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This study will focus on developing a prescriptive framework that applies various 

techniques of data science, machine learning and deep learning to help individual 

investors understand market opportunities and make educated decisions in the Indian 

stock market. The study will review existing methodologies and research available in the 

field of Indian stock markets, identifying market opportunities and applying data science 

techniques.  

The study will rely on publicly available data sets related to stock prices and financial 

reports of individual firms. The study will find answers for research questions and will 

prescribe a framework for educated decision making in identifying market opportunities. 

Finally, the study will conclude the results. The study will also recommend further 

studies and identify limitations of the study.  
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CHAPTER I:  

INTRODUCTION  

1.1 Introduction  

Indian stock market is an exchange where investors can buy and sell stocks, bonds 

and other securities in India. Indian stock market is always buzzing with activities during 

the business day starting from the time of its opening bell at 9 am to its closing time at 

3:30 pm IST. Stock market is an arena where an Indian house hold can invest money as 

an individual investor and gain profits or incur losses. Even though the stock market is 

busy during the trading day, SEBI investor survey 2015 states the following:  

A number of studies and surveys indicate that a very small proportion of Indian 

population invests in securities market while countries with matured stock markets have 

participation rates of around 50 percent (SEBI INVESTOR SURVEY 2015, 2015, p. 1). 

There are a number of reasons why an Indian household does not invest in the stock 

markets either in Mutual Funds or in Equities.  

The reasons for why do households not invest in mutual funds are listed in the 

following table (SEBI INVESTOR SURVEY 2015, 2015, p. 51): 

 

 
Figure 1.1 Reasons for Households not Investing in Mutual Funds 

The reasons for why households do not invest in equities are listed in the 

following table (SEBI INVESTOR SURVEY 2015, 2015, p. 52):  

Reason Proportion

Not sure about safety of investments 33.3%

Inadequate returns 25.6%

Inadequate information 14.1%

Lack of expertise 12.6%

Investment not very liquid 8.3%

Others 6.1%



 

 

2 

 
Figure 1.2 Reasons for Households not Investing in Equities 

Any investment model relies on capital for the investment to grow. The 

investment model such as Indian stock market relies on public to invest their savings and 

the investments thus acts as a source for the growth of both the individual investor and 

the country’s economy. In India, a very small proportion of the population invests in 

stock markets while there is a large proportion with capital and do not invest due to the 

lack of adequate knowledge or due to the lack of adequate understanding on how to 

utilize the public information available on the markets.  

1.2 Research Problem 

Lack of expertise or inadequate information can lead to Indian households with 

capital, losing opportunities to invest in the Indian stock markets. The scope of this 

research is to study in detail and apply various techniques of data science and machine 

learning to identify the lost opportunities and thus provide a framework that could help in 

educated decision-making by making use of publicly available data. 

1.3 Purpose of Research  

The purpose of this research is to perform a detailed analysis that would 

ultimately focus on the research of how to utilize the public information and convert it 

into the knowledge required for investing in stock markets and thus studies the research 

problem in scope and its corresponding research questions. 

1.4 Significance of the Study  

Reason Proportion

Not sure about safety of investments 25.6%

Inadequate returns 15.4%

Inadequate information 21.3%

Lack of expertise 15.6%

Investment not very liquid 13.4%

Others 8.6%
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This study is aimed to address the following critical issues faced by Indian 

households holding capital but do not invest at the right time and in the right financial 

assets due to lack of adequate information: 

Mitigating Financial Losses: 

The main problem in man Indian households is that they have that could be 

invested in the stock markets, but a lack of expertise or access to adequate information 

often leads to missed investment opportunities. This study focuses on identifying these 

missed opportunities. By doing so, it has the potential to help households make informed 

decisions, thereby reducing the risk of financial losses. 

Empowering Individual Investors: 

Providing a framework for educated decision-making will be of great help to 

individual investors in situationa where they might not have access to expensive financial 

advisory services. This study has the potential to democratize investment by enabling 

households to independently evaluate and seize investment opportunities in the Indian 

stock markets by making use of data and thinking in the right direction. 

Using advanced technologies such as data science and machine learning to study 

the stock markets and taking informed decisions, not only enables the Indian investors to 

make educated decision in the stock markets investment process but also helps in the 

economic growth of the country. 

1.5 Research Purpose and Questions  

How can data science techniques and methodologies help in developing a 

decision-making framework that helps in identifying the opportunities to invest in the 

Indian stock markets? 

1.5.1 Research Sub Questions 
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 1.5.1.1. What are the key aspects/variables that need to be considered in 

understanding opportunities? 

1.5.1.2. What are the various techniques or algorithms that can be explored to 

identify opportunities? 

1.5.1.3. How can prescriptive analytics help in developing a decision-making 

framework in the domain of Indian stock markets?  
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CHAPTER II:  

REVIEW OF LITERATURE 

2.1 Theoretical Framework 

The main objective of this literature review is to provide a comprehensive review 

of literatures and practices in relation to the research questions and come up with a 

framework that helps to identify investment opportunities by understanding various 

market data parameters and economic factors. 

Particularly, the study has the following sub-objectives: 

1. To provide a comprehensive review of sources and key aspects/variables that 

needs to be considered in understanding investment opportunities in Indian stock 

markets; 

2. To analyze various techniques or algorithms that can be explored to identify 

opportunities in Indian stock markets; 

3. To review current methodologies and research in the domain of Indian stock 

markets and analytics. 

4. To outline a decision-making framework in the domain of Indian stock 

markets. 

The result of this study will be valuable to the industry practitioners as well as 

individual investors in developing better practice and tools for investment decision 

making. 

2.2 Preliminary Literature Review Objectives 

The preliminary literature review focused on researching on the following topics: 

1. Understanding the importance of opportunity cost in investments, 

2. Exploring the applications of data science and comprehending the key features 

in the field of investment analysis  
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2.3 Methodology Adopted to Perform this Literature Review 

2.3.1 Search Tokens 

Literature review for this research started by searching and exploring for existing 

research articles on the following search tokens in google scholar: 

1. Machine learning in stock market 

2. Deep learning in stock market 

3. Data Science in stock market 

4. Opportunity analysis in stock markets 

5. Stock market 

6. Indian stock market analysis 

The overall landscape of research materials on the search tokens are distributed as 

follows: 

 
Figure 2.1 Total Research Papers by Search Strings 

2.3.1.1 Search criteria 1 

There were around 10 research materials and existing literature available on the 

concept covering opportunity analysis in stock markets that also covers string 

combinations such as opportunity + stock + market and opportunity analysis + stock + 

market. 
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2.3.1.2 Search criteria 2 

There were around 25 research materials and existing literature available on the 

concept covering Indian stock market analysis that also covers string combinations such 

as Indian + stock + market, Indian + stock + analysis, Indian + market + analysis and 

Indian + stock + market + analysis. 

2.3.1.3 Search criteria 3 

There were around 29 research materials and existing literature available on the 

concept covering deep learning in stock market that also covers string combinations such 

as deep + learning + stock, deep + learning + stock + market and deep + learning + 

market. 

2.3.1.4 Search criteria 4 

There were around 60 research materials and existing literature available on the 

concept covering data science in stock market that also covers string combinations such 

as data + science + stock, date + science + stock + market and data + science + market. 

2.3.1.5 Search criteria 5 

There were around 67 research materials and existing literature available on the 

concept covering machine learning in stock market that also covers string combinations 

such as machine + learning + stock, machine + learning + stock + market and machine 

+ learning + market. 

2.3.1.6 Search criteria 6 

The last, wider and the most generic search criteria was to find out all possible 

existing literature on stock markets or capital markets. There were around 424 research 

materials and existing literature available on the concepts covering stock market that also 

covers string combinations such as stock + market, capital + market and market + 

investment. 
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The preceding statistics is based on the search tokens and the relevance of these 

gathered materials will further be discussed in the upcoming sections. 

The publishers of the gathered research materials will be analyzed further. 

2.4 Publisher Analysis 

A total of 615 existing literature in the form of research papers, journals and 

books were collected and reviewed to understand the relevance of the existing literature 

by analyzing them in relation to my research in scope. 

The total numbers of research papers by publishers are listed as follows: 

 
Figure 2.2 Total Research Papers by Publishers 

The research papers covering the search tokens for this research are majorly 

published by Elsevier, IEEE, Springer, Wiley online library which covers journals on 

finance and JSTOR which covers journals of business.  In the Figure 2.2, there is also an 

assorted list of multiple publishers that covers around a range of 1 to 3 research articles 

each. Our focus of study is mainly on the articles published by Elsevier, IEEE, Springer, 

Wiley online library and JSTOR. 

 



 

 

9 

The relevance of these 615 research papers and journals in relationship to the 

research in scope will be analyzed further. 

2.5 Relevance to Research Topic 

The abstract, methodology and conclusion of the 615 research papers identified 

for this literature review are studied to understand its relevance to the research in scope. 

Post analysis, it is identified that 407 research papers gathered were not relevant to the 

research topic under study and 208 have relevance from at least one perspective. The 

relevance of topics is represented as follows: 

 

 
Figure 2.3 Total Research Papers by Relevance 

The relevant papers were further reviewed, and the statistics is listed down in the 

order of their respective publishers. 
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Figure 2.4 Total Relevant Research Papers by Publishers 

The research papers covering the relevance for this research are majorly published 

by Elsevier, IEEE, Springer, JSTOR which covers journals of business, and Citeseer and 

Wiley online library which covers journals on finance.  In the Figure 2.4, there is also an 

assorted list of multiple publishers that covers around a range of 1 to 3 research articles 

each. Our focus of study is mainly on the articles published by Elsevier, IEEE, Springer, 

JSTOR, and Citeseer and Wiley online library. 

The number of citations of the relevant literature will be analyzed further. 

2.6 Citation Analysis 

Number of citations on a research paper denotes the recognition of a research in that field 

and a possible implementation of the concepts and a higher scope for enhancements. 

Analyzing the citations of various literatures gathered for this research is the next 

important step of this literature review. 

Top 20 research titles with their corresponding number of citations are represented as 

follows. 
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Figure 2.5 Top 20 Most Cited Relevant Papers 

The literature citations are further analyzed by reviewing the statistics by publisher in the 

Figure 2.6. The maximum numbers of aggregated citations were on the papers published 

by JSTOR which publishes journals for business followed by Wiley online library which 

publishes journals for finance. This list is further followed by Elsevier, IEEE, Springer 

and Citeseer in a descending order. 

 
Figure 2.6 Total Numbers of Citations of Relevant Papers by Publisher 
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The chronology of publications with relevance to the year of publishing will be analyzed 

further. 

2.7 Chronology of Publications 

The greatest number of citations were from JSTOR and Wiley online library as 

mentioned in the Figure 2.6. The relevant literatures from these publishers were further 

analyzed to identify how recent the research was. 

 
Figure 2.7 Top Publisher Citations of Relevant Papers by Year 
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All the research papers of JSTOR and Wiley that were identified as relevant 

papers by studying their abstract, methodology and conclusion happens to be published 

between the years 1933 to 2008. This indicates that there were no recent papers or 

journals from these publishers that can be shortlisted for this research. However, the 

already shortlisted papers will still be studied while synthesizing research questions based 

on the knowledge that can be derived from these papers and journals. 

The most recent journal publishers were further analyzed for the number of citations. 
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Figure 2.8 Publisher Citations of Relevant Papers by Recent Time 
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Elsevier, IEEE and Springer have the greatest number of citations on literature 

that were published between 2001 and 2022. 

With these initial efforts to identify, analyze, review and shortlist the most 

relevant, most cited, highly reputed and recent literature, further analysis will be 

performed to synthesize the research questions. 

2.8. Research Question Synthesis 

The research questions for this research in scope are already defined in sections 

1.5 Level 1 and 1.5.1 Level 2.  

The research sub questions under each of the Level 2 Research questions will be 

defined as follows and studied in detail: 

1. What were the problems studied or researched? 

2. What type of data is used to understand opportunities? 

3. What methodologies were applied to solve the problem? 

4. What were the opportunities for future work? 

The Level 2 research questions (Level 2) are divided into three main concepts as 

defined below and the related research is synthesized under each concept. 

1. Understanding the importance of opportunity cost in investments (covered 

in section 2.8.1 – Study 1, 2 & 3). 

2. Exploring the applications of data science in the field of investment 

analysis (covered in section 2.8.2 – Study 4 to 9). 

3. Comprehending the key features considered in the study of investment 

decision making (covered in section 2.8.3 – Study 4 to 9). 

2.8.1 Understanding the importance of opportunity cost in investments 

Study 1 

Literature  
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a. What were the problems studied or researched? 

The first study focuses on investigating decision making under situations where 

there is opportunity-cost time pressure. The authors were interested in how people adapt 

their decision-making strategies when faced with opportunity-cost environments and in 

the possible limits or even failures in adaptivity that may arise in such environments. 

They focused on how people decide when there are conflicts between the processing 

implications of opportunity costs and the implications of other variables such as goals 

and the degree of conflict (intercorrelation) between outcomes (Payne et al., 1996). 

b. What methodologies were applied to solve the problem? 

The adaptive decision maker: an effort/accuracy framework is discussed in this 

literature.  Stronger tests of the effort/accuracy framework have been conducted by using 

computer simulations of the effort and accuracy characterizing typical decision strategies 

to generate hypotheses about processing patterns and then carrying out experimental 

studies of actual decision behavior to test these hypotheses. The focuses of these 

experiments were how opportunity-cost time pressure, along with variations in goals and 

context factors, influences the details of decision processing. Thus, the authors utilized a 

computerized system for collecting process-tracing data as well as choice data. 

c. What type of data is used to understand opportunities? 

The subjects’ information acquisitions, response times and choices were 

monitored using the Mouselab software system. Probabilities and pay offs were captured 

for various scenarios and outcomes using this software. 

d. What were the opportunities for future work? 

The results of the research imply that strategy changes are needed under 

opportunity-cost time pressure.  When deciding in high-velocity environments, the 

decision maker should focus on breadth of evaluation rather than on depth of evaluation. 
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More research which directly examines how alternative prescriptions for decision making 

fare in high- and low-velocity environments is needed (Payne et al., 1996). 

e. Critical Analysis  

The time criticality of decision making is more relevant and directly correlated in 

cases of market investment decisions since there is always a time factor involved for 

investors either when a decision needs to be made for buying, selling or holding a 

security or when a decision needs to be made on investing in the markets itself.  

All these decisions come with a cost, and it is the cost of losing an opportunity or 

delaying an opportunity which in turn can be derived as the opportunity cost. It is also to 

be noted that the data used for this study comes from a simulated environment which 

gives an opportunity to study the behavior of real-life data with additional parameters. 

Study 2 

Literature  

a. What were the problems studied or researched? 

The second study focuses on opportunity cost and choice. The most important 

consequence of the relationship between choice and opportunity cost is the ex-ante or 

forward-looking property that cost must carry in this setting. Opportunity cost, the value 

placed on the rejected option by the chooser, is the obstacle to choice; it is that which 

must be considered, evaluated, and ultimately rejected before the preferred option is 

chosen. Opportunity cost in any particular choice is, of course, influenced by prior 

choices that have been made, but with respect to this choice itself, opportunity cost is 

choice-influencing rather than choice-influenced (Buchanan, 1991). 

b. What methodologies were applied to solve the problem? 

The research in this study is not focused on data collection and analysis. It is 

rather theoretical and focused on explaining the implications of opportunity cost in 
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decision making through economic principals and thought experiments (Buchanan, 

1991). 

c. What type of data is used to understand opportunities? 

The data collection process is not employed in since the author focused on 

explaining the theoretical aspects of opportunity cost by presenting a conceptual 

framework that combines economic theory, rational choice theory, and the study of 

individual preferences and trade-offs (Buchanan, 1991). 

d. What were the opportunities for future work? 

With the familiar statement that 'sunk costs are irrelevant', economists 

acknowledge that the consequences of choices cannot influence choice itself. On the 

other hand, by their formalized constructions of cost schedules and cost functions, which 

necessarily imply measurability and objectifiability of costs, economists divorce cost 

from the choice process. 

e. Critical Analysis 

One of the strengths of this study is its focus on the theoretical concepts that 

influences opportunity cost. Similar to time, choice also is an important variable, rather a 

categorical variable, in investment decision making. Choice also influences the 

opportunity cost. Opportunity cost varies depending on the choice that was made, and it 

can either be directly or inversely correlated to the cost and in turn influences the 

decision-making process.  

However, the lack of data collection process and empirical studies becomes a limitation 

to this study and provides an opportunity to explore further by gathering data that 

supports the theory behind the framework derived by the author in this study. 

Study 3 

Literature 
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a. What were the problems studied or researched? 

The study focuses on opportunity cost and behavior. The study was concerned 

with whether decision makers would use opportunity cost information, or learn to use it, 

when such information was provided explicitly. As part of the issue, the author also 

studied whether decision makers’ use of opportunity costs was affected by their risk 

attitude (Hoskin, 1983). 

b. What methodologies were applied to solve the problem? 

The experiment to understand opportunity cost and behavior was designed using 

newsboy problem. The experiment is explained as a distinction between ex post and ex 

ante opportunity cost information is important in selecting the task. Both kinds of 

information can be relevant to the same problem. Consider, for example, the standard 

inventory ordering problem, sometimes called the newsboy problem. The newsboy has 

information concerning the distribution of demand, the selling price, and the costs of a 

newspaper. Accordingly, the expected opportunity costs for a given decision can be 

calculated. In an ex-post sense, the newsboy can also determine the actual opportunity 

cost at the end of the day by keeping track of the number of customers who ask for the 

newspaper when it is out of stock. This assumes, of course, that the stock is not visible to 

the customer (Hoskin, 1983). 

c. What type of data is used to understand opportunities? 

The subjects used were 61 M.B.A. and Ph.D. students in a major business school. 

The study was conducted over a period three days in groups of five to ten. Subjects were 

randomly assigned to experimental and control groups. There were no significant 

demographic differences between the experimental groups (Hoskin, 1983). 

 

d. What were the opportunities for future work? 
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While designing the experiment there were many limitations imposed on the 

research and study. Further research might need to look at varying some of the factors 

and constraints imposed in the study. Some of the factors suggested by the literature 

includes the risk of bankruptcy, reward systems and instability in the environment 

(Hoskin, 1983). 

e. Critical Analysis 

Both opportunity cost and behavior of investors towards opportunity cost is important in 

decision making. In most of the cases the uncertainty of risk taking, and its impact makes 

the investors not to proceed with an investment. The thought on uncertainty of risk can be 

minimized when the information or knowledge about opportunity cost is available to the 

investor. The main challenge in understanding opportunity cost comes up due to lack of 

enough information on this topic. 

2.8.2 Exploring the applications of data science and comprehending the key features 

in the field of investment analysis 

Study 4 

Literature  

a. What were the problems studied or researched? 

The problem of predicting direction of movement of stock and stock price index 

for Indian stock markets is addressed in the paper. The study compares four prediction 

models, Artificial Neural Network (ANN), support vector machine (SVM), random forest 

and Naive-Bayes with two approaches for input to these models. The first approach for 

input data involves computation of ten technical parameters using stock trading data 

(open, high, low & close prices) while the second approach focuses on representing these 

technical parameters as trend deterministic data (Patel et al., 2015).  

b. What type of data is used to understand applications? 
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Ten years of data of total two stock price indices (CNX Nifty, S&P BSE Sensex) 

and two stocks (Reliance Industries, Infosys Ltd.) from Jan 2003 to Dec 2012 is used in 

this study. All the data is obtained from <http://www.nseindia.com/> and 

<http://www.bseindi-a.com/> websites. Ten technical indicators were used as input 

variables. 

c. What methodologies were applied to solve the problem? 

Machine learning algorithms such as Artificial Neural Networks (ANN), Support 

Vector Machine (SVM), Random Forest and Naïve Bayes classifier were applied on the 

data to learn and predict from the data. Trend Deterministic Data Preparation Layer was 

proposed in the literature. 

d. What were the opportunities for future work? 

Apart from the ten technical indicators used in this literature, other macro-

economic variables like currency exchange rates, inflation, government policies, interest 

rates etc. can also be explored. Apart from the categories predicted as ‘up’ or ‘down’ in 

this literature, authors are also suggesting to explore multiple categories like ‘highly 

possible to go up’, ‘highly possible to go down’, ‘less possible to go up’, ‘less possible to 

go down’ and ‘neutral signal’. While this paper deals with short term prediction, the 

scope of long-term prediction is also an open item for future work. 

e. Critical Analysis 

In exploring the applications of data science in the field of investment analysis, 

have studied the research paper to understand the areas where data science is applied in 

the field of stock markets. The major area discussed in this paper deals with predictive 

algorithms of machine learning that are applied to predict upward or downward 

movement of specific stocks and stock market indices. This is also an approach that helps 

in decision making and this approach also has many opportunities that can lead to future 
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work and future enhancements in the field of machine learning on investment decision 

making. 

Study 5 

Literature  

a. What were the problems studied or researched? 

The study revolves around utilizing deep learning networks for stock market 

analysis and prediction. The authors aim to explore the methodology and data 

representations used in deep learning models and their application to forecast stock 

market behavior. The study attempts to provide a comprehensive and objective 

assessment of both the advantages and drawbacks of deep learning algorithms for stock 

market analysis and prediction. The literature explores the effects of three unsupervised 

feature extraction methods - principal component analysis, auto encoder, and the 

restricted Boltzmann machine—on the network’s overall ability to predict future market 

behavior. The literature also offers practical insights and potentially useful directions for 

further investigation into how deep learning networks can be effectively used for stock 

market analysis and prediction (Chong et al., 2017). 

b. What type of data is used to understand applications? 

The study uses financial data, including historical stock prices, trading volumes, 

and other relevant market indicators, to understand the applications of deep learning 

networks in stock market analysis. These data sources provide insights into the patterns 

and dynamics of stock market behavior. High-frequency intraday stock returns data from 

Korean stock market is used by the authors. The high-frequency data is used to get a 

large data set and in turn to overcome data-snooping and over-fitting problems inevitable 

in neural network or any other non-linear models.  

c. What methodologies were applied to solve the problem? 
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The authors of the study propose a deep feature learning-based stock market 

prediction model. From the lagged stock returns data, the authors generate seven sets of 

features employing three data representations: principal component analysis, 

autoencoder, and restricted Boltzmann machine. Three layer deep neural networks were 

constructed to predict the future stock returns. 

d. What were the opportunities for future work? 

Factors such as trading volume and the price of a derivative linked to a stock can 

be considered as variables for future studies. Identifying the relationship between these 

factors and future price movements can also be considered further. 

e. Critical Analysis 

In the process of a more detailed research on the existing literature, the research 

paper is analyzed to learn the existing applications of machine learning algorithms at 

various stages of investment analysis. This paper deals with predictive analytics on the 

stock market returns by applying advanced and deep neural networks for the purpose of 

feature engineering and predictions. The advantage of applying such non-linear 

algorithms goes a long way in the investment decision making especially when domain 

knowledge is lesser or unavailable in the process of investment decision making and 

there is also an existence time pressure that impacts the decision-making process. 

Study 6 

Literature 

a. What were the problems studied or researched? 

The problems studied or researched in revolve around stock market forecasting 

using Bayesian regularized artificial neural networks (BRANNs). The author investigates 

the application of BRANNs to address the challenges of over fitting and improve the 

accuracy of stock market predictions. The prediction of stock price movement is 
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generally considered to be a challenging and important task for financial time series 

analysis. The complexity in predicting these trend lies in the inherent noise and volatility 

in daily stock price movement. One day future closing price of individual stocks is 

predicted using daily market prices and financial technical indicators (Ticknor, 2013).  

b. What type of data is used to understand applications? 

The study utilizes historical stock market data, including price movements, 

trading volumes, and other relevant financial indicators, to understand applications of 

BRANNs in stock market forecasting. The research data used for stock market 

predictions in the paper was collected for Goldman Sachs Group, Inc. (GS) and Microsoft 

Corp. (MSFT). The total number of samples for this study was 734 trading days, from 4 

January 2010 to 31 December 2012. Each sample consisted of daily information 

including low price, high price, opening price, close price, and trading volume. 

c. What methodologies were applied to solve the problem? 

The methodology applied in the research involves the use of artificial neural 

networks (ANNs) with Bayesian regularization. The author incorporates Bayesian 

inference and regularization techniques into the neural network architecture to mitigate 

over fitting issues. The BRANN model is trained using historical data, and Bayesian 

techniques are employed to update and refine the model parameters based on the 

observed data. A Bayesian regularized artificial neural network is proposed as a novel 

method to forecast financial market behavior. The Bayesian regularized network assigns 

a probabilistic nature to the network weights, allowing the network to automatically and 

optimally penalize excessively complex models. This technique reduces the potential for 

over fitting and over training, improving the prediction quality and generalization of the 

network. 

d. What were the opportunities for future work? 
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The opportunities for future work identified in the research include further 

exploration of advanced Bayesian regularization techniques to improve the robustness 

and generalization capabilities of the BRANN model. The author suggests investigating 

the impact of different hyper parameter choices and regularization priors on the model's 

performance. Additionally, future research could focus on comparing the performance of 

BRANNs with other forecasting models in different market conditions and exploring the 

potential integration of BRANNs with other machine learning techniques, such as 

ensemble methods or deep learning architectures. Furthermore, the application of 

BRANNs to different financial markets, data points and technical indicators and time 

periods present opportunities for future research. 

e. Critical Analysis 

The study presents a comprehensive analysis of the BRANN model's performance 

by comparing it to other forecasting models, such as autoregressive integrated moving 

average (ARIMA) and traditional ANNs. The author provides empirical evidence and 

evaluation metrics to demonstrate the effectiveness of the BRANN approach, 

highlighting its superiority in terms of prediction accuracy. The strength of this study is 

the integration of Bayesian regularization with artificial neural networks (ANNs) for 

stock market forecasting. The author recognizes the need to address over fitting issues in 

neural networks, and Bayesian regularization provides a valuable solution. By 

incorporating Bayesian inference and regularization techniques, the study enhances the 

generalization capabilities of the model and reduces the risk of over fitting.  

However, one limitation of the study is its heavy technical focus and lack of 

practical application and real-world case studies. While the study presents the theoretical 

framework and demonstrates the model's performance using historical data, further 
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exploration of the model's application in real-time trading scenarios or investment 

decision-making would have enhanced the study's practical relevance. 

Additionally, the study does not extensively discuss the interpretability of the 

BRANN model. Neural networks are known for their black-box nature, and 

understanding the model's decision-making process and the significance of input features 

is crucial for its practical implementation. Further research could address this limitation 

and explore methods to enhance the interpretability of BRANN models. 

Study 7 

Literature  

a. What were the problems studied or researched? 

The study revolves around stock market forecasting using ensemble deep Q-

learning agents. The authors in the research aims at proposing an ensemble of 

reinforcement learning approaches which do not use annotations (i.e. market goes up or 

down) to learn, but rather learn how to maximize a return function over the training stage. 

In order to achieve this goal, the authors exploit a Q-learning agent trained several times 

with the same training data and investigate its ensemble behavior in important real-world 

stock markets (Carta et al., 2021). 

b. What type of data is used to understand applications? 

The data points collected for this study are mainly the historical stock market 

data, including price movements, trading volumes, and other relevant financial indicators. 

The chosen markets are related to futures: the Standard & Poor’s 500 (S&P500), and the 

German stock index (DAX). These datasets were acquired from a brokerage company, 

and the authors used the hourly resolution datasets of prices initially. 

c. What methodologies were applied to solve the problem? 
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The methodology of focus for this study is deep Q-learning agents within an 

ensemble framework. An ensemble methodology for RL agents, which involves the use 

of different models trained at different iterations (epochs), with further analysis of the 

behavior of these ensembles through different agreement thresholds. It explores mixing 

Deep Q-learning RL strategies in ensemble methods considering different training 

iterations to predict different future markets. The final decision consists of an ensemble 

of decisions from different agents and is parametric to different levels of agreement 

thresholds and agents’ configurations. 

d. What were the opportunities for future work? 

The opportunities for future work in this study and research include further 

exploration of advanced ensemble techniques to enhance the performance of the 

ensemble deep Q-learning approach. The authors suggest investigating the effectiveness 

of different aggregation methods and fusion techniques to improve the consensus forecast 

of the ensemble. Additionally, future research could focus on optimizing the hyper 

parameters and architecture of the deep Q-learning agents to further enhance their 

individual performance. Furthermore, the application of the ensemble deep Q-learning 

approach to different stock markets and the evaluation of its performance in various 

market conditions and various other products such as bonds and commodities markets 

can present opportunities for future research. 

e. Critical Analysis 

The study employs real-world stock market data and evaluates the performance of 

the proposed Multi-DQN ensemble model. The authors provide empirical evidence and 

evaluation metrics to demonstrate the effectiveness of the ensemble approach. This 

empirical validation enhances the practical relevance of the study and provides insights 

into the performance of the Multi-DQN model in real stock market scenarios.  
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The strength of this study is its focus on the integration of deep Q-learning agents 

and ensemble methods for stock market forecasting. The authors recognize the limitations 

of individual models and propose a collaborative approach to enhance prediction 

accuracy. By combining multiple deep Q-learning agents, the study harnesses the 

diversity of models and their collective knowledge to achieve improved forecasting 

performance.  

However, one limitation of the study is the complexity of the proposed Multi-

DQN ensemble model. The authors provide limited details on the implementation and 

training process of the individual deep Q-learning agents and the ensemble mechanism. A 

more in-depth explanation of these aspects would have provided a better understanding of 

the model and its practical implementation. Additionally, the study could have further 

discussed the interpretability of the Multi-DQN ensemble model. Deep Q-learning 

models are known for their black-box nature, and understanding the decision-making 

process of the ensemble and the significance of input features is essential for practical 

application and adoption. 

Study 8 

Literature  

a. What were the problems studied or researched? 

The problems studied or researched revolve around stock price direction 

forecasting using deep neural networks (DNNs) and technical analysis indicators. The 

authors aim to develop a methodology that combines feature selection techniques with 

DNNs to improve the accuracy of predicting the direction of stock prices. The authors 

discussed feature selection in the context of deep neural network models to predict the 

stock price direction. They investigated a set of 124 technical analysis indicators used as 

explanatory variables in the recent literature and specialized trading websites. They 
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applied three feature selection methods to shrink the feature set aiming to eliminate 

redundant information from similar indicators (Peng et al., 2021). 

b. What type of data is used to understand applications? 

The study uses historical stock market data, including price movements, trading 

volumes, and various technical analysis indicators, to understand applications of feature 

selection and DNNs in stock price direction forecasting. These data sources provide the 

necessary input for training and testing the DNN models. 

The authors collected daily data between January 1st, 2008 and March 1st, 2019 

from firms that composed financial market indexes from seven markets, namely: United 

States (S&P 100 Index), United Kingdom (FTSE 100 Index), France (CAC 40 Index), 

Germany (DAX-30 Index), Japan (Top 50 assets from NIKKEI 225 Index), China (Top 

50 assets from SSE 180 Index) and Brazil (Bovespa Index). 

c. What methodologies were applied to solve the problem? 

The methodologies applied in the research involve the integration of feature 

selection techniques with DNNs. The authors employ various feature selection methods, 

such as correlation-based measures and mutual information, to identify and select the 

most relevant technical analysis indicators. They then utilize DNNs, such as feed forward 

neural networks, to capture complex patterns and relationships in the historical stock 

market data. The models are trained on the selected features to predict the direction of 

stock prices. The authors have tested the empirical performance of deep neural networks 

for seven markets by applying different settings of architecture and regularization 

techniques. 

d. What were the opportunities for future work? 

The opportunities for future work identified in the research include further 

exploration of advanced feature selection techniques to improve the model's performance 
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in selecting relevant indicators. The authors suggest investigating the impact of different 

feature selection algorithms and strategies on prediction accuracy. Additionally, future 

research could focus on enhancing the interpretability of the DNN models in stock price 

direction forecasting and exploring the combination of feature selection with other 

machine learning techniques, such as ensemble methods or deep learning architectures. 

Furthermore, the application of the proposed methodology to different financial markets 

and the evaluation of its performance across various time periods present opportunities 

for future research. 

e. Critical Analysis 

The study explores various feature selection algorithms, such as correlation-based 

measures and mutual information, and evaluates their impact on model performance. This 

comprehensive analysis allows for a better understanding of the strengths and limitations 

of different feature selection techniques in the context of stock price direction 

forecasting. The strength of this study is its focus on incorporating feature selection 

techniques into the forecasting process. The authors recognize the importance of 

identifying and utilizing the most informative indicators for stock price direction 

prediction. By applying feature selection methods, the study enhances the model's ability 

to extract meaningful patterns and reduce noise from the data. Moreover, the study 

utilizes real-world stock market data and evaluates the performance of the proposed 

methodology. The authors provide empirical evidence and evaluation metrics to 

demonstrate the effectiveness of their approach. This empirical validation enhances the 

credibility and practical applicability of the study's findings. 

However, one limitation of the study is its focus solely on technical analysis 

indicators without considering other types of data or information. Stock market prices are 

influenced by various factors, including fundamental analysis, market news, and 
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macroeconomic indicators. A more comprehensive analysis that incorporates additional 

data sources could provide a more holistic view of stock price direction prediction. 

Additionally, the study does not extensively discuss the interpretability of the DNN 

models. Deep neural networks are known for their black-box nature, and understanding 

the underlying reasons for their predictions is essential for practical application and 

adoption. Further research could address this limitation and explore methods to enhance 

the interpretability of DNN models in stock price direction forecasting. 

Study 9 

Literature  

a. What were the problems studied or researched? 

The problems studied or researched revolve around forecasting stock prices using 

an ensemble approach that combines deep learning models with technical analysis. The 

authors aim to develop a methodology that leverages the strengths of both approaches to 

improve the accuracy of stock price predictions (Kamara et al., 2022). 

b. What type of data is used to understand applications? 

The study utilizes historical stock market data, including price movements, 

trading volumes, and various technical analysis indicators, to understand applications of 

the ensemble approach in stock price forecasting. These data points provide the necessary 

input for training and testing the deep learning models and technical analysis-based 

models. 

c. What methodologies were applied to solve the problem? 

The methodology applied in the research involves the integration of deep learning 

models with technical analysis indicators within a boosted hybrid ensemble framework. 

The authors employ various deep learning architectures, such as recurrent neural 

networks (RNNs) or convolutional neural networks (CNNs), to capture complex patterns 
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in the historical stock market data. They also incorporate technical analysis indicators, 

such as moving averages or relative strength index (RSI), to consider the insights from 

traditional technical analysis. Boosting techniques are applied to combine the predictions 

of individual models into an ensemble, enhancing the overall forecasting performance. 

d. What were the opportunities for future work? 

The opportunities for future work identified in the research include further 

exploration of advanced ensemble techniques to improve the performance of the boosted 

hybrid ensemble approach. The authors suggest investigating the impact of different 

ensemble algorithms, feature combinations, and model weighting strategies on prediction 

accuracy. Additionally, future research could focus on the integration of alternative 

technical analysis indicators or the inclusion of external factors, such as news sentiment 

or macroeconomic indicators, to enhance the robustness of the ensemble model. 

Furthermore, the application of the proposed methodology to different financial markets 

and the evaluation of its performance across various time periods present opportunities 

for future research. 

e. Critical Analysis 

The study explores various deep learning architectures, including recurrent neural 

networks (RNNs) and convolutional neural networks (CNNs), as well as technical 

analysis indicators. By combining these different approaches, the study provides a 

comprehensive analysis of the strengths and weaknesses of each model and their 

collective performance within the ensemble. The strength of this study is its focus on 

combining deep learning models and technical analysis to enhance stock price 

forecasting. The authors recognize the limitations and potential biases of individual 

models and propose an ensemble approach to mitigate these issues. By leveraging the 
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collective intelligence of multiple models, the study aims to achieve improved prediction 

accuracy and robustness. 

Also, the study employs real-world stock market data and evaluates the 

performance of the proposed ensemble approach. The authors provide empirical evidence 

and evaluation metrics to demonstrate the effectiveness of their methodology. This 

empirical validation enhances the practical relevance of the study and provides insights 

into the performance of the boosted hybrid ensemble in real stock market scenarios. 

However, one limitation of the study is the lack of a detailed explanation of the ensemble 

mechanism and the weightings assigned to individual models. A more in-depth 

discussion of the ensemble approach and its optimization would have provided a better 

understanding of how the collective intelligence is harnessed and how individual model 

contributions are integrated. Additionally, the study could have further discussed the 

interpretability of the ensemble approach. Ensemble models can be considered as black-

box systems, and understanding the decision-making process and the relative importance 

of input features in the ensemble would have enhanced the practical implementation and 

adoption. 

2.9 Comparative Analysis 

All the 9 literatures analyzed in this review are compared in a graphical mind map in 

the Figure 2.9 and is divided into 4 categories:  

• Papers 

• Areas of focus 

• Methodology applied and 

• Opportunities for future work 
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Figure 2.9 Comparative Analysis Topics 

The Papers are further divided into three sections and depicted in Figure 2.10. 
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Figure 2.10 Category 1: Comparisons of Author and Year 

The Areas of focus are further divided into three sections and depicted in Figure 2.11. 
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Figure 2.11 Category 2: Comparing Areas of Focus 

The Areas of focus are further divided into three sections and depicted in Figure 2.12. 

 
Figure 2.12 Category 3: Comparing Methodologies Applied 
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Figure 2.13 Category 4: Comparing Opportunities for Future Work 

The comparisons performed from Figures 2.9 to 2.13 gives an overall map of the 

studies undertaken in this literature review. 

 2.10 Summary 

A total of 615 existing literature in the form of research papers, journals and 

books were collected and reviewed to understand the relevance of the existing literature 

by analyzing them in relation to the current study. Post analysis, it was identified that 407 

research papers gathered were not relevant to the research topic under study and 208 have 

relevance from at least one perspective. The research papers covering the relevance for 

this research are majorly published by Elsevier, IEEE, Springer, JSTOR which covers 

journals of business, and Citeseer and Wiley online library which covers journals on 

finance.  

Understanding the importance of opportunity cost in investments 
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The first part of this research is to analyze the importance of opportunity cost in 

investment choices by examining existing literature and to assess on how the existing 

literature can be studied, applied or extended further to carry forward by analyzing them 

against the problem statements of this research in scope.  

The opportunity cost has been studied and discussed in some of the prominent 

journals or research papers. For this research sub section, 7 of the relevant research 

papers have been selected for this study and after analyzing in detail, 3 out of 7 had some 

relevance with respect to this specific research and were studied further.  

Timing is very critical when it comes to decision making and it is even more 

significant when the decision is related to an investment. When both money and timing 

are dependent variables of an investment decisions, the decision need to be made faster 

and also accurate. This leads to a situation of dilemma since a decision with a time limit 

can also go wrong.  

Decision-making dilemmas can arise because errors may result either from 

deciding too soon or from delaying decisions too long. Delay can result in lost 

opportunities or reductions in payoffs from the most accurate decision (Payne et al., 

1996). 

The opportunity cost by its definition is well explained in (Buchanan, 1991) as the 

anticipated value of 'that which might be' if choice were made differently. Note that it is 

not the value of 'that which might have been' without the qualifying reference to choice. 

In the absence of choice, it may be sometimes meaningful to discuss values of events that 

might have occurred but did not. It is also explained further that… First, if choice is made 

among separately valued options, someone must do the choosing. That is to say, a 

chooser is required, a person who decides. From this the second implication emerges. The 
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value placed on the option that is not chosen, the opportunity cost, must be that value that 

exists in the mind of the individual who chooses. 

It is also explained in (Hoskin, 1983), that the decision impact of opportunity 

costs is of interest to accountants, economists, and behavioral scientists. From an 

economic point of view these costs are generally considered relevant, and explicitly 

reporting them for decision making could improve the quality of future decisions. 

Exploring the applications of data science and comprehending the key features in 

the field of investment analysis 

The second part of this research is to explore the applications of data science and 

comprehend the key features in the field of investment analysis and to assess on how the 

existing literature can be studied, applied or extended further to carry forward by 

analyzing them against the problem statements of this research in scope. 

The problem of predicting direction of movement of stock and stock price index 

for Indian stock markets was addressed in the literature. The study compares four 

prediction models, Artificial Neural Network (ANN), support vector machine (SVM), 

random forest and Naive-Bayes with two approaches for input to these models. The first 

approach for input data involves computation of ten technical parameters using stock 

trading data (open, high, low & close prices) while the second approach focuses on 

representing these technical parameters as trend deterministic data. The major area 

discussed in the paper deals with predictive algorithms of machine learning that are 

applied to predict upward or downward movement of specific stocks and stock market 

indices. This is also an approach that helps in decision making and this approach also has 

many opportunities that can lead to future work and future enhancements in the field of 

machine learning on investment decision making (Patel et al., 2015). 
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Another study revolves around utilizing deep learning networks for stock market 

analysis and prediction. The authors aim to explore the methodology and data 

representations used in deep learning models and their application to forecast stock 

market behavior. The study attempts to provide a comprehensive and objective 

assessment of both the advantages and drawbacks of deep learning algorithms for stock 

market analysis and prediction. The literature explores the effects of three unsupervised 

feature extraction methods - principal component analysis, auto encoder, and the 

restricted Boltzmann machine—on the network’s overall ability to predict future market 

behavior. The literature also offers practical insights and potentially useful directions for 

further investigation into how deep learning networks can be effectively used for stock 

market analysis and prediction. In the process of a more detailed research on the existing 

literature, the research paper is analyzed to learn the existing applications of machine 

learning algorithms at various stages of investment analysis. The paper deals with 

predictive analytics on the stock market returns by applying advanced and deep neural 

networks for the purpose of feature engineering and predictions. The advantage of 

applying such non-linear algorithms goes a long way in the investment decision making 

especially when domain knowledge is lesser or unavailable in the process of investment 

decision making and there is also an existence time pressure that impacts the decision-

making process (Chong et al., 2017). 

The problems then studied or researched revolve around stock market forecasting 

using Bayesian regularized artificial neural networks (BRANNs). The author investigates 

the application of BRANNs to address the challenges of over fitting and improve the 

accuracy of stock market predictions. The prediction of stock price movement is 

generally considered to be a challenging and important task for financial time series 

analysis. The complexity in predicting these trends lies in the inherent noise and volatility 
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in daily stock price movement. One day future closing price of individual stocks is 

predicted using daily market prices and financial technical indicators. The study presents 

a comprehensive analysis of the BRANN model's performance by comparing it to other 

forecasting models, such as autoregressive integrated moving average (ARIMA) and 

traditional ANNs. The author provides empirical evidence and evaluation metrics to 

demonstrate the effectiveness of the BRANN approach, highlighting its superiority in 

terms of prediction accuracy. The strength of this study is the integration of Bayesian 

regularization with artificial neural networks (ANNs) for stock market forecasting. The 

author recognizes the need to address over fitting issues in neural networks, and Bayesian 

regularization provides a valuable solution. By incorporating Bayesian inference and 

regularization techniques, the study enhances the generalization capabilities of the model 

and reduces the risk of over fitting. However, one limitation of the study is its heavy 

technical focus and lack of practical application and real-world case studies. While the 

study presents the theoretical framework and demonstrates the model's performance 

using historical data, further exploration of the model's application in real-time trading 

scenarios or investment decision-making would have enhanced the study's practical 

relevance. Additionally, the study does not extensively discuss the interpretability of the 

BRANN model. Neural networks are known for their black-box nature, and 

understanding the model's decision-making process and the significance of input features 

is crucial for its practical implementation. Further research could address this limitation 

and explore methods to enhance the interpretability of BRANN models (Ticknor, 2013). 

Another study revolves around stock market forecasting using ensemble deep Q-

learning agents. The authors in the research aims at proposing an ensemble of 

reinforcement learning approaches which do not use annotations (i.e. market goes up or 

down) to learn, but rather learn how to maximize a return function over the training stage. 
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In order to achieve this goal, the authors exploit a Q-learning agent trained several times 

with the same training data and investigate its ensemble behavior in important real-world 

stock markets. The study employs real-world stock market data and evaluates the 

performance of the proposed Multi-DQN ensemble model. The authors provide empirical 

evidence and evaluation metrics to demonstrate the effectiveness of the ensemble 

approach. This empirical validation enhances the practical relevance of the study and 

provides insights into the performance of the Multi-DQN model in real stock market 

scenarios. The strength of this study is its focus on the integration of deep Q-learning 

agents and ensemble methods for stock market forecasting. The authors recognize the 

limitations of individual models and propose a collaborative approach to enhance 

prediction accuracy. By combining multiple deep Q-learning agents, the study harnesses 

the diversity of models and their collective knowledge to achieve improved forecasting 

performance. However, one limitation of the study is the complexity of the proposed 

Multi-DQN ensemble model. The authors provide limited details on the implementation 

and training process of the individual deep Q-learning agents and the ensemble 

mechanism. A more in-depth explanation of these aspects would have provided a better 

understanding of the model and its practical implementation. Additionally, the study 

could have further discussed the interpretability of the Multi-DQN ensemble model. Deep 

Q-learning models are known for their black-box nature, and understanding the decision-

making process of the ensemble and the significance of input features is essential for 

practical application and adoption (Carta et al., 2021). 

The problems studied or researched in another literature revolve around stock 

price direction forecasting using deep neural networks (DNNs) and technical analysis 

indicators. The authors aim to develop a methodology that combines feature selection 

techniques with DNNs to improve the accuracy of predicting the direction of stock prices. 
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The authors discussed feature selection in the context of deep neural network models to 

predict the stock price direction. They investigated a set of 124 technical analysis 

indicators used as explanatory variables in the recent literature and specialized trading 

websites. They applied three feature selection methods to shrink the feature set aiming to 

eliminate redundant information from similar indicators. The study explores various 

feature selection algorithms, such as correlation-based measures and mutual information, 

and evaluates their impact on model performance. This comprehensive analysis allows 

for a better understanding of the strengths and limitations of different feature selection 

techniques in the context of stock price direction forecasting. The strength of this study is 

its focus on incorporating feature selection techniques into the forecasting process. The 

authors recognize the importance of identifying and utilizing the most informative 

indicators for stock price direction prediction. By applying feature selection methods, the 

study enhances the model's ability to extract meaningful patterns and reduce noise from 

the data. Moreover, the study utilizes real-world stock market data and evaluates the 

performance of the proposed methodology. The authors provide empirical evidence and 

evaluation metrics to demonstrate the effectiveness of their approach. This empirical 

validation enhances the credibility and practical applicability of the study's findings. 

However, one limitation of the study is its focus solely on technical analysis indicators 

without considering other types of data or information. Stock market prices are 

influenced by various factors, including fundamental analysis, market news, and 

macroeconomic indicators. A more comprehensive analysis that incorporates additional 

data sources could provide a more holistic view of stock price direction prediction. 

Additionally, the study does not extensively discuss the interpretability of the DNN 

models. Deep neural networks are known for their black-box nature, and understanding 

the underlying reasons for their predictions is essential for practical application and 



 

 

44 

adoption. Further research could address this limitation and explore methods to enhance 

the interpretability of DNN models in stock price direction forecasting (Peng et al., 

2021). 

The next problems studied or researched revolve around forecasting stock prices 

using an ensemble approach that combines deep learning models with technical analysis. 

The authors aim to develop a methodology that leverages the strengths of both 

approaches to improve the accuracy of stock price predictions. The study explores 

various deep learning architectures, including recurrent neural networks (RNNs) and 

convolutional neural networks (CNNs), as well as technical analysis indicators. By 

combining these different approaches, the study provides a comprehensive analysis of the 

strengths and weaknesses of each model and their collective performance within the 

ensemble. The strength of this study is its focus on combining deep learning models and 

technical analysis to enhance stock price forecasting. The authors recognize the 

limitations and potential biases of individual models and propose an ensemble approach 

to mitigate these issues. By leveraging the collective intelligence of multiple models, the 

study aims to achieve improved prediction accuracy and robustness. Also, the study 

employs real-world stock market data and evaluates the performance of the proposed 

ensemble approach. The authors provide empirical evidence and evaluation metrics to 

demonstrate the effectiveness of their methodology. This empirical validation enhances 

the practical relevance of the study and provides insights into the performance of the 

boosted hybrid ensemble in real stock market scenarios. However, one limitation of the 

study is the lack of a detailed explanation of the ensemble mechanism and the weightings 

assigned to individual models. A more in-depth discussion of the ensemble approach and 

its optimization would have provided a better understanding of how the collective 

intelligence is harnessed and how individual model contributions are integrated. 
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Additionally, the study could have further discussed the interpretability of the ensemble 

approach. Ensemble models can be considered as black-box systems, and understanding 

the decision-making process and the relative importance of input features in the ensemble 

would have enhanced the practical implementation and adoption (Kamara et al., 2022). 

From this literature review, the analysis reveals that opportunity cost is studied 

with time, choice and behavior as influencing factors while the applications of machine 

learning as well as deep learning are mainly around stock market forecasting.  

The purpose of my research work is to make use of technologies such as machine 

learning and deep learning, and publicly available data to develop a framework that could 

help an individual investor to take an informed decision without losing the investment 

opportunities available in the market and to understand the opportunity cost of losing 

such opportunities. 
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CHAPTER III:  

METHODOLOGY 

3.1 Overview of the Research Problem 

The primary research method for this study is literature review and a new 

investment strategy modeling.  

Following steps will be adopted for the research methodology:  

1. Perform a detailed literature review to understand various investment strategies and 

data science techniques used in stock markets. 

2. Identify the gaps in investment strategy modeling using methods of artificial 

intelligence and machine leraning. 

3. Identify the AIML modeling techniques that has high potential to generate investment 

strategies and the areas where there are gaps. 

4. Shortlist the modeling techniques that will be studied in detail to derive at a new 

investment strategy that can benefit investors. 

5. Decide the data space for the investment strategy that will be more relevant and 

beneficial within the Indian stock markets. 

6. Design data procurement process and decide on the data points that will be procured. 

7. Perform further analysis and identify potential financial indicator based features that 

can be created from the procured data. 

8. Design the algorithm incorporating data science techniques with financial indicators 

and newly derived features to device a new strategy that can generate portfolio 

allocations using NIFTY 50 Index as the base. 

9. Calculate the historical returns of the developed portfolio strategy and compare 

against market benchmark to decide on the suitability of the strategy. 



 

 

47 

10. Design a front end interface that can show the comparison of all the new strategies 

developed in this research and analyse their fitment for Indian investors. 

3.2 Research Question Formulation 

This research is primarily performed with the objective to answer the following 

questions: 

How can data science techniques and methodologies help in developing a 

decision-making framework that helps in identifying the opportunities to invest in the 

Indian stock markets? 

3.2.1 Research Sub Questions 

1. What are the key aspects/variables that need to be considered in understanding 

opportunities? 

2. What are the various techniques or algorithms that can be explored to identify 

opportunities? 

3. How can prescriptive analytics help in developing a decision-making framework in 

the domain of Indian stock markets? 

3.3 Research Design 

An appropriate research design is defined based on the research questions and 

objectives. The research design will be a mixed approach consisting of the study of 

various quantitative methodologies along with relevant quantitative aspects through a 

detailed literature review and then the development of a new investment strategy 

framework for informed decision making through opportunity analysis of Indian stock 

market. 

3.4 Data Collection 

The data collection methodology for the research in scope will be secondary data 

collection. The data will be procured from publicly available and authentic data source – 
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Yahoo finance, since the data in question for this analysis is related to stocks and their 

behavior. The data that would be collected through Yahoo Finance API will consist of 

stock fundamentals such as sales, expenses, operating profit, profit before tax, net profit, 

assets and liabilities etc. The data will also consist of daily stock prices for various stocks 

in the market index. The data in scope for this analysis are the NIFTY 50 stocks from the 

Indian Stock markets. 

3.5 Data Analysis 

Data Analysis will be performed on the publicly available data using statistical 

techniques and data science methods.  Various machine learning and data science 

techniques will be applied to identify patterns and factors associated with lost investment 

opportunities. Quantitative data where applicable will be analyzed to gain insights into 

the decision-making process and challenges faced by Indian households. 

3.6 Framework Development 

A framework will be developed for educated decision-making by integrating the 

findings from the data analysis, literature review, and qualitative analysis. The framework 

will be addressing the identified challenges of expertise and information gaps, leveraging 

data science and machine learning techniques. The framework will be designed as a 

practical, user-friendly model, and aligned with the specific needs of Indian households. 

The detailed design and development of the framework will be discussed in 

Chapter 4. 

3.7 Framework Validation 

The effectiveness of the developed framework will be evaluated through 

quantitative and qualitative assessments. Appropriate evaluation metrics will be used to 

measure the impact of the framework on educated decision-making and investment 
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behavior. The feedback from the end users will also be used to validate the framework's 

practicality and usefulness. 

  



 

 

50 

CHAPTER IV:  

SLRPO INVESTMENT FRAMEWORK – DESIGN AND DEVELOPMENT 

4.1 Introduction 

In this research, I am introducing a new investment strategy named Strategic 

Reinforcement Learning Portfolio Optimizer and abbreviated it to SRLPO 

interchangeably used as SLRPO for the ease of usage. The purpose of this strategy is to 

provide a suitable portfolio allocation of NIFTY 50 stocks for long-term investments by 

developing multiple portfolio allocation strategies and identifying the best by analyzing 

the opportunity cost of investing in one strategy compared to the other. 

The following theoretical constructs will be studied in detail and operationalized 

to develop SRLPO investment strategy. 

1. Technical Indicators 

2. Fundamental Indicators 

3. Reinforcement Learning 

4. Upper Confidence Bound1 

5. Policy Network 

6. Policy Search 

7. Policy Gradient Methods 

A new feature named Strength score will be introduced based on the technical and 

fundamental indicators and it will be used as input for SLRPO strategy development. 

The architecture of SLRPO Strategy is designed as depicted in Figure 4.1. 
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Figure 4.1 SLRPO Architecture 
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The SLRPO architecture in Figure 4.1 describes various modules designed to 

develop the architecture for SLRPO and the functionalities performed in each module. 

The modules are listed as follows: 

1. Data Acquisition 

2. Data Load 

3. Indicators 

4. Preprocessing 

5. Weight Generator 

6. Strength Score 

7. Utility Functions 

8. Strategy – UCB1 

9. Strategy – Policy Network 

10. Strategy – Policy Gradient 

11. Allocation – UI 

4.2 Data Acquisition Module 

Data acquisition module for SLRPO focuses on systematically collecting relevant 

financial data from a reliable data source. This module is crucial for conducting accurate 

and meaningful financial analysis to create better strategies. In this module, the data 

requirements will be specified as part of the SLRPO code and then retrieved from the 

data source and structured in a way it can be used for financial analysis. 

This module focuses on the following key implementations: 

Data Source Identification: 

Yahoo finance is leveraged as the most reliable data source for building SLRPO. 

Yahoo finance is a well-known and credible provider of financial data. It offers 
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comprehensive information on stocks. Choosing yahoo finance as the data source ensures 

reliability and accuracy of the finance data. 

Target data specification: 

Data acquisition implementation requires ticker symbol and date range as inputs 

to fetch the data required for this analysis. 

Ticker: 

Ticker symbol uniquely identifies the stock of interest. Specifying the ticker 

symbol helps in precise targeting of data acquisition by focusing on specific set of stocks 

relevant to the research question. 

Date Range: 

Data range is specified in the data acquisition module to specifically decide on the 

temporal scope of the data to be collected. This ensures that the data is extracted for the 

specific period required for this analysis and will be used for studying the long-term trend 

of the stocks. 

Historical data retrieval: 

The purpose of the data acquisition module is to fetch the historical data such as 

daily prices and trading volumes within the specified data range. Historical data is crucial 

for conducting time-series analysis, understanding past performance and identifying 

patterns over time. 

Collection of stock information: 

In addition to the historical prices, this module also retrieves detailed information 

about the stock metadata such as sector, market cap and other required fundamental 

attributes. This data helps in understanding broader characteristics and environment of 

the stock and to facilitate more comprehensive analysis. 

Automation and Efficiency: 
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The use of yfinance library in Python to automate the data retrieval process makes 

it very efficient to retrieve the data for this analysis. Automation of the data retrieval 

process improves the efficiency of the data acquisition module, minimizes the risk of 

manual errors that can occur while downloading large datasets and reduces the manual 

efforts required in the process. 

Structuring data for analysis: 

The data acquisition module is designed to retrieve both historical stock prices 

and fundamental stock information in a structured format. This structured format makes 

the data immediately usable and also makes it easy to proceed with further 

transformations on the data so that it becomes suitable for developing SLRPO strategy. 

Logic Explanation: 

The code for this module starts by defining libraries required for data acquisition 

process. 

import configparser 

import yfinance as yf 

The configparser is a standard library in Python used for importing configuration 

files. The configurations needed for the SLRPO strategy will be defined in the config file 

and imported using this library. 

Yfinance is a Python library used for accessing financial data from Yahoo finance. 

It has methods defined for downloading historical prices and stock information. 

The next step in this module is to define a function named read_config to read the 

configuration settings from a config file where the list of tickers needed to be used for 

this analysis are defined. 

def read_config(config_file): 

    config = configparser.ConfigParser() 
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    config.read(config_file) 

    if 'Settings' in config: 

        settings = config['Settings'] 

        tickers = [item.strip() for item in settings.get('tickers').split('\n') if 

item.strip()]  

        return tickers 

    else: 

        raise ValueError("No 'Settings' section found in the config file") 

The final responsibility of this module is to define the function fetch_data to fetch 

the data from yahoo finance using the tickers defined from config file, as well as the start 

date and end date needed for this research. 

def fetch_data(ticker, start_date, end_date): 

    stock = yf.Ticker(ticker) 

    hist = stock.history(start=start_date, end=end_date) 

    return stock.info, hist 

The purpose of this module is to systematically define and collect the data needed 

for the SLRPO strategy development in a well-defined structure and from a reliable 

source suitable for conducting robust financial research. 

4.3 Data Load Module 

Data load module is the continuation of data acquisition module, and it focuses on 

loading the data from yahoo finance. The data load is part of the data processing pipeline, 

and it focuses on invoking the data acquisition module to gather the data needed for 

SLRPO implementation. The key concepts designed in the data load module include the 

following: 

Initiating Data Acquisition: 
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Data acquisition is initiated in the data load module by calling the fetch_data 

function. The tickers for the stocks, start date and end date are provided as parameters for 

this function. 

Centralized Data Management: 

The data retrieval process is managed centrally in the data load module. A 

streamlined approach to loading data from yahoo finance is initiated in the data load 

module and further processing of data begins from this module. 

Interface with Analytical Tools: 

The module also ensures that the data is readily available for further processing 

needed for SLRPO strategy development. The purpose of this module is to ensure that the 

data is loaded into SLRPO eco system so that it can enable detailed development for the 

rest of the strategy. 

4.4 Indicators Module 

The third module of SLRPO strategy is the Indicators module. For an investment 

strategy to be designed successfully, understanding the statistical nature of the stock 

prices and identifying hidden insights from it is very important. To do that, this module 

defines a class named technical_indicators and covers the definitions of the following 

indicators.  

4.4.1 Technical Indicators 

The list of technical indicators considered to design the SLRPO strategy are as 

follows: 

1. Average Directional Index (ADX) 

2. Accumulation/Distribution Line (AD) 

3. Average True Range (ATR) 

4. Bollinger Bands 
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5. Chaikin Money Flow (CMF) 

6. Donchian Channel 

7. Ease of Movement (EMV) 

8. Keltner Channel 

9. Money Flow Index (MFI) 

10. Moving Average Convergence Divergence (MACD) 

11. Moving Averages (SMA and EMA) 

12. On-Balance Volume (OBV) 

13. Parabolic SAR 

14. Periodic High/Low 

15. Rate of Change (ROC) 

16. Relative Strength (RS) 

17. Relative Strength Index (RSI) 

18. Stochastic Oscillator 

19. Supertrend 

20. Weighted Volume 

21. Volume at Price 

22. Volume Price Trend (VPT) 

23. Volume Weighted Average Price (VWAP) 

1. Average Directional Index (ADX) 

The Average Directional Index (ADX) is the first feature chosen for SLRPO 

strategy and it is used to quantify the technical strength of a trend in the capital markets 

or the stock markets. Developed by J. Welles Wilder (Wilder, 1978), the ADX is part of 

the Directional Movement System, which also includes the Plus Directional Indicator 

(+DI) and the Minus Directional Indicator (-DI). The ADX ranges from 0 to 100, where 
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higher values indicate a stronger trend, and lower values indicate a weaker trend or a 

range-bound market. It does not indicate the direction of the trend, only its strength. 

ADX can be calculated by following these steps: 

1. Compute the True Range (TR), which measures market volatility. 

2. Determine the Directional Movement (DM), which differentiates between upward 

and downward movements. 

3. Smooth the TR and DM values using a specified window period (commonly 14 

periods). 

4. Calculate the Directional Indicators (+DI and -DI). 

5. Compute the Directional Index (DX) and then average it to obtain the ADX. 

For SLRPO strategy, the code for ADX is defined as follows: 

def calculate_adx(self, data, window=14): 

        high, low, close = data['High'], data['Low'], data['Close'] 

        tr1 = high - low 

        tr2 = abs(high - close.shift()) 

        tr3 = abs(low - close.shift()) 

        tr = pd.DataFrame({'tr1': tr1, 'tr2': tr2, 'tr3': tr3}).max(axis=1) 

        plus_dm = high.diff() 

        minus_dm = low.diff() 

        plus_dm[plus_dm < 0] = 0 

        minus_dm[minus_dm > 0] = 0 

        minus_dm = minus_dm.abs() 

        smooth_tr = tr.rolling(window).sum() 

        smooth_plus_dm = plus_dm.rolling(window).sum() 

        smooth_minus_dm = minus_dm.rolling(window).sum() 
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        plus_di = 100 * (smooth_plus_dm / smooth_tr) 

        minus_di = 100 * (smooth_minus_dm / smooth_tr) 

        dx = (abs(plus_di - minus_di) / (plus_di + minus_di)) * 100 

        adx = dx.rolling(window).mean() 

        return adx 

In the preceding code,  

1. High, Low, and Close prices are extracted from the data. 

2. True Range (TR) is calculated using three different methods to capture the most 

significant price movement. 

3. Directional Movements (DM) are computed to distinguish between upward and 

downward price changes. 

4. The TR and DM values are smoothed using a rolling window to reduce noise. 

5. Directional Indicators (+DI and -DI) are calculated as percentages of the smoothed 

values. 

6. The Directional Index (DX) is determined and then averaged to produce the ADX, 

which reflects the trend strength. 

By understanding the Average Directional Index (ADX) and its application in 

assessing trend strength, SLRPO strategy will have a valuable feature for evaluating 

market conditions. However, trend strength is just one aspect of market analysis. To gain 

a more comprehensive understanding, it's important to also consider indicators that 

analyze the flow of money into and out of a security. One such indicator is the 

Accumulation/Distribution Line (AD), which provides insights into buying and selling 

pressure by considering both price and volume. The next feature considered for SLRPO 

strategy is AD Line. 

2. Accumulation/Distribution Line (AD) 
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The next feature chosen for SLRPO strategy is Accumulation/Distribution Line 

(AD Line). This is a technical analysis indicator that helps investors understand the flow 

of money into and out of a security. This indicator is developed by Marc Chaikin 

(Chaikin, n.d.) and it combines both price and volume data to assess whether a stock is 

being bought or sold over a specific period. Using this indicator helps in understanding 

the trends between AD Line and the stock price. 

AD Line can be calculated by calculating the following parameters: 

Money Flow Multiplier 

Money Flow Volume 

Accumulation / Distribution Line 

Money Flow Multiplier 

MFM is calculated using the daily stock price as follows: 

𝑵𝒖𝒎𝒆𝒓𝒂𝒕𝒐𝒓 = (𝑪𝒍𝒐𝒔𝒆 − 𝑳𝒐𝒘) − (𝑯𝒊𝒈𝒉 − 𝑪𝒍𝒐𝒔𝒆) 

𝑫𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓 = 𝑯𝒊𝒈𝒉 − 𝑳𝒐𝒘 

𝑴𝑭𝑴 =
𝑵𝒖𝒎𝒆𝒓𝒂𝒕𝒐𝒓

𝑫𝒆𝒏𝒐𝒎𝒊𝒏𝒂𝒕𝒐𝒓
 

When the close price is near the high, the MFM will be closer to +1. 

When the close price is near the low, the MFM will be closer to -1. 

The Money Flow Multiplier (MFM) is calculated to determine the proportion of 

the day's trading volume that is attributable to buying or selling pressure. 

Money Flow Volume 

MFV is calculated as follows: 

𝑴𝑭𝑽 = 𝑴𝑭𝑴 ×  𝑽𝒐𝒍𝒖𝒎𝒆 

The Money Flow Volume (MFV) adjusts the trading volume based on the MFM 

to reflect the actual flow of money. 

Accumulation / Distribution Line 



 

 

61 

Accumulation / Distribution Line is calculated as follows: 

𝑨𝑫 𝑳𝒊𝒏𝒆 = ∑ 𝑴𝑭𝑽 

Running sum is calculated for the AD Line by adding each day’s MFV with the previous 

day’s AD Line. 

For SLRPO strategy, the code for AD Line is defined as follows: 

    def calculate_accumulation_distribution(self, data): 

        high, low, close, volume = data['High'], data['Low'], data['Close'], 

data['Volume'] 

        mfm = ((close - low) - (high - close)) / (high - low) 

        mfm.replace([float('inf'), -float('inf')], 0, inplace=True)   

        mfv = mfm * volume 

        ad = mfv.cumsum() 

        return ad 

In the preceding code, 

1. MFM is calculated by calculating the numerator and denominator as explained above 

and dividing them. 

2. MFV is calculated by multiplying MFM with Volume. 

3. AD Line is calculated by cumulatively summing the MFV. 

Considering AD Line as one of the features helps SLRPO strategy to gather 

insights on the flow of money and to analyze buying and selling pressure for stocks in the 

market. Let us further consider the next feature Average True Range (ATR) which is 

useful in understanding market volatility. 

3. Average True Range (ATR) 
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Average True Range (ATR) is another feature that will be included in SLRPO 

strategy to understand market volatility using stock data. This indicator was developed by 

J. Welles Wilder (Wilder, 1978).  

ATR can be used to understand the degree of price movement over a specific period. 

The ATR is calculated using the following parameters: 

True Range 

Average True Range 

True Range 

Three values for True Range are calculated as follows: 

True Range 1 is the difference between current High and current Low of the stock price. 

𝑻𝑹𝟏 = 𝐇𝐢𝐠𝐡 − 𝐋𝐨𝐰 

True Range 2 is the difference between the absolute value of current High and the Close 

price at T-1. 

𝑻𝑹𝟐 = 𝐀𝐁𝐒(𝐇𝐢𝐠𝐡 − 𝑪𝒍𝒐𝒔𝒆𝒕−𝟏) 

True Range 3 is the difference between the absolute value of current Low and the Close 

price at T-1. 

𝑻𝑹𝟑 = 𝐀𝐁𝐒(𝐋𝐨𝐰 − 𝑪𝒍𝒐𝒔𝒆𝒕−𝟏) 

The final True Range of each period is calculated as the maximum of TR1, TR2 and TR3. 

𝑻𝑹 = 𝑴𝑨𝑿(𝐓𝐑𝟏, 𝐓𝐑𝟐, 𝐓𝐑𝟑) 

Average True Range 

The next step of ATR indicator is the calculation of Average True Range. 

ATR is an average of True Ranges over a period N. 

 

𝑨𝑻𝑹 =  
∑ 𝑻𝑹𝒊

𝑵
𝒊=𝟏

𝑵
 

For SLRPO strategy, the code for ATR is defined as follows: 
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    def calculate_atr(self, data, window=14): 

        high, low, close = data['High'], data['Low'], data['Close'] 

        tr1 = high - low 

        tr2 = abs(high - close.shift()) 

        tr3 = abs(low - close.shift()) 

        true_range = pd.DataFrame({'tr1': tr1, 'tr2': tr2, 'tr3': tr3}).max(axis=1) 

        atr = true_range.rolling(window=window).mean() 

        return atr 

In the preceding code, 

1. True Range 1 is calculated as the difference between the current high and current low. 

2. True Range 2 is calculated as the absolute difference between the current high and the 

previous close. 

3. True Range 3 is calculated as the absolute difference between the current low and the 

previous close. 

4. The final True Range is calculated as the max of the above TR1, 2 and 3. 

5. The Average True Range (ATR) is calculated by taking the rolling mean of the True 

Range over a specified number of periods which in this strategy is defined as 14. 

Considering Average True Range as one of the features helps SLRPO strategy to 

gather insights on the market volatility and to manage the risks and make informed 

decisions on stocks in the market. Let us now consider the next feature Bollinger Bands 

which is useful in understanding market dynamics further. 

4. Bollinger Bands 

The next feature for SLRPO strategy will be Bollinger Bands. This indicator was 

developed by John A. Bollinger. Bollinger Bands is another market indicator that can 
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help in understanding market volatility by identifying overbought or oversold conditions 

in the market (Bollinger, 2002). 

Bollinger Bands are calculated using the following parameters: 

1. Middle Band 

2. Upper Band 

3. Lower Band 

Middle Band 

The middle band is a simple moving average of the price calculated over a 

specific period. The default window of SLRPO strategy will be set to 20, which is also 

the number chosen usually for Bollinger Bands. 

𝑴𝑩 = 𝐒𝐌𝐀(𝐧) 

MB – Middle Band 

SMA – Simple Moving Average 

n – Selected Window 

Upper Band 

The upper band is calculated as the sum of the middle band and a multiple of 

standard deviation. The default value for the number of standard deviations is for SLRPO 

strategy will be set to 2, which is also the number chosen usually for Bollinger Bands. 

𝑼𝑩 = 𝑴𝑩 + (𝝈 ∗ 𝒏𝒔) 

UB – Upper Band 

MB – Middle Band 

σ – Standard Deviation 

ns – Number of Standard Deviations 

Lower Band 
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The lower band is calculated as the difference between the middle band and a 

multiple of standard deviation. The default value for the number of standard deviations is 

for SLRPO strategy will be set to 2, which is also the number chosen usually for 

Bollinger Bands. 

𝑳𝑩 = 𝑴𝑩 − (𝝈 ∗ 𝒏𝒔) 

LB – Lower Band 

MB – Middle Band 

σ – Standard Deviation 

ns – Number of Standard Deviations 

For SLRPO strategy, the code for Bollinger Bands is defined as follows: 

    def calculate_bollinger_bands(self, data, window=20, num_of_std=2): 

        sma = data.rolling(window=window).mean() 

        std = data.rolling(window=window).std() 

        upper_band = sma + (std * num_of_std) 

        lower_band = sma - (std * num_of_std) 

        bollinger_bands = pd.DataFrame({'Upper Band': upper_band, 'Middle Band': 

sma, 'Lower Band': lower_band}) 

        return bollinger_bands 

In the preceding code, 

1. The Simple Moving Average (sma) of price is calculated for a period of 20. This is 

the middle band. 

2. The Standard Deviation (std) is calculated for a period of 20. 

3. The upper band is calculated as sum of sma + 2*std. 

4. The lower band is calculated as the difference of sma – 2*std. 

5. Bollinger Bands are represented as upper band, middle band and lower band. 
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Considering Bollinger Bands as one of the features helps SLRPO strategy to 

gather more insights on the market volatility and to identify overbought and oversold 

conditions on stocks in the market. Let us now consider the next feature Chaikin Money 

Flow (CMF) which is useful in understanding market dynamics further. 

5. Chaikin Money Flow (CMF) 

Chaikin Money Flow (CMF) is the next feature that will be included in SLRPO 

strategy to understand buying and selling pressure in the markets for a security using 

stock data. This indicator was developed by Marc Chaikin. CMF can be used to 

understand the market sentiment and price movements of a security (Chaikin, n.d.). 

The CMF is calculated using the following parameters: 

1. Money Flow Multiplier (MFM) 

2. Money Flow Volume (MFV) 

3. Chaikin Money Flow (CMF) 

Money Flow Multiplier (MFM): 

The MFM is calculated as follows using the daily stock prices of a security. 

 

𝑴𝑭𝑴 =  
(𝑪𝒍𝒐𝒔𝒆 − 𝑳𝒐𝒘) −   (𝑯𝒊𝒈𝒉 − 𝑪𝒍𝒐𝒔𝒆)

𝑯𝒊𝒈𝒉 − 𝑳𝒐𝒘
 

Money Flow Volume (MFV) 

The MFV is calculated by multiplying MFM with Volume. 

 

𝑴𝑭𝑽 = 𝐌𝐅𝐌 × 𝐕𝐨𝐥𝐮𝐦𝐞 

Chaikin Money Flow (CMF) 

The CMF is calculated as the ratio between the sum of MFV over a window 

period n and the Volume over the same window. 



 

 

67 

𝑪𝑴𝑭 =  
∑ 𝑴𝑭𝑽𝒊

𝒏
𝒊=𝟏

∑ 𝑽𝒐𝒍𝒖𝒎𝒆𝒊
𝒏
𝒊=𝟏

 

For SLRPO strategy, the code for CMF is defined as follows: 

    def calculate_chaikin_money_flow(self, data, window=20): 

        high, low, close, volume = data['High'], data['Low'], data['Close'], 

data['Volume'] 

        mfm = ((close - low) - (high - close)) / (high - low) 

        mfm.replace([float('inf'), -float('inf')], 0, inplace=True)   

        mfv = mfm * volume 

        cmf = mfv.rolling(window=window).sum() / 

volume.rolling(window=window).sum() 

        return cmf 

In the preceding code, 

1. Money Flow Multiplier is calculated as defined in the MFM formula in this section. 

2. The infinity values in the results of MFM are then replaced by 0 to avoid calculation 

errors in the next steps. 

3. Money Flow Volume is calculated as the product of MFM with Volume. 

4. CMF is then calculated as the ratio between the rolling sum of MFV with the rolling 

sum of Volume over the same window. 

Considering Chaikin Money Flow as one of the features helps SLRPO strategy to 

gather insights into buying and selling pressure through volume and price analysis on 

stocks in the market. Let us now consider the next feature Donchian Channel which is 

useful in understanding market dynamics further. 

6. Donchian Channel 

Donchian channel is the next feature that will be included in SLRPO strategy to 

understand the trends in price changes by identifying the highest highs and the lowest 
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lows in the price of a stock. This indicator was developed by Richard Donchian 

(Investopedia, 2023).  

The Donchian channel is calculated using the following parameters: 

1. Upper Band 

2. Lower Band 

3. Middle Band 

Upper Band 

The upper band is calculated as the highest high over a selected window. 

Lower Band 

The lower band is calculated as the lowest low over a selected window. 

Middle Band 

The middle band is calculated as the average of the upper and lower bands. 

For SLRPO strategy, the code for Donchian channel is defined as follows: 

    def calculate_donchian_channel(self, data, window=20): 

        upper_band = data['High'].rolling(window=window).max() 

        lower_band = data['Low'].rolling(window=window).min() 

        middle_band = (upper_band + lower_band) / 2 

        donchian_channel = pd.DataFrame({'Upper Band': upper_band, 'Middle 

Band': middle_band, 'Lower Band': lower_band}) 

        return donchian_channel 

In the preceding code, 

1. Upper band is calculated as the maximum of the high stock price in the rolling 

window. 

2. Lower band is calculated as the minimum of the low stock price in the rolling 

window. 
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3. Middle band is calculated as the mean of upper band and the lower band. 

4. Donchian channel is then returned as a combined data frame of all the above values. 

Considering Donchian Channel as one of the features helps SLRPO strategy in 

identifying breakouts and trend reversals and for understanding price range and volatility. 

Let us now consider the next feature Ease of Movement (EMV) which is useful in 

understanding market dynamics further. 

7. Ease of Movement (EMV) 

Ease of Movement (EMV) is another feature that will be included in SLRPO 

strategy to understand the relationship between the rate of price change and volume using 

stock data. This indicator was developed by Richard W. Arms, Jr. EMV can be used to 

understand the momentum behind price movements and identify potential buying or 

selling opportunities (Arms, 1996). 

The EMV is calculated using the following parameters:  

• Midpoint Moved or Distance Moved 

• Box Ratio 

• Ease of Movement value 

• Smoothing 

Midpoint Moved or Distance Moved: 

The midpoint moved or distance moved is the parameter to calculate the midpoint 

of the high and low prices for the current and previous periods: 

 

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 𝑴𝒐𝒗𝒆𝒅 =  
(𝐻𝑖𝑔ℎ𝑡 + 𝐿𝑜𝑤𝑡)

2
−

(𝐻𝑖𝑔ℎ𝑡−1 + 𝐿𝑜𝑤𝑡−1)

2
 

This measures the change in the midpoint of the price range from one period to 

the next. 

Box Ratio: 
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The next parameter is the box ratio which normalizes the midpoint move by the 

trading volume and the price range: 

 

𝑩𝒐𝒙 𝑹𝒂𝒕𝒊𝒐 =
𝑉𝑜𝑙𝑢𝑚𝑒

𝑉𝑜𝑙𝑢𝑚𝑒 𝐷𝑖𝑣𝑖𝑠𝑜𝑟⁄

𝐻𝑖𝑔ℎ𝑡 −  𝐿𝑜𝑤𝑡
 

Ease of Movement value: 

The EMV value for the period is calculated as: 

 

𝑬𝑴𝑽 =  
𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 𝑀𝑜𝑣𝑒𝑑

𝐵𝑜𝑥 𝑅𝑎𝑡𝑖𝑜
 

This value indicates how easily the price is moving. A positive EMV indicates 

that prices are moving up easily, while a negative EMV indicates that prices are moving 

down easily. 

Smoothing: 

The final step in EMV calculation is to smooth the EMV value using moving average so 

that the value becomes more useful for analysis. This is an optional parameter that can be 

calculated. 

𝑺𝒎𝒐𝒐𝒕𝒉 𝑬𝑴𝑽 = 𝑀𝑜𝑣𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒(𝐸𝑀𝑉, 𝑛) 

n - the number of periods for the moving average. 

For SLRPO strategy, the code for EMV is defined as follows: 

    def calculate_ease_of_movement(self, data, window=14, 

volume_divisor=100000000): 

        high, low, volume = data['High'], data['Low'], data['Volume'] 

        distance_moved = ((high + low) / 2) - ((high + low) / 2).shift(1) 

        box_ratio = (volume / volume_divisor) / (high - low) 

        emv = distance_moved / box_ratio 
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        emv.replace([float('inf'), -float('inf')], 0, inplace=True)  # Handle division by 

zero 

        emv_smoothed = emv.rolling(window=window).mean() 

        return emv_smoothed 

In the preceding code, 

1. The Distance Moved is calculated as the difference between the average of current 

high and low and the average of previous high and low. 

2. The Box Ratio is calculated as the normalized ratio of volume and the difference 

between current high and low. 

3. The EMV is calculated as the ratio of Distance Moved and the Box Ratio. 

4. Smoothing is then performed on the EMV. 

Considering Ease of Movement (EMV) as one of the features helps SLRPO 

strategy in understanding the momentum of price movements by integrating volume. Let 

us now consider the next feature Keltner Channel which is useful in understanding 

market trends and volatility further. 

8. Keltner Channel 

The Keltner Channel is another feature that will be included in SLRPO strategy to 

identify potential trends and trading opportunities by combining aspects of volatility and 

moving averages. This indicator was developed by Chester W. Keltner in the 1960s 

(Keltner, 1960).  

The Keltner Channel has been refined over time and is calculated using the 

Exponential Moving Average (EMA) and the Average True Range (ATR). 

The Keltner Channel is calculated using the following parameters: 

• Middle Line 

• High Low 
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• High Close 

• Low Close 

• Ranges 

• True Range 

• Average True Range 

• Upper Band 

• Lower Band 

Middle Line 

The middle line is calculated as follows: 

𝑴𝒊𝒅𝒅𝒍𝒆𝑳𝒊𝒏𝒆𝒕 =  𝐶𝑙𝑜𝑠𝑒𝑡 × (1 − 𝛼) + 𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑖𝑛𝑒𝑡−1 × 𝛼  

High Low 

The High Low is calculated as follows: 

𝑯𝒊𝒈𝒉𝑳𝒐𝒘𝒕 = 𝐻𝑖𝑔ℎ𝑡 − 𝐿𝑜𝑤𝑡 

High Close 

The High Close is calculated as follows: 

𝑯𝒊𝒈𝒉𝑪𝒍𝒐𝒔𝒆𝒕 = |𝐻𝑖𝑔ℎ𝑡 −  𝐶𝑙𝑜𝑠𝑒𝑡−1| 

Low Close 

The Low Close is calculated as follows: 

𝑳𝒐𝒘𝑪𝒍𝒐𝒔𝒆𝒕 = |𝐿𝑜𝑤𝑡 −  𝐶𝑙𝑜𝑠𝑒𝑡−1| 

Ranges 

The ranges are calculated as follows: 

𝑹𝒂𝒏𝒈𝒆𝒔𝒕 =  

𝐻𝑖𝑔ℎ𝐿𝑜𝑤𝑡

𝐻𝑖𝑔ℎ𝐶𝑙𝑜𝑠𝑒𝑡

𝐿𝑜𝑤𝐶𝑙𝑜𝑠𝑒𝑡

 

True Range 

The true range is calculated as follows: 
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𝑻𝒓𝒖𝒆𝑹𝒂𝒏𝒈𝒆𝒕 = max (𝑅𝑎𝑛𝑔𝑒𝑠𝑡) 

Average True Range 

The ATR is calculated as follows: 

𝑨𝑻𝑹𝒕 =  
1

𝑛
∑ 𝑇𝑟𝑢𝑒𝑅𝑎𝑛𝑔𝑒𝑖

𝑡

𝑖=𝑡−𝑛+1
 

n – the ATR window 

Upper Band 

The upper band is calculated as follows: 

𝑼𝒑𝒑𝒆𝒓𝑩𝒂𝒏𝒅𝒕 =  𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑖𝑛𝑒𝑡 + (𝑘 ×  𝐴𝑇𝑅𝑡)  

k – multiplier 

Lower Band 

The lower band is calculated as follows: 

𝑳𝒐𝒘𝒆𝒓𝑩𝒂𝒏𝒅𝒕 =  𝑀𝑖𝑑𝑑𝑙𝑒𝐿𝑖𝑛𝑒𝑡 − (𝑘 × 𝐴𝑇𝑅𝑡) 

For SLRPO strategy, the code for Keltner Channel is defined as follows: 

    def calculate_keltner_channel(self, data, ema_period=20, atr_period=10, 

multiplier=2): 

        middle_line = data['Close'].ewm(span=ema_period, adjust=False).mean() 

        high_low = data['High'] - data['Low'] 

        high_close = (data['High'] - data['Close'].shift()).abs() 

        low_close = (data['Low'] - data['Close'].shift()).abs() 

        ranges = pd.concat([high_low, high_close, low_close], axis=1) 

        true_range = ranges.max(axis=1) 

        atr = true_range.rolling(window=atr_period).mean() 

        upper_band = middle_line + (multiplier * atr) 

        lower_band = middle_line - (multiplier * atr) 
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        keltner_channel = pd.DataFrame({'Upper Band': upper_band, 'Middle Line': 

middle_line, 'Lower Band': lower_band}) 

        return keltner_channel 

In the preceding code, 

1. The parameters required for Keltner channel are calculated as explained in the 

equations of this section. 

2. The Exponential Moving Average period is set to 20 and the Average True Range 

period is set to 10. 

3. The multiplier for upper band and lower band is set to 2. 

Considering Keltner Channel as one of the features helps SLRPO strategy in 

understanding the trend and volatility of prices. Let us now consider the next feature 

Money Flow Index (MFI) which is useful in understanding market dynamics further. 

9. Money Flow Index (MFI) 

Money Flow Index (MFI) is another feature that will be included in SLRPO 

strategy, and it uses both price and volume data to identify overbought and oversold 

conditions in a security. MFI was developed by Gene Quong and Avrum Soudack 

(Murphy, 1999). 

The MFI is calculated using the following parameters: 

1. Typical Price 

2. Raw Money Flow 

3. Positive Flow 

4. Negative Flow 

5. Sum Positive Money Flow 

6. Sum Negative Money Flow 

7. Money Flow Ratio 



 

 

75 

8. Money Flow Index 

Typical Price 

The Typical Price is calculated as follows: 

 

𝑻𝒚𝒑𝒊𝒄𝒂𝒍𝑷𝒓𝒊𝒄𝒆𝒕 =  
𝐻𝑖𝑔ℎ𝑡 +  𝐿𝑜𝑤𝑡 +  𝐶𝑙𝑜𝑠𝑒𝑡

3
 

Raw Money Flow 

Raw Money Flow is calculated as follows: 

 

𝑹𝒂𝒘𝑴𝒐𝒏𝒆𝒚𝑭𝒍𝒐𝒘𝒕 =  𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡  ×  𝑉𝑜𝑙𝑢𝑚𝑒𝑡  

 

Positive Flow  

Positive Flow is calculated as follows: 

 

𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝑭𝒍𝒐𝒘𝒕 = {
𝑅𝑎𝑤𝑀𝑜𝑛𝑒𝑦𝐹𝑙𝑜𝑤𝒕, 𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡 ≥  𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡−1

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Negative Flow 

Negative Flow is calculated as follows: 

 

𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝑭𝒍𝒐𝒘𝒕 = {
𝑅𝑎𝑤𝑀𝑜𝑛𝑒𝑦𝐹𝑙𝑜𝑤𝒕, 𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡 ≤  𝑇𝑦𝑝𝑖𝑐𝑎𝑙𝑃𝑟𝑖𝑐𝑒𝑡−1

0, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

Sum Positive Money Flow 

The sum positive money flow is calculated as follows: 

 

𝑺𝒖𝒎𝑷𝒐𝒔𝒊𝒕𝒊𝒗𝒆𝑴𝑭𝒕 = ∑ 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝐹𝑙𝑜𝑤𝑖

𝑡

𝑖=𝑡−𝑝𝑒𝑟𝑖𝑜𝑑+1
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period – Selected period 

Sum Negative Money Flow 

The sum negative money flow is calculated as follows: 

 

𝑺𝒖𝒎𝑵𝒆𝒈𝒂𝒕𝒊𝒗𝒆𝑴𝑭𝒕 = ∑ 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝐹𝑙𝑜𝑤𝑖

𝑡

𝑖=𝑡−𝑝𝑒𝑟𝑖𝑜𝑑+1
 

period – Selected period 

Money Flow Ratio 

The money flow ratio is calculated as follows: 

 

𝑴𝑭𝑹𝒕 =  
𝑆𝑢𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑀𝐹𝑡

𝑆𝑢𝑚𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑀𝐹𝑡
 

 

Money Flow Index 

The money flow index is calculated as follows: 

 

𝑴𝑭𝑰𝒕 = 100 − (
100

1 + 𝑀𝐹𝑅𝑡
) 

 

For SLRPO strategy, the code for Money Flow Index is defined as follows: 

    def calculate_money_flow_index(self, data, period=14): 

        typical_price = (data['High'] + data['Low'] + data['Close']) / 3 

        raw_money_flow = typical_price * data['Volume'] 

        positive_flow = raw_money_flow.copy() 

        negative_flow = raw_money_flow.copy() 

 

        positive_flow[typical_price <= typical_price.shift()] = 0 
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        negative_flow[typical_price >= typical_price.shift()] = 0 

        positive_mf_sum = positive_flow.rolling(window=period).sum() 

        negative_mf_sum = negative_flow.rolling(window=period).sum() 

        mfr = positive_mf_sum / negative_mf_sum 

        mfi = 100 - (100 / (1 + mfr)) 

        return mfi 

In the preceding code, 

1. The parameters required for MFI are calculated as explained in the equations of this 

section. 

2. The rolling window period for the calculations are set to 14. 

Considering Money Flow Index as one of the features helps SLRPO strategy to 

gather insights on the market momentum and liquidity. Let us now consider the next 

feature Moving Average Convergence Divergence (MACD) which is useful in 

understanding market momentum furthermore. 

10. Moving Average Convergence Divergence (MACD) 

Moving Average Convergence Divergence (MACD) is another feature that will 

be included in SLRPO strategy, and it is used to identify changes in the strength, 

direction, momentum, and duration of a trend in the price of a stock. MACD was 

developed by Gerald Appel in the late 1970s (Appel, 2005). 

The MACD is calculated using the following parameters: 

1. EMA Fast 

2. EMA Slow 

3. MACD Line 

4. Signal Line 

EMA Fast 
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Exponential Moving Average (EMA) Fast is calculated as follows: 

 

𝑬𝑴𝑨𝑭𝒂𝒔𝒕𝒕 =  (
𝐶𝑙𝑜𝑠𝑒𝑡 × (1 − ∝𝑓𝑎𝑠𝑡) + 𝐸𝑀𝐴𝐹𝑎𝑠𝑡𝑡−1 × ∝𝑓𝑎𝑠𝑡

1
) 

where  ∝𝑓𝑎𝑠𝑡=  
2

𝑓𝑎𝑠𝑡+1
 

EMA Slow 

Exponential Moving Average (EMA) Slow is calculated as follows: 

𝑬𝑴𝑨𝑺𝒍𝒐𝒘𝒕 =  (
𝐶𝑙𝑜𝑠𝑒𝑡 × (1 − ∝𝑠𝑙𝑜𝑤) + 𝐸𝑀𝐴𝑆𝑙𝑜𝑤𝑡−1 × ∝𝑠𝑙𝑜𝑤

1
) 

where  ∝𝑠𝑙𝑜𝑤=  
2

𝑠𝑙𝑜𝑤+1
 

MACD Line 

Moving Average Convergence Divergence (MACD) is calculated as follows: 

𝑴𝑨𝑪𝑫𝒕 =  𝐸𝑀𝐴𝐹𝑎𝑠𝑡𝑡 −  𝐸𝑀𝐴𝑆𝑙𝑜𝑤𝑡 

Signal Line 

Signal Line is calculated as follows: 

 

𝑺𝒊𝒈𝒏𝒂𝒍𝑳𝒊𝒏𝒆𝒕 =  (
𝑀𝐴𝐶𝐷𝑡  × (1 −  𝛼𝑠𝑖𝑔𝑛𝑎𝑙) + 𝑆𝑖𝑔𝑛𝑎𝑙𝐿𝑖𝑛𝑒𝑡− × 𝛼𝑠𝑖𝑔𝑛𝑎𝑙 

1
) 

      where 𝛼𝑠𝑖𝑔𝑛𝑎𝑙 =  
2

𝑠𝑖𝑔𝑛𝑎𝑙+1
 

For SLRPO strategy, the code for MACD is defined as follows: 

    def calculate_macd(self, data, slow=26, fast=12, signal=9): 

        ema_fast = data['Close'].ewm(span=fast, adjust=False).mean() 

        ema_slow = data['Close'].ewm(span=slow, adjust=False).mean() 

        macd = ema_fast - ema_slow 

        signal_line = macd.ewm(span=signal, adjust=False).mean() 

        macd_df = pd.DataFrame({'MACD': macd, 'Signal Line': signal_line}) 

        return macd_df 



 

 

79 

In the preceding code, 

1. The parameters required for MACD are calculated as explained in the equations of 

this section. 

2. The value for fast is set to 12, slow is set to 26 and signal is set to 9. 

3. MACD_DF is returned as a data frame with combined data of MACD Line and 

Signal Line. 

Considering Moving Average Convergence Divergence (MACD) as one of the 

features helps SLRPO strategy in identifying trends and momentum shifts. Let us now 

consider the next feature Moving Averages themselves which is useful in smoothing the 

price data and understanding underlying trends. 

11. Moving Averages (SMA and EMA) 

Moving Averages (SMA and EMA) is another feature that will be included in 

SLRPO strategy, it helps to smooth out price data over a specified period, making it 

easier to identify trends and potential reversal points. Two of the most used types of 

moving averages are the Simple Moving Average (SMA) and the Exponential Moving 

Average (EMA). Moving averages have been discussed and refined throughout various 

technical analysis performed on stock markets data. One of the sources of reference for 

moving averages is ‘Technical Analysis of the Financial Markets’ (Murphy, 1999). 

The Moving Averages are calculated using the following parameters: 

1. Simple Moving Average 

2. Exponential Moving Average 

Simple Moving Average 

The Simple Moving Average is calculated as follows: 

 

𝑺𝑴𝑨𝒕 =  
1

𝑛
∑ 𝑑𝑎𝑡𝑎𝑖

𝑡

𝑖=𝑡−𝑛+1
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n - the window period 

Exponential Moving Average 

The Exponential Moving Average is calculated as follows: 

 

𝑬𝑴𝑨𝒕 =  𝛼 + 𝑑𝑎𝑡𝑎𝑡 + (1 −  𝛼)  × 𝐸𝑀𝐴𝑡−1 

 

𝛼 =  
2

𝑛 + 1
 

α – smoothing factor 

n – period for the window 

For SLRPO strategy, the code for Moving averages is defined as follows: 

    def calculate_moving_averages(self, data, period): 

        sma = data.rolling(window=period).mean() 

        ema = data.ewm(span=period, adjust=False).mean() 

        moving_averages = pd.DataFrame({'SMA': sma, 'EMA': ema}) 

        return moving_averages 

In the preceding code, 

1. The parameters required for SMA and EMA are calculated as explained in the 

equations of this section. 

2. The rolling window period for the calculations are defined as custom parameters. 

3. Moving Averages are returned as a data frame with combined data of SMA and 

EMA. 

Considering Moving Averages as one of the features helps SLRPO strategy to 

smoothen the price data and gather insights on the price trends. Let us now consider the 

next feature On-Balance Volume (OBV) which is useful in understanding market trends 

furthermore. 
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12. On-Balance Volume (OBV) 

On-Balance Volume (OBV) is another feature that will be included in SLRPO 

strategy, and it uses volume to understand the price movement. According to OBV, 

significant changes in volume can signal potential price movements. OBV was developed 

by Joe Granville in the 1960s (Granville, 1963). 

The OBV is calculated using the following parameters: 

1. Initial OBV 

2. OBV 

Initial OBV 

The OBV is initialized as follows: 

𝑶𝑩𝑽𝟎 = 0 

OBV 

OBV is calculated as follows: 

 

𝑶𝑩𝑽𝒕 =  {

𝑂𝐵𝑉𝑡−1 + 𝑉𝑜𝑙𝑢𝑚𝑒𝑡            𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 >  𝐶𝑙𝑜𝑠𝑒𝑡−1

𝑂𝐵𝑉𝑡−1 − 𝑉𝑜𝑙𝑢𝑚𝑒𝑡            𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 <  𝐶𝑙𝑜𝑠𝑒𝑡−1

𝑂𝐵𝑉𝑡−1            𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡 =  𝐶𝑙𝑜𝑠𝑒𝑡−1                        
 

For SLRPO strategy, the code for On-Balance Volume (OBV) is defined as follows: 

    def calculate_on_balance_volume(self, data): 

        close = data['Close'] 

        volume = data['Volume'] 

        obv = pd.Series(index=close.index) 

        obv.iloc[0] = volume.iloc[0] if close.iloc[0] > close.iloc[0] else 0 

        for i in range(1, len(close)): 

            if close[i] > close[i - 1]: 

                obv[i] = obv[i - 1] + volume[i] 
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            elif close[i] < close[i - 1]: 

                obv[i] = obv[i - 1] - volume[i] 

            else: 

                obv[i] = obv[i - 1] 

        return obv 

In the preceding code, 

1. The OBV is initialized to 0 and then calculated further. 

2. The parameters required for OBV are calculated as explained in the equations of this 

section. 

Considering On-Balance Volume (OBV) as one of the features helps SLRPO 

strategy to gather insights on the price movements and trends. Let us now consider the 

next feature Parabolic SAR which is useful in understanding market trends furthermore. 

13. Parabolic SAR 

Parabolic SAR (Stop and Reverse) is another feature that will be included in 

SLRPO strategy, and it is used to identify potential reversal points in the price movement 

of an asset and to optimize trading strategies. Parabolic SAR was developed by J. Welles 

Wilder Jr. (Wilder, 1978). 

The Parabolic SAR is represented as a series of dots placed above or below the price bars 

on a chart: 

• When the dots are below the price, it indicates an uptrend. 

• When the dots are above the price, it indicates a downtrend. 

The Parabolic SAR is calculated using the following parameters: 

1. Extreme Point 

2. Acceleration Factor 

3. Initialize SAR 
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4. Initialize Trend 

5. SAR 

Extreme Point 

The extreme point is calculated as the highest high in an uptrend or the lowest low in a 

downtrend. 

 

𝑬𝑷𝟎 =  {
𝐻𝑖𝑔ℎ0 𝐼𝑓 𝑢𝑝𝑡𝑟𝑒𝑛𝑑 𝑖𝑠 𝑇𝑟𝑢𝑒
𝐿𝑜𝑤0 𝐼𝑓 𝑢𝑝𝑡𝑟𝑒𝑛𝑑 𝑖𝑠 𝐹𝑎𝑙𝑠𝑒

 

Acceleration Factor 

The acceleration factor is a value that is initialized at 0.02 and increases by 0.02 each 

time a new EP is reached, up to a maximum of 0.20. 

 

𝑨𝑭𝟎 = 0.02  

Initialize SAR  

The initial SAR is calculated as follows: 

 

𝑺𝑨𝑹[𝟎] =  {
𝐻𝑖𝑔ℎ[0]   𝑖𝑓 𝐻𝑖𝑔ℎ[0] < 𝐿𝑜𝑤[0]

𝐿𝑜𝑤[0]   𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Initialize Trend 

The initial Trend is calculated as follows: 

 

𝑼𝒑𝒕𝒓𝒆𝒏𝒅 =  {
𝑇𝑟𝑢𝑒 𝑖𝑓 𝐻𝑖𝑔ℎ[0] < 𝐿𝑜𝑤[0]

𝐹𝑎𝑙𝑠𝑒 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

SAR 

The SAR is calculated as follows: 

 

𝑺𝑨𝑹𝒊 =  𝑆𝐴𝑅𝑖−1 +  𝐴𝐹 × (𝐸𝑃 −  𝑆𝐴𝑅𝑖−1 )  

For SLRPO strategy, the code for Parabolic SAR is defined as follows: 
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def calculate_parabolic_sar(self, high, low, af_start=0.02, af_increment=0.02, 

af_max=0.2): 

        sar = high if high[0] < low[0] else low 

        sar.iloc[0] = high[0] if high[0] < low[0] else low[0] 

        uptrend = high[0] < low[0] 

        ep = high[0] if uptrend else low[0] 

        af = af_start 

        for i in range(1, len(high)): 

            if uptrend: 

                sar[i] = sar[i - 1] + af * (ep - sar[i - 1]) 

                if high[i] > ep: 

                    ep = high[i] 

                    af = min(af + af_increment, af_max) 

                if low[i] < sar[i]: 

                    uptrend = False 

                    sar[i] = ep 

                    ep = low[i] 

                    af = af_start 

            else: 

                sar[i] = sar[i - 1] + af * (ep - sar[i - 1]) 

                if low[i] < ep: 

                    ep = low[i] 

                    af = min(af + af_increment, af_max) 

                if high[i] > sar[i]: 

                    uptrend = True 
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                    sar[i] = ep 

                    ep = high[i] 

                    af = af_start 

        return sar     

In the preceding code, 

1. The parameters required for Parabolic SAR are calculated as explained in the 

equations of this section. 

2. The AF Start is set to 0.02, incremented by 0.02 and AF Max is set to 0.2. 

3. The SAR is updated in the loop that iterates through each data point to update the 

SAR value based on the current trend direction. 

Considering Parabolic SAR as one of the features helps SLRPO strategy in 

identifying potential trend reversals and managing trailing stop losses. Let us now 

consider the next feature Periodic High/Low which is useful in understanding how it can 

be used to spot key support and resistance levels and enhance market analysis further. 

14. Periodic High/Low 

Periodic High/Low is another feature that will be included in SLRPO strategy, 

and it is used to identify the highest high and the lowest low within a specified period. 

One of the sources of reference for Periodic High/Low is ‘Technical Analysis of the 

Financial Markets’ (Murphy, 1999). 

The Periodic High/Low is calculated using the following parameters: 

1. Periodic High 

2. Periodic Low 

Periodic High 

The Periodic High is the highest price reached within a specified period. It is 

calculated as follows: 
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𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝐻𝑖𝑔ℎ = max (𝐻𝑖𝑔ℎ1, 𝐻𝑖𝑔ℎ2, … 𝐻𝑖𝑔ℎ𝑛) 

Periodic Low 

The Periodic Low is the lowest price reached within a specified period. It is 

calculated as follows: 

𝑃𝑒𝑟𝑖𝑜𝑑𝑖𝑐𝐿𝑜𝑤 = max (𝐿𝑜𝑤1, 𝐿𝑜𝑤, … 𝐿𝑜𝑤𝑛) 

For SLRPO strategy, the code for Periodic High/Low is defined as follows: 

    def calculate_periodic_high_low(self, data, period): 

        periodic_high = data.rolling(window=period).max() 

        periodic_low = data.rolling(window=period).min() 

        high_low_df = pd.DataFrame({'Periodic High': periodic_high, 'Periodic 

Low': periodic_low}) 

        return high_low_df 

In the preceding code, 

1. The parameters required for Periodic High/Low are calculated as explained in the 

equations of this section. 

2. Periodic High/Low are returned as a data frame with combined data of Periodic High 

and Periodic Low. 

Considering Periodic High/Low as one of the features helps SLRPO strategy to 

gather insights on the price movements. Let us now consider the next feature Rate of 

Change (RoC) which quantifies the speed at which prices are changing. 

15. Rate of Change (ROC) 

Rate of Change (ROC) is another feature that will be included in SLRPO strategy, 

and it is a momentum-based technical analysis indicator that measures the percentage 

change in price between the current stock price and a stock price in the past. It helps in 
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understanding the speed at which a security's price is changing, providing insights into 

the momentum and strength of a trend. One of the sources of reference for ROC is 

‘Technical Analysis of the Financial Markets’ (Murphy, 1999). 

The ROC is calculated using the following parameters: 

1. Difference in price 

2. Rate of Change (ROC) 

Difference in price: 

The difference in price is calculated as follows: 

 

∆𝑷𝒓𝒊𝒄𝒆 =  𝑃𝑟𝑖𝑐𝑒𝑡 − 𝑃𝑟𝑖𝑐𝑒𝑡−𝑛 

Price - is the price of the security at the most recent period. 

n - is the number of periods chosen for the calculation. 

Rate of Change (ROC): 

The rate of change is calculated as follows: 

 

𝑹𝑶𝑪𝒕 =  (
∆𝑃𝑟𝑖𝑐𝑒

𝑃𝑟𝑖𝑐𝑒𝑡−𝑛
) × 100 

n - is the number of periods chosen for the calculation. 

For SLRPO strategy, the code for Rate of Change (ROC) is defined as follows: 

    def calculate_rate_of_change(self, data, period): 

        roc = ((data - data.shift(period)) / data.shift(period)) * 100 

        return roc 

In the preceding code, 

1. The parameters required for ROC are calculated as explained in the equations of this 

section. 

2. The period for the calculations is provided as input while calling the function. 
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Considering Rate of Change (ROC) as one of the features helps SLRPO strategy 

to gather insights on the market momentum and strength of a trend. Let us now consider 

the next feature Relative Strength (RS) which is useful to identify strong performing 

assets. 

16. Relative Strength  

Relative Strength is another feature that will be included in SLRPO strategy, and 

it is used to compare the performance of one asset against another or against a benchmark 

index. RS is used to identify how well an asset is performing relative to its peers or the 

market as a whole. RS is a technical indicator extensively used in technical analysis and 

was widely discussed by Robert W. Colby in his comprehensive guide on technical 

analysis (Colby, 2003). 

The RS is calculated using the following parameters: 

1. Delta 

2. Gain 

3. Loss 

4. Relative Strength 

Delta 

The Delta value is calculated as follows: 

∆𝑷𝒓𝒊𝒄𝒆𝒕 =   𝑃𝑟𝑖𝑐𝑒𝑡 −  𝑃𝑟𝑖𝑐𝑒𝑡−1 

Gain 

The Gain is calculated as follows: 

𝑮𝒂𝒊𝒏𝒕 =  
1

𝑛
 ∑ max (∆𝑃𝑟𝑖𝑐𝑒𝑖, 0)

𝑡

𝑖=𝑡−𝑛+1

 

Loss 

The Loss is calculated as follows: 
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𝑳𝒐𝒔𝒔𝒕 =  
1

𝑛
 ∑ max (−∆𝑃𝑟𝑖𝑐𝑒𝑖, 0)

𝑡

𝑖=𝑡−𝑛+1

 

Relative Strength 

The relative strength is calculated as follows: 

 

𝑹𝑺𝒕 =  
𝐺𝑎𝑖𝑛𝑡

𝐿𝑜𝑠𝑠𝑡
 

 

For SLRPO strategy, the code for Relative Strength is defined as follows: 

    def calculate_relative_strength(self, data, period=14): 

        delta = data.diff(1) 

        gain = (delta.where(delta > 0, 0)).rolling(window=period).mean() 

        loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean() 

        rs = gain / loss 

        return rs 

In the preceding code, 

1. The parameters required for RSI are calculated as explained in the equations of this 

section. 

2. The rolling window period for the calculations are set to 14. 

Considering Relative Strength (RS) as one of the features helps SLRPO strategy 

in comparing the performance of assets against benchmarks or peers. Let us now consider 

the next feature Relative Strength Index (RSI) which is an extension of Relative Strength 

and provides additional insights on the market momentum. 

17. Relative Strength Index (RSI) 
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Relative Strength Index (RSI) is another feature that will be included in SLRPO 

strategy and is used in technical analysis to measure the speed and change of price 

movements. The value of RSI falls between 0 to 100 and it provides information on 

whether a stock is overbought or oversold. RSI was developed by J. Welles Wilder in 

1978 (Wilder, 1978). 

The RSI is calculated using the following parameters. Some of the parameters in 

RSI overlaps with the parameters in Relative Strength: 

1. Delta 

2. Gain 

3. Loss 

4. Relative Strength 

5. Relative Strength Index 

Delta 

The Delta value is calculated as follows: 

∆𝑷𝒓𝒊𝒄𝒆𝒕 =   𝑃𝑟𝑖𝑐𝑒𝑡 −  𝑃𝑟𝑖𝑐𝑒𝑡−1 

Gain 

The Gain is calculated as follows: 

𝑮𝒂𝒊𝒏𝒕 =  
1

𝑛
 ∑ max (∆𝑃𝑟𝑖𝑐𝑒𝑖, 0)

𝑡

𝑖=𝑡−𝑛+1

 

Loss 

The Loss is calculated as follows: 

𝑳𝒐𝒔𝒔𝒕 =  
1

𝑛
 ∑ max (−∆𝑃𝑟𝑖𝑐𝑒𝑖, 0)

𝑡

𝑖=𝑡−𝑛+1

 

Relative Strength 

The relative strength is calculated as follows: 
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𝑹𝑺𝒕 =  
𝐺𝑎𝑖𝑛𝑡

𝐿𝑜𝑠𝑠𝑡
 

Relative Strength Index 

The relative strength index is calculated as follows: 

𝑹𝑺𝑰𝒕 = 100 −  (
100

1 + 𝑅𝑆𝑡
) 

For SLRPO strategy, the code for Relative Strength Index is defined as follows: 

    def calculate_rsi(self, data, period=14): 

        delta = data.diff(1) 

        gain = (delta.where(delta > 0, 0)).rolling(window=period).mean() 

        loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean() 

        rs = gain / loss 

        rsi = 100 - (100 / (1 + rs)) 

        return rsi 

In the preceding code, 

1. The parameters required for RSI are calculated as explained in the equations of this 

section. 

2. The rolling window period for the calculations are set to 14. 

Considering Relative Strength Index as one of the features helps SLRPO strategy 

to identify overbought and oversold conditions, as well as potential reversals and trend 

strength. Let us now consider the next feature Stochastic Oscillator which will be used to 

understand how it can complement our analysis and enhance SLRPO Strategy. 

18. Stochastic Oscillator 

Stochastic Oscillator is another feature that will be included in SLRPO strategy, 

and it compares a security's closing price to its price range over a specified period, 

providing insights into the momentum and potential reversal points of the asset. 

Stochastic Oscillator was developed by George Lane in the late 1950s (Lane, 1984). 
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The Stochastic Oscillator is calculated using the following parameters: 

1. Lowest Low 

2. Highest High 

3. %K Line 

4. % D Line 

Lowest Low 

The lowest low is calculated as follows: 

𝑳𝒐𝒘𝑴𝒊𝒏𝒕 = min (𝐿𝑜𝑤𝑡−𝑘+1, 𝐿𝑜𝑤𝑡−𝑘+2, … , 𝐿𝑜𝑤𝑡)  

k – Rolling window period 

Highest High 

The highest high is calculated as follows: 

𝑯𝒊𝒈𝒉𝑴𝒂𝒙𝒕 = max (𝐻𝑖𝑔ℎ𝑡−𝑘+1, 𝐻𝑖𝑔ℎ𝑡−𝑘+2, … , 𝐻𝑖𝑔ℎ𝑡)  

k – Rolling window period 

%K Line 

The %K Line is calculated as follows: 

 

%𝑲𝒕 =  (
𝐶𝑙𝑜𝑠𝑒𝑡 −  𝐿𝑜𝑤𝑀𝑖𝑛𝑡

𝐻𝑖𝑔ℎ𝑀𝑎𝑥𝑡 −  𝐿𝑜𝑤𝑀𝑖𝑛𝑡
)  × 100 

%D Line 

The %D Line (Moving Average of %K) is calculated as follows: 

 

%𝑫𝒕 =  
1

𝑑
 ∑ %𝐾𝑖

𝑡

𝑖=𝑡−𝑑+1

 

d – window period for D Line 

For SLRPO strategy, the code for Stochastic Oscillator is defined as follows: 

    def calculate_stochastic_oscillator(self, data, k_period=14, d_period=3): 
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        low_min = data['Low'].rolling(window=k_period).min() 

        high_max = data['High'].rolling(window=k_period).max() 

        k_line = ((data['Close'] - low_min) / (high_max - low_min)) * 100 

        d_line = k_line.rolling(window=d_period).mean() 

        stochastic_df = pd.DataFrame({'%K': k_line, '%D': d_line}) 

        return stochastic_df 

In the preceding code, 

1. The parameters required for Stochastic Oscillator are calculated as explained in the 

equations of this section. 

2. The rolling window period k is set to 14 and d is set to 3 for the calculations. 

Considering Stochastic Oscillator as one of the features helps SLRPO strategy in 

identifying overbought and oversold conditions and potential reversal points. Let us now 

consider the next feature Supertrend which uses price and volatility data to generate buy 

and sell signals. 

19. Supertrend 

Supertrend is another feature that will be included in SLRPO strategy, and it helps 

to identify the prevailing trend of a security and provides clear buy and sell signals. It 

combines price action and volatility to determine the direction of the trend. Supertrend 

was widely discussed by Olivier Seban, a French trader and author (Seban, 2008). 

The Supertrend is calculated using the following parameters: 

1. High Low Average 

2. Average True Range 

3. Basic Upper Band 

4. Basic Lower Band 

5. Final Upper Band 
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6. Final Lower Band 

7. Supertrend 

High Low Average 

The high low average is calculated as follows: 

𝑯𝑳𝟐𝒕 =  
𝐻𝑖𝑔ℎ𝑡 +  𝐿𝑜𝑤𝑡

2
 

Average True Range 

The average true range is calculated as follows: 

𝑨𝑻𝑹𝒕 =  
1

𝑛
 ∑ max (𝐻𝑖𝑔ℎ𝑖 −  𝐿𝑜𝑤𝑖 , |𝐻𝑖𝑔ℎ𝑖 −  𝐶𝑙𝑜𝑠𝑒𝑖−1|, |𝐿𝑜𝑤𝑖 −  𝐶𝑙𝑜𝑠𝑒𝑖−1|)

𝑡

𝑖=𝑡−𝑛+1

  

n – Rolling window period 

Basic Upper Band 

The basic upper band is calculated as follows: 

𝑩𝒂𝒔𝒊𝒄𝑼𝒑𝒑𝒆𝒓𝑩𝒂𝒏𝒅𝒕 =  𝐻𝐿2𝑡 + (𝑘 × 𝐴𝑇𝑅𝑡) 

k - multiplier 

Basic Lower Band 

The basic lower band is calculated as follows: 

𝑩𝒂𝒔𝒊𝒄𝑳𝒐𝒘𝒆𝒓𝑩𝒂𝒏𝒅𝒕 =  𝐻𝐿2𝑡 − (𝑘 × 𝐴𝑇𝑅𝑡) 

k - multiplier 

Final Upper Band 

The final upper band is calculated as follows: 

𝑭𝒊𝒏𝒂𝒍𝑼𝒑𝒑𝒆𝒓𝑩𝒂𝒏𝒅𝒕

= {
𝑚𝑖𝑛(𝐵𝑎𝑠𝑖𝑐𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝐹𝑖𝑛𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1), 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡−1 ≤ 𝐹𝑖𝑛𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1

𝐵𝑎𝑠𝑖𝑐𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Final Lower Band 

The final lower band is calculated as follows: 
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𝑭𝒊𝒏𝒂𝒍𝑳𝒐𝒘𝒆𝒓𝑩𝒂𝒏𝒅𝒕

= {
𝑚𝑎𝑥(𝐵𝑎𝑠𝑖𝑐𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝐹𝑖𝑛𝑎𝑙𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1), 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡−1 ≥ 𝐹𝑖𝑛𝑎𝑙𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1

𝐵𝑎𝑠𝑖𝑐𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

Supertrend 

The Supertrend is calculated as follows: 

𝑺𝒖𝒑𝒆𝒓𝒕𝒓𝒆𝒏𝒅𝒕 = {
𝐹𝑖𝑛𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝑖𝑓 𝐶𝑙𝑜𝑠𝑒𝑡−1 ≤ 𝐹𝑖𝑛𝑎𝑙𝑈𝑝𝑝𝑒𝑟𝐵𝑎𝑛𝑑𝑡−1

𝐹𝑖𝑛𝑎𝑙𝐿𝑜𝑤𝑒𝑟𝐵𝑎𝑛𝑑𝑡, 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

For SLRPO strategy, the code for Supertrend is defined as follows: 

def calculate_supertrend(self, data, period=14, multiplier=3): 

        hl2 = (data['High'] + data['Low']) / 2 

        atr = hl2.rolling(window=period).apply(lambda x: max(x.max() - x.min(), 

abs(x.max() - x[-1]), abs(x.min() - x[-1])).mean(), raw=True) 

        basic_upperband = hl2 + (multiplier * atr) 

        basic_lowerband = hl2 - (multiplier * atr) 

        final_upperband = basic_upperband.copy() 

        final_lowerband = basic_lowerband.copy() 

        for i in range(1, len(final_upperband)): 

            if data['Close'][i-1] <= final_upperband[i-1]: 

                final_upperband[i] = min(basic_upperband[i], final_upperband[i-1]) 

            if data['Close'][i-1] >= final_lowerband[i-1]: 

                final_lowerband[i] = max(basic_lowerband[i], final_lowerband[i-1]) 

        supertrend = pd.Series(data.index) 

        for i in range(1, len(supertrend)): 

            if data['Close'][i-1] <= final_upperband[i-1]: 

                supertrend[i] = final_upperband[i] 

            else: 

                supertrend[i] = final_lowerband[i] 
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        return supertrend 

In the preceding code, 

1. The parameters required for Supertrend are calculated as explained in the equations of 

this section. 

2. The rolling window period for the calculations are set to 14 and the multiplier is set to 

3. 

Considering Supertrend as one of the features helps SLRPO strategy in 

identifying trend directions and generating buy and sell signals. Let us now consider the 

next feature Weighted Volume which is a Volume based indicator and helps in 

understanding market activity. 

20. Weighted Volume 

Weighted Volume is another feature that will be included in SLRPO strategy, and 

it combines price and volume data to provide insights into the strength and significance 

of price movements. Weighted Volume adjusts the volume based on the price change as 

opposed to any other simple volume indicators that considers only the trading volume. 

One of the sources of reference for Weighted Volume is ‘Technical Analysis of the 

Financial Markets’ (Murphy, 1999). 

The Weighted Volume is calculated using the following parameters: 

1. Price Range 

2. Weighted Volume 

Price Range 

The price range is calculated as follows: 

𝑷𝒓𝒊𝒄𝒆𝑹𝒂𝒏𝒈𝒆𝒕 =  𝐻𝑖𝑔ℎ𝑡 −  𝐿𝑜𝑤𝑡 

Weighted Volume 

The weighted volume is calculated as follows: 
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𝑾𝒆𝒊𝒈𝒉𝒕𝒆𝒅𝑽𝒐𝒍𝒖𝒎𝒆𝒕 =  𝑉𝑜𝑙𝑢𝑚𝑒𝑡 −  𝑃𝑟𝑖𝑐𝑒𝑅𝑎𝑛𝑔𝑒𝑡 

For SLRPO strategy, the code for Weighted Volume is defined as follows: 

    def calculate_weighted_volume(self, data): 

        price_range = data['High'] - data['Low'] 

        weighted_volume = data['Volume'] * price_range 

        return weighted_volume 

In the preceding code, 

1. The parameters required for Weighted Volume are calculated as explained in the 

equations of this section. 

Considering Weighted Volume as one of the features helps SLRPO strategy in 

combining price and volume data to assess the strength and significance of price 

movements. Let us now consider the next feature Volume at Price which provides 

detailed insights into the distribution of trading volume across different price levels. 

21. Volume at Price 

Volume at Price is another feature that will be included in SLRPO strategy, and it 

helps identify key price levels where significant trading activity has occurred, which can 

act as support or resistance levels. One of the sources of reference for Volume at Price is 

‘Technical Analysis of the Financial Markets’ (Murphy, 1999). 

The Volume at Price is calculated using the following parameters: 

1. Volume at Each Close Price 

Volume at Each Close Price: 

The volume at each close price is calculated as: 

 

𝑽𝒐𝒍𝒖𝒎𝒆𝑨𝒕𝑷𝒓𝒊𝒄𝒆(𝑪) =  ∑ 𝑉𝑜𝑙𝑢𝑚𝑒𝑡

𝑡∈𝑇(𝐶)
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This groups the data by each unique closing price and sums the volumes for each 

group, providing the total trading volume for each closing price. 

For SLRPO strategy, the code for Volume at Price is defined as follows: 

    def calculate_volume_at_price(self, data): 

        volume_at_price = data.groupby('Close')['Volume'].sum() 

        return volume_at_price.reset_index(drop = True) 

In the preceding code, 

1. The parameters required for Volume at Price are calculated as explained in the 

equations of this section. 

Considering Volume at Price as one of the features helps SLRPO strategy to 

gather insights on the trading volume across different price levels. Let us now consider 

the next feature Volume Price Trend (VPT) which is useful in understanding market 

momentum furthermore. 

22. Volume Price Trend (VPT) 

Volume Price Trend (VPT) is another feature that will be included in SLRPO 

strategy, and it combines price and volume to provide insights into the strength and 

direction of a trend. The VPT indicator is like the On-Balance Volume (OBV) but 

includes price changes in its calculation, making it more sensitive to both volume and 

price fluctuations. One of the sources of reference for Volume Price Trend (VPT) is 

‘Technical Analysis of the Financial Markets’ (Murphy, 1999). 

The VPT is calculated using the following parameters: 

1. Change in Close Price 

2. Percentage Change in Close Price 

3. VPT Contribution 

4. Cumulative sum of VPT Contributions 
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Change in Close Price 

The change in close price is calculated as follows: 

∆𝑪𝒍𝒐𝒔𝒆𝒕 =  𝐶𝑙𝑜𝑠𝑒𝑡 − 𝐶𝑙𝑜𝑠𝑒𝑡−1 

Percentage Change in Close Price 

The percentage change in close price is calculated as follows: 

𝑷𝒆𝒓𝒄𝒆𝒏𝒕𝒂𝒈𝒆𝑪𝒉𝒂𝒏𝒈𝒆𝒕 =  
∆𝐶𝑙𝑜𝑠𝑒𝑡

𝐶𝑙𝑜𝑠𝑒𝑡−1
 

VPT Contribution 

The VPT contribution is calculated as follows: 

𝑽𝑷𝑻𝑪𝒐𝒏𝒕𝒓𝒊𝒃𝒖𝒕𝒊𝒐𝒏𝒕 =  𝑉𝑜𝑙𝑢𝑚𝑒𝑡  ×  𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐶ℎ𝑎𝑛𝑔𝑒𝑡 

Cumulative sum of VPT Contributions 

The cumulative sum of VPT contributions is calculated as follows: 

𝑽𝑷𝑻𝒕 =   ∑ 𝑉𝑃𝑇𝐶𝑜𝑛𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛𝑖

𝑡

𝑖=1

 

For SLRPO strategy, the code for VPT is defined as follows: 

 def calculate_volume_price_trend(self, data): 

        close = data['Close'] 

        volume = data['Volume'] 

        vpt = (volume * ((close - close.shift(1)) / close.shift(1))).cumsum() 

        return vpt 

In the preceding code, 

1. The parameters required for VPT are calculated as explained in the equations of this 

section. 

Considering Volume Price Trend (VPT) as one of the features helps SLRPO 

strategy in understanding the strength of price movements by considering the cumulative 

volume. Let us now consider the next feature Volume Weighted Average Price (VWAP) 
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which helps to identify the average price at which a security has traded throughout the 

day, adjusted for volume. 

23. Volume Weighted Average Price (VWAP) 

Volume Weighted Average Price (VWAP) is another feature that will be included 

in SLRPO strategy, and it uses both price and volume data to calculate the average price 

a security has traded at throughout the day. One of the sources of reference for Volume 

Weighted Average Price (VWAP) is "Algorithmic Trading and DMA: An Introduction to 

Direct Access Trading Strategies" by Barry Johnson (Johnson, 2010). 

The VWAP is calculated using the following parameters: 

1. Cumulative Sum of the Product of Close Price and Volume 

2. Cumulative Sum of Volume 

3. VWAP 

Cumulative Sum of the Product of Close Price and Volume 

The cumulative sum of the product of close price and volume is calculated as follows: 

𝑪𝑺(𝑪 × 𝑽𝒕) =  ∑(𝐶𝑙𝑜𝑠𝑒𝑖  ×  𝑉𝑜𝑙𝑢𝑚𝑒𝑖)

𝑡

𝑖=1

 

Cumulative Sum of Volume 

The cumulative sum of volume is calculated as follows: 

𝑪𝑺(𝑽𝒕) =  ∑ 𝑉𝑜𝑙𝑢𝑚𝑒𝑖

𝑡

𝑖=1

 

VWAP 

The VWAP is calculated as follows: 

 

𝑽𝑾𝑨𝑷𝒕 =  
𝐶𝑆(𝐶 × 𝑉𝑡)

𝐶𝑆(𝑉𝑡)
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For SLRPO strategy, the code for VWAP is defined as follows: 

    def calculate_vwap(self, data): 

        vwap = (data['Close'] * data['Volume']).cumsum() / 

data['Volume'].cumsum() 

        return vwap 

In the preceding code, 

1. The parameters required for VWAP are calculated as explained in the equations 

of this section. 

These technical indicators are chosen because they collectively provide a well-

rounded analysis of market conditions. These indicators are relevant for SLRPO strategy 

to identify trends, measure momentum, assess volatility, and understand volume 

dynamics. By covering different aspects of technical analysis, these indicators enable 

SLRPO in making informed investment decisions and prescribe portfolios. 

4.4.2 Fundamental Indicators 

The list of fundamental indicators considered to design the SLRPO strategy are as 

follows (Investopedia, n.d.): 

1. Earnings Per Share (EPS) 

2. Price to Earnings Ratio (P/E) 

3. Projected Earnings Growth (PEG) 

4. Free Cash Flow (FCF) 

5. Price to Book Ratio (P/B) 

6. Return on Equity (ROE) 

7. Dividend Payout Ratio (DPR) 

8. Price to Sales Ratio (P/S) 

9. Dividend Yield Ratio 
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10. Debt-to-Equity Ratio (D/E) 

11. Book Value 

12. Revenue 

13. Revenue Growth 

The definitions and equations for these fundamental indicators are explained as 

follows: 

Earnings Per Share (EPS) 

Earnings Per Share (EPS) is one of the fundamental features that will be included 

in SLRPO strategy. EPS is the measure of the amount of net income earned per share of a 

company’s common stock. 

𝑬𝑷𝑺 =  
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒 − 𝑃𝑟𝑒𝑓𝑒𝑟𝑟𝑒𝑑 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑂𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝑆ℎ𝑎𝑟𝑒𝑠
 

Price to Earnings Ratio (P/E) 

Price to Earnings Ratio (P/E) is another fundamental feature that will be included 

in SLRPO strategy. P/E ratio is the measure of the price that the investors are willing to 

pay per earnings. 

𝑷 𝑬⁄ 𝑹𝒂𝒕𝒊𝒐 =  
𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑃𝑒𝑟 𝑆ℎ𝑎𝑟𝑒 (𝐸𝑃𝑆)
  

Projected Earnings Growth (PEG) 

Projected Earnings Growth (PEG) is another fundamental feature that will be 

included in SLRPO strategy. PEG is the measure of the ratio between P/E Ratio and 

Annual EPS Growth Rate. 

𝑷𝑬𝑮 𝑹𝒂𝒕𝒊𝒐 =  
𝑃 𝐸⁄ 𝑅𝑎𝑡𝑖𝑜

𝐴𝑛𝑛𝑢𝑎𝑙 𝐸𝑃𝑆 𝐺𝑟𝑜𝑤𝑡ℎ 𝑅𝑎𝑡𝑒
 

Free Cash Flow (FCF) 
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Free Cash Flow (FCF) is another fundamental feature that will be included in 

SLRPO strategy. FCF is the measure of the difference between Operating Cash Flow and 

Capital Expenditures for a company. 

𝑭𝑪𝑭 =  Operating Cash Flow −   Capital Expenditures 

Price to Book Ratio (P/B) 

Price to Book Ratio (P/B) is another fundamental feature that will be included in 

SLRPO strategy. P/B is the measure of the ratio of Market Price per share to the Book 

Value per share. 

𝑷 𝑩⁄ 𝑹𝒂𝒕𝒊𝒐 =  
𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐵𝑜𝑜𝑘 𝑉𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
 

Return on Equity (ROE) 

Return on Equity (ROE) is another fundamental feature that will be included in 

SLRPO strategy. ROE is the measure of the ratio of Net Income to the Shareholders’ 

equity. 

𝑹𝑶𝑬 =  
𝑁𝑒𝑡 𝐼𝑛𝑐𝑜𝑚𝑒

𝑆ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝑠′𝐸𝑞𝑢𝑖𝑡𝑦
 

Dividend Payout Ratio (DPR) 

Dividend Payout Ratio (DPR) is another fundamental feature that will be included 

in SLRPO strategy. DPR is the measure of the ratio of Dividends per Share to the 

Earnings Per Share (EPS). 

𝑫𝑷𝑹 =  
𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝐸𝑎𝑟𝑛𝑖𝑛𝑔𝑠 𝑃𝑒𝑟 𝑆ℎ𝑎𝑟𝑒 (𝐸𝑃𝑆)
 

Price to Sales Ratio (P/S) 

Price to Sales Ratio (P/S) is another fundamental feature that will be included in 

SLRPO strategy. P/S is the measure of the ratio of Market Price per Share to the Sales per 

Share. 

 



 

 

104 

𝑷 𝑺𝑹𝒂𝒕𝒊𝒐⁄ =  
𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝑆𝑎𝑙𝑒𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
 

Dividend Yield Ratio 

Dividend Yield Ratio is another fundamental feature that will be included in 

SLRPO strategy. Dividend Yield Ratio is the measure of the ratio of Annual Dividends 

per Share to the Market Price per Share. 

𝑫𝒊𝒗𝒊𝒅𝒆𝒏𝒅 𝒀𝒊𝒆𝒍𝒅 =  
𝐴𝑛𝑛𝑢𝑎𝑙 𝐷𝑖𝑣𝑖𝑑𝑒𝑛𝑑𝑠 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒

𝑀𝑎𝑟𝑘𝑒𝑡 𝑃𝑟𝑖𝑐𝑒 𝑝𝑒𝑟 𝑆ℎ𝑎𝑟𝑒
 

Debt-to-Equity Ratio (D/E) 

Debt-to-Equity Ratio (D/E) is another fundamental feature that will be included in 

SLRPO strategy. Debt-to-Equity Ratio (D/E) is the measure of the ratio of Total 

Liabilities to the Shareholders’ equity. 

𝑫/𝑬𝑹𝒂𝒕𝒊𝒐 =  
𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠

𝑆ℎ𝑎𝑟𝑒ℎ𝑜𝑙𝑑𝑒𝑟𝑠′𝐸𝑞𝑢𝑖𝑡𝑦
 

Book Value 

Book Value is another fundamental feature that will be included in SLRPO 

strategy. Book Value is the measure of the difference between Total Assets and Total 

Liabilities. 

𝑩𝒐𝒐𝒌 𝑽𝒂𝒍𝒖𝒆 = 𝑇𝑜𝑡𝑎𝑙 𝐴𝑠𝑠𝑒𝑡𝑠 − 𝑇𝑜𝑡𝑎𝑙 𝐿𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑖𝑒𝑠 

Revenue 

Revenue is another fundamental feature that will be included in SLRPO strategy. 

Revenue is the measure of the Total Sales of a company. 

𝑹𝒆𝒗𝒆𝒏𝒖𝒆 = 𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑙𝑒𝑠 

Revenue Growth 

Revenue growth is another fundamental feature that will be included in SLRPO 

strategy. Revenue growth measures the increase in a company's sales from one period to 

the next. 
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𝑹𝒆𝒗𝒆𝒏𝒖𝒆 𝑮𝒓𝒐𝒘𝒕𝒉

=  
𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑃𝑒𝑟𝑖𝑜𝑑 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑒𝑟𝑖𝑜𝑑 𝑅𝑒𝑣𝑒𝑛𝑢𝑒

𝑃𝑟𝑒𝑣𝑖𝑜𝑢𝑠 𝑃𝑒𝑟𝑖𝑜𝑑 𝑅𝑒𝑣𝑒𝑛𝑢𝑒
 × 100 

For SLRPO strategy, the code for Fundamental Indicators is defined as follows: 

    def get_stock_financials(self, symbol): 

        stock = yf.Ticker(symbol) 

        info = stock.info 

        financials = { 

            'Earnings Per Share (EPS)': info.get('trailingEps', 'Not available'), 

            'Price to Earnings Ratio (P/E)': info.get('trailingPE', 'Not available'), 

            'Projected Earnings Growth (PEG)': info.get('pegRatio', 'Not available'), 

            'Free Cash Flow (FCF)': info.get('freeCashflow', 'Not available'), 

            'Price to Book Ratio (P/B)': info.get('priceToBook', 'Not available'), 

            'Return on Equity (ROE)': info.get('returnOnEquity', 'Not available'), 

            'Dividend Payout Ratio (DPR)': info.get('payoutRatio', 'Not available'), 

            'Price to Sales Ratio (P/S)': info.get('priceToSalesTrailing12Months', 'Not 

available'), 

            'Dividend Yield Ratio': info.get('dividendYield', 'Not available') * 100 if 

info.get('dividendYield') is not None else 'Not available', 

            'Debt-to-Equity Ratio (D/E)': info.get('debtToEquity', 'Not available'), 

            'Book Value': info.get('bookValue', 'Not available'), 

            'Revenue': info.get('totalRevenue', 'Not available'), 

            'Revenue Growth': info.get('revenueGrowth', 'Not available') * 100 if 

info.get('revenueGrowth') is not None else 'Not available' 

        } 



 

 

106 

        financial_metrics = pd.DataFrame([financials]) 

        return financial_metrics 

In the preceding code, 

1. The fundamental indicators are loaded from Yahoo Finance. 

2. All the fundamental indicators discussed in this section are used for this 

analysis. 

These fundamental indicators are chosen since they cover various aspects of 

economic factors, financial factors, company performance, qualitative and quantitative 

factors. These fundamental indicators offer a balanced view of both short-term and long-

term prospects, making them essential tools for SLRPO investment strategy design. 

4.4.2 Generator 

The Generator is the next functionality of the Indicators module that is 

responsible for generating the results for both Technical and Fundamental indicators that 

are defined in the Indicators module. This function acts as an essential part of the SLRPO 

Strategy providing a comprehensive set of indicators that can be used for further financial 

analysis and modeling. 

The code for Generator is defined as follows: 

def generate_tech_indicators(ticker, start_date, end_date): 

    tc = ti() 

    info, hist = fetch_data(ticker, start_date, end_date) 

    data = hist.reset_index() 

    data2 =  data.copy(deep = True) 

    data2['ADX'] = tc.calculate_adx(data) 

    data2['AD'] = tc.calculate_accumulation_distribution(data) 

    data2['ATR'] = tc.calculate_atr(data, window=14) 
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    data2[['BB_Upper Band', 'BB_Middle Band', 'BB_Lower Band']] = 

tc.calculate_bollinger_bands(data['Close']) 

    data2['CMF'] = tc.calculate_chaikin_money_flow(data) 

    data2[['DCC_Upper Band', 'DCC_Middle Band', 'DCC_Lower Band']] 

=tc.calculate_donchian_channel(data) 

    data2['EOM'] = tc.calculate_ease_of_movement(data) 

    data2[['KC_Upper Band', 'KC_Middle Band', 'KC_Lower Band']] 

=tc.calculate_keltner_channel(data) 

    data2['MFI'] = tc.calculate_money_flow_index(data) 

    data2[['MACD', 'MACD_Signal Line']] = tc.calculate_macd(data) 

    data2[['SMA', 'EMA']] = tc.calculate_moving_averages(data["Close"], 

period=20) 

    data2['BV'] = tc.calculate_on_balance_volume(data) 

    data2['PS'] = tc.calculate_parabolic_sar(data['High'], data['Low']) 

    data2[['Periodic High', 'Periodic Low']] = 

tc.calculate_periodic_high_low(data['Close'], period=30) 

    data2['RoC'] = tc.calculate_rate_of_change(data['Close'], period=10) 

    data2['RS'] = tc.calculate_relative_strength(data['Close']) 

    data2['RS'] = data2['RS'].replace(np.inf, 0) 

    data2['RSI'] = tc.calculate_rsi(data['Close']) 

    data2['RSI'] = data2['RSI'].replace(np.inf, 0) 

    data2[['SOK', 'SOD']] = tc.calculate_stochastic_oscillator(data) 

    data2['ST'] = tc.calculate_supertrend(data) 

    data2['WV'] = tc.calculate_weighted_volume(data) 

    data2['VaP'] = tc.calculate_volume_at_price(data) 
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    data2['VPT'] = tc.calculate_volume_price_trend(data) 

    data2['VWAP'] = tc.calculate_vwap(data) 

    fin = tc.get_stock_financials(ticker) 

    datfinal = pd.concat([data2, fin]) 

    datfinal = datfinal.fillna(method = 'bfill') 

    datfinal = datfinal.fillna(method = 'ffill') 

    datfinal = datfinal.fillna(0) 

    return datfinal 

Key Functions of the Generator: 

1. Integration of Technical and Fundamental Analysis 

2. Data Acquisition and Preparation 

3. Calling Technical Indicators 

4. Calling Fundamental Indicators 

5. Data Integration and Cleansing 

6. Output Generation 

Integration of Technical and Fundamental Analysis 

The Generator function ‘generate_tech_indicators’ handles both technical and 

fundamental analysis by generating the function calls for both types of indicators. This 

dual approach provides a holistic view of the stock's performance and potential future 

movements. While technical analysis focuses on historical price and volume data to 

identify patterns and trends, fundamental analysis looks at the intrinsic value of a stock 

based on financial statements and economic indicators. Both are essential for SLRPO 

strategy to work effectively. 

Data Acquisition and Preparation 
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The Generator function also handles data acquisition by invoking the function 

needed to fetch the data ‘fetch_data’ from Yahoo finance. This step ensures that both 

historical trading data and relevant stock information are available for SLRPO strategy. 

The historical data is also cleansed and structured in this function so that it can be 

provided as input to calculate the indicators. 

Calling Technical Indicators 

All the technical indicators discussed in this research under section 3.2.3.1 

Technical Indicators are called in the Generator function so that the indicators are 

calculated on the data fetched from Yahoo finance and cleansed in this module. 

Calling Fundamental Indicators 

All the fundamental indicators discussed in this research under section 3.2.3.2 

Fundamental Indicators are called in the Generator function so that the indicators are 

calculated on the data fetched from Yahoo finance and cleansed in this module. The 

fundamental indicators are calculated using the get_stock_financials function. 

Data Integration and Cleansing 

The technical and fundamental indicators are extracted and combined into one 

data frame. The data is then cleansed and prepared by handling missing values through 

backward filling and forward filling methods. The cleansed data will be used for further 

analysis of the SLRPO Strategy.  

Output Generation 

The Generator function returns the final data set that will be provided as input to 

the next modules of SLRPO strategy.  

With the data being ready in the Indicators module, the next module handles the 

preprocessing required for SLRPO strategy development. 

4.5 Preprocessing Module 
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The Preprocessing module is responsible to cleanse, finalize and prepare data for 

subsequent analysis. The main goal of this module is to ensure that the data is ready for 

SLRPO Investment strategy development and to create a final data set for all the stocks 

along with their corresponding technical and fundamental indicators. 

The code for the preprocessor consists of the following functions and steps: 

def read_config(config_file): 

    config = configparser.ConfigParser() 

    config.read(config_file) 

    if 'Settings' in config: 

        settings = config['Settings'] 

        tickers = [item.strip() for item in settings.get('tickers').split('\n') if 

item.strip()]  

        return tickers 

    else: 

        raise ValueError("No 'Settings' section found in the config file") 

start_date = '2020-01-01' 

end_date = '2024-01-31' 

config_file = 'config.ini' 

tickers = read_config(config_file) 

output_df = [] 

for ticker in tickers: 

    ticker_df = generate_tech_indicators(ticker, start_date, end_date) 

    ticker_df['Ticker'] = ticker 

    output_df.append(ticker_df) 

stocks_data = pd.concat(output_df) 
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stocks_data = stocks_data.replace('Not available', 0) 

stocks_data = stocks_data.replace(np.inf, 0) 

problematic_indices = [] 

for i, col in enumerate(stocks_data .columns): 

    try: 

        problematic_rows = np.where(np.isinf(stocks_data [col]) | 

(np.abs(stocks_data [col]) > np.finfo(np.float64).max))[0] 

        problematic_indices.extend([(row, i) for row in problematic_rows]) 

        if problematic_indices: 

            print("Problematic values found at the following indices:") 

            for row, col in problematic_indices: 

                print(f"Row: {row}, Column: {stocks_data .columns[col]}") 

                stocks_data .iloc[row, col] = 0 

    except: 

        pass 

stocks_data.to_csv('stocks_data.csv', index_label = False, index = False) 

Key Functions of the Preprocessing Module are: 

1. Configuration and Data Initialization 

2. Data Collection and Integration 

3. Data Cleansing 

4. Error Handling 

5. Finalizing the Data 

Configuration and Data Initialization 

The functionality of this step is to configure the setting required to read the config 

file and to read the list of stocks from the config file. Nifty 50 stocks are of interest for 
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this analysis and hence the list of Nifty 50 stocks will be provided in the configuration 

file as input. 

The configuration also involves setting the start date and the end date required for 

the SLRPO strategy development. This step ensures that the data is configured to be 

collected in the right period so that it spans around the appropriate time frame for 

analysis. 

Data Collection and Integration 

The ‘generate_tech_indicators’ method is called to collect data for all stocks in 

the Nifty 50 portfolio configured in the configuration file. The stock data collected will 

be used to generate technical and fundamental indicators for the specified data range. The 

data is then appended in a list and converted into a single data set named ‘stocks_data’. 

Data Cleansing 

Cleansing of missing values and infinite values are also handled in this module to 

avoid any calculation errors that might come up due to ‘Not Available’ or ‘Infinite’ data 

that were generated during the feature creation process for Technical and Fundamental 

indicators. This Preprocessing module also checks for problematic values that might be 

too large or invalid. This includes detecting infinite values or values that exceed the 

maximum allowable float value. Any problematic values are identified, logged, and 

replaced with zeros to maintain data integrity. 

Error Handling 

The preprocessing module includes mechanisms to handle errors gracefully, such 

as missing configuration sections or issues during data processing. This robustness 

ensures that the preprocessing step can handle unexpected issues without failing entirely. 

Finalizing the Data 
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The Preprocessing module also performs a final check to ensure that there are no 

remaining problematic data points present in the stocks data. This step is essential to 

ensure that there are no invalid data, and all values are within the expected ranges and the 

final input data set is clean. The cleaned and finalized dataset is then exported to a CSV 

file named ‘stocks_data.csv’. This ensures that the data is saved in a standardized format 

that can be easily accessed and used in subsequent stages of the SLRPO strategy. 

The final stocks_data.csv is represented as follows: 

 
Figure 4.2 Stocks Features Data after Preprocessing 

The Preprocessing Module plays an important role in this strategy creation 

pipeline by ensuring that the data is clean, consistent, and properly structured for further 

analysis of SLRPO. This module reads configuration settings, collects and integrates 

data, handles missing and invalid values, and performs final integrity checks. This 

meticulous approach to data preprocessing is essential for accurate and meaningful 

financial analysis of the data for SLRPO strategy. The next module developed for this 

study is the Weight Generator module. 

4.6 Weight Generator Module 

The weight generator module is a very important module for SLRPO Strategy 

because it introduces a new concept in this research and study. The new concept is the 

‘Strength Score’. Strength Score is a new metric introduced in this Thesis to quantify the 
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overall performance and health of a stock based on a comprehensive set of Technical and 

Fundamental indicators studies and included as features for the SLRPO strategy.  

The weight generator module is designed to perform various tasks that are 

prerequisites for generating Strength Score.  

Before discussing the key functions, it is relevant to look at the code for the 

functions performed by Weight Generator together and then discuss each of the functions 

handled. 

The code for the Weight Generator module consists of the following definitions 

and steps. 

Code snippet for Base Input data configuration is as follows: 

config_file = 'config.ini' 

tickers = read_config(config_file) 

stocks = pd.read_csv('stocks_data.csv', low_memory=False) 

stocks.fillna(0, inplace = True) 

date_column = stocks.iloc[:, 0] 

ticker_columns = stocks.iloc[:, -1] 

Code snippet for Normalization is as follows: 

from sklearn.preprocessing import MinMaxScaler 

scaler = MinMaxScaler() 

standardized_stocks = pd.DataFrame(scaler.fit_transform(stocks.iloc[:, 1:-1]), 

columns=stocks.columns[1:-1]) 

normalized_stocks = pd.concat([date_column, standardized_stocks, 

ticker_columns], axis=1) 

standardized_stocks.index = date_column 

features = standardized_stocks.copy(deep = True) 
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Code snippets for Weight Network Architecture, Strength Score definition and 

Weight calculation are as follows: 

def calculate_weights(features, ticker): 

    df = features.copy(deep = True) 

    df = df.fillna(method = 'bfill') 

    df = df.fillna(method = 'ffill') 

    df = df.fillna(0) 

    df = df[df['Ticker']==ticker] 

    df.reset_index(inplace = True, drop = True) 

    df.index =  df['Date'] 

    df.drop(columns = ['Date', 'Ticker'], inplace = True) 

    X = df.drop('Return on Equity (ROE)', axis=1)   

    y = df['Return on Equity (ROE)']   

    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, 

random_state=42) 

    scaler = StandardScaler() 

    X_train_scaled = scaler.fit_transform(X_train) 

    X_test_scaled = scaler.transform(X_test) 

    model = keras.Sequential([ 

        keras.layers.Dense(256, activation='softmax', 

input_shape=(X_train_scaled.shape[1],)), 

        keras.layers.Dense(128, activation='softmax'), 

        keras.layers.Dense(64, activation='softmax'), 

        keras.layers.Dense(55, activation='softmax'), 

        keras.layers.Dense(50, activation='softmax'), 
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        keras.layers.Dense(1)   

    ]) 

    model.compile(optimizer='adam', loss='mean_squared_error')   

    model.fit(X_train_scaled, y_train, epochs=10, batch_size=32)  

    loss = model.evaluate(X_test_scaled, y_test) 

    print('Test loss:', loss) 

    predictions = model.predict(X_test_scaled) 

    weights = model.layers[4].get_weights()[1]   

    print('Weights:', weights) 

    daily_scores = pd.DataFrame(index=X.index) 

    for date, technical_scores in X.iterrows(): 

        all_scores = technical_scores.tolist() 

        strength_score = sum([score * weight for score, weight in zip(all_scores, 

weights)]) / sum(weights) 

        daily_scores.at[date, 'Strength Score'] = strength_score 

    return daily_scores 

Key Functions of the Weight Generator Module are: 

1. Normalization 

2. Designing Weight Networks 

3. Calculating Weights 

1.   Normalization 

Normalization is the first step performed in the Weight Generator module to 

ensure all the features in the data that includes technical and fundamental indicators are 

on the same unit scale and can be processed further equally. Normalization is required to 
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ensure that the weights are calculated accurately, and the subsequent Strength Score 

generated is relevant for the stocks in this research. 

Reading Data: 

The stock data is loaded into the Weight Generator module in the form of a CSV 

file and the data includes all the features generated in the Preprocessing module. 

Data cleansing and missing data handling is performed on the data after it is 

loaded to ensure that at every step the data integrity is preserved. 

Organizing Data: 

The Date column in the dataset is converted into index so that it can be used 

effectively in Time series data processing. The Ticker column from the data is separated 

from the dataset before normalizing the data since Ticker is an identifier and not a 

column to be normalized. This leaves only the feature columns in the dataset to be 

normalized. 

Min Max Scaling: 

The normalization of all the numerical features in the data are performed using 

Mix Max Scaling.  

Min Max Scaling is calculated as follows: 

 

𝑋𝑛𝑜𝑟𝑚 =  
𝑋 − 𝑋𝑚𝑖𝑛

𝑋𝑚𝑎𝑥 −  𝑋𝑚𝑖𝑛
 

X – actual data point of the feature 

Xmax – maximum value of the feature 

Xmin – minimum value of the feature 

Xnorm – normalized value of the feature 

Normalized Data Frame creation: 
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The normalized data is then converted back into the original data frame format. 

The Ticker column is added back to the data and the Date column is added as index for 

the dataset. 

The normalized data for each feature is represented as follows: 

 
Figure 4.3 Normalized Features of Stocks Data 

Consistency and Integrity: 

It is important to maintain the consistency and integrity of the data throughout the 

SLRPO Strategy. The Date column is set as the index of the data to ensure the data is 

consistent for further processing in the form of time series and all the features are 

maintained with data integrity. A deep copy of the data is made on the normalized 

features to ensure that the original dataset is preserved for verification purposes. 

Data Cleansing: 

Data cleansing and handling of missing values are performed in this module again 

to ensure that the normalized data does not through any calculation errors in the future 

steps. The missing values are handled using forward filling and backfilling methods. This 

ensures that the dataset is complete and ready for the weight calculation and strength 

score generation steps. 

Defining Features and Targets: 

The clean dataset is then divided into Features (X) and Target (y). 
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Features (X): All columns except the target variable (ROE) are used as features. These 

features represent the technical and fundamental indicators included in this research. 

Target (y): The Return on Equity (ROE) column is used as the target variable that 

the model aims to predict. ROE is chosen as target variable since it is a key measure of a 

company's profitability and financial performance. 

 Splitting the Data: 

The data is split into training and testing sets using a 70-30 split. This ensures that 

the model is trained on a subset of the data and evaluated on a separate subset to test its 

performance and generalization ability. 

By carefully separating, normalizing, and reintegrating the date and ticker 

columns, the normalization process prepares a consistent and comprehensive dataset for 

subsequent analysis. This process is fundamental for accurate weight calculation and 

reliable strength score generation, enabling robust and insightful analysis in the SLRPO 

strategy. 

2. Designing Weight Networks 

The design for the newly introduced concept of Strength Score in this Thesis 

begins from designing the weight networks which is a neural network required to 

generate the weight parameters for Strength Score calculation. The goal of this networks 

is to consider the normalized technical and fundamental indicators as input features and 

predict the Return on Equity (RoE) for the Nifty 50 stocks under this study. The weights 

generated from this network will be considered as the input weights used on the features 

to calculate Strength scores. The Strength Score is a combination of normalized technical 

indicators and the prediction power of the network on RoE. The Strength Score and its 

explanation will be discussed further in the Strength Score module. This section in the 

Weight Generator module focuses on designing the neural networks. 
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The neural networks architecture designed in this module is used to learn the 

importance (weights) of various technical and fundamental indicators in predicting the 

Return on Equity (ROE) of stocks. It is to be noted that the goal of the SLRPO 

Investment Strategy developed in this Thesis is not to predict the Return on Equity (ROE) 

but to design the investment strategies with better opportunity costs. The weight 

calculation and the network design are an intermediate step in the feature engineering 

process for SLRPO. 

The detailed breakdown of the architecture of the weight calculation neural 

networks model is explained as follows: 

Input Layer 

The number of features in the normalized stock data is configured as input in the 

input layer of the neural networks. Each neuron in the input layer represents one of these 

normalized features. The input shape is defined by the number of features, ensuring that 

the model can process the entire feature set. 

Hidden Layers 

The multiple Hidden layers of the neural networks are designed such that each 

layer has decreasing number of neurons. These layers help the network learn complex 

relationships between the features and the target variable (ROE). The architecture 

includes the following hidden layers.  

• First Hidden Layer: 256 neurons with the Softmax activation function. 

• Second Hidden Layer: 128 neurons with the Softmax activation function. 

• Third Hidden Layer: 64 neurons with the Softmax activation function. 

• Fourth Hidden Layer: 55 neurons with the Softmax activation function. 

• Fifth Hidden Layer: 50 neurons with the Softmax activation function. 
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• Activation Function (Softmax): The Softmax activation function is used in the hidden 

layers to ensure that the output values are probabilities and falls between 0 and 1 as 

well as they total to 1. This is important since the output need to be interpreted as 

weights. 

Output Layer 

The output layer is designed with a single neuron and linear activation function 

since the purpose of this neuron is to predict the Return on Equity (ROE) of the stocks.  

Model Compilation 

The network is designed as a model with multiple layers, and it need to be 

compiled in this step. The network will be compiled using Adam optimizer. It is an 

adaptive learning rate optimization algorithm that has proven effective for a wide range 

of tasks. The mean squared error (MSE) loss function will be used to measure the 

difference between the predicted and the actual ROE values. The model aims to minimize 

this loss during training. 

Training 

The model is trained using the following parameters: 

• Epochs is set to 10. The training dataset iterates through the network 10 times. 

• Batch size is set to 32. The model updates the weights after processing 32 samples at 

a time. 

• Model then trains on the training data and learns to adjust the weights of the neurons 

to minimize the MSE loss, effectively learning the importance of each indicator in 

predicting ROE. 

Evaluation 

The trained model is then evaluated on the test data ensure it generalizes well to 

unseen data.  
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The loss on the test set is printed to give an indication of the model’s predictive 

accuracy. 

The Network architecture designed in this module leverages the power of neural 

networks to capture complex relationships between indicators, enabling more accurate 

and insightful financial analysis that is needed to further develop the SLRPO strategy. 

3. Calculating Weights 

The process of calculating weights in the Weight Generator module involves 

using the designed neural networks to learn the importance of various technical and 

fundamental indicators in predicting the Return on Equity (ROE).  

The steps discussed in this section coexist and overlaps with the steps discussed in 

section 2. Designing Weight Networks. The steps are discussed as follows. 

Weight Extraction 

The weights for Strength score calculation is extracted from the second-to-last 

layer (fifth hidden layer) of the network.  

These weights represent the relative importance of each indicator in predicting the 

ROE.  

This layer is chosen because it provides a balance between high-level feature 

abstraction and direct output influence. 

Strength Score Generation 

• The extracted weights are then applied to the daily features of the stock to calculate 

the strength score. 

• The strength score is then derived as a weighted average of all indicator values, 

reflecting the overall performance of the stock. 

By training the network on historical stocks data, extracting learned weights, and 

applying these weights to calculate strength scores, the Weight Generator module 
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provides a robust tool for assessing stock performance and generating inputs that are 

needed to develop the SLRPO Investment strategy. The next module of SLRPO is the 

Strength score module which is a continuation of the Weight Generator module. 

4.7 Strength Score Module 

The Strength Score module is a continuation of Weight Generator module and 

generates the Strength Scores for each stock and their features. This module is designed 

to handle various tasks, including generation of strength scores, consolidation and export 

of stocks data. 

The code for the Strength Score module consists of the following definitions and steps. 

Code snipper for daily score generation is as follows: 

scores = [] 

for ticker in tickers: 

    try: 

        score = calculate_weights(normalized_stocks, ticker) 

        score.columns = [ticker] 

        score = score.fillna(method = 'bfill') 

        scores.append(score) 

        print(score) 

    except: 

        pass 

The code snipper for data consolidation and export is as follows: 

df_scores = pd.concat(scores, axis = 1) 

df_scores.to_csv('df_scores.csv') 

Key Functions of the Strength Score Module are: 

1. Generating Strength Scores 
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2. Consolidation and Export 

1. Generating Strength Score 

The Strength Score is a composite metric introduced in this research to quantify 

the overall performance and health of a stock by combining various technical and 

fundamental indicators. It is a single value that encapsulates the relative importance of 

multiple indicators, providing a comprehensive assessment of a stock's condition. 

Key Characteristics of the Strength Score are defined as follows: 

• Composite Metric 

• Indicator Weightage 

• Normalized metric 

• Daily Calculation 

• Holistic Assessment 

Composite Metric 

The Strength score integrates 23 Technical indicators that are discussed 

throughout SLRPO Strategy and considered as features and 13 Fundamental indicators 

that are also discussed throughout SLRPO Strategy and considered as features, into a 

single unified metric. 

Indicator Weightage 

Each indicator contributes to the Strength Score based on its relative importance, 

determined through the trained neural network designed in the Weight Generator module. 

This network assigns weights to each indicator, reflecting its significance in predicting 

the stock's performance. 

Normalized metric 

The Strength Score is normalized to ensure comparability across different stocks 

and time periods.  
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This normalization process adjusts the score to a common scale, typically between 

0 and 1, facilitating direct comparisons. 

Daily Calculation 

The Strength Score is calculated daily, providing a dynamic and up-to-date 

measure of a stock's performance.  

Holistic Assessment 

By incorporating both technical and fundamental data, the Strength Score offers a 

holistic view of the stock, capturing short-term market dynamics as well as long-term 

financial health. 

Calculation of Strength Score: 

The Strength Score is calculated for each day as the weighted sum of all indicator 

values in the stocks dataset. The Strength Score is calculated as follows: 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ 𝑆𝑐𝑜𝑟𝑒 =  
∑(𝑓𝑒𝑎𝑡𝑢𝑟𝑒 × 𝑤𝑒𝑖𝑔ℎ𝑡)

∑ 𝑤𝑒𝑖𝑔ℎ𝑡𝑠
 

  feature – each individual normalized indicator in the data set 

  weight – weight for each indicator extracted from the neural 

network 

  weights – All weights extracted from the neural networks 

This weighted sum provides a single value that reflects the overall performance of 

the stock, considering the relative importance of each indicator. 

2. Consolidation and Export 

The daily Strength Scores are calculated in this module using the Strength Score 

and consolidated into one single data frame ‘df_scores’. 

The consolidated data frame with Strength scores is represented as follows: 
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Figure 4.4 Strength Scores for NIFTY 50 Stocks 

The consolidated data is then exported into a CSV file ‘df_scores.csv’ for further 

processing. 

Generating strength scores involves a systematic process of applying learned 

weights to normalized technical and fundamental indicators to produce a single metric 

that quantifies the overall performance of a stock. By calculating the weighted sum of 

indicators and normalizing the scores, this module provides a robust and comprehensive 

metric that can be used for various analytical and decision-making purposes. 

4.8 Utility Functions Module 

The Utility Functions Module is a supporting module for SLRPO Strategy, and it 

is designed to collate all the support functions necessary for the overall strategy and the 

upcoming modules. This module ensures that all utility functions are centralized in one 

location, so that they are easily accessible and efficient to use. The functions discussed in 

this module supports the Strategy modules and a detailed explanation of some of the 

concepts behind the domain related functions will be discussed in the Strategy module. 

Below are the list utility functions covered within this module: 

1. Construct Portfolio Values 

2. Calculate Strength Lag 

3. Calculate Opportunity Cost 

4. Update Reward 
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5. Calculate Daily Strength Lag 

6. Create Features 

7. Calculate allocation 

8. Calculate model returns 

9. Create Download Data Frame 

Construct Portfolio Values 

The construct portfolio values function is designed to transform raw stock data 

into a format that is suitable for portfolio analysis of SLRPO Strategies and their 

subsequent calculations. 

The code for Construct Portfolio Values function is defined as follows: 

def construct_portfolio_values(stocks): 

    stocks_data = pd.read_csv(stocks) 

    stocks_data = stocks_data.drop(columns = ['Date']) 

    return np.array(stocks_data).T   

The objective of the construct_portfolio_values function is to convert stock price data 

from its CSV file into a structured n-dimensional array that can be easily manipulated and 

analyzed.  

Calculate Strength Lag 

The calculate strength lag function is designed to measure the performance 

change, or strength lag, of the SLRPO input portfolio over a specific period. This 

function compares the portfolio's value at the end of the period to its value at the 

beginning, providing a simple yet powerful metric for assessing the overall performance. 

The code for Calculate Strength Lag is defined as follows: 

def calculate_strength_lag(portfolio_values): 

    if len(portfolio_values) < 2:   
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        return 0   

    return (portfolio_values[-1] - portfolio_values[0]) / portfolio_values[0] 

The objective of the calculate_strength_lag function is to quantify the percentage 

change in SLRPO portfolio values over time.  

The Strength Lag is calculated as follows: 

 

𝑆𝑡𝑟𝑒𝑛𝑔𝑡ℎ𝐿𝑎𝑔 =  
𝐹𝑖𝑛𝑎𝑙𝑉𝑎𝑙𝑢𝑒 − 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒

𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑉𝑎𝑙𝑢𝑒
 

 

All values correspond to the input Portfolio of stocks data. 

Calculate Opportunity Cost 

The calculate opportunity cost function is designed to quantify the opportunity 

cost associated with selecting a particular portfolio in the SLRPO Strategy over the best 

available alternative within the various portfolios available for the NIFTY 50 stocks 

considered for this thesis. 

The code for Calculate Opportunity Cost is defined as follows: 

def calculate_opportunity_cost(chosen_portfolio_return, all_portfolios_returns): 

    if not all_portfolios_returns:  

        return 0   

    best_alternative_return = max(all_portfolios_returns) 

    return best_alternative_return - chosen_portfolio_return 

The objective of the calculate_opportunity_cost function is to measure the difference in 

returns between the chosen portfolio and the best-performing alternative portfolio. 

Opportunity cost is a very important decision-making aspect for the SLRPO Strategy and 

has been discussed and analyzed in detail throughout this thesis. 

Update Reward 
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The update reward function is designed to adjust the reward associated with an 

investment decision based on the opportunity costs incurred over time. This function 

leverages the concept of opportunity cost to provide a dynamic measure of how well a 

chosen portfolio performs relative to potential alternatives on a day-by-day basis. 

The code for Update Reward is defined as follows: 

def update_reward(chosen_return, all_returns): 

    opportunity_costs = [calculate_opportunity_cost(chosen_return, [day_return]) 

for day_return in all_returns] 

    return -opportunity_costs[-1] if opportunity_costs else 0 

The objective of the update_reward function is to calculate a penalty (negative reward) 

that reflects the cost of missed opportunities by not selecting the best-performing 

portfolio each day. This penalty helps SLRPO Strategy understand the impact of its 

investment decisions over time and provides a feedback mechanism for improving future 

decisions. 

Calculate Daily Strength Lag 

The calculate daily strength lag function is designed to measure the daily 

percentage change in the values of stocks Strength Score. This function helps to quantify 

the day-to-day fluctuations in the data, providing insights into the volatility and 

performance dynamics over time.  

The code for Calculate Daily Strength Lag is defined as follows: 

def calculate_daily_strength_lag(data): 

    return data.pct_change().fillna(0) 

The Daily Strength Lag is calculated as follows: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝐶ℎ𝑎𝑛𝑔𝑒 =  
𝑆𝑐𝑜𝑟𝑒𝑡 −  𝑆𝑐𝑜𝑟𝑒𝑡−1

𝑆𝑐𝑜𝑟𝑒𝑡−1
 

Score – Strength Score 
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The objective of the calculate_daily_strength_lag function is to compute the daily 

strength lag, which is the percentage change in value of Strength Scores from one day to 

the next. This metric is crucial for analyzing trends, volatility, and the overall behavior of 

the stocks data over time. 

Create Features 

The create features function is designed to generate features for each stock based 

on its recent percentage change in Strength Score. These features are used as input for 

various portfolio development strategies designed within the SLRPO Investment Strategy 

in this thesis. 

The code for Create Features is defined as follows: 

def create_features(stock_data): 

    features = [] 

    for stock, data in stock_data.items(): 

        if len(data) > 1: 

            last_pct_change = data.iloc[-2:].pct_change().iloc[-1] 

            features.append(last_pct_change) 

        else: 

            features.append(np.nan) 

    return np.array(features) 

The objective of the create_features function is to create a set of features that 

capture the recent performance of each stock in the Strength Scores dataset. By focusing 

on the recent percentage change, the function aims to provide a snapshot of the stock's 

most recent behavior, which can be critical for short-term predictions and decisions in the 

SLRPO Strategy. 

Calculate allocation 
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The calc allocation function is designed to calculate allocation percentages based 

on Upper Confidence Bound (UCB) values which will be discussed in detail in the 

upcoming modules on Strategies. These allocations are used to distribute NIFTY 50 

stocks into creating new portfolios according to their UCB values for SLRPO Strategy.  

The code for Calculate Allocation is defined as follows: 

def calc_allocation(ucb_values): 

    ucb_values = ucb_values 

    min_ucb = np.min(ucb_values) 

    max_ucb = np.max(ucb_values) 

    scaled_ucb_values = 100 * (ucb_values - min_ucb) / (max_ucb - min_ucb) 

    normalized_ucb_percentages = (scaled_ucb_values / 

np.sum(scaled_ucb_values))  

    return normalized_ucb_percentages 

The objective of the calc_allocation function is to transform UCB values into 

normalized allocation percentages. This process ensures that investments are allocated 

proportionally to the stocks with higher UCB values, which typically represent better-

performing or less risky investments. 

Calculate Model Returns 

The calc model returns function is designed to calculate the returns of the SLRPO 

model portfolio over a specified period. It considers the allocation of investments, the 

start and end dates of the analysis period, and the total investment amount to compute 

various performance metrics such as total gain/loss, cumulative returns, and annualized 

returns.  

The code of Calculate Model Returns is defined as follows: 
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def calc_model_returns(stocks_data, portfolio, allocation, start_date, end_date, 

investment): 

    analysis_data = stocks_data[['Date', 'Close', 'Ticker']] 

    input_data = analysis_data.pivot_table(values='Close', index='Date', 

columns='Ticker') 

    input_data.reset_index(inplace=True) 

    input_data['Date'] = pd.to_datetime(input_data['Date']) 

    input_data['Date'] = input_data['Date'].dt.strftime('%d-%m-%Y') 

    calculations = input_data[(input_data['Date'] == start_date) | (input_data['Date'] 

== end_date)].copy(deep=True) 

    calculations.reset_index(inplace=True, drop=True) 

    calculations.index = calculations['Date'] 

    calculations.drop(columns=['Date'], inplace=True) 

    calculations = calculations[portfolio].copy(deep=True)     

    diff_row = calculations.iloc[1] - calculations.iloc[0] 

    calculations.loc['Difference'] = diff_row 

    calculations.loc['Allocation'] = allocation 

    calculations.loc['Invested'] = investment * calculations.loc['Allocation'] 

    calculations.loc['No_of_Shares'] = calculations.loc['Invested'] / 

calculations.loc[start_date] 

    calculations.loc['Return_on_Exit'] = calculations.loc['No_of_Shares'] * 

calculations.loc[end_date] 

    calculations.loc['Gain_Loss'] = calculations.loc['Difference'] * 

calculations.loc['No_of_Shares'] 

    Total_Gain_Loss = calculations.loc['Gain_Loss'].sum() 
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    Total_Returns = calculations.loc['Return_on_Exit'].sum() 

    Cumulative_Returns = (Total_Gain_Loss / investment) * 100     

    start_date = datetime.strptime(start_date, '%d-%m-%Y') 

    end_date = datetime.strptime(end_date, '%d-%m-%Y') 

    num_years = (end_date - start_date).days / 365.25 

    Annualized_Returns = ((1 + Cumulative_Returns/100) ** (1 / num_years) - 1) 

* 100 

    returns_df = pd.DataFrame(columns=['Total']) 

    returns_df.loc['Investment'] = investment 

    returns_df.loc['Total_Gain_Loss'] = Total_Gain_Loss 

    returns_df.loc['Total_Returns'] = Total_Returns 

    returns_df.loc['Cumulative_Returns'] = Cumulative_Returns 

    returns_df.loc['Investment'] = returns_df.loc['Investment'].apply(lambda x: 

'{:.2f}'.format(x)) 

    returns_df.loc['Total_Gain_Loss'] = 

returns_df.loc['Total_Gain_Loss'].apply(lambda x: '{:.2f}'.format(x)) 

    returns_df.loc['Total_Returns'] = returns_df.loc['Total_Returns'].apply(lambda 

x: '{:.2f}'.format(x)) 

    returns_df.loc['Annualized_Returns'] = Annualized_Returns 

    returns_df.loc['Cumulative_Returns'] = 

returns_df.loc['Cumulative_Returns'].apply(lambda x: '{:.2f}%'.format(x)) 

    returns_df.loc['Annualized_Returns'] = 

returns_df.loc['Annualized_Returns'].apply(lambda x: '{:.2f}%'.format(x)) 

    return returns_df 

The Annualized Returns for the portfolio over a period are calculated as follows: 
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𝑨𝒏𝒏𝒖𝒂𝒍𝒊𝒛𝒆𝒅 𝑹𝒆𝒕𝒖𝒓𝒏𝒔

=  ( (1 +  
𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑅𝑒𝑡𝑢𝑟𝑛𝑠

100
)

1
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑌𝑒𝑎𝑟𝑠

 − 1)  × 100 

The objective of the calc_model_returns function is to provide a comprehensive 

evaluation of a portfolio's performance over a specific time frame. This involves 

calculating the initial and final values of the portfolio, determining the returns generated, 

and normalizing these returns to provide meaningful metrics for SLRPO Strategy 

investment decision-making. 

Create Download Data Frame 

The create download data frame function is designed to create a structured Data 

Frame that pairs a list of stocks with their corresponding allocation percentages. This 

Data Frame is useful for organizing and exporting investment allocation data in a clear 

and easily understandable format so that multiple strategies designed in SLRPO can be 

compared against each other for the results analysis. 

The code for Create Download Data Frame is defined as follows: 

def create_download_df(stocks, allocations): 

    if len(stocks) != len(allocations): 

        raise ValueError("Stocks and allocations lists must be of the same length.") 

    df = pd.DataFrame({ 

        'Stocks': stocks, 

        'Allocations %': allocations  

    }) 

    return df 
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The objective of the create_download_df function is to generate a DataFrame that 

consolidates stocks and their respective allocations. This allows for the data to be easily 

reviewed, analyzed, and exported for results analysis of SLRPO strategy. 

The Utility Functions Module consolidates all the essential supporting functions 

required for the complete SLRPO strategy and its relevant modules. By centralizing these 

functions, the module ensures that the overall strategy is efficient, maintainable, and easy 

to implement. Each function plays a specific role in data handling, calculation, and 

preparation, collectively contributing to a robust and comprehensive analytical 

framework. 

4.9 Strategy Domain Classification 

Now that all the prerequisite modules for SLRPO Investment strategy have been 

explained, the domain where these strategies are designed will be discussed in this 

section. The Strategy domains for SLRPO are classified into three major concepts of 

reinforcement learning.  

• Upper Confidence Bound (UCB1) 

• Policy Network 

• Policy Gradient 

Before delving further into the three main strategies built on these concepts, let us 

investigate the theoretical explanation of these concepts. 

Reinforcement Leaning 

Reinforcement Learning (RL) is a branch of machine learning where an agent 

learns to make decisions by performing certain actions in an environment to achieve 

maximum cumulative reward. In reinforcement learning, an agent interacts with its 

environment in discrete time steps. At each time step, the agent receives a state from the 

environment, chooses an action based on this state, and receives a reward along with the 
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next state. The goal of the agent is to learn a policy that maximizes the expected 

cumulative reward over time. Reinforcement Learning (RL) as a formalized concept in 

machine learning was extensively developed by Richard S. Sutton and Andrew G. Barto 

(Sutton, 1988).  

Upper Confidence Bound (UCB1) 

The Upper Confidence Bound (UCB1) algorithm is a widely used approach in the 

domain of multi-armed bandits, a fundamental problem in reinforcement learning. This 

problem involves an agent that must choose between multiple options (arms), each with 

an unknown reward distribution. The goal is to maximize the total reward over a series of 

trials by finding an optimal balance between exploration and exploitation (Auer, Cesa-

Bianchi, & Fischer, 2002). 

Exploration - is trying out different arms to gather information. 

Exploitation - is selecting the arm known to yield the highest reward. 

The UCB1 algorithm was introduced by Peter Auer, Nicolo Cesa-Bianchi, and 

Paul Fischer in their paper titled "Finite-time Analysis of the Multiarmed Bandit 

Problem." 

Policy Network 

A Policy Network is a type of neural network used in reinforcement learning (RL) 

to directly map states of an environment to actions to be taken by an agent. In 

reinforcement learning, an agent learns to make decisions by interacting with an 

environment. The goal is to maximize some notion of cumulative reward over time. The 

agent observes the state of the environment, takes an action, and receives a reward and a 

new state from the environment (Williams, 1992).  

The Policy Network is a model that helps the agent decide which action to take 

given the current state. 
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Policy Gradient 

Policy Gradient methods are a class of algorithms in reinforcement learning that 

optimize the policy directly. In reinforcement learning, an agent interacts with an 

environment in discrete time steps. At each step, the agent receives a state from the 

environment, takes an action based on its policy, and receives a reward. The goal of the 

agent is to maximize the cumulative reward over time (Williams, 1992).  

Policy gradient methods achieve this by directly adjusting the parameters of the 

policy in the direction that increases the expected reward. 

4.10 SLRPO Base Strategies 

The three Base Strategies developed as part of SLRPO Investment strategy 

architecture are as follows: 

1. Base Strategy – UCB1 

2. Base Strategy – Policy Network 

3. Base Strategy – Policy Gradient 

These strategies are developed based on the concepts of reinforcement learning 

blended with the domain of Indian stock markets. 

4.11 Base Strategy – UCB1 Module 

The Base Strategy – UCB1 is developed on the concept of Upper Confidence 

Bound (UCB1) algorithm. The main components of Base Strategy – UCB1 are as 

follows: 

1. Base Selector 

2. Simple Selector 

3. Stock Selector 

4. Stock Allocation Maximizer 

5. Optimizer 
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4.11.1 Base Selector 

The Base Selector is the first sub strategy of Base Strategy - UCB1. The Base 

Selector is designed using the UCB1 algorithm and it provides a mechanism for selecting 

stocks based on their potential for high returns. It also ensures that less explored stocks 

are given a chance to be selected.  

The code for Base Selector is defined as follows: 

class UCB1_BaseSelector: 

    def __init__(self, n_stocks): 

        self.counts = np.zeros(n_stocks, dtype=np.float32) 

        self.values = np.zeros(n_stocks, dtype=np.float32) 

    def select_stock(self): 

        n_stocks = len(self.counts) 

        for stock in range(n_stocks): 

            if self.counts[stock] == 0: 

                return stock 

        ucb_values = self.values + np.sqrt(2 * np.log(sum(self.counts)) / self.counts) 

        return np.argmax(ucb_values) 

    def update(self, chosen_stock, reward): 

        self.counts[chosen_stock] += 1 

        n = self.counts[chosen_stock] 

        value = self.values[chosen_stock] 

        new_value = ((n - 1) / n) * value + (1 / n) * reward 

        self.values[chosen_stock] = new_value 

In the preceding code, 
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• The Base Selector class implements the Upper Confidence Bound (UCB1) 

algorithm for selecting stocks.  

• The Base Selector class initializes two arrays: counts and values.  

• The select stock method in Base Selector class calculates the UCB values for 

each stock based on a confidence interval and returns the maximum value 

indices. 

• UCB Values are calculated as follows: 

𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 =  𝑉𝑎𝑙𝑢𝑒𝑠𝑖 +  √
2 ∙ ln (∑ 𝐶𝑜𝑢𝑛𝑡𝑠)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
 

 

• The update method in Base Selector class updates the UCB Values based on 

the reward for each stock selection. The updated UCB Values are calculated 

as follows. 

𝑁𝑒𝑤 𝑉𝑎𝑙𝑢𝑒 =  (
𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 − 1

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
) × 𝑉𝑎𝑙𝑢𝑒 + (

1

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
) × 𝑅𝑒𝑤𝑎𝑟𝑑 

• The Base Selector is a fundamental implementation of UCB1 algorithm for 

the SLRPO Strategy. 

4.11.2 Simple Selector 

The Simple Selector is the second sub strategy of Base Strategy - UCB1. The 

Simple Selector is also designed using the UCB1 algorithm and it is a slightly different 

implementation compared to Base Selector. The objective of this sub strategy is also to 

provide a mechanism for selecting stocks based on their potential for high returns. 

The code for Simple Selector is defined as follows: 

class UCB1_SimpleSelector: 

    def __init__(self, num_stocks): 

        self.num_stocks = num_stocks 
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        self.counts = np.zeros(num_stocks) 

        self.values = np.zeros(num_stocks) 

    def select_stock(self): 

        max_upper_bound = 0 

        selected_stock = None 

        for stock in range(self.num_stocks): 

            if self.counts[stock] > 0: 

                average_reward = self.values[stock] 

                delta_i = np.sqrt(2 * np.log(sum(self.counts) + 1) / self.counts[stock]) 

                upper_bound = average_reward + delta_i 

            else: 

                upper_bound = 1e400             

            if upper_bound > max_upper_bound: 

                max_upper_bound = upper_bound 

                selected_stock = stock 

        return selected_stock 

    def update(self, stock, reward): 

        self.counts[stock] += 1 

        self.values[stock] = ((self.values[stock] * (self.counts[stock] - 1)) + reward) / 

self.counts[stock] 

In the preceding code, 

• The Simple Selector class also implements the Upper Confidence Bound 

(UCB1) algorithm for selecting stocks. 

• The Simple Selector class initializes number of stocks and the two arrays: 

counts and values. 
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• The select stock method in Base Selector class calculates the UCB values for 

each stock based on a confidence interval until it reaches an upper bound 

value that has been manually configured in the select stock method. 

• UCB Values are calculated as follows: 

𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 =  𝑉𝑎𝑙𝑢𝑒𝑠𝑖 +  √
2 ∙ ln (∑ 𝐶𝑜𝑢𝑛𝑡𝑠 + 1)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
 

• The update method in Simple Selector class also updates the UCB Values 

based on the reward for each stock selection.  

• The updated UCB Values are calculated as follows. 

 

𝑁𝑒𝑤 𝑉𝑎𝑙𝑢𝑒 =  (
𝑉𝑎𝑙𝑢𝑒 × (𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 − 1) + 𝑅𝑒𝑤𝑎𝑟𝑑

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
) 

 

The Simple Selector is a simple but slightly different implementation of UCB1 

algorithm for the SLRPO Strategy where the UCB calculation is set to an upper bound 

manually. 

4.11.3 Stock Selector 

The Stock Selector is the third sub strategy of Base Strategy - UCB1. The Stock 

Selector is also designed using the UCB1 algorithm and it provides a mechanism for 

selecting stocks based on their potential for high returns. The stock selection in Stock 

Selector sub strategy is done in a way that balances the exploration of potentially 

profitable stocks and the exploitation of stocks that have already shown good 

performance by implementing a best stock selection logic. 

The code for Stock Selector is defined as follows: 

class UCB1_StockSelector: 

    def __init__(self, stocks_strength, num_days, num_stocks_to_select): 
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        self.stocks_strength = stocks_strength 

        self.num_days = num_days 

        self.num_stocks_to_select = num_stocks_to_select 

        self.n_stocks = len(stocks_strength.columns) 

        self.counts = [0] * self.n_stocks 

        self.total_reward = [0] * self.n_stocks 

    def select_stocks(self): 

        for day in range(self.num_days): 

            ucb_values = self._calculate_ucb_values(day) 

            chosen_stock = np.argmax(ucb_values) 

            reward = self.stocks_strength.iloc[day, chosen_stock] 

            self.counts[chosen_stock] += 1 

            self.total_reward[chosen_stock] += reward 

        return self._get_best_stocks() 

    def _calculate_ucb_values(self, day): 

        ucb_values = [0] * self.n_stocks 

        for stock in range(self.n_stocks): 

            if self.counts[stock] == 0: 

                ucb_values[stock] = float('inf') 

            else: 

                average_reward = self.total_reward[stock] / self.counts[stock] 

                delta_i = math.sqrt(2 * math.log(day + 1) / self.counts[stock]) 

                ucb_values[stock] = average_reward + delta_i 

        return ucb_values 

    def _get_best_stocks(self): 
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        top_stocks_indices = np.argsort(self.total_reward)[-

self.num_stocks_to_select:] 

        best_stocks = [self.stocks_strength.columns[index] for index in 

top_stocks_indices] 

        return best_stocks 

In the preceding code, 

• The Stock Selector class also implements the Upper Confidence Bound 

(UCB1) algorithm for selecting stocks. 

• The Stock Selector class initializes stock strength, number of days, number of 

stocks to select as input. 

• It also initializes number of stocks and two arrays: counts and total rewards. 

• The select stock method of Stock Selector class calculates the UCB values for 

each stock based on a confidence interval until it reaches maximum values 

automatically configured in the select stock method. 

• The select stock method returns the best stocks based on the number of best 

stocks provided as limit in the get best stocks method. 

• The UCB values in Stock Selector class are calculated daily and the rewards 

are updated for each trade day for the stocks data. This calculation happens in 

the calculate ucb values method. 

• UCB Values are calculated as follows: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 =  
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
 

 

∆=  √
2 ∙ ln (𝑑𝑎𝑦 + 1)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
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𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 +  ∆ 

The Stock Selector is a more complex and different implementation of UCB1 

algorithm for the SLRPO Strategy where the UCB calculation is repeated for every 

trading day and limited best set of stocks is chosen based on historical performance. 

4.11.4 Stock Allocation Maximizer 

The Stock Allocation Maximizer is the fourth sub strategy of Base Strategy - 

UCB1. The Stock Allocation Maximizer is also designed using the UCB1 algorithm and 

it provides a mechanism for selecting stocks based on their potential for high returns. The 

stock selection in Stock Allocation Maximizer sub strategy is done in a way that balances 

the exploration of potentially profitable stocks and the exploitation of stocks that have 

already shown good performance but the number of stocks in this sub strategy are not 

restricted to a value. This sub strategy also considers the Stock Strength change instead of 

Stock Strength as its input. Considering the complete portfolio for allocation gives an 

opportunity of manual decision making. 

The code for Stock Allocation Maximizer is defined as follows: 

class UCB1_StockAllocationMaximizer: 

    def __init__(self, stock_strength_change, num_days): 

        self.stock_strength_change = stock_strength_change 

        self.num_days = num_days 

        self.n_stocks = len(stock_strength_change.columns) 

        self.counts = [0] * self.n_stocks 

        self.total_reward = [0] * self.n_stocks 

        self.chosen_stocks_and_allocation_each_day = [] 

    def allocate_stocks(self): 
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        for day in range(self.num_days): 

            ucb_values = self._calculate_ucb_values(day) 

            total_ucb = sum(ucb_values) 

            allocations = [(ucb / total_ucb) * 100 for ucb in ucb_values] 

            stock_allocation_pairs = list(zip(self.stock_strength_change.columns, 

allocations)) 

self.chosen_stocks_and_allocation_each_day.append(stock_allocation_pairs) 

            self._update_rewards(day, ucb_values) 

        return self.chosen_stocks_and_allocation_each_day 

    def _calculate_ucb_values(self, day): 

        ucb_values = [] 

        for stock in range(self.n_stocks): 

            if self.counts[stock] == 0: 

                ucb_values.append(float('inf')) 

            else: 

                average_reward = self.total_reward[stock] / self.counts[stock] 

                confidence = math.sqrt(2 * math.log(day + 1) / self.counts[stock]) 

                ucb_values.append(average_reward + confidence) 

        return ucb_values 

    def _update_rewards(self, day, ucb_values): 

        for stock in range(self.n_stocks): 

            reward = self.stock_strength_change.iloc[day, stock] 

            self.counts[stock] += 1 

            self.total_reward[stock] += reward 

In the preceding code, 
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• The Stock Allocation Maximizer class also implements the Upper Confidence 

Bound (UCB1) algorithm for selecting stocks. 

• The Stock Allocation Maximizer class initializes stock strength change, 

number of days to select as input. 

• It also initializes number of stocks and three arrays: counts, total rewards and 

chosen stocks & allocations each day. 

• The allocate stock method in the Stock Allocation Maximizer class calculates 

the ucb values daily and creates allocations based on chosen stock and its ucb 

values. 

• The allocate stock method also updates the rewards daily. 

• The allocate stock method returns the stock and its allocation for each day. 

UCB Values are calculated as follows: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 =  
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  √
2 ∙ ln (𝑑𝑎𝑦 + 1)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
 

 

𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 +  𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

The Stock Allocation Maximizer is a more complex and different implementation 

of UCB1 algorithm for the SLRPO Strategy where the UCB calculation is repeated for 

every trading day and considers all stocks from the portfolio of NIFTY 50. It also returns 

daily stock allocations by considering stock score change as the input. 

4.11.5 Optimizer 
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The Optimizer is the fifth sub strategy of Base Strategy - UCB1. The Optimizer is 

also designed using the UCB1 algorithm and it provides a mechanism for selecting stocks 

based on their potential for high returns. The stock selection in Optimizer sub strategy is 

implemented such that it is a hybrid version of Stock Allocation Maximizer sub strategy 

and the Base Selector sub strategy. The Optimizer is designed with Stock Strength 

Change and UCB calculation logic similar to Stock Allocation Maximizer but the overall 

design is very simple similar to Base Selector strategy. The Optimizer performs daily 

updates of UCB values but does not perform daily allocations of stocks instead it 

provides the final best allocation for all stocks. 

The code for Optimizer is defined as follows: 

class UCB1_Optimizer: 

    def __init__(self, stock_strength_change, num_days): 

        self.stock_strength_change = stock_strength_change 

        self.num_days = num_days 

        self.n_stocks = len(stock_strength_change.columns) 

        self.counts = [0] * self.n_stocks 

        self.total_reward = [0] * self.n_stocks 

        self.ucb_values = [0] * self.n_stocks 

    def optimize(self): 

        for day in range(self.num_days): 

            self._calculate_ucb_values(day) 

            chosen_stock = np.argmax(self.ucb_values) 

            reward = self.stock_strength_change.iloc[day, chosen_stock] 

            self.counts[chosen_stock] += 1 

            self.total_reward[chosen_stock] += reward 
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        return self.total_reward 

    def _calculate_ucb_values(self, day): 

        for stock in range(self.n_stocks): 

            if self.counts[stock] == 0: 

                self.ucb_values[stock] = float('inf') 

            else: 

                average_reward = self.total_reward[stock] / self.counts[stock] 

                confidence = math.sqrt(2 * math.log(day + 1) / self.counts[stock]) 

                self.ucb_values[stock] = average_reward + confidence 

In the preceding code, 

• The Optimizer class also implements the Upper Confidence Bound 

(UCB1) algorithm for selecting stocks. 

• The Optimizer class initializes stock strength change, number of days to 

select as input. 

• It also initializes number of stocks and three arrays: counts, total rewards 

and UCB values. 

• The optimize method in the Optimizer class performs daily updates on the 

UCB values based on chosen stock and reward. 

• UCB Values are calculated as follows: 

 

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 =  
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
 

 

𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 =  √
2 ∙ ln (𝑑𝑎𝑦 + 1)

𝐶𝑜𝑢𝑛𝑡𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘
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𝑈𝐶𝐵 𝑉𝑎𝑙𝑢𝑒𝑠𝑐ℎ𝑜𝑠𝑒𝑛𝑠𝑡𝑜𝑐𝑘 = 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑅𝑒𝑤𝑎𝑟𝑑 +  𝐶𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒 

The Optimizer is a simpler and hybrid version of the Stock Allocation Maximizer 

and Base Selector. It is designed to consider the stock strength score change as input and 

provide one best portfolio with allocations that considers all the stocks in the NIFTY 50 

list studied in this thesis. 

4.12 Base Strategy – Policy Network Module 

The Base Strategy – Policy Network is developed on the concept of Policy 

Network algorithm. The main components of Base Strategy – Policy Network are as 

follows:  

1. Policy Network Softmax 

2. Policy Network ReLU 

3. Policy Network Batch Norm 

4. Policy Network Standard  

4.12.1 Policy Network Softmax 

The Policy Network Softmax class is the first sub strategy of Base Strategy - 

Policy Network. This sub strategy will be used to create a policy for reinforcement 

learning based models in the SLRPO strategy. Policy Network helps the reinforcement 

learning agent with guidance on the next action to be taken. The Policy Network Softmax 

class is a neural network designed with Softmax as the activation function. 

The code for Policy Network Softmax is defined as follows: 

class PolicyNetworkSoftmax: 

    def __init__(self, input_dim, output_dim): 

        self.input_dim = input_dim 

        self.output_dim = output_dim 

        self.model = None 
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        self._create_network() 

    def _create_network(self): 

        tf.random.set_seed(1)   

        self.model = Sequential([ 

            Dense(128, input_dim=self.input_dim, activation='softmax'), 

            Dense(64, activation='softmax'),   

            Dense(32, activation='softmax'), 

            Dense(16, activation='softmax'), 

            Dense(self.output_dim, activation='softmax') 

        ]) 

        self.model.compile(optimizer='adam', loss='mse') 

    def get_model(self): 

        return self.model 

In the preceding code, 

• The Policy Network Softmax class initializes input dimension and output 

dimension for the Softmax network. 

• It also initializes the network with a model variable to store the neural 

network model and a method to create the network. 

• The create network method creates the Softmax network with 5 dense layers, 

the activation function as Softmax in all the layers. 

• The create network method also compiles the model with Adam optimizer and 

with Mean Square Error as Loss function. 

The Policy Network Softmax is a simple sub strategy developed in the Base 

Strategy – Policy Network to provide probability distributions in each layer and to 

generate a policy that can be used in the SLRPO Investment strategy implementation. 
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4.12.2 Policy Network ReLU  

The Policy Network ReLU class is the second sub strategy of Base Strategy - 

Policy Network. This sub strategy will also be used to create a policy for reinforcement 

learning based models in the SLRPO strategy. This Policy Network also helps the 

reinforcement learning agent with guidance on the next action to be taken. The Policy 

Network ReLU class is a neural network designed with ReLU as the activation function. 

The code for Policy Network ReLU is defined as follows: 

class PolicyNetworkReLU: 

    def __init__(self, input_size): 

        self.input_size = input_size 

        self.model = None 

        self._create_network() 

    def _create_network(self): 

        tf.random.set_seed(1)   

        self.model = Sequential([ 

            Dense(64, activation='relu', input_shape=(self.input_size,)), 

            Dense(32, activation='relu'), 

            Dense(self.input_size, activation='softmax') 

        ]) 

        self.model.compile(optimizer='adam', loss='mse') 

    def get_model(self): 

        return self.model 

In the preceding code, 

• The Policy Network ReLU class initializes input size for the ReLU network. 
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• It also initializes the network with a model variable to store the neural 

network model and a method to create the network. 

• The create network method creates the ReLU network with 3 dense layers. 

• The activation function for the first two dense layers is set as ReLU and for 

the last dense layer as Softmax since the output from the policy is expected to 

be a probability distribution.  

• The create network method also compiles the model with Adam optimizer and 

with Mean Square Error as Loss function. 

The Policy Network ReLU is another simple sub strategy developed in the Base 

Strategy – Policy Network to provide probability distributions in the final layer and to 

generate a policy that can be used in the SLRPO Investment strategy implementation. 

4.12.3 Policy Network Batch Norm 

The Policy Network Batch Norm class is the third sub strategy of Base Strategy - 

Policy Network. This sub strategy will also be used to create a policy for reinforcement 

learning based models in the SLRPO strategy. This Policy Network also helps the 

reinforcement learning agent with guidance on the next action to be taken. The Policy 

Network Batch Norm class is a neural network designed with multiple complex layers 

and Softmax as the final activation function. 

The code for Policy Network Batch Norm is defined as follows: 

class PolicyNetworkBatchNorm: 

    def __init__(self, input_size): 

        self.input_size = input_size 

        self.model = None 

        self._create_network() 

    def _create_network(self): 
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        tf.random.set_seed(1234)   

        self.model = Sequential() 

        self.model.add(Dense(128, activation='relu', input_shape=(self.input_size,))) 

        self.model.add(BatchNormalization()) 

        self.model.add(Dense(64, activation='relu')) 

        self.model.add(Dropout(0.3)) 

        self.model.add(Dense(64, activation='relu')) 

        self.model.add(BatchNormalization()) 

        self.model.add(Dropout(0.3)) 

        self.model.add(Dense(self.input_size, activation='softmax')) 

        optimizer = Adam(learning_rate=0.001) 

        self.model.compile(optimizer=optimizer, loss='mse') 

    def get_model(self): 

        return self.model 

In the preceding code, 

• The Policy Network Batch Norm class initializes input size for the Batch 

Norm network. 

• It also initializes the network with a model variable to store the neural 

network model and a method to create the network. 

• The create network method creates the Batch Norm network with multiple 

layers that are complex and are a combination of sequential, dense, batch 

normalization and drop out layers. 

• The activation function for the all the hidden layers is set as ReLU and for the 

last dense layer as Softmax since the output from the policy is expected to be 

a probability distribution.  
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• The create network method also compiles the model with Adam optimizer and 

with Mean Square Error as Loss function. 

The Policy Network Batch Norm is another sub strategy developed in the Base 

Strategy – Policy Network to provide probability distributions in the final layer and to 

generate a policy that can be used in the SLRPO Investment strategy implementation. 

This is a complex policy network compared to all other base strategy policy networks and 

is expected to provide more hidden insights on the stocks data. 

4.12.4 Policy Network Standard 

The Policy Network Standard class is the fourth and final sub strategy of Base 

Strategy - Policy Network. This sub strategy will also be used to create a policy for 

reinforcement learning based models in the SLRPO strategy. This Policy Network also 

helps the reinforcement learning agent with guidance on the next action to be taken. The 

Policy Network Standard class is a neural network designed as a hybrid version of Policy 

Network Softmax and Policy Network ReLU. 

The code for Policy Network Standard is defined as follows: 

class PolicyNetworkStandard: 

    def __init__(self, input_dim, output_dim): 

        self.input_dim = input_dim 

        self.output_dim = output_dim 

        self.model = self._create_network() 

    def _create_network(self): 

        tf.random.set_seed(1234) 

        model = Sequential([ 

            Dense(64, input_dim=self.input_dim, activation='relu'), 

            Dense(32, activation='relu'), 
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            Dense(self.output_dim, activation='softmax') 

        ]) 

        model.compile(optimizer='adam', loss='mse') 

        return model 

    def get_model(self): 

        return self.model 

In the preceding code, 

• The Policy Network Standard class initializes both input dimension and output 

dimension for the Hybrid network unlike the Policy Network ReLU where 

only input size is provided as input. 

• It also initializes the network with a model variable to store the neural 

network model and a method to create the network. 

• The create network method creates a Hybrid network with 3 dense layers. 

• The activation function for the first two dense layers is set as ReLU and the 

last dense layer as Softmax in the last layer since the output from the policy is 

expected to be a probability distribution.  

• The create network method also compiles the model with Adam optimizer and 

with Mean Square Error as Loss function. 

The Policy Network Standard is another simple, but hybrid sub strategy 

developed in the Base Strategy – Policy Network to provide probability distributions in 

the final layer and to generate a policy that can be used in the SLRPO Investment strategy 

implementation. 

4.13 Base Strategy – Policy Gradient Module 

The final base strategy for SLRPO Investment strategy is the Policy Gradient. 

Unlike UCB1 and Policy Network base strategies, Policy Gradient is not a combination 
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of multiple sub strategies but is a combination of multiple components of a Policy 

Gradient that implements Reinforcement Learning. 

Policy Gradient has the following four components which will be used in building 

new strategies in this thesis: 

• Simple Policy Search 

• Policy Gradient Network 

• Policy Gradient Agent 

• Complex Policy Search 

Let us now discuss each of these components and their code. 

4.13.1 Simple Policy Search 

Simple Policy Search is designed to generate a policy needed for stock selection. 

This policy is developed to represent a probability distribution of stocks based on their 

historical performance. Using this policy, it will be possible to select stocks with higher 

performance since they will be given higher rewards and gets a higher probability for 

selection. 

The code for Simple Policy Search is defined as follows: 

def simple_policy_search(stock_strength_change, total_reward): 

    n_stocks = len(stock_strength_change.columns) 

    total = sum(total_reward) 

    policy = [reward / total for reward in total_reward] 

    return policy 

In the preceding code, 

• The Simple Policy Search function is defined with two input parameters: 

• Stock Strength Change: This is the change in Strength Scores that are 

provided as input to the SLRPO strategy. 
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• Total Reward: This is the list of total rewards calculated by one of the UCB1 

algorithms. 

• Policy is then calculated as follows: 

𝑃𝑜𝑙𝑖𝑐𝑦[𝑖] =  [
𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑤𝑎𝑟𝑑 [𝑖]

𝑇𝑜𝑡𝑎𝑙 𝑜𝑓 𝑎𝑙𝑙 𝑅𝑒𝑤𝑎𝑟𝑑𝑠
] 

This is a simple and straight forward policy that will be incorporated into one of 

the sub strategies of SLRPO Investment strategy. 

4.13.2 Policy Gradient Network 

Policy Gradient Network is a component of the Base Strategy – Policy Gradient. 

This network is designed as a use case specific network which can be used within the 

policy gradient component of reinforcement learning. 

The code for Policy Gradient Network is defined as follows: 

class PolicyGradientNetwork(tf.keras.Model): 

    def __init__(self, n_stocks): 

        super(PolicyGradientNetwork, self).__init__() 

        self.dense1 = tf.keras.layers.Dense(128, activation='relu') 

        self.dense2 = tf.keras.layers.Dense(64, activation='relu') 

        self.output_layer = tf.keras.layers.Dense(n_stocks, activation='softmax') 

    def call(self, inputs): 

        x = self.dense1(inputs) 

        x = self.dense2(x) 

        return self.output_layer(x) 

In the preceding code, 

• The Policy Gradient Network takes in the number of stocks as input and 

generates an output which will be a probability distribution.  
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• In reinforcement learning of SLRPO Strategy, this probability distribution will 

be used for deciding the actions. 

• The network is designed with two dense layers and one output layer. 

Softmax is considered as the activation function since we expect the output to be 

probability distributions. 

4.13.3 Policy Gradient Agent 

Policy Gradient Agent is the third component of the Base Strategy – Policy 

Gradient. The objective of this agent is to utilize the Policy Gradient Network to learn a 

policy which provides probabilities as output for stock selection. The training process 

uses gradient descent to adjust the weights of the network. 

The code for Policy Gradient Agent is defined as follows: 

class PolicyGradientAgent: 

    def __init__(self, n_stocks): 

        self.n_stocks = n_stocks 

        self.model = PolicyGradientNetwork(n_stocks) 

        self.optimizer = tf.keras.optimizers.Adam(learning_rate=0.01) 

    def train(self, stocks_strength, total_reward): 

        with tf.GradientTape() as tape: 

            policy = self.model(stocks_strength) 

            loss = self.compute_loss(policy, total_reward) 

        gradients = tape.gradient(loss, self.model.trainable_variables) 

        self.optimizer.apply_gradients(zip(gradients, self.model.trainable_variables)) 

    def compute_loss(self, policy, total_reward): 

        log_probs = tf.math.log(policy) 

        return -tf.reduce_sum(log_probs * total_reward) 
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    def get_policy(self, stocks_strength): 

        policy = self.model.predict(np.array([stocks_strength])) 

        return policy 

In the preceding code, 

• The Policy Gradient Agent takes the number of stocks as input. 

• The agent then initializes the Policy Network and an optimizer for the 

network. 

• The agent then trains the network using stock strength score and adjusts the 

weights using gradient descent. 

• The agent adjusts the loss function using total reward and then returns the 

policy. 

4.13.4 Complex Policy Search 

The final component of Base Strategy – Policy Gradient is the Complex Policy 

Search. The objective of this component is to use the Policy Gradient Agent efficiently to 

get better stock allocations for SLRPO investment strategy. 

The code for Complex Policy Search is defined as follows: 

def complex_policy_search(stocks_strength, total_reward, n_stocks): 

    if not isinstance(stocks_strength, np.ndarray): 

        stocks_strength = np.array(stocks_strength) 

    agent = PolicyGradientAgent(n_stocks) 

    agent.train(stocks_strength, total_reward) 

    return agent.get_policy(stocks_strength) 

In the preceding code, 

1. The complex policy search function takes in stock strength score, total reward 

and number of stocks as input. 
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2. The Policy Gradient Agent is trained using the above inputs and the policy is 

generated as output. 

These are various components and their functions implemented in Base Strategy – 

Policy Gradient. 

4.14 Main 8 Strategies of SLRPO and Portfolio Creation  

In this thesis, I am introducing the following 8 main strategies of SLRPO which 

are developed to blend the Base Strategies and Utility functions to create new portfolios 

based on the NIFTY 50 stocks, their technical indicators, fundamental indicators and 

newly introduce Strength Score. 

The input data required for execution of these 8 strategies are configured as follows: 

config_file = 'config.ini' 

tickers = read_config(config_file) 

stocks_strength = pd.read_csv('df_scores.csv') 

stocks_strength.index = stocks_strength['Date'] 

stocks_strength.drop(columns = 'Date', inplace = True) 

num_rounds = len(stocks_strength)   

num_stocks = len(tickers) 

stocks_data = pd.read_csv('stocks_data.csv') 

start_date = '01-01-2020' 

end_date = '30-01-2024' 

Investment = 100000 

The stocks considered for this analysis are as follows: 
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Table 4.1 NIFTY 50 Stocks 

4.14.1 Strategy1 

Strategy 1 is developed with a blend of the following components: 

• Base Strategy – Policy Network Softmax 

• Base Strategy – UCB1 Base Selector 

• Utility Function – Construct Portfolio Values 

• Utility Function – Calculate Strength Lag 

• Utility Function – Update Reward 

• Utility Function – Calculate Allocation 

The code for Strategy 1 is defined as follows: 

class Strategy1: 

    def __init__(self, tickers): 

        self.tickers = tickers 

        self.n_portfolios = len(tickers) 

        self.portfolio_values = construct_portfolio_values('df_scores.csv') 

        self.n_days = len(self.portfolio_values) 

        self.policy_network = PolicyNetworkSoftmax(input_dim=1, output_dim=1) 

        self.model = self.policy_network.get_model() 

        self.ucb_selector = UCB1_BaseSelector(self.n_portfolios) 

        np.random.seed(1) 

        random.seed(1) 

ADANIENT.NS BRITANNIA.NS HEROMOTOCO.NS LTIM.NS SUNPHARMA.NS

ADANIPORTS.NS CIPLA.NS HINDUNILVR.NS M&M.NS TATACONSUM.NS

APOLLOHOSP.NS COALINDIA.NS HINDALCO.NS MARUTI.NS TATAMOTORS.NS

ASIANPAINT.NS DIVISLAB.NS ICICIBANK.NS NESTLEIND.NS TATASTEEL.NS

AXISBANK.NS DRREDDY.NS INDUSINDBK.NS NTPC.NS TCS.NS

BPCL.NS EICHERMOT.NS INFY.NS ONGC.NS TECHM.NS

BAJAJ-AUTO.NS GRASIM.NS ITC.NS POWERGRID.NS TITAN.NS

BAJFINANCE.NS HCLTECH.NS JSWSTEEL.NS RELIANCE.NS ULTRACEMCO.NS

BAJAJFINSV.NS HDFCBANK.NS KOTAKBANK.NS SBILIFE.NS UPL.NS

BHARTIARTL.NS HDFCLIFE.NS LT.NS SBIN.NS WIPRO.NS
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        tf.random.set_seed(1) 

    def strategy1(self): 

        for day in range(1, self.n_days): 

            chosen_stock = self.ucb_selector.select_stock() 

            chosen_portfolio_values = self.portfolio_values[:day, chosen_stock] 

            chosen_return = 

np.array(calculate_strength_lag(chosen_portfolio_values)) 

            all_portfolios_returns = [calculate_strength_lag(self.portfolio_values[:day, 

i]) for i in range(self.n_portfolios)] 

            allocation = np.array(self.model.predict(chosen_return.reshape(1, -1))[0]) 

            reward = update_reward(allocation, all_portfolios_returns) 

            self.ucb_selector.update(chosen_stock, reward) 

        ucb_values = self.ucb_selector.values 

        allocation3 = calc_allocation(ucb_values) 

        return allocation3 

The output of Strategy1 is a new portfolio allocation of NIFTY 50 stocks as follows: 

 
Table 4.2 Strategy 1 Portfolio Allocation of all NIFTY 50 Stocks 

The Table 4.2 demonstrates the ability of Strategy 1 to analyze the historical data 

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term 

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 2% BRITANNIA.NS 2% HEROMOTOCO.NS 0% LTIM.NS 2% SUNPHARMA.NS 2%

ADANIPORTS.NS 2% CIPLA.NS 3% HINDUNILVR.NS 3% M&M.NS 2% TATACONSUM.NS 3%

APOLLOHOSP.NS 2% COALINDIA.NS 2% HINDALCO.NS 2% MARUTI.NS 2% TATAMOTORS.NS 1%

ASIANPAINT.NS 2% DIVISLAB.NS 2% ICICIBANK.NS 1% NESTLEIND.NS 5% TATASTEEL.NS 2%

AXISBANK.NS 2% DRREDDY.NS 2% INDUSINDBK.NS 3% NTPC.NS 1% TCS.NS 2%

BPCL.NS 2% EICHERMOT.NS 2% INFY.NS 2% ONGC.NS 2% TECHM.NS 2%

BAJAJ-AUTO.NS 1% GRASIM.NS 8% ITC.NS 2% POWERGRID.NS 2% TITAN.NS 2%

BAJFINANCE.NS 1% HCLTECH.NS 2% JSWSTEEL.NS 2% RELIANCE.NS 2% ULTRACEMCO.NS 2%

BAJAJFINSV.NS 2% HDFCBANK.NS 2% KOTAKBANK.NS 2% SBILIFE.NS 1% UPL.NS 1%

BHARTIARTL.NS 2% HDFCLIFE.NS 1% LT.NS 1% SBIN.NS 0% WIPRO.NS 2%
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investments. Strategy 1 considers all 50 stocks since there are no limits set on the number 

of stocks to be chosen in this strategy. The returns of this strategy will be discussed in the 

Chapter 6. 

4.14.2 Strategy2 

Strategy 2 is developed with a blend of the following components: 

• Base Strategy – UCB1 Simple Selector 

• Limiting Portfolio size to 7 

The code for Strategy 2 is defined as follows: 

class Strategy2: 

    def __init__(self, num_stocks, num_rounds, tickers, stocks_strength): 

        self.num_stocks = num_stocks 

        self.num_rounds = num_rounds 

        self.tickers = tickers 

        self.stocks_strength = stocks_strength 

        self.portfolio_size = 7 

        self.ucb = UCB1_SimpleSelector(num_stocks) 

        np.random.seed(1) 

        random.seed(1) 

        tf.random.set_seed(1) 

    def strategy2(self): 

        for round in range(self.num_rounds): 

            selected_stock = self.ucb.select_stock() 

            reward = self.stocks_strength.iloc[round, selected_stock] 

            self.ucb.update(selected_stock, reward) 

        top_stocks_indices = np.argsort(-self.ucb.values)[:self.portfolio_size] 
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        top_stocks = [self.tickers[i] for i in top_stocks_indices] 

        allocation = [1.0 / len(top_stocks) for _ in top_stocks] 

        return top_stocks, allocation 

The output of Strategy2 is a new portfolio allocation of NIFTY 50 stocks as follows: 

 
Table 4.3 Strategy 2 Portfolio Allocation of all NIFTY 50 Stocks 

The Table 4.3 demonstrates the ability of Strategy 2 to analyze the historical data 

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term 

investments. Strategy 2 considers only the top 7 stocks since there are limits set on the 

number of stocks to be chosen in this strategy. The returns of this strategy will be 

discussed in the Chapter 6. 

4.14.3 Strategy3 

Strategy 3 is developed with a blend of the following components: 

• Base Strategy – UCB1 Stock Selector 

• Utility Function – Create Features 

• Base Strategy – Policy Network ReLU 

• Limiting Portfolio size to 10 

The code for Strategy 3 is defined as follows: 

class Strategy3: 

    def __init__(self, stocks_strength, num_stocks, portfolio_size): 

        self.stocks_strength = stocks_strength 

        self.num_stocks = num_stocks 

Stocks Allocations %

SBIN.NS 14%

LT.NS 14%

UPL.NS 14%

SBILIFE.NS 14%

NTPC.NS 14%

BAJAJ-AUTO.NS 14%

BAJFINANCE.NS 14%
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        self.portfolio_size = portfolio_size 

        np.random.seed(1) 

        random.seed(1) 

        tf.random.set_seed(1) 

        self.selector = UCB1_StockSelector(stocks_strength, len(stocks_strength), 

portfolio_size) 

    def select_stocks(self): 

        selected_stocks = self.selector.select_stocks() 

        return selected_stocks 

    def get_stock_data(self, selected_stocks): 

        selected_stock_data = {stock: self.stocks_strength[stock] for stock in 

selected_stocks} 

        return selected_stock_data 

    def strategy3(self): 

        selected_stocks = self.select_stocks() 

        selected_stock_data = self.get_stock_data(selected_stocks) 

        stock_features = create_features(selected_stock_data) 

        policy_network = PolicyNetworkReLU(len(selected_stocks)) 

        model = policy_network.get_model() 

        allocations = model.predict(np.array([stock_features.flatten()])) 

        allocation_list = allocations.tolist()[0] 

        return selected_stocks, allocation_list 

The output of Strategy3 is a new portfolio allocation of NIFTY 50 stocks as 

follows: 
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Table 4.4 Strategy 3 Portfolio Allocation of all NIFTY 50 Stocks 

The Table 4.4 demonstrates the ability of Strategy 3 to analyze the historical data 

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term 

investments. Strategy 3 considers only the top 10 stocks since there are limits set on the 

number of stocks to be chosen in this strategy. The returns of this strategy will be 

discussed in the Chapter 6. 

4.14.4 Strategy4 

Strategy 4 is developed with a blend of the following components: 

• Base Strategy – UCB1 Base Selector 

• Base Strategy – Policy Network Standard 

• Utility Function – Calculate Allocation 

The code for Strategy 4 is defined as follows: 

class Strategy4: 

    def __init__(self, num_stocks, stocks_strength, tickers): 

        self.num_stocks = num_stocks 

        self.stocks_strength = stocks_strength 

        self.tickers = tickers 

        np.random.seed(1) 

Stocks Allocations %

EICHERMOT.NS 10%

ICICIBANK.NS 10%

WIPRO.NS 10%

BAJFINANCE.NS 10%

BAJAJ-AUTO.NS 10%

NTPC.NS 10%

SBILIFE.NS 10%

UPL.NS 10%

LT.NS 10%

SBIN.NS 10%
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        random.seed(1) 

        tf.random.set_seed(1) 

        self.ucb = UCB1_BaseSelector(num_stocks) 

        self.policy_network = PolicyNetworkStandard(input_dim=1, 

output_dim=num_stocks) 

        self.model = self.policy_network.get_model() 

    def strategy4(self): 

        for day in range(self.stocks_strength.shape[0]): 

            chosen_stock = self.ucb.select_stock() 

            current_data = 

np.array([self.stocks_strength[self.tickers[chosen_stock]].iloc[day]]) 

            allocation = self.model.predict(current_data.reshape(1, -1))[0] 

            reward = self.stocks_strength[self.tickers[chosen_stock]].iloc[day] 

            self.ucb.update(chosen_stock, reward) 

            self.model.fit(current_data.reshape(1, -1), allocation.reshape(1, -1), 

epochs=1, verbose=0) 

        ucb_values = self.ucb.values 

        allocation_final = calc_allocation(ucb_values) 

        return allocation_final 

The output of Strategy3 is a new portfolio allocation of NIFTY 50 stocks as follows: 

 
Table 4.5 Strategy 4 Portfolio Allocation of all NIFTY 50 Stocks 

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 2% BRITANNIA.NS 2% HEROMOTOCO.NS 0% LTIM.NS 2% SUNPHARMA.NS 2%

ADANIPORTS.NS 2% CIPLA.NS 1% HINDUNILVR.NS 2% M&M.NS 2% TATACONSUM.NS 2%

APOLLOHOSP.NS 2% COALINDIA.NS 2% HINDALCO.NS 2% MARUTI.NS 2% TATAMOTORS.NS 2%

ASIANPAINT.NS 2% DIVISLAB.NS 2% ICICIBANK.NS 2% NESTLEIND.NS 1% TATASTEEL.NS 2%

AXISBANK.NS 2% DRREDDY.NS 2% INDUSINDBK.NS 2% NTPC.NS 2% TCS.NS 2%

BPCL.NS 2% EICHERMOT.NS 2% INFY.NS 2% ONGC.NS 2% TECHM.NS 2%

BAJAJ-AUTO.NS 2% GRASIM.NS 1% ITC.NS 2% POWERGRID.NS 2% TITAN.NS 2%

BAJFINANCE.NS 2% HCLTECH.NS 2% JSWSTEEL.NS 2% RELIANCE.NS 2% ULTRACEMCO.NS 2%

BAJAJFINSV.NS 2% HDFCBANK.NS 2% KOTAKBANK.NS 2% SBILIFE.NS 2% UPL.NS 2%

BHARTIARTL.NS 2% HDFCLIFE.NS 2% LT.NS 3% SBIN.NS 3% WIPRO.NS 2%
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The Table 4.5 demonstrates the ability of Strategy 4 to analyze the historical data 

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term 

investments. Strategy 4 considers all NIFTY 50 stocks since there are no limits set on the 

number of stocks to be chosen in this strategy. The returns of this strategy will be 

discussed in the Chapter 6. 

4.14.5 Strategy5 

Strategy 5 is developed with a blend of the following components: 

• Base Strategy – UCB1 Stock Allocation Maximizer 

• Utility Function – Calculate Daily Strength Lag 

• Utility Function – Calculate Allocation 

The code for Strategy 5 is defined as follows: 

class Strategy5: 

    def __init__(self, stocks_strength, tickers): 

        np.random.seed(1) 

        random.seed(1) 

        tf.random.set_seed(1) 

        self.stocks_strength = stocks_strength 

        self.stock_strength_change = calculate_daily_strength_lag(stocks_strength) 

        self.tickers = tickers 

        self.allocator = 

UCB1_StockAllocationMaximizer(self.stock_strength_change, 

len(self.stock_strength_change)) 

    def strategy5(self): 

        chosen_stocks_and_allocation_each_day = self.allocator.allocate_stocks() 

        last_day_allocations = chosen_stocks_and_allocation_each_day[-1]   
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        print(f"Day {len(self.stocks_strength)}: {last_day_allocations}") 

        investment_policy = [stock_with_alloc[1] for stock_with_alloc in 

last_day_allocations] 

        allocation_final = calc_allocation(investment_policy) 

        return allocation_final 

The output of Strategy5 is a new portfolio allocation of NIFTY 50 stocks as 

follows: 

 
Table 4.6 Strategy 5 Portfolio Allocation of all NIFTY 50 Stocks 

The Table 4.6 demonstrates the ability of Strategy 5 to analyze the historical data 

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term 

investments. Strategy 5 considers all NIFTY 50 stocks since there are no limits set on the 

number of stocks to be chosen in this strategy. The returns of this strategy will be 

discussed in the Chapter 6. 

4.14.6 Strategy6 

Strategy 6 is developed with a blend of the following components: 

• Base Strategy – UCB1 Optimizer 

• Base Strategy – Policy Gradient Simple Policy Search 

• Utility Function – Calculate Daily Strength Lag 

• Utility Function – Calculate Allocation 

The code for Strategy 6 is defined as follows: 

class Strategy6: 

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 2% BRITANNIA.NS 2% HEROMOTOCO.NS 2% LTIM.NS 2% SUNPHARMA.NS 2%

ADANIPORTS.NS 2% CIPLA.NS 2% HINDUNILVR.NS 2% M&M.NS 2% TATACONSUM.NS 2%

APOLLOHOSP.NS 2% COALINDIA.NS 0% HINDALCO.NS 2% MARUTI.NS 2% TATAMOTORS.NS 2%

ASIANPAINT.NS 2% DIVISLAB.NS 2% ICICIBANK.NS 2% NESTLEIND.NS 2% TATASTEEL.NS 0%

AXISBANK.NS 2% DRREDDY.NS 2% INDUSINDBK.NS 3% NTPC.NS 2% TCS.NS 2%

BPCL.NS 2% EICHERMOT.NS 2% INFY.NS 2% ONGC.NS 2% TECHM.NS 2%

BAJAJ-AUTO.NS 2% GRASIM.NS 2% ITC.NS 2% POWERGRID.NS 2% TITAN.NS 2%

BAJFINANCE.NS 2% HCLTECH.NS 2% JSWSTEEL.NS 2% RELIANCE.NS 2% ULTRACEMCO.NS 2%

BAJAJFINSV.NS 2% HDFCBANK.NS 2% KOTAKBANK.NS 2% SBILIFE.NS 2% UPL.NS 2%

BHARTIARTL.NS 2% HDFCLIFE.NS 2% LT.NS 2% SBIN.NS 2% WIPRO.NS 3%
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    def __init__(self, stocks_strength): 

        np.random.seed(1) 

        random.seed(1) 

        tf.random.set_seed(1) 

        self.stock_strength_change = calculate_daily_strength_lag(stocks_strength) 

        self.optimizer = UCB1_Optimizer(self.stock_strength_change, 

len(self.stock_strength_change)) 

    def strategy6(self): 

        total_reward = self.optimizer.optimize() 

        investment_policy = simple_policy_search(self.stock_strength_change, 

total_reward) 

        allocation_final = calc_allocation(investment_policy) 

        return allocation_final 

The output of Strategy6 is a new portfolio allocation of NIFTY 50 stocks as 

follows: 

 
Table 4.7 Strategy 6 Portfolio Allocation of all NIFTY 50 Stocks 

The Table 4.7 demonstrates the ability of Strategy 6 to analyze the historical data 

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term 

investments. Strategy 6 considers all NIFTY 50 stocks since there are no limits set on the 

number of stocks to be chosen in this strategy. The returns of this strategy will be 

discussed in the Chapter 6. 

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 1% BRITANNIA.NS 0% HEROMOTOCO.NS 9% LTIM.NS 1% SUNPHARMA.NS 1%

ADANIPORTS.NS 1% CIPLA.NS 1% HINDUNILVR.NS 1% M&M.NS 1% TATACONSUM.NS 1%

APOLLOHOSP.NS 1% COALINDIA.NS 2% HINDALCO.NS 1% MARUTI.NS 1% TATAMOTORS.NS 1%

ASIANPAINT.NS 1% DIVISLAB.NS 37% ICICIBANK.NS 1% NESTLEIND.NS 1% TATASTEEL.NS 1%

AXISBANK.NS 1% DRREDDY.NS 1% INDUSINDBK.NS 4% NTPC.NS 1% TCS.NS 1%

BPCL.NS 0% EICHERMOT.NS 1% INFY.NS 1% ONGC.NS 1% TECHM.NS 1%

BAJAJ-AUTO.NS 1% GRASIM.NS 1% ITC.NS 0% POWERGRID.NS 1% TITAN.NS 1%

BAJFINANCE.NS 1% HCLTECH.NS 1% JSWSTEEL.NS 1% RELIANCE.NS 1% ULTRACEMCO.NS 1%

BAJAJFINSV.NS 1% HDFCBANK.NS 1% KOTAKBANK.NS 1% SBILIFE.NS 1% UPL.NS 1%

BHARTIARTL.NS 1% HDFCLIFE.NS 1% LT.NS 1% SBIN.NS 1% WIPRO.NS 2%
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4.14.7 Strategy7 

Strategy 7 is developed with a blend of the following components: 

• Base Strategy – UCB1 Stock Selector 

• Base Strategy – Policy Network Batch Norm 

• Utility Function – Calculate Daily Strength Lag 

• Utility Function – Create Features 

The code for Strategy 7 is defined as follows: 

class Strategy7: 

    def __init__(self, stocks_strength, portfolio_size): 

        np.random.seed(1) 

        random.seed(1) 

        tf.random.set_seed(1) 

        self.stock_strength_change = calculate_daily_strength_lag(stocks_strength) 

        self.selector = UCB1_StockSelector(self.stock_strength_change, 

len(self.stock_strength_change), portfolio_size) 

        self.portfolio_size = portfolio_size 

    def strategy7(self): 

        selected_stocks = self.selector.select_stocks() 

        selected_stocks_strength = {stock: self.stock_strength_change[stock] for 

stock in selected_stocks} 

        stock_features = create_features(selected_stocks_strength) 

        policy_network = PolicyNetworkBatchNorm(len(selected_stocks)) 

        model = policy_network.get_model() 

        allocations = model.predict(np.array([stock_features.flatten()])) 

        allocation_final = allocations.tolist()[0] 
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        return selected_stocks, allocation_final 

The output of Strategy7 is a new portfolio allocation of NIFTY 50 stocks as follows: 

 
Table 4.8 Strategy 7 Portfolio Allocation of all NIFTY 50 Stocks 

The Table 4.8 demonstrates the ability of Strategy 7 to analyze the historical data 

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term 

investments. Strategy 7 considers only the top 7 stocks since there are limits set on the 

number of stocks to be chosen in this strategy. The returns of this strategy will be 

discussed in the Chapter 6. 

4.14.8 Strategy8 

Strategy 8 is developed with a blend of the following components: 

• Base Strategy – UCB1 Optimizer 

• Base Strategy – Policy Network Gradient Complex Policy Search 

• Utility Function – Calculate Daily Strength Lag 

• Utility Function – Calculate Allocation 

The code for Strategy 8 is defined as follows: 

class Strategy8: 

    def __init__(self, stocks_strength, num_stocks): 

        np.random.seed(1) 

        random.seed(1) 

        tf.random.set_seed(1) 

        self.stocks_strength = stocks_strength 

Stocks Allocations %

UPL.NS 15%

LTIM.NS 10%

TATASTEEL.NS 13%

HINDUNILVR.NS 20%

ITC.NS 10%

BRITANNIA.NS 14%

BPCL.NS 18%
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        self.stock_strength_change = 

calculate_daily_strength_lag(self.stocks_strength) 

        self.num_stocks = num_stocks 

        self.optimizer = UCB1_Optimizer(self.stock_strength_change, 

len(self.stock_strength_change)) 

    def strategy8(self): 

        total_reward = self.optimizer.optimize() 

        investment_policy = complex_policy_search(self.stocks_strength, 

total_reward, self.num_stocks) 

        ucb_values = investment_policy[0][0] 

        allocation_final = calc_allocation(ucb_values) 

        return allocation_final 

The output of Strategy8 is a new portfolio allocation of NIFTY 50 stocks as follows: 

 
Table 4.9 Strategy 8 Portfolio Allocation of all NIFTY 50 Stocks 

The Table 4.9 demonstrates the ability of Strategy 8 to analyze the historical data 

of NIFTY 50 stocks and construct a portfolio that provides an allocation for long term 

investments. Strategy 8 considers only the top 10 stocks since there are limits set on the 

number of stocks to be chosen in this strategy. The returns of this strategy will be 

discussed in the Chapter 6. 

4.14 Allocation – UI Module 

Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations % Stocks Allocations %

ADANIENT.NS 2% BRITANNIA.NS 2% HEROMOTOCO.NS 2% LTIM.NS 2% SUNPHARMA.NS 1%

ADANIPORTS.NS 2% CIPLA.NS 1% HINDUNILVR.NS 3% M&M.NS 2% TATACONSUM.NS 3%

APOLLOHOSP.NS 2% COALINDIA.NS 0% HINDALCO.NS 2% MARUTI.NS 1% TATAMOTORS.NS 1%

ASIANPAINT.NS 5% DIVISLAB.NS 0% ICICIBANK.NS 3% NESTLEIND.NS 1% TATASTEEL.NS 3%

AXISBANK.NS 1% DRREDDY.NS 3% INDUSINDBK.NS 1% NTPC.NS 1% TCS.NS 2%

BPCL.NS 3% EICHERMOT.NS 2% INFY.NS 2% ONGC.NS 3% TECHM.NS 3%

BAJAJ-AUTO.NS 2% GRASIM.NS 1% ITC.NS 3% POWERGRID.NS 2% TITAN.NS 3%

BAJFINANCE.NS 2% HCLTECH.NS 4% JSWSTEEL.NS 2% RELIANCE.NS 1% ULTRACEMCO.NS 2%

BAJAJFINSV.NS 2% HDFCBANK.NS 3% KOTAKBANK.NS 2% SBILIFE.NS 2% UPL.NS 2%

BHARTIARTL.NS 2% HDFCLIFE.NS 1% LT.NS 4% SBIN.NS 1% WIPRO.NS 3%
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The final module of the SLRPO strategy is the Allocation UI module which is the 

front-end interface that is used to run all 8 strategies and review the portfolio allocations 

of each strategy, download the results and take informed decisions based on the portfolio 

allocations and their historical returns. 

The complete SLRPO Strategy is developed in Python and the Front-end 

application to run the Strategy is developed using Streamlit in Python. 

The code for configuration of the input variables required to run the app is defined 

as follows: 

config_file = 'config.ini' 

tickers = read_config(config_file) 

stocks_strength = pd.read_csv('df_scores.csv') 

stocks_strength.index = stocks_strength['Date'] 

stocks_strength.drop(columns = 'Date', inplace = True) 

num_rounds = len(stocks_strength)   

num_stocks = len(tickers) 

stocks_data = pd.read_csv('stocks_data.csv') 

start_date = '01-01-2020' 

end_date = '30-01-2024' 

Investment = 100000 

The code for executing all the 8 strategies are defined as follows: 

strategy1 = Strategy1(tickers) 

allocation1 = strategy1.strategy1() 

strategy2 = Strategy2(num_stocks, num_rounds, tickers, stocks_strength) 

top_stocks2, allocation2 = strategy2.strategy2() 

strategy3 = Strategy3(stocks_strength, num_stocks, portfolio_size = 10) 
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selected_stocks3, allocation3 = strategy3.strategy3() 

strategy4 = Strategy4(num_stocks, stocks_strength, tickers) 

allocation4 = strategy4.strategy4() 

strategy5 = Strategy5(stocks_strength, tickers) 

allocation5 = strategy5.strategy5() 

strategy6 = Strategy6(stocks_strength) 

allocation6 = strategy6.strategy6() 

strategy7 = Strategy7(stocks_strength, portfolio_size=7) 

selected_stocks7, allocation7 = strategy7.strategy7() 

strategy8 = Strategy8(stocks_strength, num_stocks) 

allocation8 = strategy8.strategy8() 

The code for downloading the results of the strategies is defined as follows: 

def create_download_df(stocks, allocations): 

    if len(stocks) != len(allocations): 

        raise ValueError("Stocks and allocations lists must be of the same length.") 

    df = pd.DataFrame({ 

        'Stocks': stocks, 

        'Allocations %': allocations  

    }) 

    return df 

configurations = [ 

    {"title": "strategy 1", "tickers": tickers, "allocation": allocation1}, 

    {"title": "strategy 2", "tickers": top_stocks2, "allocation": allocation2}, 

    {"title": "strategy 3", "tickers": selected_stocks3, "allocation": allocation3}, 

    {"title": "strategy 4", "tickers": tickers, "allocation": allocation4}, 
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    {"title": "strategy 5", "tickers": tickers, "allocation": allocation5}, 

    {"title": "strategy 6", "tickers": tickers, "allocation": allocation6}, 

    {"title": "strategy 7", "tickers": selected_stocks7, "allocation": allocation7}, 

    {"title": "strategy 8", "tickers": tickers, "allocation": allocation8} 

] 

The code for the front-end user interface is defined as follows: 

def main(): 

    st.title('Investment Strategy Recommendations for NIFTY 50') 

    for config in configurations: 

        st.subheader(f'Results for {config["title"]}') 

        df = calc_model_returns(stocks_data, config['tickers'], config['allocation'], 

start_date, end_date, Investment) 

        df_strategy = create_download_df(config['tickers'], config['allocation']) 

        st.dataframe(df) 

        csv = df_strategy.to_csv(index=False) 

        b64 = base64.b64encode(csv.encode()).decode()   

        file_name = f"{config['title']}_data.csv" 

        link_text = f"Download {config['title']}" 

        link = f'<a href="data:file/csv;base64,{b64}" 

download="{file_name}">{link_text}</a>' 

        st.markdown(link, unsafe_allow_html=True) 

if __name__ == '__main__': 

    main() 

The results of the strategies and its corresponding returns can be analyzed and 

downloaded by running the UI. The output of the UI is generated as follows and the 
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result of each strategy is captured in the UI along with an option to download the 

Portfolio allocations for the strategy. 

The results for Strategy 1 are represented in the UI as follows:

 
Figure 4.5 Strategy 1 - Results 

The results for Strategy 2 are represented in the UI as follows: 

 
Figure 4.6 Strategy 2 – Results 
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The results for Strategy 3 are represented in the UI as follows: 

 
Figure 4.7 Strategy 3 – Results 

The results for Strategy 4 are represented in the UI as follows: 

 
Figure 4.8 Strategy 4 – Results 

The results for Strategy 5 are represented in the UI as follows: 
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Figure 4.9 Strategy 5 – Results 

The results for Strategy 6 are represented in the UI as follows: 

 
Figure 4.10 Strategy 6 – Results 

The results for Strategy 7 are represented in the UI as follows: 
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Figure 4.10 Strategy 7 – Results 

The results for Strategy 8 are represented in the UI as follows: 

 
Figure 4.11 Strategy 8 – Results 

The results for all the strategies are captured in the Allocation UI and will be analyzed 

further in the Chapter 6. 
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CHAPTER V:  

RESULTS 

5.1 Research Question  

How can data science techniques and methodologies help in developing a 

decision-making framework that helps in identifying the opportunities to invest in 

the Indian stock markets?  

The complete research and study performed in this thesis led to the development 

of a new Investment strategy names SLRPO strategy. The development of this strategy 

involved various stages of Data Science life cycle that includes data collection, data 

preprocessing, exploratory data analysis, predictive modeling and reinforcement learning. 

All these techniques of data science are used to develop SLRPO strategy with the 

following 11 modules: 

1. Data Acquisition 

2. Data Load 

3. Indicators 

4. Preprocessing 

5. Weight Generator 

6. Strength Score 

7. Utility Functions 

8. Strategy – UCB1 

9. Strategy – Policy Network 

10. Strategy – Policy Gradient 

11. Allocation – UI 

The complete architecture of SLRPO Strategy is available in Figure 4.1 SLRPO 

Architecture. 



 

 

182 

• Each module in the SLRPO Architecture is responsible for one or more of the data 

science techniques to create the SLRPO Investment Framework. 

• Data Acquisition and Data Load modules are responsible for Data collection process 

in the Data Science Life Cycle. 

• Preprocessing module is responsible for Data preprocessing and cleansing in the Data 

Science Life Cycle. 

• Indicators, Weight Generator and Strength Score modules are responsible for Feature 

Engineering in the Data Science Life Cycle. 

• Utility Functions, Strategy - UCB1, Strategy – Policy Network and Strategy – Policy 

Gradient modules are responsible for Model Development and Evaluation in the Data 

Science Life Cycle. 

• Allocation UI is responsible for results review and analysis of the strategies and their 

model results. 

5.2 Research Sub Question One 

What are the key aspects/variables that need to be considered in 

understanding opportunities? 

Understanding opportunities in the Indian Stock markets involves understanding 

the financial and economic data of the stock markets. For this analysis and framework 

development, 23 Technical indicators and 13 Fundamental indicators are considered to 

understand the market sentiment, economic impact, company performance and the share 

price. These concepts are covered in detailed under the Chapter 4, Section 4.4 along with 

explanation. 

A new indicator named ‘Strength Score’ is developed in this thesis to get one 

common feature derived from all of the Technical and Fundamental indicators considered 

for this study such that the feature can exhibit the conslidated impact on the hisorical data 
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of NIFTY 50 stocks. This feature can be applied to any other portfolio of stocks in the 

markets in general. This concept is covered in detailed under the Chapter 4, Section 4.6 

and 4.7 along with explanation. 

5.3 Research Sub Question Two 

What are the various techniques or algorithms that can be explored to 

identify opportunities? 

Reinforcement Learning and Neural Networks are explored extensively to 

develop SLRPO Strategy. 

The concepts behind Upper Confidence Bound (UCB1) algorithm, Policy 

Network, Policy Gradient and Neural Networks are used to develop the 8 strategies that 

generates portfolios and allocations in the SLRPO strategy. 

The techniques are covered in detailed under the Chapter 4, Section 4.9 along 

with explanation. 

5.4 Research Sub Question Three 

How can prescriptive analytics help in developing a decision-making 

framework in the domain of Indian stock markets? 

The complete design of SLRPO strategy in Chapter 4 using various techniques of 

data science has led to developing 8 strategies that generates 1 portfolio each along with 

the allocation of investments in each portfolio and the insights on the portfolio such as its 

total gain, total loss, total returns, cumulative returns and annualized returns for an 

investment of Rs. 100000/- over a period of 4 years starting from 1st Jan 2020 to 30th Jan 

2024. These metrics and the portfolio outcome provides insights on which portfolio to 

choose for long term investments. The portfolio allocations from each strategy is 

different and the number of stocks chosen also differs in the strategies. The choice of 
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strategy depends on the invester risk profile and the opportunity cost involved in 

investing in one profile over the other.  

The comparison of results and the actionable insights from the prescriptive 

analysis of SLRPO strategy will be discussed further in Chapter 6. 
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CHAPTER VI:  

DISCUSSION 

6.1 Discussion of Results of SLRPO Investment Framework 

The SLRPO Investment Framework is made up of 8 strategies. The following 

aspects of all 8 strategies will be reviewed and discussed in this section. 

• No. of Year of investment 

• Investment 

• Total Gain/ Total Loss 

• Total Returns 

• Cumulative Returns 

• Annualized Returns 

All the metrics for the strategies are represented in Table 6.1 

Strategy 

No. 
of 

Years 
Investment 

(INR) 
Total Gain 

/ Loss 
Total 

Returns 
Cumulative 

Returns 
Annualized 

Returns 
Portfolio 

Size 

1 4 
100000 

 
1,69,075.33  

 
2,69,075.33  

169.08% 27.46% 30 

2 4 
100000 

 
1,15,523.89  

 
2,15,523.89  

115.52% 20.71% 7 

3 4 
100000 

 
1,07,096.65  

 
2,07,096.65  

107.10% 19.54% 10 

4 4 
100000 

 
1,67,356.66  

 
2,67,356.66  

167.36% 27.26% 30 

5 4 
100000 

 
1,56,562.61  

 
2,56,562.61  

156.56% 25.98% 30 

6 4 
100000 

 
1,37,566.43  

 
2,37,566.43  

137.57% 23.63% 30 

7 4 
100000 

 
1,34,708.92  

 
2,34,708.93  

134.71% 23.26% 7 

8 4 
100000 

 
1,70,569.52  

 
2,70,569.52  

170.57% 27.63% 30 

 

Table 6.1 Returns and Strategy Metrics 
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The Portfolio allocation recommended by Strategy 8 (Table 4.9) has the 

maximum annualized returns in all the 8 SLRPO Strategies. The other best strategies 

being Strategy 1 (Table 4.2) and Strategy 4 (Table 4.5) respectively. It is to be noted that 

all these three strategies have considered all 50 NIFTY 50 stocks. Hence the risk is 

distributed across the portfolio and is well balance. 

On the other hand, if the investors want to choose a smaller portfolio with better 

annualized returns, the other best options will be Strategy 7 (Table 4.8) , Strategy 2 

(Table 4.3) and Strategy 3 (Table 4.4) respectively. 

Industry Benchmark Analysis 

Fixed Deposit 

Fixed Deposit of money in an bank is the simplest, risk free and a goto form of 

investment for most of the Indian investors. According to Groww (Groww, 2024), the 

interest on fixed deposit across various banks in India ranges between 3% to 7% for an 

investment period between 7 days to 10 years. 

NIFTY 50 Index 

An industry benchmark of annualized returns is considered from NSE for the 

NIFTY 50 stocks. According to NSE (National Stock Exchange of India, 2022), NIFTY 

50 Index has given an annualized returns of 14.2% since June 1999. The annualized 

returns for 5 years was 17.6% and 3 years was 18.2%. 

The goal of the SLRPO strategy is to give better portfolio distribution of the 

NIFTY 50 stocks and a better performance and annualized returns compared to industry 

benchmark. 

6.2 Summary of Findings 

Opportunity Cost Analysis 
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Opportunity cost is the cost incurred in chosing one form of investment over 

another.  

Considering the annualized returns of SLRPO framework as the best form of 

investment. Opportunity cost will be the cost incurred in foregoing SLRPO investment 

strategies for any other known form of investments. 

The following Table shows the opportunity cost of not choosing SLRPO strategy 

for investment. 

 

 
Table 6.2 Opportunity Cost of Foregoing SLRPO 

The Table 6.2 demonstrates the impact of foregoing SLRPO for other investment 

strategies.  

On an average, if none of the SLRPO strategies are chosen but a Fixed Deposit is 

chosen, the opportunity cost would be around 17.4% of Annualized returns and Rs.17434 

in INR per year.  

On an average, if none of the SLRPO strategies are chosen but NIFTY 50 Index 

benchmark is chosen, the opportunity cost would be around 6.4% of Annualized returns 

and Rs.6434 in INR per year. 

Strategy No. of Years

Investment 

(INR)

Annualized 

Returns

Opportunity 

Cost (Fixed 

Deposit at 

maximum 7% 

interest)

Opportunity 

Cost (NIFTY 50 

Index 

Benchmark at 

maximum 18% 

Returns)

Opportunity 

Cost INR  

(Fixed Deposit)

Opportunity 

Cost INR  

(NIFTY 50 

INDEX)

1 4 100000 27.46% 20.46% 9.46% 20460 9460

2 4 100000 20.71% 13.71% 2.71% 13710 2710

3 4 100000 19.54% 12.54% 1.54% 12540 1540

4 4 100000 27.26% 20.26% 9.26% 20260 9260

5 4 100000 25.98% 18.98% 7.98% 18980 7980

6 4 100000 23.63% 16.63% 5.63% 16630 5630

7 4 100000 23.26% 16.26% 5.26% 16260 5260

8 4 100000 27.63% 20.63% 9.63% 20630 9630

Average 

Opportunity 

Cost

17.4% 6.4% 17434 6434
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Considering most of the Indian investors choose Fixed Deposit as the safest and 

risk free form of investment, the overall opportunity cost is significantly higher. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

189 

CHAPTER VII:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

7.1 Summary 

Informed decision making in the Indian stock markets is possible with the right 

kind of data analysis, applications of data science techniques and domain knowledge to 

understand the markets and the data. SLRPO is an investment strategy that is developed 

in this thesis by considering all of these aspects of Indian Stock markets. 

SLRPO strategy is designed by applying various techniques of data science, 

machine learning, deep learning and portfolio optimization on Indian Stock markets. 

Opportunity cost of investing in Industry Benchmarks vs SLRPO Strategy was 

studied and analyzed in this research.  

From the overall analysis of the results in Chapters 5 and 6, it is evident that a 

beneficial framework and strategy can be developed when data is analyzed with the help 

of right tools. 

7.2 Implications 

The SLRPO investment strategies developed in this thesis is global in nature and 

its applications can be extended to different stock markets, different set of stocks and 

different portfolios not only in the Indian market but also in the Global markets. 

The prescriptive nature of the SLRPO strategy provides required information to 

make informed investment decisions. It is important to choose the portfolios according to 

the individual risk profiles, understand the nature of stocks that are provided as input to 

the strategies, understand fundamentals of the comanpanies chosen for investment and 

make informed decisions. 

7.3 Recommendations for Future Research 
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The opportunity for future research lies in the choice of data science techniques, 

choice of feature engineering and the choice of input data in building similar investment 

strategies. 

Reinforcement learning specifically focused on Upper Confidence Bound, Policy 

Network, Policy Search and Policy Gradient were the techniques chosen for this research. 

There are opportuities to expland further with other aspect of reinforcement learning and 

other machine learning algorithms. 

The focus of this research was to provide actionable insights through prescriptive 

analyics. There are opportunities to do further research using predictive models and 

regression techiques. There are also opportunities to build recommendations using 

Generative AI and Large Language Models. 

7.4 Conclusion 

This research started with an extensive literature review of around 615 research 

papers in the domain of Indian stock markets and data science. Throughout the review, 

there were hundreds of techniques used to understand the markets and predict future 

stock prices for individual stocks while there was minimal research in developing 

portfolio recommendations and actionable insights. The SLRPO Investment strategy and 

the Stocks Stength Score developed in this research will act as important tools to provide 

actionable insights, portfolio recommendations and opportunity cost as well as 

opportunity analysis in Indian stocks markets for an informed decision making. The 

novel approach taken in developing SLRPO strategy using multiple combinations of 

Reinforcement learning techniques will pave a way for a new direction of analysis that 

can be performed on the stock markets. The SLRPO strategy provides actionable insights 

to an investor for informed decision making along with information that helps the 
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investor to choose between one investment vs another for better outcomes from an 

investment. 
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