making dilemmas can arise because errors may result either from

deciding too soon or from delaying decisions too long. Delay can result in lost

opportunities or reductions in payoffs from the most accurate decision (Payne et al.,

1996).

The opportunity cost by its definition is well explained in (Buchanan, 1991) as the

anticipated value of 'that which might be' if choice were made differently. Note that it is

not the value of 'that which might have been' without the qualifying reference to choice.

In the absence of choice, it may be sometimes meaningful to discuss values of events that

might have occurred but did not. It is also explained further that… First, if choice is made

among separately valued options, someone must do the choosing. That is to say, a

chooser is required, a person who decides. From this the second implication emerges. The

39

value placed on the option that is not chosen, the opportunity cost, must be that value that

exists in the mind of the individual who chooses.

It is also explained in (Hoskin, 1983), that the decision impact of opportunity

costs is of interest to accountants, economists, and behavioral scientists. From an

economic point of view these costs are generally considered relevant, and explicitly

reporting them for decision making could improve the quality of future decisions.

Exploring the applications of data science and comprehending the key features in

the field of investment analysis

The second part of this research is to explore the applications of data science and

comprehend the key features in the field of investment analysis and to assess on how the

existing literature can be studied, applied or extended further to carry forward by

analyzing them against the problem statements of this research in scope.

The problem of predicting direction of movement of stock and stock price index

for Indian stock markets was addressed in the literature. The study compares four

prediction models, Artificial Neural Network (ANN), support vector machine (SVM),

random forest and Naive-Bayes with two approaches for input to these models. The first

approach for input data involves computation of ten technical parameters using stock

trading data (open, high, low & close prices) while the second approach focuses on

representing these technical parameters as trend deterministic data. The major area

discussed in the paper deals with predictive algorithms of machine learning that are

applied to predict upward or downward movement of specific stocks and stock market

indices. This is also an approach that helps in decision making and this approach also has

many opportunities that can lead to future work and future enhancements in the field of

machine learning on investment decision making (Patel et al., 2015).

40

Another study revolves around utilizing deep learning networks for stock market

analysis and prediction. The authors aim to explore the methodology and data

representations used in deep learning models and their application to forecast stock

market behavior. The study attempts to provide a comprehensive and objective

assessment of both the advantages and drawbacks of deep learning algorithms for stock

market analysis and prediction. The literature explores the effects of three unsupervised

feature extraction methods - principal component analysis, auto encoder, and the

restricted Boltzmann machine—on the network’s overall ability to predict future market

behavior. The literature also offers practical insights and potentially useful directions for

further investigation into how deep learning networks can be effectively used for stock

market analysis and prediction. In the process of a more detailed research on the existing

literature, the research paper is analyzed to learn the existing applications of machine

learning algorithms at various stages of investment analysis. The paper deals with

predictive analytics on the stock market returns by applying advanced and deep neural

networks for the purpose of feature engineering and predictions. The advantage of

applying such non-linear algorithms goes a long way in the investment decision making

especially when domain knowledge is lesser or unavailable in the process of investment

decision making and there is also an existence time pressure that impacts the decision-

making process (Chong et al., 2017).

The problems then studied or researched revolve around stock market forecasting

using Bayesian regularized artificial neural networks (BRANNs). The author investigates

the application of BRANNs to address the challenges of over fitting and improve the

accuracy of stock market predictions. The prediction of stock price movement is

generally considered to be a challenging and important task for financial time series

analysis. The complexity in predicting these trends lies in the inherent noise and volatility

41

in daily stock price movement. One day future closing price of individual stocks is

predicted using daily market prices and financial technical indicators. The study presents

a comprehensive analysis of the BRANN model's performance by comparing it to other

forecasting models, such as autoregressive integrated moving average (ARIMA) and

traditional ANNs. The author provides empirical evidence and evaluation metrics to

demonstrate the effectiveness of the BRANN approach, highlighting its superiority in

terms of prediction accuracy. The strength of this study is the integration of Bayesian

regularization with artificial neural networks (ANNs) for stock market forecasting. The

author recognizes the need to address over fitting issues in neural networks, and Bayesian

regularization provides a valuable solution. By incorporating Bayesian inference and

regularization techniques, the study enhances the generalization capabilities of the model

and reduces the risk of over fitting. However, one limitation of the study is its heavy

technical focus and lack of practical application and real-world case studies. While the

study presents the theoretical framework and demonstrates the model's performance

using historical data, further exploration of the model's application in real-time trading

scenarios or investment decision-making would have enhanced the study's practical

relevance. Additionally, the study does not extensively discuss the interpretability of the

BRANN model. Neural networks are known for their black-box nature, and

understanding the model's decision-making process and the significance of input features

is crucial for its practical implementation. Further research could address this limitation

and explore methods to enhance the interpretability of BRANN models (Ticknor, 2013).

Another study revolves around stock market forecasting using ensemble deep Q-

learning agents. The authors in the research aims at proposing an ensemble of

reinforcement learning approaches which do not use annotations (i.e. market goes up or

down) to learn, but rather learn how to maximize a return function over the training stage.

42

In order to achieve this goal, the authors exploit a Q-learning agent trained several times

with the same training data and investigate its ensemble behavior in important real-world

stock markets. The study employs real-world stock market data and evaluates the

performance of the proposed Multi-DQN ensemble model. The authors provide empirical

evidence and evaluation metrics to demonstrate the effectiveness of the ensemble

approach. This empirical validation enhances the practical relevance of the study and

provides insights into the performance of the Multi-DQN model in real stock market

scenarios. The strength of this study is its focus on the integration of deep Q-learning

agents and ensemble methods for stock market forecasting. The authors recognize the

limitations of individual models and propose a collaborative approach to enhance

prediction accuracy. By combining multiple deep Q-learning agents, the study harnesses

the diversity of models and their collective knowledge to achieve improved forecasting

performance. However, one limitation of the study is the complexity of the proposed

Multi-DQN ensemble model. The authors provide limited details on the implementation

and training process of the individual deep Q-learning agents and the ensemble

mechanism. A more in-depth explanation of these aspects would have provided a better

understanding of the model and its practical implementation. Additionally, the study

could have further discussed the interpretability of the Multi-DQN ensemble model. Deep

Q-learning models are known for their black-box nature, and understanding the decision-

making process of the ensemble and the significance of input features is essential for

practical application and adoption (Carta et al., 2021).

The problems studied or researched in another literature revolve around stock

price direction forecasting using deep neural networks (DNNs) and technical analysis

indicators. The authors aim to develop a methodology that combines feature selection

techniques with DNNs to improve the accuracy of predicting the direction of stock prices.

43

The authors discussed feature selection in the context of deep neural network models to

predict the stock price direction. They investigated a set of 124 technical analysis

indicators used as explanatory variables in the recent literature and specialized trading

websites. They applied three feature selection methods to shrink the feature set aiming to

eliminate redundant information from similar indicators. The study explores various

feature selection algorithms, such as correlation-based measures and mutual information,

and evaluates their impact on model performance. This comprehensive analysis allows

for a better understanding of the strengths and limitations of different feature selection

techniques in the context of stock price direction forecasting. The strength of this study is

its focus on incorporating feature selection techniques into the forecasting process. The

authors recognize the importance of identifying and utilizing the most informative

indicators for stock price direction prediction. By applying feature selection methods, the

study enhances the model's ability to extract meaningful patterns and reduce noise from

the data. Moreover, the study utilizes real-world stock market data and evaluates the

performance of the proposed methodology. The authors provide empirical evidence and

evaluation metrics to demonstrate the effectiveness of their approach. This empirical

validation enhances the credibility and practical applicability of the study's findings.

However, one limitation of the study is its focus solely on technical analysis indicators

without considering other types of data or information. Stock market prices are

influenced by various factors, including fundamental analysis, market news, and

macroeconomic indicators. A more comprehensive analysis that incorporates additional

data sources could provide a more holistic view of stock price direction prediction.

Additionally, the study does not extensively discuss the interpretability of the DNN

models. Deep neural networks are known for their black-box nature, and understanding

the underlying reasons for their predictions is essential for practical application and

44

adoption. Further research could address this limitation and explore methods to enhance

the interpretability of DNN models in stock price direction forecasting (Peng et al.,

2021).

The next problems studied or researched revolve around forecasting stock prices

using an ensemble approach that combines deep learning models with technical analysis.

The authors aim to develop a methodology that leverages the strengths of both

approaches to improve the accuracy of stock price predictions. The study explores

various deep learning architectures, including recurrent neural networks (RNNs) and

convolutional neural networks (CNNs), as well as technical analysis indicators. By

combining these different approaches, the study provides a comprehensive analysis of the

strengths and weaknesses of each model and their collective performance within the

ensemble. The strength of this study is its focus on combining deep learning models and

technical analysis to enhance stock price forecasting. The authors recognize the

limitations and potential biases of individual models and propose an ensemble approach

to mitigate these issues. By leveraging the collective intelligence of multiple models, the

study aims to achieve improved prediction accuracy and robustness. Also, the study

employs real-world stock market data and evaluates the performance of the proposed

ensemble approach. The authors provide empirical evidence and evaluation metrics to

demonstrate the effectiveness of their methodology. This empirical validation enhances

the practical relevance of the study and provides insights into the performance of the

boosted hybrid ensemble in real stock market scenarios. However, one limitation of the

study is the lack of a detailed explanation of the ensemble mechanism and the weightings

assigned to individual models. A more in-depth discussion of the ensemble approach and

its optimization would have provided a better understanding of how the collective

intelligence is harnessed and how individual model contributions are integrated.

45

Additionally, the study could have further discussed the interpretability of the ensemble

approach. Ensemble models can be considered as black-box systems, and understanding

the decision-making process and the relative importance of input features in the ensemble

would have enhanced the practical implementation and adoption (Kamara et al., 2022).

From this literature review, the analysis reveals that opportunity cost is studied

with time, choice and behavior as influencing factors while the applications of machine

learning as well as deep learning are mainly around stock market forecasting.

The purpose of my research work is to make use of technologies such as machine

learning and deep learning, and publicly available data to develop a framework that could

help an individual investor to take an informed decision without losing the investment

opportunities available in the market and to understand the opportunity cost of losing

such opportunities.

46

CHAPTER III:

METHODOLOGY

3.1 Overview of the Research Problem

The primary research method for this study is literature review and a new

investment strategy modeling.

Following steps will be adopted for the research methodology:

1. Perform a detailed literature review to understand various investment strategies and

data science techniques used in stock markets.

2. Identify the gaps in investment strategy modeling using methods of artificial

intelligence and machine leraning.

3. Identify the AIML modeling techniques that has high potential to generate investment

strategies and the areas where there are gaps.

4. Shortlist the modeling techniques that will be studied in detail to derive at a new

investment strategy that can benefit investors.

5. Decide the data space for the investment strategy that will be more relevant and

beneficial within the Indian stock markets.

6. Design data procurement process and decide on the data points that will be procured.

7. Perform further analysis and identify potential financial indicator based features that

can be created from the procured data.

8. Design the algorithm incorporating data science techniques with financial indicators

and newly derived features to device a new strategy that can generate portfolio

allocations using NIFTY 50 Index as the base.

9. Calculate the historical returns of the developed portfolio strategy and compare

against market benchmark to decide on the suitability of the strategy.

47

10. Design a front end interface that can show the comparison of all the new strategies

developed in this research and analyse their fitment for Indian investors.

3.2 Research Question Formulation

This research is primarily performed with the objective to answer the following

questions:

How can data science techniques and methodologies help in developing a

decision-making framework that helps in identifying the opportunities to invest in the

Indian stock markets?

3.2.1 Research Sub Questions

1. What are the key aspects/variables that need to be considered in understanding

opportunities?

2. What are the various techniques or algorithms that can be explored to identify

opportunities?

3. How can prescriptive analytics help in developing a decision-making framework in

the domain of Indian stock markets?

3.3 Research Design

An appropriate research design is defined based on the research questions and

objectives. The research design will be a mixed approach consisting of the study of

various quantitative methodologies along with relevant quantitative aspects through a

detailed literature review and then the development of a new investment strategy

framework for informed decision making through opportunity analysis of Indian stock

market.

3.4 Data Collection

The data collection methodology for the research in scope will be secondary data

collection. The data will be procured from publicly available and authentic data source –

48

Yahoo finance, since the data in question for this analysis is related to stocks and their

behavior. The data that would be collected through Yahoo Finance API will consist of

stock fundamentals such as sales, expenses, operating profit, profit before tax, net profit,

assets and liabilities etc. The data will also consist of daily stock prices for various stocks

in the market index. The data in scope for this analysis are the NIFTY 50 stocks from the

Indian Stock markets.

3.5 Data Analysis

Data Analysis will be performed on the publicly available data using statistical

techniques and data science methods. Various machine learning and data science

techniques will be applied to identify patterns and factors associated with lost investment

opportunities. Quantitative data where applicable will be analyzed to gain insights into

the decision-making process and challenges faced by Indian households.

3.6 Framework Development

A framework will be developed for educated decision-making by integrating the

findings from the data analysis, literature review, and qualitative analysis. The framework

will be addressing the identified challenges of expertise and information gaps, leveraging

data science and machine learning techniques. The framework will be designed as a

practical, user-friendly model, and aligned with the specific needs of Indian households.

The detailed design and development of the framework will be discussed in

Chapter 4.

3.7 Framework Validation

The effectiveness of the developed framework will be evaluated through

quantitative and qualitative assessments. Appropriate evaluation metrics will be used to

measure the impact of the framework on educated decision-making and investment

49

behavior. The feedback from the end users will also be used to validate the framework's

practicality and usefulness.

50

CHAPTER IV:

SLRPO INVESTMENT FRAMEWORK – DESIGN AND DEVELOPMENT

4.1 Introduction

In this research, I am introducing a new investment strategy named Strategic

Reinforcement Learning Portfolio Optimizer and abbreviated it to SRLPO

interchangeably used as SLRPO for the ease of usage. The purpose of this strategy is to

provide a suitable portfolio allocation of NIFTY 50 stocks for long-term investments by

developing multiple portfolio allocation strategies and identifying the best by analyzing

the opportunity cost of investing in one strategy compared to the other.

The following theoretical constructs will be studied in detail and operationalized

to develop SRLPO investment strategy.

1. Technical Indicators

2. Fundamental Indicators

3. Reinforcement Learning

4. Upper Confidence Bound1

5. Policy Network

6. Policy Search

7. Policy Gradient Methods

A new feature named Strength score will be introduced based on the technical and

fundamental indicators and it will be used as input for SLRPO strategy development.

The architecture of SLRPO Strategy is designed as depicted in Figure 4.1.

51

Figure 4.1 SLRPO Architecture

52

The SLRPO architecture in Figure 4.1 describes various modules designed to

develop the architecture for SLRPO and the functionalities performed in each module.

The modules are listed as follows:

1. Data Acquisition

2. Data Load

3. Indicators

4. Preprocessing

5. Weight Generator

6. Strength Score

7. Utility Functions

8. Strategy – UCB1

9. Strategy – Policy Network

10. Strategy – Policy Gradient

11. Allocation – UI

4.2 Data Acquisition Module

Data acquisition module for SLRPO focuses on systematically collecting relevant

financial data from a reliable data source. This module is crucial for conducting accurate

and meaningful financial analysis to create better strategies. In this module, the data

requirements will be specified as part of the SLRPO code and then retrieved from the

data source and structured in a way it can be used for financial analysis.

This module focuses on the following key implementations:

Data Source Identification:

Yahoo finance is leveraged as the most reliable data source for building SLRPO.

Yahoo finance is a well-known and credible provider of financial data. It offers

53

comprehensive information on stocks. Choosing yahoo finance as the data source ensures

reliability and accuracy of the finance data.

Target data specification:

Data acquisition implementation requires ticker symbol and date range as inputs

to fetch the data required for this analysis.

Ticker:

Ticker symbol uniquely identifies the stock of interest. Specifying the ticker

symbol helps in precise targeting of data acquisition by focusing on specific set of stocks

relevant to the research question.

Date Range:

Data range is specified in the data acquisition module to specifically decide on the

temporal scope of the data to be collected. This ensures that the data is extracted for the

specific period required for this analysis and will be used for studying the long-term trend

of the stocks.

Historical data retrieval:

The purpose of the data acquisition module is to fetch the historical data such as

daily prices and trading volumes within the specified data range. Historical data is crucial

for conducting time-series analysis, understanding past performance and identifying

patterns over time.

Collection of stock information:

In addition to the historical prices, this module also retrieves detailed information

about the stock metadata such as sector, market cap and other required fundamental

attributes. This data helps in understanding broader characteristics and environment of

the stock and to facilitate more comprehensive analysis.

Automation and Efficiency:

54

The use of yfinance library in Python to automate the data retrieval process makes

it very efficient to retrieve the data for this analysis. Automation of the data retrieval

process improves the efficiency of the data acquisition module, minimizes the risk of

manual errors that can occur while downloading large datasets and reduces the manual

efforts required in the process.

Structuring data for analysis:

The data acquisition module is designed to retrieve both historical stock prices

and fundamental stock information in a structured format. This structured format makes

the data immediately usable and also makes it easy to proceed with further

transformations on the data so that it becomes suitable for developing SLRPO strategy.

Logic Explanation:

The code for this module starts by defining libraries required for data acquisition

process.

import configparser

import yfinance as yf

The configparser is a standard library in Python used for importing configuration

files. The configurations needed for the SLRPO strategy will be defined in the config file

and imported using this library.

Yfinance is a Python library used for accessing financial data from Yahoo finance.

It has methods defined for downloading historical prices and stock information.

The next step in this module is to define a function named read_config to read the

configuration settings from a config file where the list of tickers needed to be used for

this analysis are defined.

def read_config(config_file):

 config = configparser.ConfigParser()

55

 config.read(config_file)

 if 'Settings' in config:

 settings = config['Settings']

 tickers = [item.strip() for item in settings.get('tickers').split('\n') if

item.strip()]

 return tickers

 else:

 raise ValueError("No 'Settings' section found in the config file")

The final responsibility of this module is to define the function fetch_data to fetch

the data from yahoo finance using the tickers defined from config file, as well as the start

date and end date needed for this research.

def fetch_data(ticker, start_date, end_date):

 stock = yf.Ticker(ticker)

 hist = stock.history(start=start_date, end=end_date)

 return stock.info, hist

The purpose of this module is to systematically define and collect the data needed

for the SLRPO strategy development in a well-defined structure and from a reliable

source suitable for conducting robust financial research.

4.3 Data Load Module

Data load module is the continuation of data acquisition module, and it focuses on

loading the data from yahoo finance. The data load is part of the data processing pipeline,

and it focuses on invoking the data acquisition module to gather the data needed for

SLRPO implementation. The key concepts designed in the data load module include the

following:

Initiating Data Acquisition:

56

Data acquisition is initiated in the data load module by calling the fetch_data

function. The tickers for the stocks, start date and end date are provided as parameters for

this function.

Centralized Data Management:

The data retrieval process is managed centrally in the data load module. A

streamlined approach to loading data from yahoo finance is initiated in the data load

module and further processing of data begins from this module.

Interface with Analytical Tools:

The module also ensures that the data is readily available for further processing

needed for SLRPO strategy development. The purpose of this module is to ensure that the

data is loaded into SLRPO eco system so that it can enable detailed development for the

rest of the strategy.

4.4 Indicators Module

The third module of SLRPO strategy is the Indicators module. For an investment

strategy to be designed successfully, understanding the statistical nature of the stock

prices and identifying hidden insights from it is very important. To do that, this module

defines a class named technical_indicators and covers the definitions of the following

indicators.

4.4.1 Technical Indicators

The list of technical indicators considered to design the SLRPO strategy are as

follows:

1. Average Directional Index (ADX)

2. Accumulation/Distribution Line (AD)

3. Average True Range (ATR)

4. Bollinger Bands

57

5. Chaikin Money Flow (CMF)

6. Donchian Channel

7. Ease of Movement (EMV)

8. Keltner Channel

9. Money Flow Index (MFI)

10. Moving Average Convergence Divergence (MACD)

11. Moving Averages (SMA and EMA)

12. On-Balance Volume (OBV)

13. Parabolic SAR

14. Periodic High/Low

15. Rate of Change (ROC)

16. Relative Strength (RS)

17. Relative Strength Index (RSI)

18. Stochastic Oscillator

19. Supertrend

20. Weighted Volume

21. Volume at Price

22. Volume Price Trend (VPT)

23. Volume Weighted Average Price (VWAP)

1. Average Directional Index (ADX)

The Average Directional Index (ADX) is the first feature chosen for SLRPO

strategy and it is used to quantify the technical strength of a trend in the capital markets

or the stock markets. Developed by J. Welles Wilder (Wilder, 1978), the ADX is part of

the Directional Movement System, which also includes the Plus Directional Indicator

(+DI) and the Minus Directional Indicator (-DI). The ADX ranges from 0 to 100, where

58

higher values indicate a stronger trend, and lower values indicate a weaker trend or a

range-bound market. It does not indicate the direction of the trend, only its strength.

ADX can be calculated by following these steps:

1. Compute the True Range (TR), which measures market volatility.

2. Determine the Directional Movement (DM), which differentiates between upward

and downward movements.

3. Smooth the TR and DM values using a specified window period (commonly 14

periods).

4. Calculate the Directional Indicators (+DI and -DI).

5. Compute the Directional Index (DX) and then average it to obtain the ADX.

For SLRPO strategy, the code for ADX is defined as follows:

def calculate_adx(self, data, window=14):

 high, low, close = data['High'], data['Low'], data['Close']

 tr1 = high - low

 tr2 = abs(high - close.shift())

 tr3 = abs(low - close.shift())

 tr = pd.DataFrame({'tr1': tr1, 'tr2': tr2, 'tr3': tr3}).max(axis=1)

 plus_dm = high.diff()

 minus_dm = low.diff()

 plus_dm[plus_dm < 0] = 0

 minus_dm[minus_dm > 0] = 0

 minus_dm = minus_dm.abs()

 smooth_tr = tr.rolling(window).sum()

 smooth_plus_dm = plus_dm.rolling(window).sum()

 smooth_minus_dm = minus_dm.rolling(window).sum()

59

 plus_di = 100 * (smooth_plus_dm / smooth_tr)

 minus_di = 100 * (smooth_minus_dm / smooth_tr)

 dx = (abs(plus_di - minus_di) / (plus_di + minus_di)) * 100

 adx = dx.rolling(window).mean()

 return adx

In the preceding code,

1. High, Low, and Close prices are extracted from the data.

2. True Range (TR) is calculated using three different methods to capture the most

significant price movement.

3. Directional Movements (DM) are computed to distinguish between upward and

downward price changes.

4. The TR and DM values are smoothed using a rolling window to reduce noise.

5. Directional Indicators (+DI and -DI) are calculated as percentages of the smoothed

values.

6. The Directional Index (DX) is determined and then averaged to produce the ADX,

which reflects the trend strength.

By understanding the Average Directional Index (ADX) and its application in

assessing trend strength, SLRPO strategy will have a valuable feature for evaluating

market conditions. However, trend strength is just one aspect of market analysis. To gain

a more comprehensive understanding, it's important to also consider indicators that

analyze the flow of money into and out of a security. One such indicator is the

Accumulation/Distribution Line (AD), which provides insights into buying and selling

pressure by considering both price and volume. The next feature considered for SLRPO

strategy is AD Line.

2. Accumulation/Distribution Line (AD)

60

The next feature chosen for SLRPO strategy is Accumulation/Distribution Line

(AD Line). This is a technical analysis indicator that helps investors understand the flow

of money into and out of a security. This indicator is developed by Marc Chaikin

(Chaikin, n.d.) and it combines both price and volume data to assess whether a stock is

being bought or sold over a specific period. Using this indicator helps in understanding

the trends between AD Line and the stock price.

AD Line can be calculated by calculating the following parameters:

Money Flow Multiplier

Money Flow Volume

Accumulation / Distribution Line

Money Flow Multiplier

MFM is calculated using the daily stock price as follows:

𝑵𝒖𝒎𝒆𝒓𝒂𝒕𝒐𝒓 = (𝑪𝒍𝒐𝒔𝒆 − 𝑳𝒐𝒘) − (𝑯𝒊𝒈𝒉 − 𝑪𝒍𝒐𝒔𝒆)

𝑫𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓 = 𝑯𝒊𝒈𝒉 − 𝑳𝒐𝒘

𝑴𝑭𝑴 =
𝑵𝒖𝒎𝒆𝒓𝒂𝒕𝒐𝒓

𝑫𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓

When the close price is near the high, the MFM will be closer to +1.

When the close price is near the low, the MFM will be closer to -1.

The Money Flow Multiplier (MFM) is calculated to determine the proportion of

the day's trading volume that is attributable to buying or selling pressure.

Money Flow Volume

MFV is calculated as follows:

𝑴𝑭𝑽 = 𝑴𝑭𝑴 × 𝑽𝒐𝒍𝒖𝒎𝒆

The Money Flow Volume (MFV) adjusts the trading volume based on the MFM

to reflect the actual flow of money.

Accumulation / Distribution Line

61

Accumulation / Distribution Line is calculated as follows:

𝑨𝑫 𝑳𝒊𝒏𝒆 = ∑ 𝑴𝑭𝑽

Running sum is calculated for the AD Line by adding each day’s MFV with the previous

day’s AD Line.

For SLRPO strategy, the code for AD Line is defined as follows:

 def calculate_accumulation_distribution(self, data):

 high, low, close, volume = data['High'], data['Low'], data['Close'],

data['Volume']

 mfm = ((close - low) - (high - close)) / (high - low)

 mfm.replace([float('inf'), -float('inf')], 0, inplace=True)

 mfv = mfm * volume

 ad = mfv.cumsum()

 return ad

In the preceding code,

1. MFM is calculated by calculating the numerator and denominator as explained above

and dividing them.

2. MFV is calculated by multiplying MFM with Volume.

3. AD Line is calculated by cumulatively summing the MFV.

Considering AD Line as one of the features helps SLRPO strategy to gather

insights on the flow of money and to analyze buying and selling pressure for stocks in the

market. Let us further consider the next feature Average True Range (ATR) which is

useful in understanding market volatility.

3. Average True Range (ATR)

62

Average True Range (ATR) is another feature that will be included in SLRPO

strategy to understand market volatility using stock data. This indicator was developed by

J. Welles Wilder (Wilder, 1978).

ATR can be used to understand the degree of price movement over a specific period.

The ATR is calculated using the following parameters:

True Range

Average True Range

True Range

Three values for True Range are calculated as follows:

True Range 1 is the difference between current High and current Low of the stock price.

𝑻𝑹𝟏 = 𝐇𝐢𝐠𝐡 − 𝐋𝐨𝐰

True Range 2 is the difference between the absolute value of current High and the Close

price at T-1.

𝑻𝑹𝟐 = 𝐀𝐁𝐒(𝐇𝐢𝐠𝐡 − 𝑪𝒍𝒐𝒔𝒆𝒕−𝟏)

True Range 3 is the difference between the absolute value of current Low and the Close

price at T-1.

𝑻𝑹𝟑 = 𝐀𝐁𝐒(𝐋𝐨𝐰 − 𝑪𝒍𝒐𝒔𝒆𝒕−𝟏)

The final True Range of each period is calculated as the maximum of TR1, TR2 and TR3.

𝑻𝑹 = 𝑴𝑨𝑿(𝐓𝐑𝟏, 𝐓𝐑𝟐, 𝐓𝐑𝟑)

Average True Range

The next step of ATR indicator is the calculation of Average True Range.

ATR is an average of True Ranges over a period N.

𝑨𝑻𝑹 =
∑ 𝑻𝑹𝒊

𝑵
𝒊=𝟏

𝑵

For SLRPO strategy, the code for ATR is defined as follows:

63

 def calculate_atr(self, data, window=14):

 high, low, close = data['High'], data['Low'], data['Close']

 tr1 = high - low

 tr2 = abs(high - close.shift())

 tr3 = abs(low - close.shift())

 true_range = pd.DataFrame({'tr1': tr1, 'tr2': tr2, 'tr3': tr3}).max(axis=1)

 atr = true_range.rolling(window=window).mean()

 return atr

In the preceding code,

1. True Range 1 is calculated as the difference between the current high and current low.

2. True Range 2 is calculated as the absolute difference between the current high and the

previous close.

3. True Range 3 is calculated as the absolute difference between the current low and the

previous close.

4. The final True Range is calculated as the max of the above TR1, 2 and 3.

5. The Average True Range (ATR) is calculated by taking the rolling mean of the True

Range over a specified number of periods which in this strategy is defined as 14.

Considering Average True Range as one of the features helps SLRPO strategy to

gather insights on the market volatility and to manage the risks and make informed

decisions on stocks in the market. Let us now consider the next feature Bollinger Bands

which is useful in understanding market dynamics further.

4. Bollinger Bands

The next feature for SLRPO strategy will be Bollinger Bands. This indicator was

developed by John A. Bollinger. Bollinger Bands is another market indicator that can

64

help in understanding market volatility by identifying overbought or oversold conditions

in the market (Bollinger, 2002).

Bollinger Bands are calculated using the following parameters:

1. Middle Band

2. Upper Band

3. Lower Band

Middle Band

The middle band is a simple moving average of the price calculated over a

specific period. The default window of SLRPO strategy will be set to 20, which is also

the number chosen usually for Bollinger Bands.

𝑴𝑩 = 𝐒𝐌𝐀(𝐧)

MB – Middle Band

SMA – Simple Moving Average

n – Selected Window

Upper Band

The upper band is calculated as the sum of the middle band and a multiple of

standard deviation. The default value for the number of standard deviations is for SLRPO

strategy will be set to 2, which is also the number chosen usually for Bollinger Bands.

𝑼𝑩 = 𝑴𝑩 + (𝝈 ∗ 𝒏𝒔)

UB – Upper Band

MB – Middle Band

σ – Standard Deviation

ns – Number of Standard Deviations

Lower Band

65

The lower band is calculated as the difference between the middle band and a

multiple of standard deviation. The default value for the number of standard deviations is

for SLRPO strategy will be set to 2, which is also the number chosen usually for

Bollinger Bands.

𝑳𝑩 = 𝑴𝑩 − (𝝈 ∗ 𝒏𝒔)

LB – Lower Band

MB – Middle Band

σ – Standard Deviation

ns – Number of Standard Deviations

For SLRPO strategy, the code for Bollinger Bands is defined as follows:

 def calculate_bollinger_bands(self, data, window=20, num_of_std=2):

 sma = data.rolling(window=window).mean()

 std = data.rolling(window=window).std()

 upper_band = sma + (std * num_of_std)

 lower_band = sma - (std * num_of_std)

 bollinger_bands = pd.DataFrame({'Upper Band': upper_band, 'Middle Band':

sma, 'Lower Band': lower_band})

 return bollinger_bands

In the preceding code,

1. The Simple Moving Average (sma) of price is calculated for a period of 20. This is

the middle band.

2. The Standard Deviation (std) is calculated for a period of 20.

3. The upper band is calculated as sum of sma + 2*std.

4. The lower band is calculated as the difference of sma – 2*std.

5. Bollinger Bands are represented as upper band, middle band and lower band.

66

Considering Bollinger Bands as one of the features helps SLRPO strategy to

gather more insights on the market volatility and to identify overbought and oversold

conditions on stocks in the market. Let us now consider the next feature Chaikin Money

Flow (CMF) which is useful in understanding market dynamics further.

5. Chaikin Money Flow (CMF)

Chaikin Money Flow (CMF) is the next feature that will be included in SLRPO

strategy to understand buying and selling pressure in the markets for a security using

stock data. This indicator was developed by Marc Chaikin. CMF can be used to

understand the market sentiment and price movements of a security (Chaikin, n.d.).

The CMF is calculated using the following parameters:

1. Money Flow Multiplier (MFM)

2. Money Flow Volume (MFV)

3. Chaikin Money Flow (CMF)

Money Flow Multiplier (MFM):

The MFM is calculated as follows using the daily stock prices of a security.

𝑴𝑭𝑴 =
(𝑪𝒍𝒐𝒔𝒆 − 𝑳𝒐𝒘) − (𝑯𝒊𝒈𝒉 − 𝑪𝒍𝒐𝒔𝒆)

𝑯𝒊𝒈𝒉 − 𝑳𝒐𝒘

Money Flow Volume (MFV)

The MFV is calculated by multiplying MFM with Volume.

𝑴𝑭𝑽 = 𝐌𝐅𝐌 × 𝐕𝐨𝐥𝐮𝐦𝐞

Chaikin Money Flow (CMF)

The CMF is calculated as the ratio between the sum of MFV over a window

period n and the Volume over the same window.

67

𝑪𝑴𝑭 =
∑ 𝑴𝑭𝑽𝒊

𝒏
𝒊=𝟏

∑ 𝑽𝒐𝒍𝒖𝒎𝒆𝒊
𝒏
𝒊=𝟏

For SLRPO strategy, the code for CMF is defined as follows:

 def calculate_chaikin_money_flow(self, data, window=20):

 high, low, close, volume = data['High'], data['Low'], data['Close'],

data['Volume']

 mfm = ((close - low) - (high - close)) / (high - low)

 mfm.replace([float('inf'), -float('inf')], 0, inplace=True)

 mfv = mfm * volume

 cmf = mfv.rolling(window=window).sum() /

volume.rolling(window=window).sum()

 return cmf

In the preceding code,

1. Money Flow Multiplier is calculated as defined in the MFM formula in this section.

2. The infinity values in the results of MFM are then replaced by 0 to avoid calculation

errors in the next steps.

3. Money Flow Volume is calculated as the product of MFM with Volume.

4. CMF is then calculated as the ratio between the rolling sum of MFV with the rolling

sum of Volume over the same window.

Considering Chaikin Money Flow as one of the features helps SLRPO strategy to

gather insights into buying and selling pressure through volume and price analysis on

stocks in the market. Let us now consider the next feature Donchian Channel which is

useful in understanding market dynamics further.

6. Donchian Channel

Donchian channel is the next feature that will be included in SLRPO strategy to

understand the trends in price changes by identifying the highest highs and the lowest

68

lows in the price of a stock. This indicator was developed by Richard Donchian

(Investopedia, 2023).

The Donchian channel is calculated using the following parameters:

1. Upper Band

2. Lower Band

3. Middle Band

Upper Band

The upper band is calculated as the highest high over a selected window.

Lower Band

The lower band is calculated as the lowest low over a selected window.

Middle Band

The middle band is calculated as the average of the upper and lower bands.

For SLRPO strategy, the code for Donchian channel is defined as follows:

 def calculate_donchian_channel(self, data, window=20):

 upper_band = data['High'].rolling(window=window).max()

 lower_band = data['Low'].rolling(window=window).min()

 middle_band = (upper_band + lower_band) / 2

 donchian_channel = pd.DataFrame({'Upper Band': upper_band, 'Middle

Band': middle_band, 'Lower Band': lower_band})

 return donchian_channel

In the preceding code,

1. Upper band is calculated as the maximum of the high stock price in the rolling

window.

2. Lower band is calculated as the minimum of the low stock price in the rolling

window.

69

3. Middle band is calculated as the mean of upper band and the lower band.

4. Donchian channel is then returned as a combined data frame of all the above values.

Considering Donchian Channel as one of the features helps SLRPO strategy in

identifying breakouts and trend reversals and for understanding price range and volatility.

Let us now consider the next feature Ease of Movement (EMV) which is useful in

understanding market dynamics further.

7. Ease of Movement (EMV)

Ease of Movement (EMV) is another feature that will be included in SLRPO

strategy to understand the relationship between the rate of price change and volume using

stock data. This indicator was developed by Richard W. Arms, Jr. EMV can be used to

understand the momentum behind price movements and identify potential buying or

selling opportunities (Arms, 1996).

The EMV is calculated using the following parameters:

• Midpoint Moved or Distance Moved

• Box Ratio

• Ease of Movement value

• Smoothing

Midpoint Moved or Distance Moved:

The midpoint moved or distance moved is the parameter to calculate the midpoint

of the high and low prices for the current and previous periods:

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑴𝒐𝒗𝒆𝒅 =
(𝐻𝑖𝑔ℎ𝑡 + 𝐿𝑜𝑤𝑡)

2
−

(𝐻𝑖𝑔ℎ𝑡−1 + 𝐿𝑜𝑤𝑡−1)

2

This measures the change in the midpoint of the price range from one period to

the next.

Box Ratio:

70

The next parameter is the box ratio which normalizes the midpoint move by the

trading volume and the price range:

𝑩𝒐𝒙 𝑹𝒂𝒕𝒊𝒐 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝑉𝑜𝑙𝑢𝑚𝑒 𝐷𝑖𝑣𝑖𝑠𝑜𝑟⁄

𝐻𝑖𝑔ℎ𝑡 − 𝐿𝑜𝑤𝑡

Ease of Movement value:

The EMV value for the period is calculated as:

𝑬𝑴𝑽 =
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑀𝑜𝑣𝑒𝑑

𝐵𝑜𝑥 𝑅𝑎𝑡𝑖𝑜

This value indicates how easily the price is moving. A positive EMV indicates

that prices are moving up easily, while a negative EMV indicates that prices are moving

down easily.

Smoothing:

The final step in EMV calculation is to smooth the EMV value using moving average so

that the value becomes more useful for analysis. This is an optional parameter that can be

calculated.

𝑺𝒎𝒐𝒐𝒕𝒉 𝑬𝑴𝑽 = 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐸𝑀𝑉, 𝑛)

n - the number of periods for the moving average.

For SLRPO strategy, the code for EMV is defined as follows:

 def calculate_ease_of_movement(self, data, window=14,

volume_divisor=100000000):

 high, low, volume = data['High'], data['Low'], data['Volume']

 distance_moved = ((high + low) / 2) - ((high + low) / 2).shift(1)

 box_ratio = (volume / volume_divisor) / (high - low)

 emv = distance_moved / box_ratio

71

 emv.replace([float('inf'), -float('inf')], 0, inplace=True) # Handle division by

zero

 emv_smoothed = emv.rolling(window=window).mean()

 return emv_smoothed

In the preceding code,

1. The Distance Moved is calculated as the difference between the average of current

high and low and the average of previous high and low.

2. The Box Ratio is calculated as the normalized ratio of volume and the difference

between current high and low.

3. The EMV is calculated as the ratio of Distance Moved and the Box Ratio.

4. Smoothing is then performed on the EMV.

Considering Ease of Movement (EMV) as one of the features helps SLRPO

strategy in understanding the momentum of price movements by integrating volume. Let

us now consider the next feature Keltner Channel which is useful in understanding

market trends and volatility further.

8. Keltner Channel

The Keltner Channel is another feature that will be included in SLRPO strategy to

identify potential trends and trading opportunities by combining aspects of volatility and

moving averages. This indicator was developed by Chester W. Keltner in the 1960s

(Keltner, 1960).

The Keltner Channel has been refined over time and is calculated using the

Exponential Moving Average (EMA) and the Average True Range (ATR).

The Keltner Channel is calculated using the following parameters:

• Middle Line

• High Low

72

• High Close

• Low Close

• Ranges

• True Range

• Average True Range

• Upper Band

• Lower Band

Middle Line

The middle line is calculated as follows:

𝑴𝒊𝒅𝒅𝒍𝒆𝑳𝒊𝒏𝒆𝒕 = 𝐶𝑙𝑜𝑠𝑒𝑡 × (1 − 𝛼) + 𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑖𝑛𝑒𝑡−1 × 𝛼

High Low

The High Low is calculated as follows:

𝑯𝒊𝒈𝒉𝑳𝒐𝒘𝒕 = 𝐻𝑖𝑔ℎ𝑡 − 𝐿𝑜𝑤𝑡

High Close

The High Close is calculated as follows:

𝑯𝒊𝒈𝒉𝑪𝒍𝒐𝒔𝒆𝒕 = |𝐻𝑖𝑔ℎ𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑡−1|

Low Close

The Low Close is calculated as follows:

𝑳𝒐𝒘𝑪𝒍𝒐𝒔𝒆𝒕 = |𝐿𝑜𝑤𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑡−1|

Ranges

The ranges are calculated as follows:

𝑹𝒂𝒏𝒈𝒆𝒔𝒕 =

𝐻𝑖𝑔ℎ𝐿𝑜𝑤𝑡

𝐻𝑖𝑔ℎ𝐶𝑙𝑜𝑠𝑒𝑡

𝐿𝑜𝑤𝐶𝑙𝑜𝑠𝑒𝑡

True Range

The true range is calculated as follows:

73

𝑻𝒓𝒖𝒆𝑹𝒂𝒏𝒈𝒆𝒕 = max (𝑅𝑎𝑛𝑔𝑒𝑠𝑡)

Average True Range

The ATR is calculated as follows:

𝑨𝑻𝑹𝒕 =
1

𝑛
∑ 𝑇𝑟𝑢𝑒𝑅𝑎𝑛𝑔𝑒𝑖

𝑡

𝑖=𝑡−𝑛+1

n – the ATR window

Upper Band

The upper band is calculated as follows:

𝑼𝒑𝒑𝒆𝒓𝑩𝒂𝒏𝒅𝒕 = 𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑖𝑛𝑒𝑡 + (𝑘 × 𝐴𝑇𝑅𝑡)

k – multiplier

Lower Band

The lower band is calculated as follows:

𝑳𝒐𝒘𝒆𝒓𝑩𝒂𝒏𝒅𝒕 = 𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑖𝑛𝑒𝑡 − (𝑘 × 𝐴𝑇𝑅𝑡)

For SLRPO strategy, the code for Keltner Channel is defined as follows:

 def calculate_keltner_channel(self, data, ema_period=20, atr_period=10,

multiplier=2):

 middle_line = data['Close'].ewm(span=ema_period, adjust=False).mean()

 high_low = data['High'] - data['Low']

 high_close = (data['High'] - data['Close'].shift()).abs()

 low_close = (data['Low'] - data['Close'].shift()).abs()

 ranges = pd.concat([high_low, high_close, low_close], axis=1)

 true_range = ranges.max(axis=1)

 atr = true_range.rolling(window=atr_period).mean()

 upper_band = middle_line + (multiplier * atr)

 lower_band = middle_line - (multiplier * atr)

74

 keltner_channel = pd.DataFrame({'Upper Band': upper_band, 'Middle Line':

middle_line, 'Lower Band': lower_band})

 return keltner_channel

In the preceding code,

1. The parameters required for Keltner channel are calculated as explained in the

equations of this section.

2. The Exponential Moving Average period is set to 20 and the Average True Range

period is set to 10.

3. The multiplier for upper band and lower band is set to 2.

Considering Keltner Channel as one of the features helps SLRPO strategy in

understanding the trend and volatility of prices. Let us now consider the next feature

Money Flow Index (MFI) which is useful in understanding market dynamics further.

9. Money Flow Index (MFI)

Money Flow Index (MFI) is another feature that will be included in SLRPO

strategy, and it uses both price and volume data to identify overbought and oversold

conditions in a security. MFI was developed by Gene Quong and Avrum Soudack

(Murphy, 1999).

The MFI is calculated using the following parameters:

1. Typical Price

2. Raw Money Flow

3. Positive Flow

4. Negative Flow

5. Sum Positive Money Flow

6. Sum Negative Money Flow

7. Money Flow Ratio

75

8. Money Flow Index

Typical Price

The Typical Price is calculated as follows:

𝑻𝒚𝒑𝒊𝒄𝒂𝒍𝑷𝒓𝒊𝒄𝒆𝒕 =
𝐻𝑖𝑔ℎ𝑡 + 𝐿𝑜𝑤𝑡 + 𝐶𝑙𝑜𝑠𝑒𝑡

3

Raw Money Flow

Raw Money Flow is calculated as follows:

𝑹𝒂𝒘𝑴𝒐𝒏𝒆𝒚𝑭𝒍𝒐𝒘𝒕 = 𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡 × 𝑉𝑜𝑙𝑢𝑚𝑒𝑡

Positive Flow

Positive Flow is calculated as follows:

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝑭𝒍𝒐𝒘𝒕 = {
𝑅𝑎𝑤𝑀𝑜𝑛𝑒𝑦𝐹𝑙𝑜𝑤𝒕, 𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡 ≥ 𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡−1

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Negative Flow

Negative Flow is calculated as follows:

𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝑭𝒍𝒐𝒘𝒕 = {
𝑅𝑎𝑤𝑀𝑜𝑛𝑒𝑦𝐹𝑙𝑜𝑤𝒕, 𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡 ≤ 𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡−1

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Sum Positive Money Flow

The sum positive money flow is calculated as follows:

𝑺𝒖𝒎𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝑴𝑭𝒕 = ∑ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐹𝑙𝑜𝑤𝑖

𝑡

𝑖=𝑡−𝑝𝑒𝑟𝑖𝑜𝑑+1

76

period – Selected period

Sum Negative Money Flow

The sum negative money flow is calculated as follows:

𝑺𝒖𝒎𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝑴𝑭𝒕 = ∑ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐹𝑙𝑜𝑤𝑖

𝑡

𝑖=𝑡−𝑝𝑒𝑟𝑖𝑜𝑑+1

period – Selected period

Money Flow Ratio

The money flow ratio is calculated as follows:

𝑴𝑭𝑹𝒕 =
𝑆𝑢𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑀𝐹𝑡

𝑆𝑢𝑚𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑀𝐹𝑡

Money Flow Index

The money flow index is calculated as follows:

𝑴𝑭𝑰𝒕 = 100 − (
100

1 + 𝑀𝐹𝑅𝑡
)

For SLRPO strategy, the code for Money Flow Index is defined as follows:

 def calculate_money_flow_index(self, data, period=14):

 typical_price = (data['High'] + data['Low'] + data['Close']) / 3

 raw_money_flow = typical_price * data['Volume']

 positive_flow = raw_money_flow.copy()

 negative_flow = raw_money_flow.copy()

 positive_flow[typical_price <= typical_price.shift()] = 0

77

 negative_flow[typical_price >= typical_price.shift()] = 0

 positive_mf_sum = positive_flow.rolling(window=period).sum()

 negative_mf_sum = negative_flow.rolling(window=period).sum()

 mfr = positive_mf_sum / negative_mf_sum

 mfi = 100 - (100 / (1 + mfr))

 return mfi

In the preceding code,

1. The parameters required for MFI are calculated as explained in the equations of this

section.

2. The rolling window period for the calculations are set to 14.

Considering Money Flow Index as one of the features helps SLRPO strategy to

gather insights on the market momentum and liquidity. Let us now consider the next

feature Moving Average Convergence Divergence (MACD) which is useful in

understanding market momentum furthermore.

10. Moving Average Convergence Divergence (MACD)

Moving Average Convergence Divergence (MACD) is another feature that will

be included in SLRPO strategy, and it is used to identify changes in the strength,

direction, momentum, and duration of a trend in the price of a stock. MACD was

developed by Gerald Appel in the late 1970s (Appel, 2005).

The MACD is calculated using the following parameters:

1. EMA Fast

2. EMA Slow

3. MACD Line

4. Signal Line

EMA Fast

78

Exponential Moving Average (EMA) Fast is calculated as follows:

𝑬𝑴𝑨𝑭𝒂𝒔𝒕𝒕 = (
𝐶𝑙𝑜𝑠𝑒𝑡 × (1 − ∝𝑓𝑎𝑠𝑡) + 𝐸𝑀𝐴𝐹𝑎𝑠𝑡𝑡−1 × ∝𝑓𝑎𝑠𝑡

1
)

where ∝𝑓𝑎𝑠𝑡=
2

𝑓𝑎𝑠𝑡+1

EMA Slow

Exponential Moving Average (EMA) Slow is calculated as follows:

𝑬𝑴𝑨𝑺𝒍𝒐𝒘𝒕 = (
𝐶𝑙𝑜𝑠𝑒𝑡 × (1 − ∝𝑠𝑙𝑜𝑤) + 𝐸𝑀𝐴𝑆𝑙𝑜𝑤𝑡−1 × ∝𝑠𝑙𝑜𝑤

1
)

where ∝𝑠𝑙𝑜𝑤=
2

𝑠𝑙𝑜𝑤+1

MACD Line

Moving Average Convergence Divergence (MACD) is calculated as follows:

𝑴𝑨𝑪𝑫𝒕 = 𝐸𝑀𝐴𝐹𝑎𝑠𝑡𝑡 − 𝐸𝑀𝐴𝑆𝑙𝑜𝑤𝑡

Signal Line

Signal Line is calculated as follows:

𝑺𝒊𝒈𝒏𝒂𝒍𝑳𝒊𝒏𝒆𝒕 = (
𝑀𝐴𝐶𝐷𝑡 × (1 − 𝛼𝑠𝑖𝑔𝑛𝑎𝑙) + 𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑖𝑛𝑒𝑡− × 𝛼𝑠𝑖𝑔𝑛𝑎𝑙

1
)

 where 𝛼𝑠𝑖𝑔𝑛𝑎𝑙 =
2

𝑠𝑖𝑔𝑛𝑎𝑙+1

For SLRPO strategy, the code for MACD is defined as follows:

 def calculate_macd(self, data, slow=26, fast=12, signal=9):

 ema_fast = data['Close'].ewm(span=fast, adjust=False).mean()

 ema_slow = data['Close'].ewm(span=slow, adjust=False).mean()

 macd = ema_fast - ema_slow

 signal_line = macd.ewm(span=signal, adjust=False).mean()

 macd_df = pd.DataFrame({'MACD': macd, 'Signal Line': signal_line})

 return macd_df

79

In the preceding code,

1. The parameters required for MACD are calculated as explained in the equations of

this section.

2. The value for fast is set to 12, slow is set to 26 and signal is set to 9.

3. MACD_DF is returned as a data frame with combined data of MACD Line and

Signal Line.

Considering Moving Average Convergence Divergence (MACD) as one of the

features helps SLRPO strategy in identifying trends and momentum shifts. Let us now

consider the next feature Moving Averages themselves which is useful in smoothing the

price data and understanding underlying trends.

11. Moving Averages (SMA and EMA)

Moving Averages (SMA and EMA) is another feature that will be included in

SLRPO strategy, it helps to smooth out price data over a specified period, making it

easier to identify trends and potential reversal points. Two of the most used types of

moving averages are the Simple Moving Average (SMA) and the Exponential Moving

Average (EMA). Moving averages have been discussed and refined throughout various

technical analysis performed on stock markets data. One of the sources of reference for

moving averages is ‘Technical Analysis of the Financial Markets’ (Murphy, 1999).

The Moving Averages are calculated using the following parameters:

1. Simple Moving Average

2. Exponential Moving Average

Simple Moving Average

The Simple Moving Average is calculated as follows:

𝑺𝑴𝑨𝒕 =
1

𝑛
∑ 𝑑𝑎𝑡𝑎𝑖

𝑡

𝑖=𝑡−𝑛+1

80

n - the window period

Exponential Moving Average

The Exponential Moving Average is calculated as follows:

𝑬𝑴𝑨𝒕 = 𝛼 + 𝑑𝑎𝑡𝑎𝑡 + (1 − 𝛼) × 𝐸𝑀𝐴𝑡−1

𝛼 =
2

𝑛 + 1

α – smoothing factor

n – period for the window

For SLRPO strategy, the code for Moving averages is defined as follows:

 def calculate_moving_averages(self, data, period):

 sma = data.rolling(window=period).mean()

 ema = data.ewm(span=period, adjust=False).mean()

 moving_averages = pd.DataFrame({'SMA': sma, 'EMA': ema})

 return moving_averages

In the preceding code,

1. The parameters required for SMA and EMA are calculated as explained in the

equations of this section.

2. The rolling window period for the calculations are defined as custom parameters.

3. Moving Averages are returned as a data frame with combined data of SMA and

EMA.

Considering Moving Averages as one of the features helps SLRPO strategy to

smoothen the price data and gather insights on the price trends. Let us now consider the

next feature On-Balance Volume (OBV) which is useful in understanding market trends

furthermore.

81

12. On-Balance Volume (OBV)

On-Balance Volume (OBV) is another feature that will be included in SLRPO

strategy, and it uses volume to understand the price movement. According to OBV,

significant changes in volume can signal potential price movements. OBV was developed

by Joe Granville in the 1960s (Granville, 1963).

The OBV is calculated using the following parameters:

1. Initial OBV

2. OBV

Initial OBV

The OBV is initialized as follows:

𝑶𝑩𝑽𝟎 = 0

OBV

OBV is calculated as follows:

𝑶𝑩𝑽𝒕 = {

𝑂𝐵𝑉𝑡−1 + 𝑉𝑜𝑙𝑢𝑚𝑒𝑡 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 > 𝐶𝑙𝑜𝑠𝑒𝑡−1

𝑂𝐵𝑉𝑡−1 − 𝑉𝑜𝑙𝑢𝑚𝑒𝑡 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 < 𝐶𝑙𝑜𝑠𝑒𝑡−1

𝑂𝐵𝑉𝑡−1 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 = 𝐶𝑙𝑜𝑠𝑒𝑡−1

For SLRPO strategy, the code for On-Balance Volume (OBV) is defined as follows:

 def calculate_on_balance_volume(self, data):

 close = data['Close']

 volume = data['Volume']

 obv = pd.Series(index=close.index)

 obv.iloc[0] = volume.iloc[0] if close.iloc[0] > close.iloc[0] else 0

 for i in range(1, len(close)):

 if close[i] > close[i - 1]:

 obv[i] = obv[i - 1] + volume[i]

82

 elif close[i] < close[i - 1]:

 obv[i] = obv[i - 1] - volume[i]

 else:

 obv[i] = obv[i - 1]

 return obv

In the preceding code,

1. The OBV is initialized to 0 and then calculated further.

2. The parameters required for OBV are calculated as explained in the equations of this

section.

Considering On-Balance Volume (OBV) as one of the features helps SLRPO

strategy to gather insights on the price movements and trends. Let us now consider the

next feature Parabolic SAR which is useful in understanding market trends furthermore.

13. Parabolic SAR

Parabolic SAR (Stop and Reverse) is another feature that will be included in

SLRPO strategy, and it is used to identify potential reversal points in the price movement

of an asset and to optimize trading strategies. Parabolic SAR was developed by J. Welles

Wilder Jr. (Wilder, 1978).

The Parabolic SAR is represented as a series of dots placed above or below the price bars

on a chart:

• When the dots are below the price, it indicates an uptrend.

• When the dots are above the price, it indicates a downtrend.

The Parabolic SAR is calculated using the following parameters:

1. Extreme Point

2. Acceleration Factor

3. Initialize SAR

83

4. Initialize Trend

5. SAR

Extreme Point

The extreme point is calculated as the highest high in an uptrend or the lowest low in a

downtrend.

𝑬𝑷𝟎 = {
𝐻𝑖𝑔ℎ0 𝐼𝑓 𝑢𝑝𝑡𝑟𝑒𝑛𝑑 𝑖𝑠 𝑇𝑟𝑢𝑒
𝐿𝑜𝑤0 𝐼𝑓 𝑢𝑝𝑡𝑟𝑒𝑛𝑑 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒

Acceleration Factor

The acceleration factor is a value that is initialized at 0.02 and increases by 0.02 each

time a new EP is reached, up to a maximum of 0.20.

𝑨𝑭𝟎 = 0.02

Initialize SAR

The initial SAR is calculated as follows:

𝑺𝑨𝑹[𝟎] = {
𝐻𝑖𝑔ℎ[0] 𝑖𝑓 𝐻𝑖𝑔ℎ[0] < 𝐿𝑜𝑤[0]

𝐿𝑜𝑤[0] 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Initialize Trend

The initial Trend is calculated as follows:

𝑼𝒑𝒕𝒓𝒆𝒏𝒅 = {
𝑇𝑟𝑢𝑒 𝑖𝑓 𝐻𝑖𝑔ℎ[0] < 𝐿𝑜𝑤[0]

𝐹𝑎𝑙𝑠𝑒 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

SAR

The SAR is calculated as follows:

𝑺𝑨𝑹𝒊 = 𝑆𝐴𝑅𝑖−1 + 𝐴𝐹 × (𝐸𝑃 − 𝑆𝐴𝑅𝑖−1)

For SLRPO strategy, the code for Parabolic SAR is defined as follows:

84

def calculate_parabolic_sar(self, high, low, af_start=0.02, af_increment=0.02,

af_max=0.2):

 sar = high if high[0] < low[0] else low

 sar.iloc[0] = high[0] if high[0] < low[0] else low[0]

 uptrend = high[0] < low[0]

 ep = high[0] if uptrend else low[0]

 af = af_start

 for i in range(1, len(high)):

 if uptrend:

 sar[i] = sar[i - 1] + af * (ep - sar[i - 1])

 if high[i] > ep:

 ep = high[i]

 af = min(af + af_increment, af_max)

 if low[i] < sar[i]:

 uptrend = False

 sar[i] = ep

 ep = low[i]

 af = af_start

 else:

 sar[i] = sar[i - 1] + af * (ep - sar[i - 1])

 if low[i] < ep:

 ep = low[i]

 af = min(af + af_increment, af_max)

 if high[i] > sar[i]:

 uptrend = True

85

 sar[i] = ep

 ep = high[i]

 af = af_start

 return sar

In the preceding code,

1. The parameters required for Parabolic SAR are calculated as explained in the

equations of this section.

2. The AF Start is set to 0.02, incremented by 0.02 and AF Max is set to 0.2.

3. The SAR is updated in the loop that iterates through each data point to update the

SAR value based on the current trend direction.

Considering Parabolic SAR as one of the features helps SLRPO strategy in

identifying potential trend reversals and managing trailing stop losses. Let us now

consider the next feature Periodic High/Low which is useful in understanding how it can

be used to spot key support and resistance levels and enhance market analysis further.

14. Periodic High/Low

Periodic High/Low is another feature that will be included in SLRPO strategy,

and it is used to identify the highest high and the lowest low within a specified period.

One of the sources of reference for Periodic High/Low is ‘Technical Analysis of the

Financial Markets’ (Murphy, 1999).

The Periodic High/Low is calculated using the following parameters:

1. Periodic High

2. Periodic Low

Periodic High

The Periodic High is the highest price reached within a specified period. It is

calculated as follows:

86

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝐻𝑖𝑔ℎ = max (𝐻𝑖𝑔ℎ1, 𝐻𝑖𝑔ℎ2, … 𝐻𝑖𝑔ℎ𝑛)

Periodic Low

The Periodic Low is the lowest price reached within a specified period. It is

calculated as follows:

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝐿𝑜𝑤 = max (𝐿𝑜𝑤1, 𝐿𝑜𝑤, … 𝐿𝑜𝑤𝑛)

For SLRPO strategy, the code for Periodic High/Low is defined as follows:

 def calculate_periodic_high_low(self, data, period):

 periodic_high = data.rolling(window=period).max()

 periodic_low = data.rolling(window=period).min()

 high_low_df = pd.DataFrame({'Periodic High': periodic_high, 'Periodic

Low': periodic_low})

 return high_low_df

In the preceding code,

1. The parameters required for Periodic High/Low are calculated as explained in the

equations of this section.

2. Periodic High/Low are returned as a data frame with combined data of Periodic High

and Periodic Low.

Considering Periodic High/Low as one of the features helps SLRPO strategy to

gather insights on the price movements. Let us now consider the next feature Rate of

Change (RoC) which quantifies the speed at which prices are changing.

15. Rate of Change (ROC)

Rate of Change (ROC) is another feature that will be included in SLRPO strategy,

and it is a momentum-based technical analysis indicator that measures the percentage

change in price between the current stock price and a stock price in the past. It helps in

87

understanding the speed at which a security's price is changing, providing insights into

the momentum and strength of a trend. One of the sources of reference for ROC is

‘Technical Analysis of the Financial Markets’ (Murphy, 1999).

The ROC is calculated using the following parameters:

1. Difference in price

2. Rate of Change (ROC)

Difference in price:

The difference in price is calculated as follows:

∆𝑷𝒓𝒊𝒄𝒆 = 𝑃𝑟𝑖𝑐𝑒𝑡 − 𝑃𝑟𝑖𝑐𝑒𝑡−𝑛

Price - is the price of the security at the most recent period.

n - is the number of periods chosen for the calculation.

Rate of Change (ROC):

The rate of change is calculated as follows:

𝑹𝑶𝑪𝒕 = (
∆𝑃𝑟𝑖𝑐𝑒

𝑃𝑟𝑖𝑐𝑒𝑡−𝑛
) × 100

n - is the number of periods chosen for the calculation.

For SLRPO strategy, the code for Rate of Change (ROC) is defined as follows:

 def calculate_rate_of_change(self, data, period):

 roc = ((data - data.shift(period)) / data.shift(period)) * 100

 return roc

In the preceding code,

1. The parameters required for ROC are calculated as explained in the equations of this

section.

2. The period for the calculations is provided as input while calling the function.

88

Considering Rate of Change (ROC) as one of the features helps SLRPO strategy

to gather insights on the market momentum and strength of a trend. Let us now consider

the next feature Relative Strength (RS) which is useful to identify strong performing

assets.

16. Relative Strength

Relative Strength is another feature that will be included in SLRPO strategy, and

it is used to compare the performance of one asset against another or against a benchmark

index. RS is used to identify how well an asset is performing relative to its peers or the

market as a whole. RS is a technical indicator extensively used in technical analysis and

was widely discussed by Robert W. Colby in his comprehensive guide on technical

analysis (Colby, 2003).

The RS is calculated using the following parameters:

1. Delta

2. Gain

3. Loss

4. Relative Strength

Delta

The Delta value is calculated as follows:

∆𝑷𝒓𝒊𝒄𝒆𝒕 = 𝑃𝑟𝑖𝑐𝑒𝑡 − 𝑃𝑟𝑖𝑐𝑒𝑡−1

Gain

The Gain is calculated as follows:

𝑮𝒂𝒊𝒏𝒕 =
1

𝑛
 ∑ max (∆𝑃𝑟𝑖𝑐𝑒𝑖, 0)

𝑡

𝑖=𝑡−𝑛+1

Loss

The Loss is calculated as follows:

89

𝑳𝒐𝒔𝒔𝒕 =
1

𝑛
 ∑ max (−∆𝑃𝑟𝑖𝑐𝑒𝑖, 0)

𝑡

𝑖=𝑡−𝑛+1

Relative Strength

The relative strength is calculated as follows:

𝑹𝑺𝒕 =
𝐺𝑎𝑖𝑛𝑡

𝐿𝑜𝑠𝑠𝑡

For SLRPO strategy, the code for Relative Strength is defined as follows:

 def calculate_relative_strength(self, data, period=14):

 delta = data.diff(1)

 gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()

 loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()

 rs = gain / loss

 return rs

In the preceding code,

1. The parameters required for RSI are calculated as explained in the equations of this

section.

2. The rolling window period for the calculations are set to 14.

Considering Relative Strength (RS) as one of the features helps SLRPO strategy

in comparing the performance of assets against benchmarks or peers. Let us now consider

the next feature Relative Strength Index (RSI) which is an extension of Relative Strength

and provides additional insights on the market momentum.

17. Relative Strength Index (RSI)

90

Relative Strength Index (RSI) is another feature that will be included in SLRPO

strategy and is used in technical analysis to measure the speed and change of price

movements. The value of RSI falls between 0 to 100 and it provides information on

whether a stock is overbought or oversold. RSI was developed by J. Welles Wilder in

1978 (Wilder, 1978).

The RSI is calculated using the following parameters. Some of the parameters in

RSI overlaps with the parameters in Relative Strength:

1. Delta

2. Gain

3. Loss

4. Relative Strength

5. Relative Strength Index

Delta

The Delta value is calculated as follows:

∆𝑷𝒓𝒊𝒄𝒆𝒕 = 𝑃𝑟𝑖𝑐𝑒𝑡 − 𝑃𝑟𝑖𝑐𝑒𝑡−1

Gain

The Gain is calculated as follows:

𝑮𝒂𝒊𝒏𝒕 =
1

𝑛
 ∑ max (∆𝑃𝑟𝑖𝑐𝑒𝑖, 0)

𝑡

𝑖=𝑡−𝑛+1

Loss

The Loss is calculated as follows:

𝑳𝒐𝒔𝒔𝒕 =
1

𝑛
 ∑ max (−∆𝑃𝑟𝑖𝑐𝑒𝑖, 0)

𝑡

𝑖=𝑡−𝑛+1

Relative Strength

The relative strength is calculated as follows:

91

𝑹𝑺𝒕 =
𝐺𝑎𝑖𝑛𝑡

𝐿𝑜𝑠𝑠𝑡

Relative Strength Index

The relative strength index is calculated as follows:

𝑹𝑺𝑰𝒕 = 100 − (
100

1 + 𝑅𝑆𝑡
)

For SLRPO strategy, the code for Relative Strength Index is defined as follows:

 def calculate_rsi(self, data, period=14):

 delta = data.diff(1)

 gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()

 loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()

 rs = gain / loss

 rsi = 100 - (100 / (1 + rs))

 return rsi

In the preceding code,

1. The parameters required for RSI are calculated as explained in the equations of this

section.

2. The rolling window period for the calculations are set to 14.

Considering Relative Strength Index as one of the features helps SLRPO strategy

to identify overbought and oversold conditions, as well as potential reversals and trend

strength. Let us now consider the next feature Stochastic Oscillator which will be used to

understand how it can complement our analysis and enhance SLRPO Strategy.

18. Stochastic Oscillator

Stochastic Oscillator is another feature that will be included in SLRPO strategy,

and it compares a security's closing price to its price range over a specified period,

providing insights into the momentum and potential reversal points of the asset.

Stochastic Oscillator was developed by George Lane in the late 1950s (Lane, 1984).

92

The Stochastic Oscillator is calculated using the following parameters:

1. Lowest Low

2. Highest High

3. %K Line

4. % D Line

Lowest Low

The lowest low is calculated as follows:

𝑳𝒐𝒘𝑴𝒊𝒏𝒕 = min (𝐿𝑜𝑤𝑡−𝑘+1, 𝐿𝑜𝑤𝑡−𝑘+2, … , 𝐿𝑜𝑤𝑡)

k – Rolling window period

Highest High

The highest high is calculated as follows:

𝑯𝒊𝒈𝒉𝑴𝒂𝒙𝒕 = max (𝐻𝑖𝑔ℎ𝑡−𝑘+1, 𝐻𝑖𝑔ℎ𝑡−𝑘+2, … , 𝐻𝑖𝑔ℎ𝑡)

k – Rolling window period

%K Line

The %K Line is calculated as follows:

%𝑲𝒕 = (
𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐿𝑜𝑤𝑀𝑖𝑛𝑡

𝐻𝑖𝑔ℎ𝑀𝑎𝑥𝑡 − 𝐿𝑜𝑤𝑀𝑖𝑛𝑡
) × 100

%D Line

The %D Line (Moving Average of %K) is calculated as follows:

%𝑫𝒕 =
1

𝑑
 ∑ %𝐾𝑖

𝑡

𝑖=𝑡−𝑑+1

d – window period for D Line

For SLRPO strategy, the code for Stochastic Oscillator is defined as follows:

 def calculate_stochastic_oscillator(self, data, k_period=14, d_period=3):

93

 low_min = data['Low'].rolling(window=k_period).min()

 high_max = data['High'].rolling(window=k_period).max()

 k_line = ((data['Close'] - low_min) / (high_max - low_min)) * 100

 d_line = k_line.rolling(window=d_period).mean()

 stochastic_df = pd.DataFrame({'%K': k_line, '%D': d_line})

 return stochastic_df

In the preceding code,

1. The parameters required for Stochastic Oscillator are calculated as explained in the

equations of this section.

2. The rolling window period k is set to 14 and d is set to 3 for the calculations.

Considering Stochastic Oscillator as one of the features helps SLRPO strategy in

identifying overbought and oversold conditions and potential reversal points. Let us now

consider the next feature Supertrend which uses price and volatility data to generate buy

and sell signals.

19. Supertrend

Supertrend is another feature that will be included in SLRPO strategy, and it helps

to identify the prevailing trend of a security and provides clear buy and sell signals. It

combines price action and volatility to determine the direction of the trend. Supertrend

was widely discussed by Olivier Seban, a French trader and author (Seban, 2008).

The Supertrend is calculated using the following parameters:

1. High Low Average

2. Average True Range

3. Basic Upper Band

4. Basic Lower Band

5. Final Upper Band

94

6. Final Lower Band

7. Supertrend

High Low Average

The high low average is calculated as follows:

𝑯𝑳𝟐𝒕 =
𝐻𝑖𝑔ℎ𝑡 + 𝐿𝑜𝑤𝑡

2

Average True Range

The average true range is calculated as follows:

𝑨𝑻𝑹𝒕 =
1

𝑛
 ∑ max (𝐻𝑖𝑔ℎ𝑖 − 𝐿𝑜𝑤𝑖 , |𝐻𝑖𝑔ℎ𝑖 − 𝐶𝑙𝑜𝑠𝑒𝑖−1|, |𝐿𝑜𝑤𝑖 − 𝐶𝑙𝑜𝑠𝑒𝑖−1|)

𝑡

𝑖=𝑡−𝑛+1

n – Rolling window period

Basic Upper Band

The basic upper band is calculated as follows:

𝑩𝒂𝒔𝒊𝒄𝑼𝒑𝒑𝒆𝒓𝑩𝒂𝒏𝒅𝒕 = 𝐻𝐿2𝑡 + (𝑘 × 𝐴𝑇𝑅𝑡)

k - multiplier

Basic Lower Band

The basic lower band is calculated as follows:

𝑩𝒂𝒔𝒊𝒄𝑳𝒐𝒘𝒆𝒓𝑩𝒂𝒏𝒅𝒕 = 𝐻𝐿2𝑡 − (𝑘 × 𝐴𝑇𝑅𝑡)

k - multiplier

Final Upper Band

The final upper band is calculated as follows:

𝑭𝒊𝒏𝒂𝒍𝑼𝒑𝒑𝒆𝒓𝑩𝒂𝒏𝒅𝒕

= {
𝑚𝑖𝑛(𝐵𝑎𝑠𝑖𝑐𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝐹𝑖𝑛𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1), 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡−1 ≤ 𝐹𝑖𝑛𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1

𝐵𝑎𝑠𝑖𝑐𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Final Lower Band

The final lower band is calculated as follows:

95

𝑭𝒊𝒏𝒂𝒍𝑳𝒐𝒘𝒆𝒓𝑩𝒂𝒏𝒅𝒕

= {
𝑚𝑎𝑥(𝐵𝑎𝑠𝑖𝑐𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝐹𝑖𝑛𝑎𝑙𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1), 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡−1 ≥ 𝐹𝑖𝑛𝑎𝑙𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1

𝐵𝑎𝑠𝑖𝑐𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

Supertrend

The Supertrend is calculated as follows:

𝑺𝒖𝒑𝒆𝒓𝒕𝒓𝒆𝒏𝒅𝒕 = {
𝐹𝑖𝑛𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡−1 ≤ 𝐹𝑖𝑛𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1

𝐹𝑖𝑛𝑎𝑙𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

For SLRPO strategy, the code for Supertrend is defined as follows:

def calculate_supertrend(self, data, period=14, multiplier=3):

 hl2 = (data['High'] + data['Low']) / 2

 atr = hl2.rolling(window=period).apply(lambda x: max(x.max() - x.min(),

abs(x.max() - x[-1]), abs(x.min() - x[-1])).mean(), raw=True)

 basic_upperband = hl2 + (multiplier * atr)

 basic_lowerband = hl2 - (multiplier * atr)

 final_upperband = basic_upperband.copy()

 final_lowerband = basic_lowerband.copy()

 for i in range(1, len(final_upperband)):

 if data['Close'][i-1] <= final_upperband[i-1]:

 final_upperband[i] = min(basic_upperband[i], final_upperband[i-1])

 if data['Close'][i-1] >= final_lowerband[i-1]:

 final_lowerband[i] = max(basic_lowerband[i], final_lowerband[i-1])

 supertrend = pd.Series(data.index)

 for i in range(1, len(supertrend)):

 if data['Close'][i-1] <= final_upperband[i-1]:

 supertrend[i] = final_upperband[i]

 else:

 supertrend[i] = final_lowerband[i]

96

 return supertrend

In the preceding code,

1. The parameters required for Supertrend are calculated as explained in the equations of

this section.

2. The rolling window period for the calculations are set to 14 and the multiplier is set to

3.

Considering Supertrend as one of the features helps SLRPO strategy in

identifying trend directions and generating buy and sell signals. Let us now consider the

next feature Weighted Volume which is a Volume based indicator and helps in

understanding market activity.

20. Weighted Volume

Weighted Volume is another feature that will be included in SLRPO strategy, and

it combines price and volume data to provide insights into the strength and significance

of price movements. Weighted Volume adjusts the volume based on the price change as

opposed to any other simple volume indicators that considers only the trading volume.

One of the sources of reference for Weighted Volume is ‘Technical Analysis of the

Financial Markets’ (Murphy, 1999).

The Weighted Volume is calculated using the following parameters:

1. Price Range

2. Weighted Volume

Price Range

The price range is calculated as follows:

𝑷𝒓𝒊𝒄𝒆𝑹𝒂𝒏𝒈𝒆𝒕 = 𝐻𝑖𝑔ℎ𝑡 − 𝐿𝑜𝑤𝑡

Weighted Volume

The weighted volume is calculated as follows:

97

𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅𝑽𝒐𝒍𝒖𝒎𝒆𝒕 = 𝑉𝑜𝑙𝑢𝑚𝑒𝑡 − 𝑃𝑟𝑖𝑐𝑒𝑅𝑎𝑛𝑔𝑒𝑡

For SLRPO strategy, the code for Weighted Volume is defined as follows:

 def calculate_weighted_volume(self, data):

 price_range = data['High'] - data['Low']

 weighted_volume = data['Volume'] * price_range

 return weighted_volume

In the preceding code,

1. The parameters required for Weighted Volume are calculated as explained in the

equations of this section.

Considering Weighted Volume as one of the features helps SLRPO strategy in

combining price and volume data to assess the strength and significance of price

movements. Let us now consider the next feature Volume at Price which provides

detailed insights into the distribution of trading volume across different price levels.

21. Volume at Price

Volume at Price is another feature that will be included in SLRPO strategy, and it

helps identify key price levels where significant trading activity has occurred, which can

act as support or resistance levels. One of the sources of reference for Volume at Price is

‘Technical Analysis of the Financial Markets’ (Murphy, 1999).

The Volume at Price is calculated using the following parameters:

1. Volume at Each Close Price

Volume at Each Close Price:

The volume at each close price is calculated as:

𝑽𝒐𝒍𝒖𝒎𝒆𝑨𝒕𝑷𝒓𝒊𝒄𝒆(𝑪) = ∑ 𝑉𝑜𝑙𝑢𝑚𝑒𝑡

𝑡∈𝑇(𝐶)

98

This groups the data by each unique closing price and sums the volumes for each

group, providing the total trading volume for each closing price.

For SLRPO strategy, the code for Volume at Price is defined as follows:

 def calculate_volume_at_price(self, data):

 volume_at_price = data.groupby('Close')['Volume'].sum()

 return volume_at_price.reset_index(drop = True)

In the preceding code,

1. The parameters required for Volume at Price are calculated as explained in the

equations of this section.

Considering Volume at Price as one of the features helps SLRPO strategy to

gather insights on the trading volume across different price levels. Let us now consider

the next feature Volume Price Trend (VPT) which is useful in understanding market

momentum furthermore.

22. Volume Price Trend (VPT)

Volume Price Trend (VPT) is another feature that will be included in SLRPO

strategy, and it combines price and volume to provide insights into the strength and

direction of a trend. The VPT indicator is like the On-Balance Volume (OBV) but

includes price changes in its calculation, making it more sensitive to both volume and

price fluctuations. One of the sources of reference for Volume Price Trend (VPT) is

‘Technical Analysis of the Financial Markets’ (Murphy, 1999).

The VPT is calculated using the following parameters:

1. Change in Close Price

2. Percentage Change in Close Price

3. VPT Contribution

4. Cumulative sum of VPT Contributions

99

Change in Close Price

The change in close price is calculated as follows:

∆𝑪𝒍𝒐𝒔𝒆𝒕 = 𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑡−1

Percentage Change in Close Price

The percentage change in close price is calculated as follows:

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆𝑪𝒉𝒂𝒏𝒈𝒆𝒕 =
∆𝐶𝑙𝑜𝑠𝑒𝑡

𝐶𝑙𝑜𝑠𝑒𝑡−1

VPT Contribution

The VPT contribution is calculated as follows:

𝑽𝑷𝑻𝑪𝒐𝒏𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏𝒕 = 𝑉𝑜𝑙𝑢𝑚𝑒𝑡 × 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑡

Cumulative sum of VPT Contributions

The cumulative sum of VPT contributions is calculated as follows:

𝑽𝑷𝑻𝒕 = ∑ 𝑉𝑃𝑇𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖

𝑡

𝑖=1

For SLRPO strategy, the code for VPT is defined as follows:

 def calculate_volume_price_trend(self, data):

 close = data['Close']

 volume = data['Volume']

 vpt = (volume * ((close - close.shift(1)) / close.shift(1))).cumsum()

 return vpt

In the preceding code,

1. The parameters required for VPT are calculated as explained in the equations of this

section.

Considering Volume Price Trend (VPT) as one of the features helps SLRPO

strategy in understanding the strength of price movements by considering the cumulative

volume. Let us now consider the next feature Volume Weighted Average Price (VWAP)

100

which helps to identify the average price at which a security has traded throughout the

day, adjusted for volume.

23. Volume Weighted Average Price (VWAP)

Volume Weighted Average Price (VWAP) is another feature that will be included

in SLRPO strategy, and it uses both price and volume data to calculate the average price

a security has traded at throughout the day. One of the sources of reference for Volume

Weighted Average Price (VWAP) is "Algorithmic Trading and DMA: An Introduction to

Direct Access Trading Strategies" by Barry Johnson (Johnson, 2010).

The VWAP is calculated using the following parameters:

1. Cumulative Sum of the Product of Close Price and Volume

2. Cumulative Sum of Volume

3. VWAP

Cumulative Sum of the Product of Close Price and Volume

The cumulative sum of the product of close price and volume is calculated as follows:

𝑪𝑺(𝑪 × 𝑽𝒕) = ∑(𝐶𝑙𝑜𝑠𝑒𝑖 × 𝑉𝑜𝑙𝑢𝑚𝑒𝑖)

𝑡

𝑖=1

Cumulative Sum of Volume

The cumulative sum of volume is calculated as follows:

𝑪𝑺(𝑽𝒕) = ∑ 𝑉𝑜𝑙𝑢𝑚𝑒𝑖

𝑡

𝑖=1

VWAP

The VWAP is calculated as follows:

𝑽𝑾𝑨𝑷𝒕 =
𝐶𝑆(𝐶 × 𝑉𝑡)

𝐶𝑆(𝑉𝑡)

101

For SLRPO strategy, the code for VWAP is defined as follows:

 def calculate_vwap(self, data):

 vwap = (data['Close'] * data['Volume']).cumsum() /

data['Volume'].cumsum()

 return vwap

In the preceding code,

1. The parameters required for VWAP are calculated as explained in the equations

of this section.

These technical indicators are chosen because they collectively provide a well-

rounded analysis of market conditions. These indicators are relevant for SLRPO strategy

to identify trends, measure momentum, assess volatility, and understand volume

dynamics. By covering different aspects of technical analysis, these indicators enable

SLRPO in making informed investment decisions and prescribe portfolios.

4.4.2 Fundamental Indicators

The list of fundamental indicators considered to design the SLRPO strategy are as

follows (Investopedia, n.d.):

1. Earnings Per Share (EPS)

2. Price to Earnings Ratio (P/E)

3. Projected Earnings Growth (PEG)

4. Free Cash Flow (FCF)

5. Price to Book Ratio (P/B)

6. Return on Equity (ROE)

7. Dividend Payout Ratio (DPR)

8. Price to Sales Ratio (P/S)

9. Dividend Yield Ratio

102

10. Debt-to-Equity Ratio (D/E)

11. Book Value

12. Revenue

13. Revenue Growth

The definitions and equations for these fundamental indicators are explained as

follows:

Earnings Per Share (EPS)

Earnings Per Share (EPS) is one of the fundamental features that will be included

in SLRPO strategy. EPS is the measure of the amount of net income earned per share of a

company’s common stock.

𝑬𝑷𝑺 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒 − 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑆ℎ𝑎𝑟𝑒𝑠

Price to Earnings Ratio (P/E)

Price to Earnings Ratio (P/E) is another fundamental feature that will be included

in SLRPO strategy. P/E ratio is the measure of the price that the investors are willing to

pay per earnings.

𝑷 𝑬⁄ 𝑹𝒂𝒕𝒊𝒐 =
𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑃𝑒𝑟 𝑆ℎ𝑎𝑟𝑒 (𝐸𝑃𝑆)

Projected Earnings Growth (PEG)

Projected Earnings Growth (PEG) is another fundamental feature that will be

included in SLRPO strategy. PEG is the measure of the ratio between P/E Ratio and

Annual EPS Growth Rate.

𝑷𝑬𝑮 𝑹𝒂𝒕𝒊𝒐 =
𝑃 𝐸⁄ 𝑅𝑎𝑡𝑖𝑜

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑃𝑆 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒

Free Cash Flow (FCF)

103

Free Cash Flow (FCF) is another fundamental feature that will be included in

SLRPO strategy. FCF is the measure of the difference between Operating Cash Flow and

Capital Expenditures for a company.

𝑭𝑪𝑭 = Operating Cash Flow − Capital Expenditures

Price to Book Ratio (P/B)

Price to Book Ratio (P/B) is another fundamental feature that will be included in

SLRPO strategy. P/B is the measure of the ratio of Market Price per share to the Book

Value per share.

𝑷 𝑩⁄ 𝑹𝒂𝒕𝒊𝒐 =
𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐵𝑜𝑜𝑘 𝑉𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

Return on Equity (ROE)

Return on Equity (ROE) is another fundamental feature that will be included in

SLRPO strategy. ROE is the measure of the ratio of Net Income to the Shareholders’

equity.

𝑹𝑶𝑬 =
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝑆ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝑠′𝐸𝑞𝑢𝑖𝑡𝑦

Dividend Payout Ratio (DPR)

Dividend Payout Ratio (DPR) is another fundamental feature that will be included

in SLRPO strategy. DPR is the measure of the ratio of Dividends per Share to the

Earnings Per Share (EPS).

𝑫𝑷𝑹 =
𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑃𝑒𝑟 𝑆ℎ𝑎𝑟𝑒 (𝐸𝑃𝑆)

Price to Sales Ratio (P/S)

Price to Sales Ratio (P/S) is another fundamental feature that will be included in

SLRPO strategy. P/S is the measure of the ratio of Market Price per Share to the Sales per

Share.

104

𝑷 𝑺𝑹𝒂𝒕𝒊𝒐⁄ =
𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝑆𝑎𝑙𝑒𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

Dividend Yield Ratio

Dividend Yield Ratio is another fundamental feature that will be included in

SLRPO strategy. Dividend Yield Ratio is the measure of the ratio of Annual Dividends

per Share to the Market Price per Share.

𝑫𝒊𝒗𝒊𝒅𝒆𝒏𝒅 𝒀𝒊𝒆𝒍𝒅 =
𝐴𝑛𝑛𝑢𝑎𝑙 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

Debt-to-Equity Ratio (D/E)

Debt-to-Equity Ratio (D/E) is another fundamental feature that will be included in

SLRPO strategy. Debt-to-Equity Ratio (D/E) is the measure of the ratio of Total

Liabilities to the Shareholders’ equity.

𝑫/𝑬𝑹𝒂𝒕𝒊𝒐 =
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑆ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝑠′𝐸𝑞𝑢𝑖𝑡𝑦

Book Value

Book Value is another fundamental feature that will be included in SLRPO

strategy. Book Value is the measure of the difference between Total Assets and Total

Liabilities.

𝑩𝒐𝒐𝒌 𝑽𝒂𝒍𝒖𝒆 = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠 − 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

Revenue

Revenue is another fundamental feature that will be included in SLRPO strategy.

Revenue is the measure of the Total Sales of a company.

𝑹𝒆𝒗𝒆𝒏𝒖𝒆 = 𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑙𝑒𝑠

Revenue Growth

Revenue growth is another fundamental feature that will be included in SLRPO

strategy. Revenue growth measures the increase in a company's sales from one period to

the next.

105

𝑹𝒆𝒗𝒆𝒏𝒖𝒆 𝑮𝒓𝒐𝒘𝒕𝒉

=
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑒𝑟𝑖𝑜𝑑 𝑅𝑒𝑣𝑒𝑛𝑢𝑒

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑒𝑟𝑖𝑜𝑑 𝑅𝑒𝑣𝑒𝑛𝑢𝑒
 × 100

For SLRPO strategy, the code for Fundamental Indicators is defined as follows:

 def get_stock_financials(self, symbol):

 stock = yf.Ticker(symbol)

 info = stock.info

 financials = {

 'Earnings Per Share (EPS)': info.get('trailingEps', 'Not available'),

 'Price to Earnings Ratio (P/E)': info.get('trailingPE', 'Not available'),

 'Projected Earnings Growth (PEG)': info.get('pegRatio', 'Not available'),

 'Free Cash Flow (FCF)': info.get('freeCashflow', 'Not available'),

 'Price to Book Ratio (P/B)': info.get('priceToBook', 'Not available'),

 'Return on Equity (ROE)': info.get('returnOnEquity', 'Not available'),

 'Dividend Payout Ratio (DPR)': info.get('payoutRatio', 'Not available'),

 'Price to Sales Ratio (P/S)': info.get('priceToSalesTrailing12Months', 'Not

available'),

 'Dividend Yield Ratio': info.get('dividendYield', 'Not available') * 100 if

info.get('dividendYield') is not None else 'Not available',

 'Debt-to-Equity Ratio (D/E)': info.get('debtToEquity', 'Not available'),

 'Book Value': info.get('bookValue', 'Not available'),

 'Revenue': info.get('totalRevenue', 'Not available'),

 'Revenue Growth': info.get('revenueGrowth', 'Not available') * 100 if

info.get('revenueGrowth') is not None else 'Not available'

 }

106

 financial_metrics = pd.DataFrame([financials])

 return financial_metrics

In the preceding code,

1. The fundamental indicators are loaded from Yahoo Finance.

2. All the fundamental indicators discussed in this section are used for this

analysis.

These fundamental indicators are chosen since they cover various aspects of

economic factors, financial factors, company performance, qualitative and quantitative

factors. These fundamental indicators offer a balanced view of both short-term and long-

term prospects, making them essential tools for SLRPO investment strategy design.

4.4.2 Generator

The Generator is the next functionality of the Indicators module that is

responsible for generating the results for both Technical and Fundamental indicators that

are defined in the Indicators module. This function acts as an essential part of the SLRPO

Strategy providing a comprehensive set of indicators that can be used for further financial

analysis and modeling.

The code for Generator is defined as follows:

def generate_tech_indicators(ticker, start_date, end_date):

 tc = ti()

 info, hist = fetch_data(ticker, start_date, end_date)

 data = hist.reset_index()

 data2 = data.copy(deep = True)

 data2['ADX'] = tc.calculate_adx(data)

 data2['AD'] = tc.calculate_accumulation_distribution(data)

 data2['ATR'] = tc.calculate_atr(data, window=14)

107

 data2[['BB_Upper Band', 'BB_Middle Band', 'BB_Lower Band']] =

tc.calculate_bollinger_bands(data['Close'])

 data2['CMF'] = tc.calculate_chaikin_money_flow(data)

 data2[['DCC_Upper Band', 'DCC_Middle Band', 'DCC_Lower Band']]

=tc.calculate_donchian_channel(data)

 data2['EOM'] = tc.calculate_ease_of_movement(data)

 data2[['KC_Upper Band', 'KC_Middle Band', 'KC_Lower Band']]

=tc.calculate_keltner_channel(data)

 data2['MFI'] = tc.calculate_money_flow_index(data)

 data2[['MACD', 'MACD_Signal Line']] = tc.calculate_macd(data)

 data2[['SMA', 'EMA']] = tc.calculate_moving_averages(data["Close"],

period=20)

 data2['BV'] = tc.calculate_on_balance_volume(data)

 data2['PS'] = tc.calculate_parabolic_sar(data['High'], data['Low'])

 data2[['Periodic High', 'Periodic Low']] =

tc.calculate_periodic_high_low(data['Close'], period=30)

 data2['RoC'] = tc.calculate_rate_of_change(data['Close'], period=10)

 data2['RS'] = tc.calculate_relative_strength(data['Close'])

 data2['RS'] = data2['RS'].replace(np.inf, 0)

 data2['RSI'] = tc.calculate_rsi(data['Close'])

 data2['RSI'] = data2['RSI'].replace(np.inf, 0)

 data2[['SOK', 'SOD']] = tc.calculate_stochastic_oscillator(data)

 data2['ST'] = tc.calculate_supertrend(data)

 data2['WV'] = tc.calculate_weighted_volume(data)

 data2['VaP'] = tc.calculate_volume_at_price(data)

108

 data2['VPT'] = tc.calculate_volume_price_trend(data)

 data2['VWAP'] = tc.calculate_vwap(data)

 fin = tc.get_stock_financials(ticker)

 datfinal = pd.concat([data2, fin])

 datfinal = datfinal.fillna(method = 'bfill')

 datfinal = datfinal.fillna(method = 'ffill')

 datfinal = datfinal.fillna(0)

 return datfinal

Key Functions of the Generator:

1. Integration of Technical and Fundamental Analysis

2. Data Acquisition and Preparation

3. Calling Technical Indicators

4. Calling Fundamental Indicators

5. Data Integration and Cleansing

6. Output Generation

Integration of Technical and Fundamental Analysis

The Generator function ‘generate_tech_indicators’ handles both technical and

fundamental analysis by generating the function calls for both types of indicators. This

dual approach provides a holistic view of the stock's performance and potential future

movements. While technical analysis focuses on historical price and volume data to

identify patterns and trends, fundamental analysis looks at the intrinsic value of a stock

based on financial statements and economic indicators. Both are essential for SLRPO

strategy to work effectively.

Data Acquisition and Preparation

109

The Generator function also handles data acquisition by invoking the function

needed to fetch the data ‘fetch_data’ from Yahoo finance. This step ensures that both

historical trading data and relevant stock information are available for SLRPO strategy.

The historical data is also cleansed and structured in this function so that it can be

provided as input to calculate the indicators.

Calling Technical Indicators

All the technical indicators discussed in this research under section 3.2.3.1

Technical Indicators are called in the Generator function so that the indicators are

calculated on the data fetched from Yahoo finance and cleansed in this module.

Calling Fundamental Indicators

All the fundamental indicators discussed in this research under section 3.2.3.2

Fundamental Indicators are called in the Generator function so that the indicators are

calculated on the data fetched from Yahoo finance and cleansed in this module. The

fundamental indicators are calculated using the get_stock_financials function.

Data Integration and Cleansing

The technical and fundamental indicators are extracted and combined into one

data frame. The data is then cleansed and prepared by handling missing values through

backward filling and forward filling methods. The cleansed data will be used for further

analysis of the SLRPO Strategy.

Output Generation

The Generator function returns the final data set that will be provided as input to

the next modules of SLRPO strategy.

With the data being ready in the Indicators module, the next module handles the

preprocessing required for SLRPO strategy development.

4.5 Preprocessing Module

110

The Preprocessing module is responsible to cleanse, finalize and prepare data for

subsequent analysis. The main goal of this module is to ensure that the data is ready for

SLRPO Investment strategy development and to create a final data set for all the stocks

along with their corresponding technical and fundamental indicators.

The code for the preprocessor consists of the following functions and steps:

def read_config(config_file):

 config = configparser.ConfigParser()

 config.read(config_file)

 if 'Settings' in config:

 settings = config['Settings']

 tickers = [item.strip() for item in settings.get('tickers').split('\n') if

item.strip()]

 return tickers

 else:

 raise ValueError("No 'Settings' section found in the config file")

start_date = '2020-01-01'

end_date = '2024-01-31'

config_file = 'config.ini'

tickers = read_config(config_file)

output_df = []

for ticker in tickers:

 ticker_df = generate_tech_indicators(ticker, start_date, end_date)

 ticker_df['Ticker'] = ticker

 output_df.append(ticker_df)

stocks_data = pd.concat(output_df)

111

stocks_data = stocks_data.replace('Not available', 0)

stocks_data = stocks_data.replace(np.inf, 0)

problematic_indices = []

for i, col in enumerate(stocks_data .columns):

 try:

 problematic_rows = np.where(np.isinf(stocks_data [col]) |

(np.abs(stocks_data [col]) > np.finfo(np.float64).max))[0]

 problematic_indices.extend([(row, i) for row in problematic_rows])

 if problematic_indices:

 print("Problematic values found at the following indices:")

 for row, col in problematic_indices:

 print(f"Row: {row}, Column: {stocks_data .columns[col]}")

 stocks_data .iloc[row, col] = 0

 except:

 pass

stocks_data.to_csv('stocks_data.csv', index_label = False, index = False)

Key Functions of the Preprocessing Module are:

1. Configuration and Data Initialization

2. Data Collection and Integration

3. Data Cleansing

4. Error Handling

5. Finalizing the Data

Configuration and Data Initialization

The functionality of this step is to configure the setting required to read the config

file and to read the list of stocks from the config file. Nifty 50 stocks are of interest for

112

this analysis and hence the list of Nifty 50 stocks will be provided in the configuration

file as input.

The configuration also involves setting the start date and the end date required for

the SLRPO strategy development. This step ensures that the data is configured to be

collected in the right period so that it spans around the appropriate time frame for

analysis.

Data Collection and Integration

The ‘generate_tech_indicators’ method is called to collect data for all stocks in

the Nifty 50 portfolio configured in the configuration file. The stock data collected will

be used to generate technical and fundamental indicators for the specified data range. The

data is then appended in a list and converted into a single data set named ‘stocks_data’.

Data Cleansing

Cleansing of missing values and infinite values are also handled in this module to

avoid any calculation errors that might come up due to ‘Not Available’ or ‘Infinite’ data

that were generated during the feature creation process for Technical and Fundamental

indicators. This Preprocessing module also checks for problematic values that might be

too large or invalid. This includes detecting infinite values or values that exceed the

maximum allowable float value. Any problematic values are identified, logged, and

replaced with zeros to maintain data integrity.

Error Handling

The preprocessing module includes mechanisms to handle errors gracefully, such

as missing configuration sections or issues during data processing. This robustness

ensures that the preprocessing step can handle unexpected issues without failing entirely.

Finalizing the Data

113

The Preprocessing module also performs a final check to ensure that there are no

remaining problematic data points present in the stocks data. This step is essential to

ensure that there are no invalid data, and all values are within the expected ranges and the

final input data set is clean. The cleaned and finalized dataset is then exported to a CSV

file named ‘stocks_data.csv’. This ensures that the data is saved in a standardized format

that can be easily accessed and used in subsequent stages of the SLRPO strategy.

The final stocks_data.csv is represented as follows:

Figure 4.2 Stocks Features Data after Preprocessing

The Preprocessing Module plays an important role in this strategy creation

pipeline by ensuring that the data is clean, consistent, and properly structured for further

analysis of SLRPO. This module reads configuration settings, collects and integrates

data, handles missing and invalid values, and performs final integrity checks. This

meticulous approach to data preprocessing is essential for accurate and meaningful

financial analysis of the data for SLRPO strategy. The next module developed for this

study is the Weight Generator module.

4.6 Weight Generator Module

The weight generator module is a very important module for SLRPO Strategy

because it introduces a new concept in this research and study. The new concept is the

‘Strength Score’. Strength Score is a new metric introduced in this Thesis to quantify the

114

overall performance and health of a stock based on a comprehensive set of Technical and

Fundamental indicators studies and included as features for the SLRPO strategy.

The weight generator module is designed to perform various tasks that are

prerequisites for generating Strength Score.

Before discussing the key functions, it is relevant to look at the code for the

functions performed by Weight Generator together and then discuss each of the functions

handled.

The code for the Weight Generator module consists of the following definitions

and steps.

Code snippet for Base Input data configuration is as follows:

config_file = 'config.ini'

tickers = read_config(config_file)

stocks = pd.read_csv('stocks_data.csv', low_memory=False)

stocks.fillna(0, inplace = True)

date_column = stocks.iloc[:, 0]

ticker_columns = stocks.iloc[:, -1]

Code snippet for Normalization is as follows:

from sklearn.preprocessing import MinMaxScaler

scaler = MinMaxScaler()

standardized_stocks = pd.DataFrame(scaler.fit_transform(stocks.iloc[:, 1:-1]),

columns=stocks.columns[1:-1])

normalized_stocks = pd.concat([date_column, standardized_stocks,

ticker_columns], axis=1)

standardized_stocks.index = date_column

features = standardized_stocks.copy(deep = True)

115

Code snippets for Weight Network Architecture, Strength Score definition and

Weight calculation are as follows:

def calculate_weights(features, ticker):

 df = features.copy(deep = True)

 df = df.fillna(method = 'bfill')

 df = df.fillna(method = 'ffill')

 df = df.fillna(0)

 df = df[df['Ticker']==ticker]

 df.reset_index(inplace = True, drop = True)

 df.index = df['Date']

 df.drop(columns = ['Date', 'Ticker'], inplace = True)

 X = df.drop('Return on Equity (ROE)', axis=1)

 y = df['Return on Equity (ROE)']

 X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3,

random_state=42)

 scaler = StandardScaler()

 X_train_scaled = scaler.fit_transform(X_train)

 X_test_scaled = scaler.transform(X_test)

 model = keras.Sequential([

 keras.layers.Dense(256, activation='softmax',

input_shape=(X_train_scaled.shape[1],)),

 keras.layers.Dense(128, activation='softmax'),

 keras.layers.Dense(64, activation='softmax'),

 keras.layers.Dense(55, activation='softmax'),

 keras.layers.Dense(50, activation='softmax'),

116

 keras.layers.Dense(1)

])

 model.compile(optimizer='adam', loss='mean_squared_error')

 model.fit(X_train_scaled, y_train, epochs=10, batch_size=32)

 loss = model.evaluate(X_test_scaled, y_test)

 print('Test loss:', loss)

 predictions = model.predict(X_test_scaled)

 weights = model.layers[4].get_weights()[1]

 print('Weights:', weights)

 daily_scores = pd.DataFrame(index=X.index)

 for date, technical_scores in X.iterrows():

 all_scores = technical_scores.tolist()

 strength_score = sum([score * weight for score, weight in zip(all_scores,

weights)]) / sum(weights)

 daily_scores.at[date, 'Strength Score'] = strength_score

 return daily_scores

Key Functions of the Weight Generator Module are:

1. Normalization

2. Designing Weight Networks

3. Calculating Weights

1. Normalization

Normalization is the first step performed in the Weight Generator module to

ensure all the features in the data that includes technical and fundamental indicators are

on the same unit scale and can be processed further equally. Normalization is required to

117

ensure that the weights are calculated accurately, and the subsequent Strength Score

generated is relevant for the stocks in this research.

Reading Data:

The stock data is loaded into the Weight Generator module in the form of a CSV

file and the data includes all the features generated in the Preprocessing module.

Data cleansing and missing data handling is performed on the data after it is

loaded to ensure that at every step the data integrity is preserved.

Organizing Data:

The Date column in the dataset is converted into index so that it can be used

effectively in Time series data processing. The Ticker column from the data is separated

from the dataset before normalizing the data since Ticker is an identifier and not a

column to be normalized. This leaves only the feature columns in the dataset to be

normalized.

Min Max Scaling:

The normalization of all the numerical features in the data are performed using

Mix Max Scaling.

Min Max Scaling is calculated as follows:

𝑋𝑛𝑜𝑟𝑚 =
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 − 𝑋𝑚𝑖𝑛

X – actual data point of the feature

Xmax – maximum value of the feature

Xmin – minimum value of the feature

Xnorm – normalized value of the feature

Normalized Data Frame creation:

118

The normalized data is then converted back into the original data frame format.

The Ticker column is added back to the data and the Date column is added as index for

the dataset.

The normalized data for each feature is represented as follows:

Figure 4.3 Normalized Features of Stocks Data

Consistency and Integrity:

It is important to maintain the consistency and integrity of the data throughout the

SLRPO Strategy. The Date column is set as the index of the data to ensure the data is

consistent for further processing in the form of time series and all the features are

maintained with data integrity. A deep copy of the data is made on the normalized

features to ensure that the original dataset is preserved for verification purposes.

Data Cleansing:

Data cleansing and handling of missing values are performed in this module again

to ensure that the normalized data does not through any calculation errors in the future

steps. The missing values are handled using forward filling and backfilling methods. This

ensures that the dataset is complete and ready for the weight calculation and strength

score generation steps.

Defining Features and Targets:

The clean dataset is then divided into Features (X) and Target (y).

119

Features (X): All columns except the target variable (ROE) are used as features. These

features represent the technical and fundamental indicators included in this research.

Target (y): The Return on Equity (ROE) column is used as the target variable that

the model aims to predict. ROE is chosen as target variable since it is a key measure of a

company's profitability and financial performance.

 Splitting the Data:

The data is split into training and testing sets using a 70-30 split. This ensures that

the model is trained on a subset of the data and evaluated on a separate subset to test its

performance and generalization ability.

By carefully separating, normalizing, and reintegrating the date and ticker

columns, the normalization process prepares a consistent and comprehensive dataset for

subsequent analysis. This process is fundamental for accurate weight calculation and

reliable strength score generation, enabling robust and insightful analysis in the SLRPO

strategy.

2. Designing Weight Networks

The design for the newly introduced concept of Strength Score in this Thesis

begins from designing the weight networks which is a neural network required to

generate the weight parameters for Strength Score calculation. The goal of this networks

is to consider the normalized technical and fundamental indicators as input features and

predict the Return on Equity (RoE) for the Nifty 50 stocks under this study. The weights

generated from this network will be considered as the input weights used on the features

to calculate Strength scores. The Strength Score is a combination of normalized technical

indicators and the prediction power of the network on RoE. The Strength Score and its

explanation will be discussed further in the Strength Score module. This section in the

Weight Generator module focuses on designing the neural networks.

120

The neural networks architecture designed in this module is used to learn the

importance (weights) of various technical and fundamental indicators in predicting the

Return on Equity (ROE) of stocks. It is to be noted that the goal of the SLRPO

Investment Strategy developed in this Thesis is not to predict the Return on Equity (ROE)

but to design the investment strategies with better opportunity costs. The weight

calculation and the network design are an intermediate step in the feature engineering

process for SLRPO.

The detailed breakdown of the architecture of the weight calculation neural

networks model is explained as follows:

Input Layer

The number of features in the normalized stock data is configured as input in the

input layer of the neural networks. Each neuron in the input layer represents one of these

normalized features. The input shape is defined by the number of features, ensuring that

the model can process the entire feature set.

Hidden Layers

The multiple Hidden layers of the neural networks are designed such that each

layer has decreasing number of neurons. These layers help the network learn complex

relationships between the features and the target variable (ROE). The architecture

includes the following hidden layers.

• First Hidden Layer: 256 neurons with the Softmax activation function.

• Second Hidden Layer: 128 neurons with the Softmax activation function.

• Third Hidden Layer: 64 neurons with the Softmax activation function.

• Fourth Hidden Layer: 55 neurons with the Softmax activation function.

• Fifth Hidden Layer: 50 neurons with the Softmax activation function.

121

• Activation Function (Softmax): The Softmax activation function is used in the hidden

layers to ensure that the output values are probabilities and falls between 0 and 1 as

well as they total to 1. This is important since the output need to be interpreted as

weights.

Output Layer

The output layer is designed with a single neuron and linear activation function

since the purpose of this neuron is to predict the Return on Equity (ROE) of the stocks.

Model Compilation

The network is designed as a model with multiple layers, and it need to be

compiled in this step. The network will be compiled using Adam optimizer. It is an

adaptive learning rate optimization algorithm that has proven effective for a wide range

of tasks. The mean squared error (MSE) loss function will be used to measure the

difference between the predicted and the actual ROE values. The model aims to minimize

this loss during training.

Training

The model is trained using the following parameters:

• Epochs is set to 10. The training dataset iterates through the network 10 times.

• Batch size is set to 32. The model updates the weights after processing 32 samples at

a time.

• Model then trains on the training data and learns to adjust the weights of the neurons

to minimize the MSE loss, effectively learning the importance of each indicator in

predicting ROE.

Evaluation

The trained model is then evaluated on the test data ensure it generalizes well to

unseen data.

122

The loss on the test set is printed to give an indication of the model’s predictive

accuracy.

The Network architecture designed in this module leverages the power of neural

networks to capture complex relationships between indicators, enabling more accurate

and insightful financial analysis that is needed to further develop the SLRPO strategy.

3. Calculating Weights

The process of calculating weights in the Weight Generator module involves

using the designed neural networks to learn the importance of various technical and

fundamental indicators in predicting the Return on Equity (ROE).

The steps discussed in this section coexist and overlaps with the steps discussed in

section 2. Designing Weight Networks. The steps are discussed as follows.

Weight Extraction

The weights for Strength score calculation is extracted from the second-to-last

layer (fifth hidden layer) of the network.

These weights represent the relative importance of each indicator in predicting the

ROE.

This layer is chosen because it provides a balance between high-level feature

abstraction and direct output influence.

Strength Score Generation

• The extracted weights are then applied to the daily features of the stock to calculate

the strength score.

• The strength score is then derived as a weighted average of all indicator values,

reflecting the overall performance of the stock.

By training the network on historical stocks data, extracting learned weights, and

applying these weights to calculate strength scores, the Weight Generator module

123

provides a robust tool for assessing stock performance and generating inputs that are

needed to develop the SLRPO Investment strategy. The next module of SLRPO is the

Strength score module which is a continuation of the Weight Generator module.

4.7 Strength Score Module

The Strength Score module is a continuation of Weight Generator module and

generates the Strength Scores for each stock and their features. This module is designed

to handle various tasks, including generation of strength scores, consolidation and export

of stocks data.

The code for the Strength Score module consists of the following definitions and steps.

Code snipper for daily score generation is as follows:

scores = []

for ticker in tickers:

 try:

 score = calculate_weights(normalized_stocks, ticker)

 score.columns = [ticker]

 score = score.fillna(method = 'bfill')

 scores.append(score)

 print(score)

 except:

 pass

The code snipper for data consolidation and export is as follows:

df_scores = pd.concat(scores, axis = 1)

df_scores.to_csv('df_scores.csv')

Key Functions of the Strength Score Module are:

1. Generating Strength Scores

124

2. Consolidation and Export

1. Generating Strength Score

The Strength Score is a composite metric introduced in this research to quantify

the overall performance and health of a stock by combining various technical and

fundamental indicators. It is a single value that encapsulates the relative importance of

multiple indicators, providing a comprehensive assessment of a stock's condition.

Key Characteristics of the Strength Score are defined as follows:

• Composite Metric

• Indicator Weightage

• Normalized metric

• Daily Calculation

• Holistic Assessment

Composite Metric

The Strength score integrates 23 Technical indicators that are discussed

throughout SLRPO Strategy and considered as features and 13 Fundamental indicators

that are also discussed throughout SLRPO Strategy and considered as features, into a

single unified metric.

Indicator Weightage

Each indicator contributes to the Strength Score based on its relative importance,

determined through the trained neural network designed in the Weight Generator module.

This network assigns weights to each indicator, reflecting its significance in predicting

the stock's performance.

Normalized metric

The Strength Score is normalized to ensure comparability across different stocks

and time periods.

125

This normalization process adjusts the score to a common scale, typically between

0 and 1, facilitating direct comparisons.

Daily Calculation

The Strength Score is calculated daily, providing a dynamic and up-to-date

measure of a stock's performance.

Holistic Assessment

By incorporating both technical and fundamental data, the Strength Score offers a

holistic view of the stock, capturing short-term market dynamics as well as long-term

financial health.

Calculation of Strength Score:

The Strength Score is calculated for each day as the weighted sum of all indicator

values in the stocks dataset. The Strength Score is calculated as follows:

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 =
∑(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 × 𝑤𝑒𝑖𝑔ℎ𝑡)

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠

 feature – each individual normalized indicator in the data set

 weight – weight for each indicator extracted from the neural

network

 weights – All weights extracted from the neural networks

This weighted sum provides a single value that reflects the overall performance of

the stock, considering the relative importance of each indicator.

2. Consolidation and Export

The daily Strength Scores are calculated in this module using the Strength Score

and consolidated into one single data frame ‘df_scores’.

The consolidated data frame with Strength scores is represented as follows:

126

Figure 4.4 Strength Scores for NIFTY 50 Stocks

The consolidated data is then exported into a CSV file ‘df_scores.csv’ for further

processing.

Generating strength scores involves a systematic process of applying learned

weights to normalized technical and fundamental indicators to produce a single metric

that quantifies the overall performance of a stock. By calculating the weighted sum of

indicators and normalizing the scores, this module provides a robust and comprehensive

metric that can be used for various analytical and decision-making purposes.

4.8 Utility Functions Module

The Utility Functions Module is a supporting module for SLRPO Strategy, and it

is designed to collate all the support functions necessary for the overall strategy and the

upcoming modules. This module ensures that all utility functions are centralized in one

location, so that they are easily accessible and efficient to use. The functions discussed in

this module supports the Strategy modules and a detailed explanation of some of the

concepts behind the domain related functions will be discussed in the Strategy module.

Below are the list utility functions covered within this module:

1. Construct Portfolio Values

2. Calculate Strength Lag

3. Calculate Opportunity Cost

4. Update Reward

127

5. Calculate Daily Strength Lag

6. Create Features

7. Calculate allocation

8. Calculate model returns

9. Create Download Data Frame

Construct Portfolio Values

The construct portfolio values function is designed to transform raw stock data

into a format that is suitable for portfolio analysis of SLRPO Strategies and their

subsequent calculations.

The code for Construct Portfolio Values function is defined as follows:

def construct_portfolio_values(stocks):

 stocks_data = pd.read_csv(stocks)

 stocks_data = stocks_data.drop(columns = ['Date'])

 return np.array(stocks_data).T

The objective of the construct_portfolio_values function is to convert stock price data

from its CSV file into a structured n-dimensional array that can be easily manipulated and

analyzed.

Calculate Strength Lag

The calculate strength lag function is designed to measure the performance

change, or strength lag, of the SLRPO input portfolio over a specific period. This

function compares the portfolio's value at the end of the period to its value at the

beginning, providing a simple yet powerful metric for assessing the overall performance.

The code for Calculate Strength Lag is defined as follows:

def calculate_strength_lag(portfolio_values):

 if len(portfolio_values) < 2:

128

 return 0

 return (portfolio_values[-1] - portfolio_values[0]) / portfolio_values[0]

The objective of the calculate_strength_lag function is to quantify the percentage

change in SLRPO portfolio values over time.

The Strength Lag is calculated as follows:

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝐿𝑎𝑔 =
𝐹𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒

All values correspond to the input Portfolio of stocks data.

Calculate Opportunity Cost

The calculate opportunity cost function is designed to quantify the opportunity

cost associated with selecting a particular portfolio in the SLRPO Strategy over the best

available alternative within the various portfolios available for the NIFTY 50 stocks

considered for this thesis.

The code for Calculate Opportunity Cost is defined as follows:

def calculate_opportunity_cost(chosen_portfolio_return, all_portfolios_returns):

 if not all_portfolios_returns:

 return 0

 best_alternative_return = max(all_portfolios_returns)

 return best_alternative_return - chosen_portfolio_return

The objective of the calculate_opportunity_cost function is to measure the difference in

returns between the chosen portfolio and the best-performing alternative portfolio.

Opportunity cost is a very important decision-making aspect for the SLRPO Strategy and

has been discussed and analyzed in detail throughout this thesis.

Update Reward

129

The update reward function is designed to adjust the reward associated with an

investment decision based on the opportunity costs incurred over time. This function

leverages the concept of opportunity cost to provide a dynamic measure of how well a

chosen portfolio performs relative to potential alternatives on a day-by-day basis.

The code for Update Reward is defined as follows:

def update_reward(chosen_return, all_returns):

 opportunity_costs = [calculate_opportunity_cost(chosen_return, [day_return])

for day_return in all_returns]

 return -opportunity_costs[-1] if opportunity_costs else 0

The objective of the update_reward function is to calculate a penalty (negative reward)

that reflects the cost of missed opportunities by not selecting the best-performing

portfolio each day. This penalty helps SLRPO Strategy understand the impact of its

investment decisions over time and provides a feedback mechanism for improving future

decisions.

Calculate Daily Strength Lag

The calculate daily strength lag function is designed to measure the daily

percentage change in the values of stocks Strength Score. This function helps to quantify

the day-to-day fluctuations in the data, providing insights into the volatility and

performance dynamics over time.

The code for Calculate Daily Strength Lag is defined as follows:

def calculate_daily_strength_lag(data):

 return data.pct_change().fillna(0)

The Daily Strength Lag is calculated as follows:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐶ℎ𝑎𝑛𝑔𝑒 =
𝑆𝑐𝑜𝑟𝑒𝑡 − 𝑆𝑐𝑜𝑟𝑒𝑡−1

𝑆𝑐𝑜𝑟𝑒𝑡−1

Score – Strength Score

130

The objective of the calculate_daily_strength_lag function is to compute the daily

strength lag, which is the percentage change in value of Strength Scores from one day to

the next. This metric is crucial for analyzing trends, volatility, and the overall behavior of

the stocks data over time.

Create Features

The create features function is designed to generate features for each stock based

on its recent percentage change in Strength Score. These features are used as input for

various portfolio development strategies designed within the SLRPO Investment Strategy

in this thesis.

The code for Create Features is defined as follows:

def create_features(stock_data):

 features = []

 for stock, data in stock_data.items():

 if len(data) > 1:

 last_pct_change = data.iloc[-2:].pct_change().iloc[-1]

 features.append(last_pct_change)

 else:

 features.append(np.nan)

 return np.array(features)

The objective of the create_features function is to create a set of features that

capture the recent performance of each stock in the Strength Scores dataset. By focusing

on the recent percentage change, the function aims to provide a snapshot of the stock's

most recent behavior, which can be critical for short-term predictions and decisions in the

SLRPO Strategy.

Calculate allocation

131

The calc allocation function is designed to calculate allocation percentages based

on Upper Confidence Bound (UCB) values which will be discussed in detail in the

upcoming modules on Strategies. These allocations are used to distribute NIFTY 50

stocks into creating new portfolios according to their UCB values for SLRPO Strategy.

The code for Calculate Allocation is defined as follows:

def calc_allocation(ucb_values):

 ucb_values = ucb_values

 min_ucb = np.min(ucb_values)

 max_ucb = np.max(ucb_values)

 scaled_ucb_values = 100 * (ucb_values - min_ucb) / (max_ucb - min_ucb)

 normalized_ucb_percentages = (scaled_ucb_values /

np.sum(scaled_ucb_values))

 return normalized_ucb_percentages

The objective of the calc_allocation function is to transform UCB values into

normalized allocation percentages. This process ensures that investments are allocated

proportionally to the stocks with higher UCB values, which typically represent better-

performing or less risky investments.

Calculate Model Returns

The calc model returns function is designed to calculate the returns of the SLRPO

model portfolio over a specified period. It considers the allocation of investments, the

start and end dates of the analysis period, and the total investment amount to compute

various performance metrics such as total gain/loss, cumulative returns, and annualized

returns.

The code of Calculate Model Returns is defined as follows:

132

def calc_model_returns(stocks_data, portfolio, allocation, start_date, end_date,

investment):

 analysis_data = stocks_data[['Date', 'Close', 'Ticker']]

 input_data = analysis_data.pivot_table(values='Close', index='Date',

columns='Ticker')

 input_data.reset_index(inplace=True)

 input_data['Date'] = pd.to_datetime(input_data['Date'])

 input_data['Date'] = input_data['Date'].dt.strftime('%d-%m-%Y')

 calculations = input_data[(input_data['Date'] == start_date) | (input_data['Date']

== end_date)].copy(deep=True)

 calculations.reset_index(inplace=True, drop=True)

 calculations.index = calculations['Date']

 calculations.drop(columns=['Date'], inplace=True)

 calculations = calculations[portfolio].copy(deep=True)

 diff_row = calculations.iloc[1] - calculations.iloc[0]

 calculations.loc['Difference'] = diff_row

 calculations.loc['Allocation'] = allocation

 calculations.loc['Invested'] = investment * calculations.loc['Allocation']

 calculations.loc['No_of_Shares'] = calculations.loc['Invested'] /

calculations.loc[start_date]

 calculations.loc['Return_on_Exit'] = calculations.loc['No_of_Shares'] *

calculations.loc[end_date]

 calculations.loc['Gain_Loss'] = calculations.loc['Difference'] *

calculations.loc['No_of_Shares']

 Total_Gain_Loss = calculations.loc['Gain_Loss'].sum()

133

 Total_Returns = calculations.loc['Return_on_Exit'].sum()

 Cumulative_Returns = (Total_Gain_Loss / investment) * 100

 start_date = datetime.strptime(start_date, '%d-%m-%Y')

 end_date = datetime.strptime(end_date, '%d-%m-%Y')

 num_years = (end_date - start_date).days / 365.25

 Annualized_Returns = ((1 + Cumulative_Returns/100) ** (1 / num_years) - 1)

* 100

 returns_df = pd.DataFrame(columns=['Total'])

 returns_df.loc['Investment'] = investment

 returns_df.loc['Total_Gain_Loss'] = Total_Gain_Loss

 returns_df.loc['Total_Returns'] = Total_Returns

 returns_df.loc['Cumulative_Returns'] = Cumulative_Returns

 returns_df.loc['Investment'] = returns_df.loc['Investment'].apply(lambda x:

'{:.2f}'.format(x))

 returns_df.loc['Total_Gain_Loss'] =

returns_df.loc['Total_Gain_Loss'].apply(lambda x: '{:.2f}'.format(x))

 returns_df.loc['Total_Returns'] = returns_df.loc['Total_Returns'].apply(lambda

x: '{:.2f}'.format(x))

 returns_df.loc['Annualized_Returns'] = Annualized_Returns

 returns_df.loc['Cumulative_Returns'] =

returns_df.loc['Cumulative_Returns'].apply(lambda x: '{:.2f}%'.format(x))

 returns_df.loc['Annualized_Returns'] =

returns_df.loc['Annualized_Returns'].apply(lambda x: '{:.2f}%'.format(x))

 return returns_df

The Annualized Returns for the portfolio over a period are calculated as follows:

134

𝑨𝒏𝒏𝒖𝒂𝒍𝒊𝒛𝒆𝒅 𝑹𝒆𝒕𝒖𝒓𝒏𝒔

= ((1 +
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑡𝑢𝑟𝑛𝑠

100
)

1
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑌𝑒𝑎𝑟𝑠

 − 1) × 100

The objective of the calc_model_returns function is to provide a comprehensive

evaluation of a portfolio's performance over a specific time frame. This involves

calculating the initial and final values of the portfolio, determining the returns generated,

and normalizing these returns to provide meaningful metrics for SLRPO Strategy

investment decision-making.

Create Download Data Frame

The create download data frame function is designed to create a structured Data

Frame that pairs a list of stocks with their corresponding allocation percentages. This

Data Frame is useful for organizing and exporting investment allocation data in a clear

and easily understandable format so that multiple strategies designed in SLRPO can be

compared against each other for the results analysis.

The code for Create Download Data Frame is defined as follows:

def create_download_df(stocks, allocations):

 if len(stocks) != len(allocations):

 raise ValueError("Stocks and allocations lists must be of the same length.")

 df = pd.DataFrame({

 'Stocks': stocks,

 'Allocations %': allocations

 })

 return df

135

The objective of the create_download_df function is to generate a DataFrame that

consolidates stocks and their respective allocations. This allows for the data to be easily

reviewed, analyzed, and exported for results analysis of SLRPO strategy.

The Utility Functions Module consolidates all the essential supporting functions

required for the complete SLRPO strategy and its relevant modules. By centralizing these

functions, the module ensures that the overall strategy is efficient, maintainable, and easy

to implement. Each function plays a specific role in data handling, calculation, and

preparation, collectively contributing to a robust and comprehensive analytical

framework.

4.9 Strategy Domain Classification

Now that all the prerequisite modules for SLRPO Investment strategy have been

explained, the domain where these strategies are designed will be discussed in this

section. The Strategy domains for SLRPO are classified into three major concepts of

reinforcement learning.

• Upper Confidence Bound (UCB1)

• Policy Network

• Policy Gradient

Before delving further into the three main strategies built on these concepts, let us

investigate the theoretical explanation of these concepts.

Reinforcement Leaning

Reinforcement Learning (RL) is a branch of machine learning where an agent

learns to make decisions by performing certain actions in an environment to achieve

maximum cumulative reward. In reinforcement learning, an agent interacts with its

environment in discrete time steps. At each time step, the agent receives a state from the

environment, chooses an action based on this state, and receives a reward along with the

136

next state. The goal of the agent is to learn a policy that maximizes the expected

cumulative reward over time. Reinforcement Learning (RL) as a formalized concept in

machine learning was extensively developed by Richard S. Sutton and Andrew G. Barto

(Sutton, 1988).

Upper Confidence Bound (UCB1)

The Upper Confidence Bound (UCB1) algorithm is a widely used approach in the

domain of multi-armed bandits, a fundamental problem in reinforcement learning. This

problem involves an agent that must choose between multiple options (arms), each with

an unknown reward distribution. The goal is to maximize the total reward over a series of

trials by finding an optimal balance between exploration and exploitation (Auer, Cesa-

Bianchi, & Fischer, 2002).

Exploration - is trying out different arms to gather information.

Exploitation - is selecting the arm known to yield the highest reward.

The UCB1 algorithm was introduced by Peter Auer, Nicolo Cesa-Bianchi, and

Paul Fischer in their paper titled "Finite-time Analysis of the Multiarmed Bandit

Problem."

Policy Network

A Policy Network is a type of neural network used in reinforcement learning (RL)

to directly map states of an environment to actions to be taken by an agent. In

reinforcement learning, an agent learns to make decisions by interacting with an

environment. The goal is to maximize some notion of cumulative reward over time. The

agent observes the state of the environment, takes an action, and receives a reward and a

new state from the environment (Williams, 1992).

The Policy Network is a model that helps the agent decide which action to take

given the current state.

137

Policy Gradient

Policy Gradient methods are a class of algorithms in reinforcement learning that

optimize the policy directly. In reinforcement learning, an agent interacts with an

environment in discrete time steps. At each step, the agent receives a state from the

environment, takes an action based on its policy, and receives a reward. The goal of the

agent is to maximize the cumulative reward over time (Williams, 1992).

Policy gradient methods achieve this by directly adjusting the parameters of the

policy in the direction that increases the expected reward.

4.10 SLRPO Base Strategies

The three Base Strategies developed as part of SLRPO Investment strategy

architecture are as follows:

1. Base Strategy – UCB1

2. Base Strategy – Policy Network

3. Base Strategy – Policy Gradient

These strategies are developed based on the concepts of reinforcement learning

blended with the domain of Indian stock markets.

4.11 Base Strategy – UCB1 Module

The Base Strategy – UCB1 is developed on the concept of Upper Confidence

Bound (UCB1) algorithm. The main components of Base Strategy – UCB1 are as

follows:

1. Base Selector

2. Simple Selector

3. Stock Selector

4. Stock Allocation Maximizer

5. Optimizer

138

4.11.1 Base Selector

The Base Selector is the first sub strategy of Base Strategy - UCB1. The Base

Selector is designed using the UCB1 algorithm and it provides a mechanism for selecting

stocks based on their potential for high returns. It also ensures that less explored stocks

are given a chance to be selected.

The code for Base Selector is defined as follows:

class UCB1_BaseSelector:

 def __init__(self, n_stocks):

 self.counts = np.zeros(n_stocks, dtype=np.float32)

 self.values = np.zeros(n_stocks, dtype=np.float32)

 def select_stock(self):

 n_stocks = len(self.counts)

 for stock in range(n_stocks):

 if self.counts[stock] == 0:

 return stock

 ucb_values = self.values + np.sqrt(2 * np.log(sum(self.counts)) / self.counts)

 return np.argmax(ucb_values)

 def update(self, chosen_stock, reward):

 self.counts[chosen_stock] += 1

 n = self.counts[chosen_stock]

 value = self.values[chosen_stock]

 new_value = ((n - 1) / n) * value + (1 / n) * reward

 self.values[chosen_stock] = new_value

In the preceding code,

139

• The Base Selector class implements the Upper Confidence Bound (UCB1)

algorithm for selecting stocks.

• The Base Selector class initializes two arrays: counts and values.

• The select stock method in Base Selector class calculates the UCB values for

each stock based on a confidence interval and returns the maximum value

indices.

• UCB Values are calculated as follows:

𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 = 𝑉𝑎𝑙𝑢𝑒𝑠𝑖 + √
2 ∙ ln (∑ 𝐶𝑜𝑢𝑛𝑡𝑠)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

• The update method in Base Selector class updates the UCB Values based on

the reward for each stock selection. The updated UCB Values are calculated

as follows.

𝑁𝑒𝑤 𝑉𝑎𝑙𝑢𝑒 = (
𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 − 1

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
) × 𝑉𝑎𝑙𝑢𝑒 + (

1

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
) × 𝑅𝑒𝑤𝑎𝑟𝑑

• The Base Selector is a fundamental implementation of UCB1 algorithm for

the SLRPO Strategy.

4.11.2 Simple Selector

The Simple Selector is the second sub strategy of Base Strategy - UCB1. The

Simple Selector is also designed using the UCB1 algorithm and it is a slightly different

implementation compared to Base Selector. The objective of this sub strategy is also to

provide a mechanism for selecting stocks based on their potential for high returns.

The code for Simple Selector is defined as follows:

class UCB1_SimpleSelector:

 def __init__(self, num_stocks):

 self.num_stocks = num_stocks

140

 self.counts = np.zeros(num_stocks)

 self.values = np.zeros(num_stocks)

 def select_stock(self):

 max_upper_bound = 0

 selected_stock = None

 for stock in range(self.num_stocks):

 if self.counts[stock] > 0:

 average_reward = self.values[stock]

 delta_i = np.sqrt(2 * np.log(sum(self.counts) + 1) / self.counts[stock])

 upper_bound = average_reward + delta_i

 else:

 upper_bound = 1e400

 if upper_bound > max_upper_bound:

 max_upper_bound = upper_bound

 selected_stock = stock

 return selected_stock

 def update(self, stock, reward):

 self.counts[stock] += 1

 self.values[stock] = ((self.values[stock] * (self.counts[stock] - 1)) + reward) /

self.counts[stock]

In the preceding code,

• The Simple Selector class also implements the Upper Confidence Bound

(UCB1) algorithm for selecting stocks.

• The Simple Selector class initializes number of stocks and the two arrays:

counts and values.

141

• The select stock method in Base Selector class calculates the UCB values for

each stock based on a confidence interval until it reaches an upper bound

value that has been manually configured in the select stock method.

• UCB Values are calculated as follows:

𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 = 𝑉𝑎𝑙𝑢𝑒𝑠𝑖 + √
2 ∙ ln (∑ 𝐶𝑜𝑢𝑛𝑡𝑠 + 1)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

• The update method in Simple Selector class also updates the UCB Values

based on the reward for each stock selection.

• The updated UCB Values are calculated as follows.

𝑁𝑒𝑤 𝑉𝑎𝑙𝑢𝑒 = (
𝑉𝑎𝑙𝑢𝑒 × (𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 − 1) + 𝑅𝑒𝑤𝑎𝑟𝑑

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
)

The Simple Selector is a simple but slightly different implementation of UCB1

algorithm for the SLRPO Strategy where the UCB calculation is set to an upper bound

manually.

4.11.3 Stock Selector

The Stock Selector is the third sub strategy of Base Strategy - UCB1. The Stock

Selector is also designed using the UCB1 algorithm and it provides a mechanism for

selecting stocks based on their potential for high returns. The stock selection in Stock

Selector sub strategy is done in a way that balances the exploration of potentially

profitable stocks and the exploitation of stocks that have already shown good

performance by implementing a best stock selection logic.

The code for Stock Selector is defined as follows:

class UCB1_StockSelector:

 def __init__(self, stocks_strength, num_days, num_stocks_to_select):

142

 self.stocks_strength = stocks_strength

 self.num_days = num_days

 self.num_stocks_to_select = num_stocks_to_select

 self.n_stocks = len(stocks_strength.columns)

 self.counts = [0] * self.n_stocks

 self.total_reward = [0] * self.n_stocks

 def select_stocks(self):

 for day in range(self.num_days):

 ucb_values = self._calculate_ucb_values(day)

 chosen_stock = np.argmax(ucb_values)

 reward = self.stocks_strength.iloc[day, chosen_stock]

 self.counts[chosen_stock] += 1

 self.total_reward[chosen_stock] += reward

 return self._get_best_stocks()

 def _calculate_ucb_values(self, day):

 ucb_values = [0] * self.n_stocks

 for stock in range(self.n_stocks):

 if self.counts[stock] == 0:

 ucb_values[stock] = float('inf')

 else:

 average_reward = self.total_reward[stock] / self.counts[stock]

 delta_i = math.sqrt(2 * math.log(day + 1) / self.counts[stock])

 ucb_values[stock] = average_reward + delta_i

 return ucb_values

 def _get_best_stocks(self):

143

 top_stocks_indices = np.argsort(self.total_reward)[-

self.num_stocks_to_select:]

 best_stocks = [self.stocks_strength.columns[index] for index in

top_stocks_indices]

 return best_stocks

In the preceding code,

• The Stock Selector class also implements the Upper Confidence Bound

(UCB1) algorithm for selecting stocks.

• The Stock Selector class initializes stock strength, number of days, number of

stocks to select as input.

• It also initializes number of stocks and two arrays: counts and total rewards.

• The select stock method of Stock Selector class calculates the UCB values for

each stock based on a confidence interval until it reaches maximum values

automatically configured in the select stock method.

• The select stock method returns the best stocks based on the number of best

stocks provided as limit in the get best stocks method.

• The UCB values in Stock Selector class are calculated daily and the rewards

are updated for each trade day for the stocks data. This calculation happens in

the calculate ucb values method.

• UCB Values are calculated as follows:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

∆= √
2 ∙ ln (𝑑𝑎𝑦 + 1)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

144

𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 + ∆

The Stock Selector is a more complex and different implementation of UCB1

algorithm for the SLRPO Strategy where the UCB calculation is repeated for every

trading day and limited best set of stocks is chosen based on historical performance.

4.11.4 Stock Allocation Maximizer

The Stock Allocation Maximizer is the fourth sub strategy of Base Strategy -

UCB1. The Stock Allocation Maximizer is also designed using the UCB1 algorithm and

it provides a mechanism for selecting stocks based on their potential for high returns. The

stock selection in Stock Allocation Maximizer sub strategy is done in a way that balances

the exploration of potentially profitable stocks and the exploitation of stocks that have

already shown good performance but the number of stocks in this sub strategy are not

restricted to a value. This sub strategy also considers the Stock Strength change instead of

Stock Strength as its input. Considering the complete portfolio for allocation gives an

opportunity of manual decision making.

The code for Stock Allocation Maximizer is defined as follows:

class UCB1_StockAllocationMaximizer:

 def __init__(self, stock_strength_change, num_days):

 self.stock_strength_change = stock_strength_change

 self.num_days = num_days

 self.n_stocks = len(stock_strength_change.columns)

 self.counts = [0] * self.n_stocks

 self.total_reward = [0] * self.n_stocks

 self.chosen_stocks_and_allocation_each_day = []

 def allocate_stocks(self):

145

 for day in range(self.num_days):

 ucb_values = self._calculate_ucb_values(day)

 total_ucb = sum(ucb_values)

 allocations = [(ucb / total_ucb) * 100 for ucb in ucb_values]

 stock_allocation_pairs = list(zip(self.stock_strength_change.columns,

allocations))

self.chosen_stocks_and_allocation_each_day.append(stock_allocation_pairs)

 self._update_rewards(day, ucb_values)

 return self.chosen_stocks_and_allocation_each_day

 def _calculate_ucb_values(self, day):

 ucb_values = []

 for stock in range(self.n_stocks):

 if self.counts[stock] == 0:

 ucb_values.append(float('inf'))

 else:

 average_reward = self.total_reward[stock] / self.counts[stock]

 confidence = math.sqrt(2 * math.log(day + 1) / self.counts[stock])

 ucb_values.append(average_reward + confidence)

 return ucb_values

 def _update_rewards(self, day, ucb_values):

 for stock in range(self.n_stocks):

 reward = self.stock_strength_change.iloc[day, stock]

 self.counts[stock] += 1

 self.total_reward[stock] += reward

In the preceding code,

146

• The Stock Allocation Maximizer class also implements the Upper Confidence

Bound (UCB1) algorithm for selecting stocks.

• The Stock Allocation Maximizer class initializes stock strength change,

number of days to select as input.

• It also initializes number of stocks and three arrays: counts, total rewards and

chosen stocks & allocations each day.

• The allocate stock method in the Stock Allocation Maximizer class calculates

the ucb values daily and creates allocations based on chosen stock and its ucb

values.

• The allocate stock method also updates the rewards daily.

• The allocate stock method returns the stock and its allocation for each day.

UCB Values are calculated as follows:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = √
2 ∙ ln (𝑑𝑎𝑦 + 1)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 + 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

The Stock Allocation Maximizer is a more complex and different implementation

of UCB1 algorithm for the SLRPO Strategy where the UCB calculation is repeated for

every trading day and considers all stocks from the portfolio of NIFTY 50. It also returns

daily stock allocations by considering stock score change as the input.

4.11.5 Optimizer

147

The Optimizer is the fifth sub strategy of Base Strategy - UCB1. The Optimizer is

also designed using the UCB1 algorithm and it provides a mechanism for selecting stocks

based on their potential for high returns. The stock selection in Optimizer sub strategy is

implemented such that it is a hybrid version of Stock Allocation Maximizer sub strategy

and the Base Selector sub strategy. The Optimizer is designed with Stock Strength

Change and UCB calculation logic similar to Stock Allocation Maximizer but the overall

design is very simple similar to Base Selector strategy. The Optimizer performs daily

updates of UCB values but does not perform daily allocations of stocks instead it

provides the final best allocation for all stocks.

The code for Optimizer is defined as follows:

class UCB1_Optimizer:

 def __init__(self, stock_strength_change, num_days):

 self.stock_strength_change = stock_strength_change

 self.num_days = num_days

 self.n_stocks = len(stock_strength_change.columns)

 self.counts = [0] * self.n_stocks

 self.total_reward = [0] * self.n_stocks

 self.ucb_values = [0] * self.n_stocks

 def optimize(self):

 for day in range(self.num_days):

 self._calculate_ucb_values(day)

 chosen_stock = np.argmax(self.ucb_values)

 reward = self.stock_strength_change.iloc[day, chosen_stock]

 self.counts[chosen_stock] += 1

 self.total_reward[chosen_stock] += reward

148

 return self.total_reward

 def _calculate_ucb_values(self, day):

 for stock in range(self.n_stocks):

 if self.counts[stock] == 0:

 self.ucb_values[stock] = float('inf')

 else:

 average_reward = self.total_reward[stock] / self.counts[stock]

 confidence = math.sqrt(2 * math.log(day + 1) / self.counts[stock])

 self.ucb_values[stock] = average_reward + confidence

In the preceding code,

• The Optimizer class also implements the Upper Confidence Bound

(UCB1) algorithm for selecting stocks.

• The Optimizer class initializes stock strength change, number of days to

select as input.

• It also initializes number of stocks and three arrays: counts, total rewards

and UCB values.

• The optimize method in the Optimizer class performs daily updates on the

UCB values based on chosen stock and reward.

• UCB Values are calculated as follows:

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 =
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 = √
2 ∙ ln (𝑑𝑎𝑦 + 1)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

149

𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 + 𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒

The Optimizer is a simpler and hybrid version of the Stock Allocation Maximizer

and Base Selector. It is designed to consider the stock strength score change as input and

provide one best portfolio with allocations that considers all the stocks in the NIFTY 50

list studied in this thesis.

4.12 Base Strategy – Policy Network Module

The Base Strategy – Policy Network is developed on the concept of Policy

Network algorithm. The main components of Base Strategy – Policy Network are as

follows:

1. Policy Network Softmax

2. Policy Network ReLU

3. Policy Network Batch Norm

4. Policy Network Standard

4.12.1 Policy Network Softmax

The Policy Network Softmax class is the first sub strategy of Base Strategy -

Policy Network. This sub strategy will be used to create a policy for reinforcement

learning based models in the SLRPO strategy. Policy Network helps the reinforcement

learning agent with guidance on the next action to be taken. The Policy Network Softmax

class is a neural network designed with Softmax as the activation function.

The code for Policy Network Softmax is defined as follows:

class PolicyNetworkSoftmax:

 def __init__(self, input_dim, output_dim):

 self.input_dim = input_dim

 self.output_dim = output_dim

 self.model = None

150

 self._create_network()

 def _create_network(self):

 tf.random.set_seed(1)

 self.model = Sequential([

 Dense(128, input_dim=self.input_dim, activation='softmax'),

 Dense(64, activation='softmax'),

 Dense(32, activation='softmax'),

 Dense(16, activation='softmax'),

 Dense(self.output_dim, activation='softmax')

])

 self.model.compile(optimizer='adam', loss='mse')

 def get_model(self):

 return self.model

In the preceding code,

• The Policy Network Softmax class initializes input dimension and output

dimension for the Softmax network.

• It also initializes the network with a model variable to store the neural

network model and a method to create the network.

• The create network method creates the Softmax network with 5 dense layers,

the activation function as Softmax in all the layers.

• The create network method also compiles the model with Adam optimizer and

with Mean Square Error as Loss function.

The Policy Network Softmax is a simple sub strategy developed in the Base

Strategy – Policy Network to provide probability distributions in each layer and to

generate a policy that can be used in the SLRPO Investment strategy implementation.

151

4.12.2 Policy Network ReLU

The Policy Network ReLU class is the second sub strategy of Base Strategy -

Policy Network. This sub strategy will also be used to create a policy for reinforcement

learning based models in the SLRPO strategy. This Policy Network also helps the

reinforcement learning agent with guidance on the next action to be taken. The Policy

Network ReLU class is a neural network designed with ReLU as the activation function.

The code for Policy Network ReLU is defined as follows:

class PolicyNetworkReLU:

 def __init__(self, input_size):

 self.input_size = input_size

 self.model = None

 self._create_network()

 def _create_network(self):

 tf.random.set_seed(1)

 self.model = Sequential([

 Dense(64, activation='relu', input_shape=(self.input_size,)),

 Dense(32, activation='relu'),

 Dense(self.input_size, activation='softmax')

])

 self.model.compile(optimizer='adam', loss='mse')

 def get_model(self):

 return self.model

In the preceding code,

• The Policy Network ReLU class initializes input size for the ReLU network.

152

• It also initializes the network with a model variable to store the neural

network model and a method to create the network.

• The create network method creates the ReLU network with 3 dense layers.

• The activation function for the first two dense layers is set as ReLU and for

the last dense layer as Softmax since the output from the policy is expected to

be a probability distribution.

• The create network method also compiles the model with Adam optimizer and

with Mean Square Error as Loss function.

The Policy Network ReLU is another simple sub strategy developed in the Base

Strategy – Policy Network to provide probability distributions in the final layer and to

generate a policy that can be used in the SLRPO Investment strategy implementation.

4.12.3 Policy Network Batch Norm

The Policy Network Batch Norm class is the third sub strategy of Base Strategy -

Policy Network. This sub strategy will also be used to create a policy for reinforcement

learning based models in the SLRPO strategy. This Policy Network also helps the

reinforcement learning agent with guidance on the next action to be taken. The Policy

Network Batch Norm class is a neural network designed with multiple complex layers

and Softmax as the final activation function.

The code for Policy Network Batch Norm is defined as follows:

class PolicyNetworkBatchNorm:

 def __init__(self, input_size):

 self.input_size = input_size

 self.model = None

 self._create_network()

 def _create_network(self):

153

 tf.random.set_seed(1234)

 self.model = Sequential()

 self.model.add(Dense(128, activation='relu', input_shape=(self.input_size,)))

 self.model.add(BatchNormalization())

 self.model.add(Dense(64, activation='relu'))

 self.model.add(Dropout(0.3))

 self.model.add(Dense(64, activation='relu'))

 self.model.add(BatchNormalization())

 self.model.add(Dropout(0.3))

 self.model.add(Dense(self.input_size, activation='softmax'))

 optimizer = Adam(learning_rate=0.001)

 self.model.compile(optimizer=optimizer, loss='mse')

 def get_model(self):

 return self.model

In the preceding code,

• The Policy Network Batch Norm class initializes input size for the Batch

Norm network.

• It also initializes the network with a model variable to store the neural

network model and a method to create the network.

• The create network method creates the Batch Norm network with multiple

layers that are complex and are a combination of sequential, dense, batch

normalization and drop out layers.

• The activation function for the all the hidden layers is set as ReLU and for the

last dense layer as Softmax since the output from the policy is expected to be

a probability distribution.

154

• The create network method also compiles the model with Adam optimizer and

with Mean Square Error as Loss function.

The Policy Network Batch Norm is another sub strategy developed in the Base

Strategy – Policy Network to provide probability distributions in the final layer and to

generate a policy that can be used in the SLRPO Investment strategy implementation.

This is a complex policy network compared to all other base strategy policy networks and

is expected to provide more hidden insights on the stocks data.

4.12.4 Policy Network Standard

The Policy Network Standard class is the fourth and final sub strategy of Base

Strategy - Policy Network. This sub strategy will also be used to create a policy for

reinforcement learning based models in the SLRPO strategy. This Policy Network also

helps the reinforcement learning agent with guidance on the next action to be taken. The

Policy Network Standard class is a neural network designed as a hybrid version of Policy

Network Softmax and Policy Network ReLU.

The code for Policy Network Standard is defined as follows:

class PolicyNetworkStandard:

 def __init__(self, input_dim, output_dim):

 self.input_dim = input_dim

 self.output_dim = output_dim

 self.model = self._create_network()

 def _create_network(self):

 tf.random.set_seed(1234)

 model = Sequential([

 Dense(64, input_dim=self.input_dim, activation='relu'),

 Dense(32, activation='relu'),

155

 Dense(self.output_dim, activation='softmax')

])

 model.compile(optimizer='adam', loss='mse')

 return model

 def get_model(self):

 return self.model

In the preceding code,

• The Policy Network Standard class initializes both input dimension and output

dimension for the Hybrid network unlike the Policy Network ReLU where

only input size is provided as input.

• It also initializes the network with a model variable to store the neural

network model and a method to create the network.

• The create network method creates a Hybrid network with 3 dense layers.

• The activation function for the first two dense layers is set as ReLU and the

last dense layer as Softmax in the last layer since the output from the policy is

expected to be a probability distribution.

• The create network method also compiles the model with Adam optimizer and

with Mean Square Error as Loss function.

The Policy Network Standard is another simple, but hybrid sub strategy

developed in the Base Strategy – Policy Network to provide probability distributions in

the final layer and to generate a policy that can be used in the SLRPO Investment strategy

implementation.

4.13 Base Strategy – Policy Gradient Module

The final base strategy for SLRPO Investment strategy is the Policy Gradient.

Unlike UCB1 and Policy Network base strategies, Policy Gradient is not a combination

156

of multiple sub strategies but is a combination of multiple components of a Policy

Gradient that implements Reinforcement Learning.

Policy Gradient has the following four components which will be used in building

new strategies in this thesis:

• Simple Policy Search

• Policy Gradient Network

• Policy Gradient Agent

• Complex Policy Search

Let us now discuss each of these components and their code.

4.13.1 Simple Policy Search

Simple Policy Search is designed to generate a policy needed for stock selection.

This policy is developed to represent a probability distribution of stocks based on their

historical performance. Using this policy, it will be possible to select stocks with higher

performance since they will be given higher rewards and gets a higher probability for

selection.

The code for Simple Policy Search is defined as follows:

def simple_policy_search(stock_strength_change, total_reward):

 n_stocks = len(stock_strength_change.columns)

 total = sum(total_reward)

 policy = [reward / total for reward in total_reward]

 return policy

In the preceding code,

• The Simple Policy Search function is defined with two input parameters:

• Stock Strength Change: This is the change in Strength Scores that are

provided as input to the SLRPO strategy.

157

• Total Reward: This is the list of total rewards calculated by one of the UCB1

algorithms.

• Policy is then calculated as follows:

𝑃𝑜𝑙𝑖𝑐𝑦[𝑖] = [
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 [𝑖]

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑎𝑙𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑠
]

This is a simple and straight forward policy that will be incorporated into one of

the sub strategies of SLRPO Investment strategy.

4.13.2 Policy Gradient Network

Policy Gradient Network is a component of the Base Strategy – Policy Gradient.

This network is designed as a use case specific network which can be used within the

policy gradient component of reinforcement learning.

The code for Policy Gradient Network is defined as follows:

class PolicyGradientNetwork(tf.keras.Model):

 def __init__(self, n_stocks):

 super(PolicyGradientNetwork, self).__init__()

 self.dense1 = tf.keras.layers.Dense(128, activation='relu')

 self.dense2 = tf.keras.layers.Dense(64, activation='relu')

 self.output_layer = tf.keras.layers.Dense(n_stocks, activation='softmax')

 def call(self, inputs):

 x = self.dense1(inputs)

 x = self.dense2(x)

 return self.output_layer(x)

In the preceding code,

• The Policy Gradient Network takes in the number of stocks as input and

generates an output which will be a probability distribution.

158

• In reinforcement learning of SLRPO Strategy, this probability distribution will

be used for deciding the actions.

• The network is designed with two dense layers and one output layer.

Softmax is considered as the activation function since we expect the output to be

probability distributions.

4.13.3 Policy Gradient Agent

Policy Gradient Agent is the third component of the Base Strategy – Policy

Gradient. The objective of this agent is to utilize the Policy Gradient Network to learn a

policy which provides probabilities as output for stock selection. The training process

uses gradient descent to adjust the weights of the network.

The code for Policy Gradient Agent is defined as follows:

class PolicyGradientAgent:

 def __init__(self, n_stocks):

 self.n_stocks = n_stocks

 self.model = PolicyGradientNetwork(n_stocks)

 self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.01)

 def train(self, stocks_strength, total_reward):

 with tf.GradientTape() as tape:

 policy = self.model(stocks_strength)

 loss = self.compute_loss(policy, total_reward)

 gradients = tape.gradient(loss, self.model.trainable_variables)

 self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables))

 def compute_loss(self, policy, total_reward):

 log_probs = tf.math.log(policy)

 return -tf.reduce_sum(log_probs * total_reward)

159

 def get_policy(self, stocks_strength):

 policy = self.model.predict(np.array([stocks_strength]))

 return policy

In the preceding code,

• The Policy Gradient Agent takes the number of stocks as input.

• The agent then initializes the Policy Network and an optimizer for the

network.

• The agent then trains the network using stock strength score and adjusts the

weights using gradient descent.

• The agent adjusts the loss function using total reward and then returns the

policy.

4.13.4 Complex Policy Search

The final component of Base Strategy – Policy Gradient is the Complex Policy

Search. The objective of this component is to use the Policy Gradient Agent efficiently to

get better stock allocations for SLRPO investment strategy.

The code for Complex Policy Search is defined as follows:

def complex_policy_search(stocks_strength, total_reward, n_stocks):

 if not isinstance(stocks_strength, np.ndarray):

 stocks_strength = np.array(stocks_strength)

 agent = PolicyGradientAgent(n_stocks)

 agent.train(stocks_strength, total_reward)

 return agent.get_policy(stocks_strength)

In the preceding code,

1. The complex policy search function takes in stock strength score, total reward

and number of stocks as input.

160

2. The Policy Gradient Agent is trained using the above inputs and the policy is

generated as output.

These are various components and their functions implemented in Base Strategy –

Policy Gradient.

4.14 Main 8 Strategies of SLRPO and Portfolio Creation

In this thesis, I am introducing the following 8 main strategies of SLRPO which

are developed to blend the Base Strategies and Utility functions to create new portfolios

based on the NIFTY 50 stocks, their technical indicators, fundamental indicators and

newly introduce Strength Score.

The input data required for execution of these 8 strategies are configured as follows:

config_file = 'config.ini'

tickers = read_config(config_file)

stocks_strength = pd.read_csv('df_scores.csv')

stocks_strength.index = stocks_strength['Date']

stocks_strength.drop(columns = 'Date', inplace = True)

num_rounds = len(stocks_strength)

num_stocks = len(tickers)

stocks_data = pd.read_csv('stocks_data.csv')

start_date = '01-01-2020'

end_date = '30-01-2024'

Investment = 100000

The stocks considered for this analysis are as follows:

161

Table 4.1 NIFTY 50 Stocks

4.14.1 Strategy1

Strategy 1 is developed with a blend of the following components:

• Base Strategy – Policy Network Softmax

• Base Strategy – UCB1 Base Selector

• Utility Function – Construct Portfolio Values

• Utility Function – Calculate Strength Lag

• Utility Function – Update Reward

• Utility Function – Calculate Allocation

The code for Strategy 1 is defined as follows:

class Strategy1:

 def __init__(self, tickers):

 self.tickers = tickers

 self.n_portfolios = len(tickers)

 self.portfolio_values = construct_portfolio_values('df_scores.csv')

 self.n_days = len(self.portfolio_values)

 self.policy_network = PolicyNetworkSoftmax(input_dim=1, output_dim=1)

 self.model = self.policy_network.get_model()

 self.ucb_selector = UCB1_BaseSelector(self.n_portfolios)

 np.random.seed(1)

 random.seed(1)

ADANIENT.NS BRITANNIA.NS HEROMOTOCO.NS LTIM.NS SUNPHARMA.NS

ADANIPORTS.NS CIPLA.NS HINDUNILVR.NS M&M.NS TATACONSUM.NS

APOLLOHOSP.NS COALINDIA.NS HINDALCO.NS MARUTI.NS TATAMOTORS.NS

ASIANPAINT.NS DIVISLAB.NS ICICIBANK.NS NESTLEIND.NS TATASTEEL.NS

AXISBANK.NS DRREDDY.NS INDUSINDBK.NS NTPC.NS TCS.NS

BPCL.NS EICHERMOT.NS INFY.NS ONGC.NS TECHM.NS

BAJAJ-AUTO.NS GRASIM.NS ITC.NS POWERGRID.NS TITAN.NS

BAJFINANCE.NS HCLTECH.NS JSWSTEEL.NS RELIANCE.NS ULTRACEMCO.NS

BAJAJFINSV.NS HDFCBANK.NS KOTAKBANK.NS SBILIFE.NS UPL.NS

BHARTIARTL.NS HDFCLIFE.NS LT.NS SBIN.NS WIPRO.NS

162

 tf.random.set_seed(1)

 def strategy1(self):

 for day in range(1, self.n_days):

 chosen_stock = self.ucb_selector.select_stock()

 chosen_portfolio_values = self.portfolio_values[:day, chosen_stock]

 chosen_return =

np.array(calculate_strength_lag(chosen_portfolio_values))

 all_portfolios_returns = [calculate_strength_lag(self.portfolio_values[:day,

i]) for i in range(self.n_portfolios)]

 allocation = np.array(self.model.predict(chosen_return.reshape(1, -1))[0])

 reward = update_reward(allocation, all_portfolios_returns)

 self.ucb_selector.update(chosen_stock, reward)

 ucb_values = self.ucb_selector.values

 allocation3 = calc_allocation(ucb_values)

 return allocation3

The output of Strategy1 is a new portfolio allocation of NIFTY 50 stocks as follows:

Table 4.2 Strategy 1 Portfolio Allocation of all NIFTY 50 Stocks

The Table 4.2 demonstrates the ability of Strategy 1 to analyze the historical data

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 2% BRITANNIA.NS 2% HEROMOTOCO.NS 0% LTIM.NS 2% SUNPHARMA.NS 2%

ADANIPORTS.NS 2% CIPLA.NS 3% HINDUNILVR.NS 3% M&M.NS 2% TATACONSUM.NS 3%

APOLLOHOSP.NS 2% COALINDIA.NS 2% HINDALCO.NS 2% MARUTI.NS 2% TATAMOTORS.NS 1%

ASIANPAINT.NS 2% DIVISLAB.NS 2% ICICIBANK.NS 1% NESTLEIND.NS 5% TATASTEEL.NS 2%

AXISBANK.NS 2% DRREDDY.NS 2% INDUSINDBK.NS 3% NTPC.NS 1% TCS.NS 2%

BPCL.NS 2% EICHERMOT.NS 2% INFY.NS 2% ONGC.NS 2% TECHM.NS 2%

BAJAJ-AUTO.NS 1% GRASIM.NS 8% ITC.NS 2% POWERGRID.NS 2% TITAN.NS 2%

BAJFINANCE.NS 1% HCLTECH.NS 2% JSWSTEEL.NS 2% RELIANCE.NS 2% ULTRACEMCO.NS 2%

BAJAJFINSV.NS 2% HDFCBANK.NS 2% KOTAKBANK.NS 2% SBILIFE.NS 1% UPL.NS 1%

BHARTIARTL.NS 2% HDFCLIFE.NS 1% LT.NS 1% SBIN.NS 0% WIPRO.NS 2%

163

investments. Strategy 1 considers all 50 stocks since there are no limits set on the number

of stocks to be chosen in this strategy. The returns of this strategy will be discussed in the

Chapter 6.

4.14.2 Strategy2

Strategy 2 is developed with a blend of the following components:

• Base Strategy – UCB1 Simple Selector

• Limiting Portfolio size to 7

The code for Strategy 2 is defined as follows:

class Strategy2:

 def __init__(self, num_stocks, num_rounds, tickers, stocks_strength):

 self.num_stocks = num_stocks

 self.num_rounds = num_rounds

 self.tickers = tickers

 self.stocks_strength = stocks_strength

 self.portfolio_size = 7

 self.ucb = UCB1_SimpleSelector(num_stocks)

 np.random.seed(1)

 random.seed(1)

 tf.random.set_seed(1)

 def strategy2(self):

 for round in range(self.num_rounds):

 selected_stock = self.ucb.select_stock()

 reward = self.stocks_strength.iloc[round, selected_stock]

 self.ucb.update(selected_stock, reward)

 top_stocks_indices = np.argsort(-self.ucb.values)[:self.portfolio_size]

164

 top_stocks = [self.tickers[i] for i in top_stocks_indices]

 allocation = [1.0 / len(top_stocks) for _ in top_stocks]

 return top_stocks, allocation

The output of Strategy2 is a new portfolio allocation of NIFTY 50 stocks as follows:

Table 4.3 Strategy 2 Portfolio Allocation of all NIFTY 50 Stocks

The Table 4.3 demonstrates the ability of Strategy 2 to analyze the historical data

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term

investments. Strategy 2 considers only the top 7 stocks since there are limits set on the

number of stocks to be chosen in this strategy. The returns of this strategy will be

discussed in the Chapter 6.

4.14.3 Strategy3

Strategy 3 is developed with a blend of the following components:

• Base Strategy – UCB1 Stock Selector

• Utility Function – Create Features

• Base Strategy – Policy Network ReLU

• Limiting Portfolio size to 10

The code for Strategy 3 is defined as follows:

class Strategy3:

 def __init__(self, stocks_strength, num_stocks, portfolio_size):

 self.stocks_strength = stocks_strength

 self.num_stocks = num_stocks

Stocks Allocations %

SBIN.NS 14%

LT.NS 14%

UPL.NS 14%

SBILIFE.NS 14%

NTPC.NS 14%

BAJAJ-AUTO.NS 14%

BAJFINANCE.NS 14%

165

 self.portfolio_size = portfolio_size

 np.random.seed(1)

 random.seed(1)

 tf.random.set_seed(1)

 self.selector = UCB1_StockSelector(stocks_strength, len(stocks_strength),

portfolio_size)

 def select_stocks(self):

 selected_stocks = self.selector.select_stocks()

 return selected_stocks

 def get_stock_data(self, selected_stocks):

 selected_stock_data = {stock: self.stocks_strength[stock] for stock in

selected_stocks}

 return selected_stock_data

 def strategy3(self):

 selected_stocks = self.select_stocks()

 selected_stock_data = self.get_stock_data(selected_stocks)

 stock_features = create_features(selected_stock_data)

 policy_network = PolicyNetworkReLU(len(selected_stocks))

 model = policy_network.get_model()

 allocations = model.predict(np.array([stock_features.flatten()]))

 allocation_list = allocations.tolist()[0]

 return selected_stocks, allocation_list

The output of Strategy3 is a new portfolio allocation of NIFTY 50 stocks as

follows:

166

Table 4.4 Strategy 3 Portfolio Allocation of all NIFTY 50 Stocks

The Table 4.4 demonstrates the ability of Strategy 3 to analyze the historical data

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term

investments. Strategy 3 considers only the top 10 stocks since there are limits set on the

number of stocks to be chosen in this strategy. The returns of this strategy will be

discussed in the Chapter 6.

4.14.4 Strategy4

Strategy 4 is developed with a blend of the following components:

• Base Strategy – UCB1 Base Selector

• Base Strategy – Policy Network Standard

• Utility Function – Calculate Allocation

The code for Strategy 4 is defined as follows:

class Strategy4:

 def __init__(self, num_stocks, stocks_strength, tickers):

 self.num_stocks = num_stocks

 self.stocks_strength = stocks_strength

 self.tickers = tickers

 np.random.seed(1)

Stocks Allocations %

EICHERMOT.NS 10%

ICICIBANK.NS 10%

WIPRO.NS 10%

BAJFINANCE.NS 10%

BAJAJ-AUTO.NS 10%

NTPC.NS 10%

SBILIFE.NS 10%

UPL.NS 10%

LT.NS 10%

SBIN.NS 10%

167

 random.seed(1)

 tf.random.set_seed(1)

 self.ucb = UCB1_BaseSelector(num_stocks)

 self.policy_network = PolicyNetworkStandard(input_dim=1,

output_dim=num_stocks)

 self.model = self.policy_network.get_model()

 def strategy4(self):

 for day in range(self.stocks_strength.shape[0]):

 chosen_stock = self.ucb.select_stock()

 current_data =

np.array([self.stocks_strength[self.tickers[chosen_stock]].iloc[day]])

 allocation = self.model.predict(current_data.reshape(1, -1))[0]

 reward = self.stocks_strength[self.tickers[chosen_stock]].iloc[day]

 self.ucb.update(chosen_stock, reward)

 self.model.fit(current_data.reshape(1, -1), allocation.reshape(1, -1),

epochs=1, verbose=0)

 ucb_values = self.ucb.values

 allocation_final = calc_allocation(ucb_values)

 return allocation_final

The output of Strategy3 is a new portfolio allocation of NIFTY 50 stocks as follows:

Table 4.5 Strategy 4 Portfolio Allocation of all NIFTY 50 Stocks

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 2% BRITANNIA.NS 2% HEROMOTOCO.NS 0% LTIM.NS 2% SUNPHARMA.NS 2%

ADANIPORTS.NS 2% CIPLA.NS 1% HINDUNILVR.NS 2% M&M.NS 2% TATACONSUM.NS 2%

APOLLOHOSP.NS 2% COALINDIA.NS 2% HINDALCO.NS 2% MARUTI.NS 2% TATAMOTORS.NS 2%

ASIANPAINT.NS 2% DIVISLAB.NS 2% ICICIBANK.NS 2% NESTLEIND.NS 1% TATASTEEL.NS 2%

AXISBANK.NS 2% DRREDDY.NS 2% INDUSINDBK.NS 2% NTPC.NS 2% TCS.NS 2%

BPCL.NS 2% EICHERMOT.NS 2% INFY.NS 2% ONGC.NS 2% TECHM.NS 2%

BAJAJ-AUTO.NS 2% GRASIM.NS 1% ITC.NS 2% POWERGRID.NS 2% TITAN.NS 2%

BAJFINANCE.NS 2% HCLTECH.NS 2% JSWSTEEL.NS 2% RELIANCE.NS 2% ULTRACEMCO.NS 2%

BAJAJFINSV.NS 2% HDFCBANK.NS 2% KOTAKBANK.NS 2% SBILIFE.NS 2% UPL.NS 2%

BHARTIARTL.NS 2% HDFCLIFE.NS 2% LT.NS 3% SBIN.NS 3% WIPRO.NS 2%

168

The Table 4.5 demonstrates the ability of Strategy 4 to analyze the historical data

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term

investments. Strategy 4 considers all NIFTY 50 stocks since there are no limits set on the

number of stocks to be chosen in this strategy. The returns of this strategy will be

discussed in the Chapter 6.

4.14.5 Strategy5

Strategy 5 is developed with a blend of the following components:

• Base Strategy – UCB1 Stock Allocation Maximizer

• Utility Function – Calculate Daily Strength Lag

• Utility Function – Calculate Allocation

The code for Strategy 5 is defined as follows:

class Strategy5:

 def __init__(self, stocks_strength, tickers):

 np.random.seed(1)

 random.seed(1)

 tf.random.set_seed(1)

 self.stocks_strength = stocks_strength

 self.stock_strength_change = calculate_daily_strength_lag(stocks_strength)

 self.tickers = tickers

 self.allocator =

UCB1_StockAllocationMaximizer(self.stock_strength_change,

len(self.stock_strength_change))

 def strategy5(self):

 chosen_stocks_and_allocation_each_day = self.allocator.allocate_stocks()

 last_day_allocations = chosen_stocks_and_allocation_each_day[-1]

169

 print(f"Day {len(self.stocks_strength)}: {last_day_allocations}")

 investment_policy = [stock_with_alloc[1] for stock_with_alloc in

last_day_allocations]

 allocation_final = calc_allocation(investment_policy)

 return allocation_final

The output of Strategy5 is a new portfolio allocation of NIFTY 50 stocks as

follows:

Table 4.6 Strategy 5 Portfolio Allocation of all NIFTY 50 Stocks

The Table 4.6 demonstrates the ability of Strategy 5 to analyze the historical data

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term

investments. Strategy 5 considers all NIFTY 50 stocks since there are no limits set on the

number of stocks to be chosen in this strategy. The returns of this strategy will be

discussed in the Chapter 6.

4.14.6 Strategy6

Strategy 6 is developed with a blend of the following components:

• Base Strategy – UCB1 Optimizer

• Base Strategy – Policy Gradient Simple Policy Search

• Utility Function – Calculate Daily Strength Lag

• Utility Function – Calculate Allocation

The code for Strategy 6 is defined as follows:

class Strategy6:

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 2% BRITANNIA.NS 2% HEROMOTOCO.NS 2% LTIM.NS 2% SUNPHARMA.NS 2%

ADANIPORTS.NS 2% CIPLA.NS 2% HINDUNILVR.NS 2% M&M.NS 2% TATACONSUM.NS 2%

APOLLOHOSP.NS 2% COALINDIA.NS 0% HINDALCO.NS 2% MARUTI.NS 2% TATAMOTORS.NS 2%

ASIANPAINT.NS 2% DIVISLAB.NS 2% ICICIBANK.NS 2% NESTLEIND.NS 2% TATASTEEL.NS 0%

AXISBANK.NS 2% DRREDDY.NS 2% INDUSINDBK.NS 3% NTPC.NS 2% TCS.NS 2%

BPCL.NS 2% EICHERMOT.NS 2% INFY.NS 2% ONGC.NS 2% TECHM.NS 2%

BAJAJ-AUTO.NS 2% GRASIM.NS 2% ITC.NS 2% POWERGRID.NS 2% TITAN.NS 2%

BAJFINANCE.NS 2% HCLTECH.NS 2% JSWSTEEL.NS 2% RELIANCE.NS 2% ULTRACEMCO.NS 2%

BAJAJFINSV.NS 2% HDFCBANK.NS 2% KOTAKBANK.NS 2% SBILIFE.NS 2% UPL.NS 2%

BHARTIARTL.NS 2% HDFCLIFE.NS 2% LT.NS 2% SBIN.NS 2% WIPRO.NS 3%

170

 def __init__(self, stocks_strength):

 np.random.seed(1)

 random.seed(1)

 tf.random.set_seed(1)

 self.stock_strength_change = calculate_daily_strength_lag(stocks_strength)

 self.optimizer = UCB1_Optimizer(self.stock_strength_change,

len(self.stock_strength_change))

 def strategy6(self):

 total_reward = self.optimizer.optimize()

 investment_policy = simple_policy_search(self.stock_strength_change,

total_reward)

 allocation_final = calc_allocation(investment_policy)

 return allocation_final

The output of Strategy6 is a new portfolio allocation of NIFTY 50 stocks as

follows:

Table 4.7 Strategy 6 Portfolio Allocation of all NIFTY 50 Stocks

The Table 4.7 demonstrates the ability of Strategy 6 to analyze the historical data

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term

investments. Strategy 6 considers all NIFTY 50 stocks since there are no limits set on the

number of stocks to be chosen in this strategy. The returns of this strategy will be

discussed in the Chapter 6.

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 1% BRITANNIA.NS 0% HEROMOTOCO.NS 9% LTIM.NS 1% SUNPHARMA.NS 1%

ADANIPORTS.NS 1% CIPLA.NS 1% HINDUNILVR.NS 1% M&M.NS 1% TATACONSUM.NS 1%

APOLLOHOSP.NS 1% COALINDIA.NS 2% HINDALCO.NS 1% MARUTI.NS 1% TATAMOTORS.NS 1%

ASIANPAINT.NS 1% DIVISLAB.NS 37% ICICIBANK.NS 1% NESTLEIND.NS 1% TATASTEEL.NS 1%

AXISBANK.NS 1% DRREDDY.NS 1% INDUSINDBK.NS 4% NTPC.NS 1% TCS.NS 1%

BPCL.NS 0% EICHERMOT.NS 1% INFY.NS 1% ONGC.NS 1% TECHM.NS 1%

BAJAJ-AUTO.NS 1% GRASIM.NS 1% ITC.NS 0% POWERGRID.NS 1% TITAN.NS 1%

BAJFINANCE.NS 1% HCLTECH.NS 1% JSWSTEEL.NS 1% RELIANCE.NS 1% ULTRACEMCO.NS 1%

BAJAJFINSV.NS 1% HDFCBANK.NS 1% KOTAKBANK.NS 1% SBILIFE.NS 1% UPL.NS 1%

BHARTIARTL.NS 1% HDFCLIFE.NS 1% LT.NS 1% SBIN.NS 1% WIPRO.NS 2%

171

4.14.7 Strategy7

Strategy 7 is developed with a blend of the following components:

• Base Strategy – UCB1 Stock Selector

• Base Strategy – Policy Network Batch Norm

• Utility Function – Calculate Daily Strength Lag

• Utility Function – Create Features

The code for Strategy 7 is defined as follows:

class Strategy7:

 def __init__(self, stocks_strength, portfolio_size):

 np.random.seed(1)

 random.seed(1)

 tf.random.set_seed(1)

 self.stock_strength_change = calculate_daily_strength_lag(stocks_strength)

 self.selector = UCB1_StockSelector(self.stock_strength_change,

len(self.stock_strength_change), portfolio_size)

 self.portfolio_size = portfolio_size

 def strategy7(self):

 selected_stocks = self.selector.select_stocks()

 selected_stocks_strength = {stock: self.stock_strength_change[stock] for

stock in selected_stocks}

 stock_features = create_features(selected_stocks_strength)

 policy_network = PolicyNetworkBatchNorm(len(selected_stocks))

 model = policy_network.get_model()

 allocations = model.predict(np.array([stock_features.flatten()]))

 allocation_final = allocations.tolist()[0]

172

 return selected_stocks, allocation_final

The output of Strategy7 is a new portfolio allocation of NIFTY 50 stocks as follows:

Table 4.8 Strategy 7 Portfolio Allocation of all NIFTY 50 Stocks

The Table 4.8 demonstrates the ability of Strategy 7 to analyze the historical data

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term

investments. Strategy 7 considers only the top 7 stocks since there are limits set on the

number of stocks to be chosen in this strategy. The returns of this strategy will be

discussed in the Chapter 6.

4.14.8 Strategy8

Strategy 8 is developed with a blend of the following components:

• Base Strategy – UCB1 Optimizer

• Base Strategy – Policy Network Gradient Complex Policy Search

• Utility Function – Calculate Daily Strength Lag

• Utility Function – Calculate Allocation

The code for Strategy 8 is defined as follows:

class Strategy8:

 def __init__(self, stocks_strength, num_stocks):

 np.random.seed(1)

 random.seed(1)

 tf.random.set_seed(1)

 self.stocks_strength = stocks_strength

Stocks Allocations %

UPL.NS 15%

LTIM.NS 10%

TATASTEEL.NS 13%

HINDUNILVR.NS 20%

ITC.NS 10%

BRITANNIA.NS 14%

BPCL.NS 18%

173

 self.stock_strength_change =

calculate_daily_strength_lag(self.stocks_strength)

 self.num_stocks = num_stocks

 self.optimizer = UCB1_Optimizer(self.stock_strength_change,

len(self.stock_strength_change))

 def strategy8(self):

 total_reward = self.optimizer.optimize()

 investment_policy = complex_policy_search(self.stocks_strength,

total_reward, self.num_stocks)

 ucb_values = investment_policy[0][0]

 allocation_final = calc_allocation(ucb_values)

 return allocation_final

The output of Strategy8 is a new portfolio allocation of NIFTY 50 stocks as follows:

Table 4.9 Strategy 8 Portfolio Allocation of all NIFTY 50 Stocks

The Table 4.9 demonstrates the ability of Strategy 8 to analyze the historical data

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term

investments. Strategy 8 considers only the top 10 stocks since there are limits set on the

number of stocks to be chosen in this strategy. The returns of this strategy will be

discussed in the Chapter 6.

4.14 Allocation – UI Module

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 2% BRITANNIA.NS 2% HEROMOTOCO.NS 2% LTIM.NS 2% SUNPHARMA.NS 1%

ADANIPORTS.NS 2% CIPLA.NS 1% HINDUNILVR.NS 3% M&M.NS 2% TATACONSUM.NS 3%

APOLLOHOSP.NS 2% COALINDIA.NS 0% HINDALCO.NS 2% MARUTI.NS 1% TATAMOTORS.NS 1%

ASIANPAINT.NS 5% DIVISLAB.NS 0% ICICIBANK.NS 3% NESTLEIND.NS 1% TATASTEEL.NS 3%

AXISBANK.NS 1% DRREDDY.NS 3% INDUSINDBK.NS 1% NTPC.NS 1% TCS.NS 2%

BPCL.NS 3% EICHERMOT.NS 2% INFY.NS 2% ONGC.NS 3% TECHM.NS 3%

BAJAJ-AUTO.NS 2% GRASIM.NS 1% ITC.NS 3% POWERGRID.NS 2% TITAN.NS 3%

BAJFINANCE.NS 2% HCLTECH.NS 4% JSWSTEEL.NS 2% RELIANCE.NS 1% ULTRACEMCO.NS 2%

BAJAJFINSV.NS 2% HDFCBANK.NS 3% KOTAKBANK.NS 2% SBILIFE.NS 2% UPL.NS 2%

BHARTIARTL.NS 2% HDFCLIFE.NS 1% LT.NS 4% SBIN.NS 1% WIPRO.NS 3%

174

The final module of the SLRPO strategy is the Allocation UI module which is the

front-end interface that is used to run all 8 strategies and review the portfolio allocations

of each strategy, download the results and take informed decisions based on the portfolio

allocations and their historical returns.

The complete SLRPO Strategy is developed in Python and the Front-end

application to run the Strategy is developed using Streamlit in Python.

The code for configuration of the input variables required to run the app is defined

as follows:

config_file = 'config.ini'

tickers = read_config(config_file)

stocks_strength = pd.read_csv('df_scores.csv')

stocks_strength.index = stocks_strength['Date']

stocks_strength.drop(columns = 'Date', inplace = True)

num_rounds = len(stocks_strength)

num_stocks = len(tickers)

stocks_data = pd.read_csv('stocks_data.csv')

start_date = '01-01-2020'

end_date = '30-01-2024'

Investment = 100000

The code for executing all the 8 strategies are defined as follows:

strategy1 = Strategy1(tickers)

allocation1 = strategy1.strategy1()

strategy2 = Strategy2(num_stocks, num_rounds, tickers, stocks_strength)

top_stocks2, allocation2 = strategy2.strategy2()

strategy3 = Strategy3(stocks_strength, num_stocks, portfolio_size = 10)

175

selected_stocks3, allocation3 = strategy3.strategy3()

strategy4 = Strategy4(num_stocks, stocks_strength, tickers)

allocation4 = strategy4.strategy4()

strategy5 = Strategy5(stocks_strength, tickers)

allocation5 = strategy5.strategy5()

strategy6 = Strategy6(stocks_strength)

allocation6 = strategy6.strategy6()

strategy7 = Strategy7(stocks_strength, portfolio_size=7)

selected_stocks7, allocation7 = strategy7.strategy7()

strategy8 = Strategy8(stocks_strength, num_stocks)

allocation8 = strategy8.strategy8()

The code for downloading the results of the strategies is defined as follows:

def create_download_df(stocks, allocations):

 if len(stocks) != len(allocations):

 raise ValueError("Stocks and allocations lists must be of the same length.")

 df = pd.DataFrame({

 'Stocks': stocks,

 'Allocations %': allocations

 })

 return df

configurations = [

 {"title": "strategy 1", "tickers": tickers, "allocation": allocation1},

 {"title": "strategy 2", "tickers": top_stocks2, "allocation": allocation2},

 {"title": "strategy 3", "tickers": selected_stocks3, "allocation": allocation3},

 {"title": "strategy 4", "tickers": tickers, "allocation": allocation4},

176

 {"title": "strategy 5", "tickers": tickers, "allocation": allocation5},

 {"title": "strategy 6", "tickers": tickers, "allocation": allocation6},

 {"title": "strategy 7", "tickers": selected_stocks7, "allocation": allocation7},

 {"title": "strategy 8", "tickers": tickers, "allocation": allocation8}

]

The code for the front-end user interface is defined as follows:

def main():

 st.title('Investment Strategy Recommendations for NIFTY 50')

 for config in configurations:

 st.subheader(f'Results for {config["title"]}')

 df = calc_model_returns(stocks_data, config['tickers'], config['allocation'],

start_date, end_date, Investment)

 df_strategy = create_download_df(config['tickers'], config['allocation'])

 st.dataframe(df)

 csv = df_strategy.to_csv(index=False)

 b64 = base64.b64encode(csv.encode()).decode()

 file_name = f"{config['title']}_data.csv"

 link_text = f"Download {config['title']}"

 link = f'<a href="data:file/csv;base64,{b64}"

download="{file_name}">{link_text}'

 st.markdown(link, unsafe_allow_html=True)

if __name__ == '__main__':

 main()

The results of the strategies and its corresponding returns can be analyzed and

downloaded by running the UI. The output of the UI is generated as follows and the

177

result of each strategy is captured in the UI along with an option to download the

Portfolio allocations for the strategy.

The results for Strategy 1 are represented in the UI as follows:

Figure 4.5 Strategy 1 - Results

The results for Strategy 2 are represented in the UI as follows:

Figure 4.6 Strategy 2 – Results

178

The results for Strategy 3 are represented in the UI as follows:

Figure 4.7 Strategy 3 – Results

The results for Strategy 4 are represented in the UI as follows:

Figure 4.8 Strategy 4 – Results

The results for Strategy 5 are represented in the UI as follows:

179

Figure 4.9 Strategy 5 – Results

The results for Strategy 6 are represented in the UI as follows:

Figure 4.10 Strategy 6 – Results

The results for Strategy 7 are represented in the UI as follows:

180

Figure 4.10 Strategy 7 – Results

The results for Strategy 8 are represented in the UI as follows:

Figure 4.11 Strategy 8 – Results

The results for all the strategies are captured in the Allocation UI and will be analyzed

further in the Chapter 6.

181

CHAPTER V:

RESULTS

5.1 Research Question

How can data science techniques and methodologies help in developing a

decision-making framework that helps in identifying the opportunities to invest in

the Indian stock markets?

The complete research and study performed in this thesis led to the development

of a new Investment strategy names SLRPO strategy. The development of this strategy

involved various stages of Data Science life cycle that includes data collection, data

preprocessing, exploratory data analysis, predictive modeling and reinforcement learning.

All these techniques of data science are used to develop SLRPO strategy with the

following 11 modules:

1. Data Acquisition

2. Data Load

3. Indicators

4. Preprocessing

5. Weight Generator

6. Strength Score

7. Utility Functions

8. Strategy – UCB1

9. Strategy – Policy Network

10. Strategy – Policy Gradient

11. Allocation – UI

The complete architecture of SLRPO Strategy is available in Figure 4.1 SLRPO

Architecture.

182

• Each module in the SLRPO Architecture is responsible for one or more of the data

science techniques to create the SLRPO Investment Framework.

• Data Acquisition and Data Load modules are responsible for Data collection process

in the Data Science Life Cycle.

• Preprocessing module is responsible for Data preprocessing and cleansing in the Data

Science Life Cycle.

• Indicators, Weight Generator and Strength Score modules are responsible for Feature

Engineering in the Data Science Life Cycle.

• Utility Functions, Strategy - UCB1, Strategy – Policy Network and Strategy – Policy

Gradient modules are responsible for Model Development and Evaluation in the Data

Science Life Cycle.

• Allocation UI is responsible for results review and analysis of the strategies and their

model results.

5.2 Research Sub Question One

What are the key aspects/variables that need to be considered in

understanding opportunities?

Understanding opportunities in the Indian Stock markets involves understanding

the financial and economic data of the stock markets. For this analysis and framework

development, 23 Technical indicators and 13 Fundamental indicators are considered to

understand the market sentiment, economic impact, company performance and the share

price. These concepts are covered in detailed under the Chapter 4, Section 4.4 along with

explanation.

A new indicator named ‘Strength Score’ is developed in this thesis to get one

common feature derived from all of the Technical and Fundamental indicators considered

for this study such that the feature can exhibit the conslidated impact on the hisorical data

183

of NIFTY 50 stocks. This feature can be applied to any other portfolio of stocks in the

markets in general. This concept is covered in detailed under the Chapter 4, Section 4.6

and 4.7 along with explanation.

5.3 Research Sub Question Two

What are the various techniques or algorithms that can be explored to

identify opportunities?

Reinforcement Learning and Neural Networks are explored extensively to

develop SLRPO Strategy.

The concepts behind Upper Confidence Bound (UCB1) algorithm, Policy

Network, Policy Gradient and Neural Networks are used to develop the 8 strategies that

generates portfolios and allocations in the SLRPO strategy.

The techniques are covered in detailed under the Chapter 4, Section 4.9 along

with explanation.

5.4 Research Sub Question Three

How can prescriptive analytics help in developing a decision-making

framework in the domain of Indian stock markets?

The complete design of SLRPO strategy in Chapter 4 using various techniques of

data science has led to developing 8 strategies that generates 1 portfolio each along with

the allocation of investments in each portfolio and the insights on the portfolio such as its

total gain, total loss, total returns, cumulative returns and annualized returns for an

investment of Rs. 100000/- over a period of 4 years starting from 1st Jan 2020 to 30th Jan

2024. These metrics and the portfolio outcome provides insights on which portfolio to

choose for long term investments. The portfolio allocations from each strategy is

different and the number of stocks chosen also differs in the strategies. The choice of

184

strategy depends on the invester risk profile and the opportunity cost involved in

investing in one profile over the other.

The comparison of results and the actionable insights from the prescriptive

analysis of SLRPO strategy will be discussed further in Chapter 6.

185

CHAPTER VI:

DISCUSSION

6.1 Discussion of Results of SLRPO Investment Framework

The SLRPO Investment Framework is made up of 8 strategies. The following

aspects of all 8 strategies will be reviewed and discussed in this section.

• No. of Year of investment

• Investment

• Total Gain/ Total Loss

• Total Returns

• Cumulative Returns

• Annualized Returns

All the metrics for the strategies are represented in Table 6.1

Strategy

No.
of

Years
Investment

(INR)
Total Gain

/ Loss
Total

Returns
Cumulative

Returns
Annualized

Returns
Portfolio

Size

1 4
100000

1,69,075.33

2,69,075.33

169.08% 27.46% 30

2 4
100000

1,15,523.89

2,15,523.89

115.52% 20.71% 7

3 4
100000

1,07,096.65

2,07,096.65

107.10% 19.54% 10

4 4
100000

1,67,356.66

2,67,356.66

167.36% 27.26% 30

5 4
100000

1,56,562.61

2,56,562.61

156.56% 25.98% 30

6 4
100000

1,37,566.43

2,37,566.43

137.57% 23.63% 30

7 4
100000

1,34,708.92

2,34,708.93

134.71% 23.26% 7

8 4
100000

1,70,569.52

2,70,569.52

170.57% 27.63% 30

Table 6.1 Returns and Strategy Metrics

186

The Portfolio allocation recommended by Strategy 8 (Table 4.9) has the

maximum annualized returns in all the 8 SLRPO Strategies. The other best strategies

being Strategy 1 (Table 4.2) and Strategy 4 (Table 4.5) respectively. It is to be noted that

all these three strategies have considered all 50 NIFTY 50 stocks. Hence the risk is

distributed across the portfolio and is well balance.

On the other hand, if the investors want to choose a smaller portfolio with better

annualized returns, the other best options will be Strategy 7 (Table 4.8) , Strategy 2

(Table 4.3) and Strategy 3 (Table 4.4) respectively.

Industry Benchmark Analysis

Fixed Deposit

Fixed Deposit of money in an bank is the simplest, risk free and a goto form of

investment for most of the Indian investors. According to Groww (Groww, 2024), the

interest on fixed deposit across various banks in India ranges between 3% to 7% for an

investment period between 7 days to 10 years.

NIFTY 50 Index

An industry benchmark of annualized returns is considered from NSE for the

NIFTY 50 stocks. According to NSE (National Stock Exchange of India, 2022), NIFTY

50 Index has given an annualized returns of 14.2% since June 1999. The annualized

returns for 5 years was 17.6% and 3 years was 18.2%.

The goal of the SLRPO strategy is to give better portfolio distribution of the

NIFTY 50 stocks and a better performance and annualized returns compared to industry

benchmark.

6.2 Summary of Findings

Opportunity Cost Analysis

187

Opportunity cost is the cost incurred in chosing one form of investment over

another.

Considering the annualized returns of SLRPO framework as the best form of

investment. Opportunity cost will be the cost incurred in foregoing SLRPO investment

strategies for any other known form of investments.

The following Table shows the opportunity cost of not choosing SLRPO strategy

for investment.

Table 6.2 Opportunity Cost of Foregoing SLRPO

The Table 6.2 demonstrates the impact of foregoing SLRPO for other investment

strategies.

On an average, if none of the SLRPO strategies are chosen but a Fixed Deposit is

chosen, the opportunity cost would be around 17.4% of Annualized returns and Rs.17434

in INR per year.

On an average, if none of the SLRPO strategies are chosen but NIFTY 50 Index

benchmark is chosen, the opportunity cost would be around 6.4% of Annualized returns

and Rs.6434 in INR per year.

Strategy No. of Years

Investment

(INR)

Annualized

Returns

Opportunity

Cost (Fixed

Deposit at

maximum 7%

interest)

Opportunity

Cost (NIFTY 50

Index

Benchmark at

maximum 18%

Returns)

Opportunity

Cost INR

(Fixed Deposit)

Opportunity

Cost INR

(NIFTY 50

INDEX)

1 4 100000 27.46% 20.46% 9.46% 20460 9460

2 4 100000 20.71% 13.71% 2.71% 13710 2710

3 4 100000 19.54% 12.54% 1.54% 12540 1540

4 4 100000 27.26% 20.26% 9.26% 20260 9260

5 4 100000 25.98% 18.98% 7.98% 18980 7980

6 4 100000 23.63% 16.63% 5.63% 16630 5630

7 4 100000 23.26% 16.26% 5.26% 16260 5260

8 4 100000 27.63% 20.63% 9.63% 20630 9630

Average

Opportunity

Cost

17.4% 6.4% 17434 6434

188

Considering most of the Indian investors choose Fixed Deposit as the safest and

risk free form of investment, the overall opportunity cost is significantly higher.

189

CHAPTER VII:

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS

7.1 Summary

Informed decision making in the Indian stock markets is possible with the right

kind of data analysis, applications of data science techniques and domain knowledge to

understand the markets and the data. SLRPO is an investment strategy that is developed

in this thesis by considering all of these aspects of Indian Stock markets.

SLRPO strategy is designed by applying various techniques of data science,

machine learning, deep learning and portfolio optimization on Indian Stock markets.

Opportunity cost of investing in Industry Benchmarks vs SLRPO Strategy was

studied and analyzed in this research.

From the overall analysis of the results in Chapters 5 and 6, it is evident that a

beneficial framework and strategy can be developed when data is analyzed with the help

of right tools.

7.2 Implications

The SLRPO investment strategies developed in this thesis is global in nature and

its applications can be extended to different stock markets, different set of stocks and

different portfolios not only in the Indian market but also in the Global markets.

The prescriptive nature of the SLRPO strategy provides required information to

make informed investment decisions. It is important to choose the portfolios according to

the individual risk profiles, understand the nature of stocks that are provided as input to

the strategies, understand fundamentals of the comanpanies chosen for investment and

make informed decisions.

7.3 Recommendations for Future Research

190

The opportunity for future research lies in the choice of data science techniques,

choice of feature engineering and the choice of input data in building similar investment

strategies.

Reinforcement learning specifically focused on Upper Confidence Bound, Policy

Network, Policy Search and Policy Gradient were the techniques chosen for this research.

There are opportuities to expland further with other aspect of reinforcement learning and

other machine learning algorithms.

The focus of this research was to provide actionable insights through prescriptive

analyics. There are opportunities to do further research using predictive models and

regression techiques. There are also opportunities to build recommendations using

Generative AI and Large Language Models.

7.4 Conclusion

This research started with an extensive literature review of around 615 research

papers in the domain of Indian stock markets and data science. Throughout the review,

there were hundreds of techniques used to understand the markets and predict future

stock prices for individual stocks while there was minimal research in developing

portfolio recommendations and actionable insights. The SLRPO Investment strategy and

the Stocks Stength Score developed in this research will act as important tools to provide

actionable insights, portfolio recommendations and opportunity cost as well as

opportunity analysis in Indian stocks markets for an informed decision making. The

novel approach taken in developing SLRPO strategy using multiple combinations of

Reinforcement learning techniques will pave a way for a new direction of analysis that

can be performed on the stock markets. The SLRPO strategy provides actionable insights

to an investor for informed decision making along with information that helps the

191

investor to choose between one investment vs another for better outcomes from an

investment.

192

REFERENCES

Appel, G. (2005) “Technical Analysis: Power Tools for Active Investors,” New York:

Financial Times Press.

Arms, R.W.Jr. (1996) “Trading Without Fear: Eliminating the Human Emotion,” New

York: John Wiley & Sons.

Auer, P., Cesa-Bianchi, N., & Fischer, P. (2002). “Finite-time analysis of the

multiarmed bandit problem,” Machine Learning, 47(2-3), 235-256.

Bollinger, J. (2002) “Bollinger on Bollinger Bands, New York,” McGraw-Hill.

Buchanan, J.M. (1991) “Opportunity Cost,” The World of Economics, pp. 520–525.

Carta, S. et al. (2021) “Multi-DQN: An ensemble of deep Q-learning agents for stock

market forecasting,” Expert Systems with Applications, 164, p. 113820.

Chaikin, M. (n.d.) “Accumulation/Distribution Line,” FM Labs. Available at:

https://www.fmlabs.com/reference/ (Accessed: 2 April 2023)

Chaikin, M. (no date) “Chaikin Money Flow,” Chaikin Analytics. Available at:

What is Chaikin Money Flow? - Chaikin Analytics (Accessed: 23 June 2023).

Chong, E., Han, C. and Park, F.C. (2017) “Deep Learning Networks for Stock Market

Analysis and prediction: Methodology, Data Representations, and case studies,”

Expert Systems with Applications, 83, pp. 187–205.

Colby, R.W. (2003) “The Encyclopedia of Technical Market Indicators. 2nd edn,”

New York: McGraw-Hill.

Dang, H. and Mei, B. (2022) “Stock Movement Prediction Using Price Factor and

Deep Learning,” International Journal of Computer and Information

Engineering, 16(3), pp. 73–76.

Fernando, J. (2021) “Opportunity Cost,” https://www.investopedia.com/. Available at:

https://www.investopedia.com/terms/o/opportunitycost.asp (Accessed: March 19,

https://www.chaikinanalytics.com/chaikin-money-flow/

193

2022).

Granville, J.E. (1963) “Granville's New Key to Stock Market Profits,” Englewood

Cliffs, NJ: Prentice-Hall.

Groww. (2024) “Fixed Deposit Interest Rates 2024,” Groww. Available at:

https://groww.in/fixed-deposits/fd-interest-rates (Accessed: 1 July 2024).

Hoskin, R.E. (1983) “Opportunity cost and behavior,” Journal of Accounting

Research, 21(1), p. 78.

Investopedia (2023) “Donchian Channels,” Investopedia. Available at:

https://www.investopedia.com/terms/d/donchianchannels.asp (Accessed: August

4, 2023).

Investopedia (no date) “Technical Indicators,” Investopedia. Available at:

https://www.investopedia.com/terms/t/technicalindicator.asp (Accessed: August

2, 2023).

Johnson, B. (2010) “Algorithmic Trading and DMA: An Introduction to Direct

Access Trading Strategies,” 4Myeloma Press.

Kamara, A.F., Chen, E. and Pan, Z. (2022) “An ensemble of a boosted hybrid of deep

learning models and technical analysis for forecasting stock prices,” Information

Sciences, 594, pp. 1–19.

Keltner, C.W. (1960) “How to Make Money in Commodities,” New York: Prentice

Hall.

Konstantinov, G., Chorus, A. and Rebmann, J. (2020) “A network and machine

learning approach to factor, asset, and blended allocation,” The Journal of

Portfolio Management, 46(6), pp. 54–71.

Lane, G.C. (1984) “Lane's Stochastics: The Essential Toolkit for Stock and Futures

Traders,” Technical Analysis of Stocks & Commodities, September.

194

Mousavi Anzahaei, S.M. and Nikoomaram, H. (2022) “A comparative study of the

performance of Stock trading strategies based on LGBM and CatBoost

algorithms.,” International Journal of Finance & Managerial Accounting, 7(26),

pp. 63–75.

Murphy, J.J. (1999) “Technical Analysis of the Financial Markets: A Comprehensive

Guide to Trading Methods and Applications,” New York: New York Institute of

Finance.

National Stock Exchange of India (2022) “25 Years Journey of Nifty50,” NSE India.

Available at:

https://archives.nseindia.com/content/indices/25_Years_Journey_of_Nifty50_202

2-01.pdf (Accessed: 1 July 2024).

Patel, J. et al. (2015) “Predicting stock and stock price index movement using trend

deterministic data preparation and machine learning techniques,” Expert Systems

with Applications, 42(1), pp. 259–268.

Payne, J.W., Bettman, J.R. and Luce, M.F. (1996) “When Time is money: Decision

behavior under opportunity-cost time pressure,” Organizational Behavior and

Human Decision Processes, 66(2), pp. 131–152.

Peng, Y. et al. (2021) “Feature selection and deep neural networks for stock price

direction forecasting using technical analysis indicators,” Machine Learning with

Applications, 5, p. 100060.

Saha, S., Gao, J. and Gerlach, R. (2022) “A survey of the application of graph-based

approaches in stock market analysis and prediction,” International Journal of

Data Science and Analytics, pp. 1–15.

Seban, O. (2008) “Tous Les Secrets Des Traders Gagnants,” Paris: Olivier Seban

Publications.

195

SEBI (2015) “SEBI Investor Survey 2015,” Securities and Exchange Board of India,

pp. 1–52.

Sutton, R. S. (1988) “Learning to predict by the methods of temporal differences,”

Machine Learning, 3(1), 9-44.

Ticknor, J.L. (2013) “A Bayesian Regularized Artificial Neural Network for Stock

Market Forecasting,” Expert Systems with Applications, 40(14), pp. 5501–5506.

Wilder, J.W. (1978) “New Concepts in Technical Trading Systems. Greensboro,

N.C.” Trend Research.

Williams, R.J. (1992) “Simple statistical gradient-following algorithms for

connectionist reinforcement learning,” Machine Learning, 8(3-4), 229-256.

