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ABSTRACT 

 

LEVERAGING USER AND ENTITY BEHAVIORAL ANALYSIS AND MACHINE 

LEARNING FOR LOG-BASED ANOMALY DETECTION 

 

 

SHARIE R NATH 

2024 

 

 

 

Dissertation Chair: <Chair’s Name> 

Co-Chair: <If applicable. Co-Chair’s Name> 

 

As enterprise businesses increasingly migrate to the cloud for enhanced scalability and 

simplified management, the demand for robust network observability through log analysis has 

surged. Security Information and Event Management (SIEM) systems are pivotal in this 

landscape, ensuring smooth operations by analyzing log files. Integrating User and Entity 

Behavior Analytics (UEBA) with SIEM systems enhances reliability, rapidly identifies abnormal 

activities, and minimizes potential damage, thus achieving critical business objectives. Despite 

the promise of UEBA, significant challenges persist in a cloud-based environment, including the 

analysis of massive log volumes, high false alarm rates, and resource constraints. 

The study's objectives include preprocessing structured logs for exploratory data analysis, 

assigning risk scores using UEBA, and identifying anomalies through machine learning 

techniques. This approach aims to create a simple yet effective UEBA and ML-based Log 

Anomaly Detection system that is affordable for small and medium enterprises (SMEs). The 

research addresses notable gaps in behavioral analysis for log anomaly detection, emphasizing 
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the need for automated log preprocessing methods to efficiently manage large and complex log 

data volumes. 

This research delves into the existing literature on UEBA-based log anomaly detection 

within the cloud ecosystem, evaluating computational and performance efficacy using the BGL 

Dataset. Various machine learning models—such as XGBoost, Random Forest, Neural 

Networks, and Isolation Forest—are compared to identify a model that optimally balances false 

alarm rates and computational time. The results indicate that while UEBA techniques generally 

increase training times, they significantly reduce prediction times, thereby enhancing real-time 

performance. Among the models studied, XGBoost emerges as the optimal choice due to its high 

performance and computational efficiency. 

In summary, this thesis presents a critical review of UEBA-supported log anomaly 

detection, aiming to identify performance improvements and optimal machine learning models 

for superior anomaly detection. This research highlights the necessity for a benchmark UEBA-

based log anomaly dataset, further contributing to the advancement of the research community in 

this domain. This research highlights the potential of UEBA-enhanced machine learning models 

to provide reliable, efficient, and cost-effective solutions for anomaly detection, particularly 

benefiting SMEs with limited resources. The findings enable businesses to design robust cloud 

log-based SIEM systems that achieve significant cost savings, reduce false positives, improve 

threat response, and proactively mitigate evolving cybersecurity threats, ultimately protecting 

assets while maintaining stakeholder trust. 

 

KEYWORDS: UEBA, Log Anomaly Detection, Machine Learning, BGL Dataset, Entity Score, 

SIEM, Cloud Migration  
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CHAPTER I: 

INTRODUCTION  

1.1 Introduction 

Enterprise business solutions are increasingly migrating to the cloud ecosystem owing to 

its scalability and simplified management. As the dependency on cloud storage for deploying 

critical applications and services is increasing, the demand for network observability 

(Sumologic, 2020) also increases for maintaining reliability and transparency. Log files are the 

main source of network observability as they contain information about usage, operating system 

events, and activities. Log analysis plays an important role in implementing Security Information 

and Event Management systems (SIEM) for any enterprise business to function smoothly. 

Logs are auto-generated records that capture computational system events. It contains 

information regarding system processes, running applications, network accesses, resource 

allocation, usage behaviors, and error and warning events related to the system. By reviewing the 

logs system administrators or security analysts can troubleshoot and figure out the root cause of 

an issue, carry out preventive maintenance, or identify abnormalities. (Yadav, Kumar and 

Dhavale, 2020). The log analysis helps understand system behavior, malfunctioning detection, 

security scanning, and failure prediction. 

However, the emergence of big data presents challenges in analyzing and detecting 

anomalies in logs due to the vast volumes of unstructured and varied messages gathered from 

diverse sources. (Liu et al., 2018; Landauer et al., 2020). Extensive preprocessing and domain 

knowledge is required for manipulating system logs into a structured entity which involves steps 

such as overview and filtering, log parsing and extraction of signature, static outlier detection, 

and sequences and dynamic anomaly detection. Machine learning (ML) and Deep Learning (DL) 

methods have been proven potent tools for data classification problems and have been applied to 

various fields of research. Various studies have been conducted successfully using ML and DL 
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techniques such as NLP, BERT, LSTM, RNN, etc for preprocessing, analysis, and anomaly 

detection from system logs. 

Security Information and Event Management systems (SIEM) play several critical roles 

within organizations, functioning as a central repository for compliance records, audit trails, and 

forensic data. They also serve as a monitoring platform for pertinent security alerts and data, 

establishing a unified and real-time source of prioritized alerts throughout an organization. The 

present generation of SIEM solutions employs diverse analysis methods such as correlation, 

statistical deviation, and machine learning to recognize potential threats and other noteworthy 

events. Their objective is to empower enterprises to convert raw alert data into actionable 

intelligence, utilizing the most effective analysis method based on specific monitoring goals. 

Recently several vendors like Splunk Technologies, Varonis, and Force Points started a 

new trend of integrating User and Behavior Analytics (UEBA) with SIEM to improve reliability 

and achieve real business objectives. Traditional antivirus and firewall software scans the file 

system for any indication of attacks or infection. UEBA systems on the other hand mainly focus 

on user activities both normal and abnormal, which resources or entities are being used, how 

frequently being retrieved, who has done and when, and what has been done through behavioral 

profiling, risk scoring, and timeline analysis. 

The Gartner Market Guide for User and Entity Behavior Analytics (UEBA) (Market 

Guide for User and Entity Behavior Analytics) highlights a trend where few vendors offer 

standalone UEBA technologies, while the majority integrate UEBA as a service within existing 

cybersecurity products. Notable standalone UEBA solutions include Aruba IntroSpect, Fortinet 

FortiInsight, Gurucul Risk Analytics, Splunk-Caspida, and Securonix. These solutions employ 

advanced machine learning, behavior analytics, and risk scoring for threat detection, offering 

features such as account takeover detection, regulatory compliance support, and forensic-level 

reporting. However, most of the SIEM solutions like Splunk(What is User Behavior Analytics 

(UBA) and User Entity Behavior Analytics (UEBA) | Splunk) deploy anomaly-based or event or 

instance-based risk scoring. A new trend is set by UEBA solutions like Aruba IntroSpect and 
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Microsoft Sentil where user or entity-based Risk score calculation is deployed for enhanced  

SIEM capabilities and cyber attack defence. Quantifying abnormal behavior scores and 

providing contextualization are crucial for UEBA solutions, requiring the application of data 

science and machine learning in cybersecurity. 

 

 

 
Figure 1-1  Deterministic Vs Anomaly Analytics 
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The evolving threat landscape necessitates a holistic analytics approach for effective 

defense against complex attacks. User and Entity Behavior Analytics (UEBA) solutions employ 

multiple analytical approaches such as deterministic analytics and anomaly analytics (‘A Guide 

to User and Entity Behavior Analytics ( UEBA ) ') to effectively defend against attacks.  

Deterministic or Scenario-based analytics rely on predefined logic rules to identify predictable 

attack patterns in real-time. Scenario-based analytics recognize Tactics, Techniques, and 

Procedures (TTPs), while Anomaly analytics, utilize machine learning to detect unusual activity. 

Anomaly analytics uses behavioral profiling and risk scoring to enhance anomaly detection. 

Figure 1-1 compares deterministic vs. anomaly analytics. 

 

 

Figure 1-2 SIEM / UEBA Convergence  

Source : Gartner( 2019) 



5 

 

 UEBA techniques by themselves could not prevent threats and attacks in an enterprise 

system, but when incorporated with state-of-the-art detection techniques, could help detect 

suspicious activity across the entire spectrum of complex threats instantly minimizing damage 

and thereby increasing revenue. Also, UEBA-based SIEM helps in reducing false alarms in 

anomaly detection by profiling normal behaviors. Figure 1-2  depicts that modern SIEM is a 

convergence of SIEM and UEBA. Corporate giants Amazon and Microsoft are now extensively 

researching UEBA techniques for enterprise security solutions for extending the principles to 

areas of APT detection, cyber forensics, identity profiling, and customer behavior modeling. This 

indicates the scope and future of behavioral analysis-supported anomaly detection for mitigating 

risks and in-depth analysis in enterprise security solutions. 
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        1.2 Research Problem 

A detailed review of the literature indicates that Behavioral Analysis and Anomaly 

Detection using Log files is a developing topic and of immense significance due to its 

explanatory and predictive aspect. UEBA is an area of inquiry in data analytics and is limitedly 

exploited by researchers in a log analysis context.  Behavioral analytics and Risk Scoring aids in 

characterizing anomaly candidates and also reducing false alarms (Liu et al., 2018)  

Recently Data Analytics for behavioral research termed Behavioral Analytics is emerging 

as a research trend in Management Information Systems due to its ability to integrate explanatory 

and predictive model building.  Rapid advancements in social media, sensing technologies, and 

mobile computing demand novel ways to analyze user perspectives for improving, 

recommendation systems and adaptive interfacing. The survey by Motiwalla et al., (2019) 

investigates the numerous studies made on behavioral approach wherein user interactions and 

behavior are also considered along with user attributes such as emotion detection for text, 

images, and video, fraud detection in crowdfunding to name a few. 

Limited progress has been made in Behavioral analysis for Log Anomaly Detection 

especially in a cloud-based environment (Liu et al., 2018). The system log behavior approach 

deals with user and entity-based analysis. The major hurdle in the log-based behavioral analysis 

would be analyzing massive volumes of logs to extract the WHO, WHICH, and HOW factors of 

an anomaly rather than the WHAT factor of the anomaly as in conventional approaches. Also, 

user or entity activity-based risk score calculation for user profiling in UEBA is an underutilized 

area that can be well explored for performance improvement. In general, from the existing 

literary works, it can be inferred that although UEBA provides an effective solution in terms of 

detecting anomalies from the log data certain challenges like increased false alarm rate, risk 

score calculation, computational time, and resource constraints need to be addressed. 
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1.3 Purpose of Research 

 

This study aims to leverage user and entity behavioral analysis along with state-of-the-art 

machine learning techniques to analyze the system logs and identify anomalies with the least 

manual intervention. The objectives of the study are to: 

1. To preprocess the structured logs to conduct exploratory data analysis and feature 

selection to get valuable insights. 

2. To analyze the structured logs using the User and Entity Behavior approach to 

assign the Entity and Risk scores to the entities. 

3. To identify anomalies from the preprocessed log data using machine learning 

techniques and evaluate the performance 

 

1.4 Significance of the Study 

 

A critical review of the literature shows that the need of the hour is an automatic log 

analysis and anomaly detection method for online proactive monitoring in SIEM. When such a 

robust anomaly detection is supported by the UEBA approach the SIEM could bring about the 

identity of anomalies promptly thereby preventing and reducing the damage caused by cyber 

attacks. To maximize the effectiveness of such a security solution and to be made affordable by 

small and medium enterprises (SMEs), simplicity in machine learning models and improved 

detection capabilities over model complexity are to be prioritized. The study aims to develop 

such a simple yet affordable UEBA and ML-based Log Anomaly Detection with superior 

detection capabilities. 
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1.5 Research Purpose and Questions  

On the ground of a comprehensive literature review conducted on UEBA-supported Log-

based Anomaly Detection, the research aims to analyze the performance improvement offered by 

UEBA techniques and to figure out a simple Machine Learning model for superior Log Anomaly 

Detection. 

The following research questions may be formulated: 

1. How much computational and performance efficacy can be brought out by 

leveraging UEBA techniques for log analysis? 

2. Which machine learning technique will predict anomalies from the structured log 

with optimal computational performance and reduced false alarm rate. 

3. What is the impact of UEBA-based Log Anomaly Detection on small and 

medium enterprise businesses? 
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CHAPTER II: 

REVIEW OF LITERATURE 

2.1 Literature Review Objectives 

 

The ever-growing dependency on digital systems and the increasing volume of data 

generated through different entities have posed a significant challenge to maintaining the 

integrity and security of the data. In the realm of cybersecurity, one of the critical aspects is the 

detection of anomalous behavior within log data. Logs, which capture various activities and 

events in a system, serve as valuable sources of information for identifying potential security 

breaches, system malfunctions, or malicious activities. Traditional rule-based approaches and 

manual analysis methods are ineffective in dealing with the complexity and scale of log data and 

this necessitates the implementation of advanced techniques such as machine learning and user 

and entity behavior analysis (UEBA) for effective log anomaly detection.  

Machine learning (ML) techniques have gained significant attention because of their 

excellent performance in various domains due to their ability to automatically learn patterns and 

anomalies from data. By leveraging algorithms and statistical models, ML techniques can 

discover hidden relationships and abnormal behaviors within log data, facilitating the detection 

of anomalous activities that may indicate security threats or system irregularities. Furthermore, 

the integration of user and entity behavior analysis adds a layer of context and understanding by 

considering the behavior of individual users or entities and detecting deviations from their 

established patterns. 

This chapter will provide a brief introduction to the implementation of ML algorithms 

and UEBA for detecting log anomalies in the system and also discuss the user and entity 

behavior analysis. The preliminary objective of this chapter is to explore the state-of-the-art 



10 

 

approaches and methodologies in log anomaly detection using ML and UEBA. By reviewing the 

existing literature, this chapter aims to explore the methodologies involved in the anomaly 

detection process and provide a comprehensive overview of log anomaly detection. This chapter 

will serve as a valuable resource for researchers, practitioners, and organizations seeking to 

enhance their cybersecurity posture by effectively detecting and mitigating anomalous activities 

within their systems. 

The structure of this literature review chapter is as follows: Section 2.2 highlights the 

important factors for adopting the concept of machine learning. Section 2.3 explores the existing 

approaches and methodologies proposed in the literature related to the concept of UEBA and 

reviews existing works related to the concept of UEBA. Section 2.4 discusses the analysis of the 

existing literature works and different studies related to anomaly detection and user and entity 

behavior analysis using machine learning. Section 2.5 reviews recent research works done on the 

implementation of deep learning for log anomaly detection and behavioral analysis, Section 2.6 

analyses the Log datasets utilized in the UEBA and IDS landscape. Section 2.7  provides a 

comprehensive gap analysis focusing on the application of ML, DL, and UEBA methodologies 

in log anomaly detection. Section 2.8 concludes the literature review by summarizing the key 

findings and outlining potential research opportunities. 
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2.2 Important Factors for Technology Adoption 

 

Theory of Reasoned Action (TRA) is one of the extensively used theoretical frameworks 

that is implemented to understand and analyze human behavior in different domains (LaCaille, 

2020). In the context of log anomaly detection using ML and UEBA, the TRA framework 

provides a valuable lens through which to examine the factors influencing the adoption and 

effectiveness of such systems. TRA was developed by Martin Fishbein and Icek Ajzen (Ajzen & 

Fishbein, 1980) which asserts that behavior is influenced by three key factors: behavioral 

intention, attitude, and subjective norms (Otieno et al., 2016). Behavioral intention reflects a 

person's readiness and willingness to engage in a specific behavior. Attitude refers to their 

evaluation of that behavior, while subjective norms involve the perceived social pressure or 

expectations related to it. According to TRA, these three factors play an important role in 

shaping an individual's intention to engage in a particular behavior, which, in turn, influences 

their actual behavior (Glanz et al., 2015). 

In this research, TRA is employed to understand and analyze the factors that influence 

the adoption and usage of ML and UEBA for detecting and mitigating log anomalies. Users' and 

administrators' attitudes toward these technologies and their perception of their benefits affect 

their intention to use them. Factors like ease of use, perceived usefulness, and compatibility with 

existing techniques shape user attitudes. Additionally, subjective norms, including the influence 

of peers, supervisors, and administrators within an organization, play a crucial role. If these 

entities consider log anomaly detection valuable, its adoption and utilization are more likely. 

TRA helps in understanding behavioral intention, attitude, and subjective norms, which is 

essential for successful implementation. 
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Culture is a significant factor affecting technology adoption in this context. It 

encompasses shared beliefs, values, and practices, influencing attitudes and behaviors. Cultural 

factors impact trust, user interface preferences, and organizational norms, all of which affect the 

adoption of log anomaly detection techniques. Understanding and addressing cultural aspects can 

enhance user acceptance and the effectiveness of these technologies. 

In conclusion, TRA provides a valuable framework for analyzing the adoption of ML and 

UEBA for log anomaly detection, while recognizing the critical influence of culture in shaping 

user behavior and attitudes toward these technologies. This understanding can inform the design 

and implementation of these techniques to better fit diverse cultural contexts  
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2.3 User and Behavior Analytics (UEBA) 

 

UEBA is a cybersecurity framework that uses advanced data analytics, ML, and 

behavioral modeling techniques for detecting and mitigating anomalies in the network (Raguvir 

& Babu, 2020). UEBA analyzes the behavioral aspects of the users such as employees, 

administrators, etc., and entities such as applications and servers to identify the abnormalities in 

the network patterns and detect security threats in the early stage of occurrences. UEBA 

monitors and analyzes user and entity behavior and identifies anomalies in the network that are 

not detected by conventional rule-based security techniques. UEBA models collect a huge 

volume of data from different sources such as log files, access logs, and network traffic database 

and system events. This data is processed using ML models to distinguish normal behavior from 

anomalous behavior to identify potential security threats (Sharma et al., 2020).  

Several research works have adopted UEBA for log anomaly detection and this section 

reviews existing works that have implemented UEBA. Currently, most organizations have 

adopted the policies and compliances of Security Information and Event Management (SIEM) 

for detecting insider security threats (González-Granadillo et al., 2021). However, the increase in 

the volume of insider threat information also increases the number of false alarms. It is highly 

challenging to reduce the number of false alarms by processing such a large volume of data. In 

addition, this process consumes more time and needs additional manual intervention and 

computational resources. It is essential to address these problems by developing a robust 

anomaly detection model using advanced and sophisticated techniques. 

The work proposed by (Liu, 2021) addresses insider threat detection in the context of a 

"digital new era". It highlights the challenges of false alarms and context deficiencies in 

traditional Security Information and Event Management (SIEM) approaches due to the 
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increasing volume of insider information data. The proposed solution involves developing an 

insider threat detection system based on User and Entity Behavior Analysis (UEBA). An 

improved LSTM-GaN insider threat detection algorithm is introduced. The study discusses the 

extensibility of the proposed system, considering loose coupling for each module, and suggests 

further work on exception detection for various attacks. The experimental results indicate an 

accuracy rate of 91.14% with specific parameter settings. 

The study by (Tao et al., 2020) proposes a novel approach for modeling user behavior 

profiles in mass customization manufacturing by introducing a multi-dimensional semantic 

activity space. The method integrates data from diverse subsystems, addressing the limitations of 

individual domain-based models. The authors validate their approach using log data from 

isolated systems and demonstrate the classification of users based on behavior patterns and 

statistical indicators. Challenges in multi-source heterogeneous data fusion are acknowledged, 

and future research directions include applying advanced prediction approaches. The study 

emphasizes the importance of log preprocessing in effective user behavior mining and presents 

findings on user activities across a corporate network from various locations. 

The paper (Muliukha et al., 2020)  introduces an intelligent system prototype focusing on 

advanced analytics for integrated security in information and cyber-physical systems. 

Unsupervised machine learning, specifically Isolation Forest and Local Outlier Factor methods, 

is applied for anomaly detection in corporate networks The study addresses the static nature of 

security policies in corporate networks, emphasizing the constantly evolving methods of cyber-

attacks. The user interface facilitates analytics and control through a web interface. Data analysis 

involves aggregating information with a specified time interval for machine learning. Results 

show Isolation Forest's superiority in the proposed task, attributed to its more complex crucial 
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function. The paper also discusses the use of Security Information and Event Management 

(SIEM) solutions and explores the limitations of the Mahalanobis distance method, suggesting 

Siamese networks and autoencoders for improved anomaly detection in certain scenarios. 

An UEBA-based approach is proposed (Rengarajan & Babu, 2021) which continuously 

monitors user profiles along with other details such as data usage, IP address, location of the user 

their affiliation to the organization, and their period of association. Based on these factors the 

activities are classified into normal usage and anomalies. The data is represented visually using 

data visualization tools for creating a visual representation of the data for analyzing and detecting 

anomalies. The paper discusses the challenges faced by organizations in monitoring and 

controlling user behavior to prevent data breaches and cyberattacks. The study focuses on the 

behavior of users accessing corporate networks from various locations, exploring usage 

frequency, location details, and services utilized. The analysis involves basic statistical methods 

to identify anomalies in user behavior patterns. The paper highlights the potential of UEBA in 

enhancing cybersecurity by detecting and preventing anomalous user activities. 

A comprehensive analysis of UEBA and its role in detecting insider threats and attacks is 

presented in (Khaliq et al., 2020). The study discussed different frameworks used in UEBA 

including both user and role-based detection, calculation of risk score, activity mapping of user 

and entity, and user profiling approaches. The work also discussed the details of UEBA 

techniques proposed in existing literary works and provided a structured approach to 

understanding the possible UEBA solutions. The study also highlighted the fact that there is a 

deficit of an effective approach that can provide a robust solution for all UEBA problems. UEBA 

reduces the influence and effect of potential security attacks on the data and minimizes the risk 

of security breaches by tracking the behavior of normal users and entities. The study emphasizes 
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that organizations must implement security control using UEBA for securing the data by 

identifying the threats and attack occurrences in the preliminary stages. However, the cost of 

deploying such security solutions can be significantly high and it becomes economically difficult 

for small and medium organizations. 

The work presented (Rashid & Miri, 2021) provided a solution for organizations by 

outsourcing the UEBA to third-party entities. However, there is a risk of disclosing private data 

while outsourcing the data. Hence, this work proposes a novel approach that integrates 

differential privacy into UEBA. The analysis of the approach states that instituting noise into the 

data before outsourcing it to third-party entities for detecting anomalies. The outcome of the 

analysis shows that the introduction of noise before outsourcing the data can strengthen the 

integrity and privacy of the data while simultaneously allowing the third parties to accurately 

analyze UEBA without increasing the cost. The efficacy of the proposed approach is validated 

through the results.  

The authors (Kaur et al., 2022) discussed the analysis of UEBA with the help of a 

specific case study. Several organizations have adopted Amazon Web Services (AWS) for cloud 

migration since it is considered one of the leading technologies in the current times. The work 

mentioned in (Kaur et al., 2022) used AWS as a case study for analyzing the behavior of the user 

based on their activities. The proposed approach identifies the anomalies and classifies the user 

according to their activities.  

The paper  (Sharma, Pokharel and Joshi, 2020a) introduces an unsupervised user 

behavior modeling approach using an LSTM-based Autoencoder for anomaly detection, focusing 

on insider threat detection from log data. The method calculates reconstruction errors on a non-

anomalous dataset to set a threshold for identifying anomalies. The CERT insider threat dataset 
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is used, extracting feature vectors from raw events to train the LSTM Autoencoder. The 

experimental results indicate an Accuracy of 90.17%, True Positives of 91.03%, and False 

Positives of 9.84%. The research emphasizes the significance of monitoring user behavior to 

enhance cybersecurity and protect against potential insider threats, showcasing the effectiveness 

of the proposed approach in automatic anomaly detection. 

The paper (Rasheed Yousef and Mahmoud Jazzar, 2021) focuses on evaluating the 

effectiveness of User and Entity Behavior Analytics (UEBA) for preventing insider threats. The 

tests and simulated scenarios encompass monitoring user behaviors, establishing baselines, and 

assessing the impact of false positives. The UEBA system compares the baseline with current 

user behavior, assigning a risk score to deviations. The results indicate that UEBA is effective in 

detecting insider threats and reducing false positives, showcasing a 44.3% growth in the global 

UEBA market from USD 185.6 million in 2017 to an expected USD 2453.4 million in 2024. The 

experiments were conducted over two weeks, monitoring 530 events and generating 103 events 

with confidence scores.  

This paper (Deng et al., 2021)proposes an approach for analyzing user behavior in 

complex power grid environments using unsupervised learning. The Adaptive Feature Selection 

algorithm based on Stacked Autoencoder and Unsupervised Learning (AFS-SAEUL) is 

introduced to reduce the complexity of user behavior data. Subsequently, a User Behavior 

Analysis model based on Adaptive Feature Selection and Improved Clustering (UBA-AFSIC) is 

developed, enhancing unsupervised classification by incorporating an adaptive generation 

strategy for initial cluster centers. Experiments on real load datasets and a public electric vehicle 

dataset show that AFS-SAEUL achieves a higher feature selection ratio and better-unsupervised 

classification performance. UBA-AFSIC outperforms other clustering models, demonstrating a 
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lower Davies Bouldin Index (DBI) and higher Silhouette Coefficient (SC). The study provides 

insights into electricity consumption patterns and electric vehicle charging behaviors, offering a 

basis for future user planning and marketing. 

This paper  (Alghayadh and Debnath, 2021)introduces a Hybrid Intrusion Detection 

(HID) system for securing smart home systems against cyber threats. The proposed system 

utilizes machine learning algorithms, including Random Forest, XGBoost, Decision Tree, K-

Nearest Neighbors, and misuse detection techniques. It aims to protect smart homes by analyzing 

both network and user behavior and addressing vulnerabilities in IoT-based smart home systems. 

The research emphasizes the need for adaptive security and privacy measures to mitigate the 

risks associated with smart home devices. Experimental results indicate varying accuracies for 

different algorithms, with K-Nearest Neighbors achieving the highest accuracy of 95.9% in the 

CSE-CICIDS2018 dataset. The proposed HID system demonstrates effectiveness in detecting 

anomalies and securing smart home networks. For the NSL-KDD dataset, Random Forest was 

the most successful algorithm with an average accuracy rate of 98.6%. 

This paper (Anashkin and Zhukova, 2022)discusses the evolutionary development of 

indicators for monitoring and threat detection, aiming to create a unified descriptive structure for 

behavioral indicators. The proposed description standard seeks to establish an open database of 

behavior indicators, forming the basis for a user action profiling system. The integration of 

behavioral indicators into cyber threat monitoring and detection is highlighted, to develop an 

accessible indicator database. The resulting behavioral indicator description structure includes 

fields and typical event sources, facilitating the automated creation of correlation rules for SIEM 

systems. The paper also emphasizes the advantages of using behavioral indicators for focusing 
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on malicious intent and detecting time-distributed attacks. Future work will concentrate on 

developing algorithms for modeling and detecting behavioral indicators from various log events. 

A novel framework and design for the UEBA system is presented and deployed by 

(Lukashin et al., 2020). Experimentation was performed considering devices from Cisco ASA, 

network firewalls, and different events in the system which exhibited better outcomes in terms of 

detecting anomalous behavior. The work also described different techniques for handling semi-

structured data obtained from different sources with the aid of several anomaly detection 

techniques. 

 A technique for constructing the features from hybrid data streams from different SIEM 

techniques is presented in this work. This work also determined the scalability and efficiency of 

the proposed approach. Several approaches have been introduced in previous works to reduce the 

security issues related to network systems with an emphasis on UEBA (Salitin & Zolait, 2018; 

Dai et al., 2022; Salitin & Zolait, 2023). However, transparency is one of the unsolved 

challenges which needs more attention.  

Traditionally, the data is stored in chronological order for preventing the tampering and 

exploitation of data and this technique assures the privacy and traceability of the data. A UEBA 

framework is presented in (Khan et al., 2022) which studies the profile of the users over a period 

of time and categorizes them either as normal or malicious. The proposed approach incorporates 

detailed information such as the location of the data stored, organizational information IP 

address, etc. The study also focuses on applying data science and analytical techniques for 

creating data visualization for identifying anomalies. 

 An efficient approach based on UEBA is proposed in (Martin et al., 2021) for improving 

the security of the Federated Identity Management (FIM) solutions. The UEBA-based 
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framework deployed in this work enables different entities within the federations to develop a 

session fingerprint that defines the character of the user’s behavior which is accessed based on 

the available data. In addition, the proposed approach also enabled anomaly detection using the 

fingerprint details which also incorporated the mechanism of raising alerts upon identifying the 

anomalies. The approach addresses challenges in FIM, such as pre and post-authentication 

scenarios, online and offline modes, and integration with existing specifications. The efficacy of 

the proposed approach is determined and validated using a real-time case study based on a web 

chat application using an OpenID connect for accurately identifying the users. Experimental 

results focus on machine learning models for UEBA, with considerations for imbalanced 

problems and the importance of recall in critical infrastructure settings. 

(Martín et al., 2022) presents a novel method for continuous authentication using User 

and Entity Behavior Analysis (UEBA) techniques to enhance security systems beyond traditional 

password-based approaches. The method combines information from multiple sources at the 

feature level, employing Symbolic Aggregate approximation (SAX) and Random Trees 

Embeddings for temporal representation. Behavioral cores are extracted using density-based 

clustering, and a risk model is applied for anomaly detection, specifically user impersonation. 

The proposed method outperforms state-of-the-art models when considering sufficient 

information. Empirical results demonstrate the accuracy of the approach, with potential 

applications in various domains beyond continuous authentication, such as detecting temporal 

anomalies in finance or health monitoring. 

In general, UEBA leverages the advantages of anomaly detection methods for 

recognizing attacks and potential security threats based on the behavior patterns of the user 

profiles and risk score calculations. The profile data is obtained from the historical log data. 
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However, it is highly challenging to obtain log data due to the lack of availability of real log 

datasets which is appropriate for UEBA. Most of the existing datasets are not publicly available 

which restricts the comparison of different objects and reproducibility of techniques for anomaly 

detection (Landauer et al., 2022). Most of the existing works make use of synthetic data to 

alleviate this problem to a certain extent because simulations are not effective enough for 

handling the dynamic and volatile nature of the user behavior in real-time from the existing log 

data.  

Hence, a real-time log dataset is presented by (Landauer et al., 2022)  from a cloud 

computing environment that consists of more than five thousand users for a period of more than 

five years. The dataset is evaluated considering a case study related to account hijacking. The 

proposed framework is designed for detecting the possible injection of attacks and thereby 

identifying the resulting inferences related to anomaly detection. An adaptive anomaly detection 

mechanism is employed to analyze the dataset, revealing diverse and erratic user behavior 

patterns in real cloud computing environments. The dynamic and unstable nature of the log data, 

influenced by long-term changes in system utilization, is emphasized. The authors provide a 

method for attack injection, simulating account hijacking, and evaluating the resulting 

manifestations in the log data using the adaptive anomaly detection mechanism. They also 

discuss plans for injecting other types of anomalies in the data for future work. The chosen trade-

off parameters for the anomaly detection mechanism include a queue size of 30, and a threshold 

of 0.6, resulting in a true positive rate of 65%, and a false positive rate of 4.6%. 

Risk scoring is proven to be a performance-enhancing feature of UEBA solutions and the 

UEBA-based anomaly detection methods majorly deploy anomaly or event or instance-based 

risk score calculation. A notable trend of using user profile-based risk scoring is employed in 
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notable UEBA-based SIEM providers such as Aruba IntroSpect and Microsoft Sentinel to 

enhance SIEM capabilities. However, user profile or activity-based risk score calculation is 

under-exploited by existing literature studies. Microsoft Sentinel uses an Investigation Priority 

Score for its UEBA solution as shown in Figure 2-1. Investigation Priority Score is a weighted 

score of Alert Score and Activity Score. Alert Scoring comprehends the potential impact of a 

specific alert on individual users. The scoring considers severity, user impact, and alert 

prevalence across users, and all entities within the organization. Activity Scoring assesses the 

likelihood of a specific user engaging in a particular activity through behavioral learning from 

the user and their peers. Activities identified as highly abnormal receive elevated scores, aiding 

in prioritizing potential threats effectively. 

 

 

Figure 2.1  

User Page with Investigation Priority Score in Microsoft Sentinal 

Source: Microsoft. (2023). Introducing investigation priority built on user and entity. Microsoft 

Tech Community 

 

A detailed review of Risk score-based user profiling done by (Khaliq, Abideen Tariq and 

Masood, 2020) indicates that the process involves categorizing security events by domain, 

assigned role, priority, and reliability. The risk score is calculated periodically as the product of 

event priority, asset value, and the confidence of the detection system. If an event's risk score 

exceeds a predefined threshold, an alert is generated. The correlation process links different 

events, resulting in a combined risk score. Aruba IntroSpect, a commercially available UEBA 

system employs this approach, utilizing over 100 supervised and unsupervised machine learning 
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algorithms. In the detection process, anomalies or malicious activities trigger events, providing 

severity and confidence scores ranging from 0 to 100. The severity score indicates the event's 

importance, while the confidence score reflects the detection system's accuracy probability. 

     Challenges associated with UEBA 

It can be inferred from existing literary works that although UEBA provides an effective 

solution in terms of detecting anomalies from the log data, certain challenges need to be 

addressed. This research identifies some of the prominent challenges which are summarized as 

follows; 

(i) Duration of Training Data: The time required for training the model is usually high 

and deciding an appropriate size for the dataset is a challenging task to develop a baseline profile 

for analyzing all possible events during log detection. 

(ii) Reducing False Positives: Due to large data volumes, it is difficult to detect log 

anomalies with high accuracy and in most cases, the effectiveness of the anomaly detection 

techniques is affected due to the increase in the rate of false positives. The increased number of 

false positives makes it difficult for security professionals to raise alerts. 

(iii) Data Quality and Volume: UEBA depends majorly on large volumes of indistinct 

data sources, such as log files, user activity logs, network traffic data, and system logs. It is 

significantly complex to understand the quality and reliability of the data in complex and 

heterogeneous IT systems. 

(iv) Resource Constraints: The adoption of UEBA can be resource-intensive since it 

requires more computational power and storage. Small and medium organizations or those with 

limited resources may face challenges in adopting UEBA solutions. 
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(v) Risk Score Constraints: Risk score calculation in UEBA can enhance anomaly 

detection by giving an empirical dimension to the users, entities, and abnormalities. However, 

adopting a suitable methodology for risk calculation is required for reducing false alarms. 

These challenges can be addressed by combining different technologies with precise 

domain expertise along with a comprehensive understanding of the security requirements for 

different scales of organizations.  

2.4 Machine Learning Models 

 

Machine learning (ML) is a subcategory of artificial intelligence that emphasizes the 

design and development of algorithms and statistical models that enable computerized systems to 

learn and make decisions or predictions without explicit programming. Particularly, ML enables 

computers to learn from and adapt to data, improving their performance over time without being 

explicitly programmed for each specific task (Dogo et al., 2019; Al-amri et al., 2021). ML is 

used in a broad variety of application areas, such as speech processing, language understanding, 

and Computer vision (Patel & Thakkar, 2020; Chai et al., 2021). Such programs need to get 

useful information from massive measurements of user behavior information, historical data, etc. 

which are frequently produced quickly everywhere throughout the world. It was observed that 

ML algorithms achieve breakthrough performance by solving current and future security 

problems of network systems. The performance of different ML algorithms is reviewed in this 

section in terms of log anomaly detection and attack detection.  

(i) Support vector machine (SVM): SVM is a supervised ML algorithm and is one of 

the efficient and potential tools for the classification of faults. In general, SVMs exhibit their 

tendency not to overfit, but to achieve precise classification in various cases. SVM possesses 

high generalization, slow convergence speed, and is highly sensitive to local extrema 

(Weerasinghe et al., 2019). Apart from classification tasks, SVM also performs regression. In 

most cases, a Radial Basis Function (RBF) or Gaussian kernel is used for training the dataset in 
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SVM. However, in certain scenarios, anomaly detection models using the kernel function do not 

perform well with a greater number of training samples or large numbers of features in the input 

space.  

The authors (Fan et al., 2020)  implemented SVM along with RBF kernel function for 

performing adaptive Magnetic anomaly detection (MAD) and the approach aims to enhance the 

probability of MAD by improving the signal-noise ratio (SNR). Initially, the detection model is 

designed using both SVM with RBF function and then the anomaly signal in the magnetic field 

is detected using the orthonormal basis function (OBF) energy and magnetic entropy as the 

features of the magnetic anomaly. Results of the experimentation process show that the proposed 

approach significantly minimizes the rate of false alarms and thereby enhances anomaly 

detection performance with a lower SNR value. 

 

An efficient anomaly detection approach for a cloud computing environment is proposed 

in Krishnaveni et al.,(2020) employing SVM algorithm for training the model and detecting the 

intrusions in the early stage. The performance of the SVM was tested on an optimized NSL-

KDD dataset and the results show that the attack detection ability of the SVM algorithm was 

enhanced by the feature set algorithm designed on the information gain ratio. The accuracy of the 

SVM model was improved by 96.24 % and reduced the false alarm rate (FPR). It can be noted 

that the ML-based SVM exhibited advantages in terms of detecting intrusions in complicated 

environments such as cloud computing. Although SVM is highly advantageous as a classifier, 

there are certain drawbacks such as hypersensitivity to parameter tuning, expensive computation 

while dealing with large datasets, and lack of capability to handle noisy data and imbalanced 

datasets. 

(ii) Random Forest (RF): The RF algorithm is a supervised classification algorithm. As 

the name indicates, this algorithm creates the forest with a number of trees. The more trees in the 

forest the more robust the forest looks. In the same way in the random forest classifier, the higher 
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the number of trees in the forest the higher the accuracy results (Shaik & Srinivasan, 2019). The 

RF algorithm can perform both classification and regression tasks and it addresses the drawbacks 

of the SVM algorithm in terms of handling noisy data and overfitting issues. RF is one of the 

enhanced ensemble learning algorithms made up of multiple decision trees. 

Several research works have used the RF algorithm to classify security issues in the 

system (Liu et al., 2021; Karthik & Krishnan, 2021; Prathapchandran & Janani, 2021). These 

works have classified unauthorized intrusions and attacks based on the aggregated data and by 

performing regression analysis. The RF algorithm has many advantages compared to 

conventional techniques in terms of superior accuracy among various classification techniques 

and its efficiency in dealing with larger datasets and data samples with high dimensional 

functionalities, which reduces the need for performing dimensionality reduction. There is a plot 

that describes the amount of error for each tree and it shows that 10 trees are suitable for this 

data. The random forest algorithm suffers from the problem of high variance and hence it is 

incorporated with bagging techniques to overcome this problem. 

The work presented (Primartha & Tama, 2017)  analyzed and compared the performance 

of the exerting RF classifier with other existing techniques in terms of accuracy and false alarm 

rate. The RF algorithm was designed to identify unknown intrusions and anomalies for securing 

the network systems. The model was trained using three public intrusion detection datasets such 

as NSL-KDD, UNSW-NB15, and GPRS datasets. In addition, the model was also accompanied 

by different combinations of tree sizes, and the best learning parameters were determined using a 

grid search method. The outcome of the experimental analysis validates the excellency of the RF 

classifier in terms of detecting unauthorized intrusions compared to other ensemble techniques 

such as ensemble of Random Tree + Naive Bayes and other single classifiers such as Naive 
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Bayes and Neural Network in terms of k-cross validation technique. It can be inferred from the 

results that the RF model achieves an excellent accuracy of 99.57 % for a 10-fold cross-

validation performed on the NSL-KDD dataset and achieved an accuracy of 95.5 % for a UNSW 

-NB15 dataset.  

The authors (Lin & Jiang, 2020) proposed an integrated approach that combines an 

autoencoder algorithm with an RF algorithm for detecting anomalies in credit card fraud 

scenarios. The hybrid approach is called AERFAD which is designed to detect frauds in credit 

card transactions. The proposed approach initially uses an autoencoder to reduce the 

dimensionality of the data and then uses the RF algorithm to classify the data as normal or 

anomalous. The AEFRAD model was trained to process a large volume of transactional details 

of the credit card consisting of the information of several European cardholders and thereby 

identify possible frauds from the transactions. Results show that the proposed model achieves 

excellent performance with respect to different evaluation metrics such as accuracy, true positive 

rate, true negative rate, and Matthews correlation coefficient. The model achieved an accuracy of 

99.951% compared to other algorithms such as SVM , Adaboost, Neural Network , Naive Bayes, 

K Nearest Neighbour, and Autoencoder-based clustering. 

Elmrabit et al., (2020) evaluated the performance of 12 different ML models with respect 

to their capacity to identify anomalous behavior in the network systems. The performance was 

evaluated on three publicly available datasets: UNSW-NB15, CICIDS-2017, and the Industrial 

Control System (ICS) cyber-attack datasets. The simulation analysis was performed using an 

ALICE-based high-performance computing facility at the University of Leicester and, the 

efficacy of the ML algorithm was evaluated in detail it was observed that the RF model achieves 

excellent results with respect to different evaluation metrics such as Precision, Recall, F1-Score, 
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accuracy, and Receiver Operating Characteristic (ROC) curves on all these datasets. The RF 

algorithm outperforms the existing algorithms in terms of binary classification and prediction 

accuracy and it was inferred that the RF algorithm achieved an accuracy of 88.5%. On the other 

hand, the accuracy of the RF algorithm was increased to 99 % for the CICIDS-2017 dataset. 

Results validate the fact that RF algorithms exhibit excellent results while other algorithms 

achieve better results. This shows that it is highly important to select an optimal ML algorithm 

based on the dataset. 

(iii) Decision Tree (DT): The DT algorithm is one of the popular ML models used for 

both classification and regression tasks (Lakshminarasimman et al., 2017; Bouke et al., 2022). It 

builds a tree-like model of decisions and their possible consequences. Each internal node of the 

tree represents a decision based on a feature, and each leaf node represents the outcome or 

prediction. The algorithm selects the best feature from the available features as the root node 

based on the Gini index and information gain. Once the root node is selected, the dataset is split 

into subsets based on the values of the selected feature wherein each subset represents a different 

branch or path in the DT. Both SVM and RF algorithms achieve excellent classification 

accuracy. However, it is difficult to handle the increasing size of the datasets which affects their 

accuracy.  

The authors Vargaftik et al.,(2021)  implemented a resource-efficient supervised anomaly 

detection using decision tree-based ensemble methods known as the RADE method. The DT-

based approach is implemented to identify the current anomalies from the dataset. The DT 

algorithm is trained to be adaptable for complex environments along with resource-consuming 

environments and identify the anomalies from the input dataset. The DT-based ensemble 

classifier can address the drawbacks associated with conventional classifiers. The proposed 
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approach is highly resource-efficient since it increases the size of the dataset to achieve better 

performance in a resource-constrained environment. The main objective behind implementing 

the proposed model is to train the algorithm that is capable enough of accurately classifying most 

of the queries. Further, the DT algorithm uses only subsets of the training data and trains the 

model using a fewer number of parameters. Usually, the models that are trained using the smaller 

datasets are at high risk of developing classification errors. The proposed approach implements a 

scikit learn classifier and the performance evaluation shows that the RADE model can accurately 

identify the anomalies compared to traditional techniques and thereby improve the memory 

capacity up to 12 times, training time up to 20 times, and time taken for the classification up to 

16 times. 

 An optimized anomaly and intrusion detection mechanism is proposed in Douiba et al., 

(2022). The proposed approach was designed using two algorithms namely decision tree (DT) 

and gradient boosting (GB) for detecting anomalies in the Internet of Things (IoT) environment. 

Both these algorithms are analyzed through the open-source Catboost. The efficacy of this 

approach was determined using three datasets namely BoT-IoT, NSL-KDD, and IoT-23 datasets. 

The Graphics Processing Unit (GPU) was employed to improve the performance of the 

experimental analysis. The results were compared with the existing techniques and the results 

show that the GB and DT algorithms achieve outstanding performance with respect to different 

evaluation metrics such as precision, recall, F1-score, and accuracy metrics which are higher 

than 99.99% with a higher detection and computational time. 

(iv) Naive Bayes (NB): The NB algorithm is a probabilistic ML algorithm based on 

Bayes' theorem, which is used for classification and sometimes for regression tasks. Despite its 

simplicity, the NB algorithm is highly effective in several real-time applications, especially in 
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natural language processing (NLP), text classification, and attack detection (Priya et al., 2021; 

Tuan et al., 2020). Several research works have emphasized the implementation of the NB 

algorithm for log anomaly detection.  

The authors Kamoona et al., (2019) proposed a model-based technique for detecting 

anomalies in surveillance video data. The proposed approach is based on the estimation of data 

sparsity using pre-trained deep features. The study aimed to process the sparsity information of 

deep features and employ them for distinguishing between anomalous and normal events in the 

data sequence. The suggested method utilizes a Naive Bayes model within a framework of 

multiple-instance learning. Findings indicate that this approach improves the precision of 

detecting anomalies.An improved Naive Bayes (INB) method incorporated with PCA to extract 

relevant features from the data for achieving accurate classification is presented in Manimurugan 

et al.(2021). The INB is implemented to design an efficient IDS for attack detection in an 

integrated IoT-Fog-Cloud computing architecture. The attack-related information is collected 

from the UNSW-NB 15 dataset and the IDS is designed incorporating feature extraction methods 

for classifying the attacks. The proposed approach enhances the effectiveness of anomaly 

detection and the performance is analyzed with respect to its accuracy and detection rate wherein 

the model achieved an accuracy of 92.48% with a 95.35% detection rate.  
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2.5 Deep Learning Models  

 

Deep Learning (DL) models address the drawbacks of ML algorithms in terms of 

reducing computational complexity, improving the accuracy of detection, etc. Considering the 

advantages of DL algorithms, several research works have implemented DL models for detecting 

anomalies from log data. The work presented in (Pawar & Attar, 2019) provided a 

comprehensive review of deep-learning approaches for anomaly detection. The study analyzes 

the application of various deep-learning models for video-based anomaly detection. It can be 

observed from the existing literary works that deep learning algorithms were more effective 

concerning accuracy and precision.  

The work presented by Tsogbaatar et al., (2021) employs a novel deep ensemble learning 

(DeL- IoT) approach for detecting and predicting anomalies in the Software Defined Networks 

(SDN) environment. The proposed approach employs three components namely anomaly 

detection, predicting device status, and intelligent flow management utilizing deep and stacked 

autoencoders (SAE) for extracting handcrafted features that are stacked to form the deep 

ensemble learning model. The proposed approach provides a robust yet appropriate anomaly 

detection performance and manages the data flow dynamically. 

Further, anomaly-based IDS - Intrusion-detection system for IoT with the evaluation of a 

real smart scenario utilizing one-class SVM. Eventually, detection accuracy was obtained at 

99.71% which shows that the research identifies the present potential solutions (Bagaa et al., 

2020). The investigation of utilizing ML-based classification methods for IoT security against 

DoS threats. The research is mostly executed on the classifier that develops the anomaly-based 

IDS methods against security threats. Therefore, the performance assessment of every classifier 

was executed in terms of certain validation and prominent metrics. Various datasets such as 
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NSL-KDD, UNSW-NB15, and CIDDS-001 utilized in previous research are utilized for 

benchmark classifiers.  

Ribeiro et al.,(2018) Proposed a study of deep convolutional auto-encoders for anomaly 

detection in videos. The study employs conventional auto encoders (CAE) for anomaly detection 

focusing on collecting high-level spatial and temporal features from an input image and 

discusses the effect of these features on the performance of CAE. The performance of the 

proposed approach was validated by conducting various experiments considering different 

datasets. Experimental results validate the effectiveness of the proposed approach and support 

further research in this area. This section reviews some of the prominent DL algorithms for 

anomaly detection. 

(i) Artificial Neural Networks (ANN): ANN is superior compared to its peers because 

of its reliability, scalability, precise accuracy, quick adopting technique, and its high tolerance 

towards fault occurrences. An Artificial Neural Network is an information paradigm that is 

inspired by the way the biological nervous system like the brain processes information. The key 

component of this model is the novel structure of the information processing system. This model 

is composed of a large number of interconnected processing elements which are called neurons 

which work in unison to solve specific problems. 

 ANN is trained by examples like human beings. It can be configured for particular 

(specific) applications like data classifications, and pattern recognition only through the learning 

process. Learning in biological systems involves adjustments to the synaptic connections that 

exist between the neurons and this is true for ANN also when applied for anomaly detection 

(Kwon et al., 2021; Sahu & Mukherjee, 2020). The authors Abbasi et al.,(2021) implemented 

ANN for detecting anomalies in IoT applications. In the initial process, the proposed approach 
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employs a feature extraction technique that can accurately classify the anomalies. The essential 

features are extracted using a Logistic Regression (LR) and ANN for classification. The model 

was trained using an IoT dataset which contains the data instances wherein the data is collected 

from different IoT devices. The attack samples consist of data related to different types of attacks 

based on the number of criteria for determining the effectiveness of the proposed approach. 

Results of the simulation analysis show that the ANN model along with LR achieves excellent 

results with an accuracy of 99.98 %. 

(ii) Convolutional Neural Network (CNN): Convolutional neural networks (CNN) is 

one such technique that exhibits excellent results on many high-level tasks such as image 

classification, anomaly detection, and more recently attack classification. CNNs constitute local 

or global pooling layers to integrate the outputs of the neuron clusters. CNNs also possess 

different composites of convolutional layers and fully connected layers with pointwise 

nonlinearity applied at the end of or after each layer. This process is inspired by biological 

phenomena. A comprehensive review of different DL algorithms such as CNN, Autoencoders, 

and other models for log anomaly detection is presented by Yadav et al., (2020). The study 

identifies some of the important challenges related to log anomaly detection such as handling 

unstructured data, instability, log bursts, and lack of availability of public datasets. Results show 

that DL algorithms are more effective in detecting log anomalies compared to ML algorithms.  

(iii) Long Short-Term Memory (LSTM): The LSTM model is a type of Recurrent 

Neural Network (RNN) that is mainly used in the classification and prediction tasks. The 

performance of the LSTM model for log anomaly detection has been validated in various 

research works. The authors Vinayakumar et al.,(2017) applied an LSTM model for detecting 

anomalies from the log data. For this purpose, the log samples are considered and analyzed for 
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classifying the data samples as normal and anomalous occurred over a period of time. The LSTM 

architecture is implemented for detecting events based on the data collected from the Cyber 

Security Data Mining Competition (CDMC2016) dataset. The experimental evaluation was 

conducted on the real-time data samples and results show that the LSTM achieves an accuracy of 

99.6%.  

The work proposed by Du et al.,(2017) implemented an LSTM model for detecting log 

anomalies from the system data as a natural language sequence. The work proposed a DeepLog 

approach, which learns the log patterns automatically to identify abnormalities when the log 

patterns vary from the standard model. An LSTM model was implemented for designing the 

DeepLog approach which was trained from the log data under normal execution. Moreover, the 

study also demonstrated that the LSTM-based DeepLog model can be updated online such that it 

can detect novel log patterns dynamically over a period of time. Moreover, the DeepLog model 

also constructs the workflow based on the underlying system log. This enables system users to 

analyze the identified anomaly and conduct a more thorough and effective examination of the 

anomalies once they are detected. Experimental evaluation shows that the proposed LSTM-based 

DeepLog approach achieves excellent results compared to other log-based anomaly detection 

techniques that use conventional data mining approaches.  

The authors Baril et al., (2020) implemented an LSTM model for developing a novel 

model for analyzing the performance anomaly detection that captures temporal deviations from 

the nominal model, employing a sliding window data representation. This nominal model is 

trained by a Long Short-Term Memory neural network, which is appropriate to represent 

complex sequential dependencies. The work presented in this paper assessed the effectiveness of 

the LSTM model by testing it on both simulated and real datasets. Results show that it is more 
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robust to temporal variations than current state-of-the-art approaches while remaining as 

effective.  

The researchers Chen et al., (2022) introduced a new model called LogLS, designed for 

detecting anomalies in system logs. This innovative approach utilizes a dual long short-term 

memory (LSTM) with a symmetric structure, treating the system log as a natural-language 

sequence and modeling it based on the preorder and post-order relationships. LogLS is an 

enhancement of the DeepLog method, addressing the issue of poor predictive performance of 

LSTM on extended sequences. Through a feedback mechanism, it facilitates the prediction of 

logs that are not present. The effectiveness of LogLS in log anomaly detection was validated 

through performance evaluations on two authentic datasets, showcasing promising results for the 

proposed method. 

The work presented by Zhao et al., (2021)  presented an unsupervised approach for 

detecting anomalous behavior in large-scale security logs. The study proposed a novel feature-

extracting mechanism that could precisely characterize the features of malicious behaviors. The 

research conducted an anomaly detection model using Long Short-Term Memory (LSTM) based 

on the analysis of log content in Knet2016 and R6.2 datasets. The model was trained and tested 

on extracted log-line text, demonstrating accurate exception detection. Comparative experiments 

revealed superior performance compared to other models such as PCA, one-class SVM, and 

GMM in terms of accuracy and efficiency. However, further evaluation against classical models 

is warranted. Future studies should involve broader datasets for training and testing to ensure 

generalizability. Additionally, incorporating isolation forest as a baseline in comparative 

experiments is essential, considering its performance in the DARPA insider threat detection 

program. 
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Further investigation is necessary for the comprehensive utilization of logs from diverse 

sources. It is evident that logs from different sources exhibit distinct structures. Combining these 

logs directly and employing character-level models for training might not produce optimal 

results. A logical approach involves separately detecting anomalies in these logs and 

subsequently integrating the anomaly scores after obtaining individual user anomaly scores. 
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2.6 Dataset Analysis for IDS and UEBA  

 

The landscape of Intrusion Detection Systems (IDSs) and User and Entity Behavior 

Analytics (UEBA) heavily relies on the availability of benchmark datasets for evaluation and 

development. However, the current datasets often lack the real-life characteristics of 

contemporary network traffic, rendering many anomaly IDSs impractical for production 

environments Hindy et al., (2020). Moreover, IDSs face challenges in adapting to the dynamic 

nature of networks, including new nodes, changing traffic loads, and evolving topologies. 

Consequently, the dependence on outdated datasets hampers the progress of IDS technology. To 

address this, researchers advocate for the development of new datasets that reflect the dynamic 

nature of network patterns, emphasizing the importance of datasets that are real, labeled, variant, 

correct, easily updatable, reproducible, and shareable (Sharafaldin et al., 2017; Viegas, Santin 

and Oliveira, 2017). 

Synthetic data injection is proposed as a strategy to enhance existing datasets or balance 

attack classes. However, challenges persist in sharing datasets due to confidentiality concerns, 

limiting research opportunities. Furthermore, simulating real-life scenarios and associated attacks 

remains complex due to the multitude of parameters required for the model to be viable Hindy et 

al.,( 2020). 

In response to these challenges, recent efforts have been made to compile and release 

prominent datasets for research purposes. For instance, loghub offers a collection of real-world 

system log datasets, encompassing various software systems such as distributed systems, 

supercomputers, operating systems, mobile systems, server applications, and standalone software 

Zhu et al., (2023). These datasets, totaling over 77 GB, provide researchers and practitioners 

with valuable resources for developing intelligent and automated log analysis techniques. 

Notably, Loghub datasets include both labeled and unlabeled logs, facilitating a range of log 

analytics tasks, including anomaly detection, duplicate issues identification, log parsing, log 

compression, and unsupervised methods Zhu et al., (2023).  
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Figure 2-2  

Comparative Usage of Loghub Datasets in Literature 

 

The research analyses how datasets from the Loghub cloud environment, such as HDFS, 

Hadoop, Zookeeper, OpenStack, BGL, HPC, and Thunderbird, are utilized in existing literature, 

particularly in the context of Log-based Intrusion Detection Systems (IDS). It presents an 

empirical analysis and plots the findings. According to Figure 2-2, a pie chart is used to illustrate 

the relative frequency of utilization of these datasets for benchmarking and comparison in Log-

based IDS literature. Notably, BGL and HDFS datasets emerge as the most commonly used for 

research in detecting anomalies in logs. 
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Figure 2-3 

 Empirical Analysis of Performance on BGL and HDFS dataset 

 

 

Moreover, Figure 2-3 provides a summary of the empirical evaluation of key 

performance parameters of prominent Deep Learning (DL) algorithms on the BGL and HDFS 

datasets. The chart indicates that there is significant research potential for improving the 

Precision score specifically for the BGL dataset. On the other hand, the results show that the 

HDFS dataset has achieved remarkable Precision, Recall, and F1-scores, suggesting its 

effectiveness in log anomaly detection. The data used in the Analysis is shown in Appendix A. 

In the realm of UEBA, obtaining suitable log data for anomaly detection poses a 

significant challenge due to the lack of publicly available real log datasets Landauer et al., 

(2022). Consequently, most existing works resort to synthetic data, albeit with limited 

effectiveness in capturing the dynamic and volatile nature of user behavior in real-time scenarios. 

To address this gap, recent research introduces a real-time log dataset from a cloud computing 

environment, spanning over five thousand users and five years Landauer et al., (2022). This 

dataset aims to enable more accurate and robust anomaly detection techniques by capturing 
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diverse and erratic user behavior patterns. An adaptive anomaly detection mechanism is 

employed to analyze the dataset, revealing insights into the dynamic and unstable nature of log 

data influenced by long-term changes in system utilization Landauer et al., (2022). 

Furthermore, the study discusses plans for injecting various types of anomalies into the 

dataset for future research endeavors(Landauer et al., 2022). The evaluation of the proposed 

framework includes a case study on account hijacking, where attack injection simulations are 

conducted to assess the framework's effectiveness in identifying anomalous behaviors. Notably, 

the authors highlight the trade-off parameters employed in the anomaly detection mechanism, 

resulting in a true positive rate of 65% and a false positive rate of 4.6% Landauer et al., (2022). 

In conclusion, while challenges persist in dataset availability and simulation of real-life 

scenarios, recent initiatives such as Loghub and the development of real-time log datasets 

contribute significantly to advancing research in IDSs and UEBA. These datasets provide 

valuable resources for evaluating and developing intelligent security solutions, paving the way 

for more robust and effective intrusion detection and behavior analytics systems. 
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2.7 Critical Analysis of Literature Review 

 

As advancements in cybersecurity continue to evolve, the integration of Machine 

Learning (ML), Deep Learning (DL), and User and Entity Behavior Analytics (UEBA) 

frameworks has significantly enhanced anomaly detection capabilities. However, amidst these 

advancements, there remains a critical need for gap analysis to identify areas for further research 

and improvement. This section aims to conduct a comprehensive gap analysis focusing on the 

application of ML, DL, and UEBA methodologies in log anomaly detection. By critically 

examining existing literature, this analysis seeks to uncover areas where current approaches may 

fall short in addressing emerging challenges such as cultural complexities, data volume 

management, and resource constraints. Through this gap analysis, the paper endeavors to pave 

the way for future research endeavors aimed at optimizing anomaly detection techniques and 

bolstering cybersecurity measures in an increasingly complex digital landscape. 

While the Theory of Reasoned Action (TRA) offers a structured approach to 

understanding technology adoption, its application in the context of ML and UEBA for log 

anomaly detection has both strengths and limitations. TRA effectively highlights the importance 

of behavioral intention, attitude, and subjective norms in shaping adoption decisions. However, 

its cognitive focus may overlook factors like usability and organizational constraints. TRA's 

limited capacity to address cultural complexities necessitates supplementation with other theories 

for comprehensive understanding, particularly in diverse settings. 

User and Entity Behavior Analytics (UEBA) is a crucial cybersecurity framework 

utilizing advanced analytics and machine learning to detect anomalies in network behavior. 

Notable research works, such as (Liu, 2021) and (Sharma, Pokharel and Joshi, 2020) have 

introduced innovative approaches like LSTM-GaN and LSTM-based Autoencoder for insider 

threat detection, achieving high accuracy rates. (Rasheed Yousef and Mahmoud Jazzar, 2021) 

further, validate UEBA's effectiveness in reducing false positives and detecting insider threats. 
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However, UEBA faces challenges including lengthy training data duration, false 

positives, data quality, resource constraints, and selecting appropriate methodologies for risk 

score calculation. Organizations must focus on refining risk score calculation methodologies to 

minimize false alarms effectively. By leveraging domain knowledge and advanced technologies, 

UEBA implementation can be optimized, enhancing anomaly detection accuracy and effectively 

safeguarding networks against evolving cybersecurity threats. 

Machine Learning (ML) algorithms are pivotal in network security, particularly in 

anomaly and attack detection. Support Vector Machine (SVM) excels in classification tasks but 

can be slow and sensitive to parameter tuning. Studies like (Fan et al., 2020) and (Krishnaveni et 

al. 2020) showcase their efficacy in enhancing Magnetic Anomaly Detection (MAD) and 

intrusion detection, respectively. Random Forest (RF) overcomes SVM's limitations, 

demonstrating high accuracy in detecting intrusions and fraud, as evidenced by (Primartha and 

Tama, 2017) and (Lin and Jiang, 2020). Decision Tree (DT) methods like the RADE approach 

and (Douiba et al., 2022) work offer resource-efficient anomaly detection, especially in IoT 

environments. Naive Bayes (NB), while simple, proves effective in real-time applications such 

as surveillance video anomaly detection and IoT-based intrusion detection. Each algorithm 

presents distinct strengths and weaknesses, necessitating careful consideration of dataset and 

network characteristics when selecting the most suitable one. Understanding the nuanced 

performance of these ML algorithms is crucial for optimizing anomaly detection systems across 

diverse security scenarios. 

Deep Learning (DL) models, including Artificial Neural Networks (ANNs), 

Convolutional Neural Networks (CNNs), and Long Short-Term Memory (LSTM) networks, 

have transformed anomaly detection, especially in log data analysis, by adeptly handling 

complex patterns and dependencies. ANNs, valued for their scalability and fault tolerance, have 

demonstrated exceptional accuracy, such as (Abbasi et al., 2021) achievement of 99.98% in IoT 

anomaly detection. CNNs excel in capturing spatial features, as evidenced by (Yadav et al., 

2020), who highlighted their effectiveness in log anomaly detection. LSTM networks, designed 
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for sequential data, have garnered attention for their remarkable accuracy, with studies like 

(Vinayakumar et al., 2017)reporting 99.6% accuracy in log anomaly detection. Additionally, 

(Zhao et al., 2021) showcased LSTM's superiority in unsupervised large-scale security log 

analysis compared to traditional models like PCA, one-class SVM, and GMM. 

DL models, particularly ANN, CNN, and LSTM networks, hold substantial promise in 

log anomaly detection due to their capacity to capture intricate data patterns. However, ongoing 

research is essential to tackle existing challenges and improve the robustness and applicability of 

these models in real-world scenarios. Despite advancements, challenges persist in log anomaly 

detection using DL models, including handling unstructured data and addressing instability.  

The landscape of Intrusion Detection Systems (IDSs) and User and Entity Behavior 

Analytics (UEBA) suffers from outdated datasets, hindering progress in technology. Researchers 

advocate for new datasets reflecting real-world network dynamics, emphasizing qualities like 

realism, labeling, variability, correctness, updatability, reproducibility, and shareability. 

Synthetic data injection is proposed but faces challenges in sharing due to confidentiality 

concerns. Efforts like Loghub offer vast, labeled, and unlabeled real-world system log datasets, 

aiding in developing intelligent log analysis techniques for anomaly detection, duplicate issue 

identification, parsing, compression, and unsupervised methods. These resources provide 

valuable support for research and practical application. The research underscores the importance 

of these datasets in advancing the field of Log-based IDS and highlights areas for potential 

improvement, particularly focusing on enhancing evaluation scores for the BGL dataset while 

acknowledging the already successful performance of the HDFS dataset in multiple metrics. 
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In summary, there exists a significant gap in research regarding the utilization of UEBA 

alongside effective ML or DL algorithms for log anomaly detection, particularly with a focus on 

risk score analysis. Additionally, there is a need for further investigation into automated log 

preprocessing methods to efficiently manage large and complex log data volumes in a cost-

effective and resource-efficient manner, which would greatly benefit small and medium-sized 

enterprises. This area requires more thorough examination and exploration. Furthermore, 

addressing challenges in log anomaly detection using DL models, such as handling unstructured 

data and addressing instability and applicability in real-world datasets, requires extensive 

research efforts. Moreover, the development of a benchmark UEBA-based log anomaly dataset 

would be highly valuable for the research community. 

 

2.8 Summary  

This chapter reviews anomaly detection in system logs, focusing on Machine Learning 

(ML) and User and Entity Behavior Analytics (UEBA). It covers the limitations of traditional 

rule-based approaches and the benefits of ML and Deep Learning (DL) algorithms like decision 

trees, random forests, support vector machines, and neural networks for log anomaly detection. 

The integration of UEBA with ML to enhance detection by analyzing behavioral deviations is 

discussed, including applications in computer vision. Benchmark datasets are examined for 

evaluation. The chapter highlights the potential of these advanced techniques, identifies research 

gaps, and suggests future directions for improving ML and UEBA integration in anomaly 

detection. 
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CHAPTER III:  

METHODOLOGY 

The chapter details the methodology adopted for this study to achieve the research 

objectives and answer the research questions. It begins with an overview of the research 

problem, highlighting the challenges faced by enterprise businesses in migrating to the cloud and 

the increasing demand for robust network observability through log analysis. The section on 

research problems and questions formulate the guiding research questions. The research design 

outlines the approach and strategies employed. The dataset details section provides insights into 

the BGL Dataset used in the study, discussing data sources, structure, and preprocessing steps.  

A step-by-step methodology describes the entire process, including data preprocessing, 

feature selection, the rationale behind specific methods, model development, and performance 

evaluation. The data analysis section elaborates on techniques for exploratory data analysis, 

aiming to extract valuable insights. The UEBA score analysis explains how risk scores are 

assigned based on behavior and examines the effectiveness of UEBA in enhancing anomaly 

detection. The research design limitations section acknowledges constraints and challenges 

encountered, including data limitations and computational constraints. The chapter concludes by 

summarizing the key points, emphasizing the importance of the chosen methods in addressing 

the research problem and setting the stage for the subsequent chapters. 
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3.1 Overview of the Research Problem 

 

Behavioral Analysis and Anomaly Detection using log files represent an emerging and 

significant field of study due to their explanatory and predictive capabilities. User and Entity 

Behavior Analytics (UEBA) is gaining traction within data analytics, though it remains 

underexplored in the context of log analysis. Behavioral analytics and risk scoring are pivotal in 

identifying anomaly candidates and mitigating false alarms, as highlighted by Liu et al., (2018) 

The burgeoning field of Behavioral Analytics (Khaliq, Abideen Tariq and Masood, 2020) 

is recognized as a contemporary research trend within Management Information Systems (MIS), 

primarily due to its effectiveness in integrating both explanatory and predictive modeling. With 

rapid advancements in social media, sensing technologies, and mobile computing, there is a 

pressing need for innovative analytical methodologies to decipher user perspectives, thereby 

enhancing recommendation systems and adaptive interfacing. Motiwalla et al., (2019) 

Conducted a comprehensive survey examining various studies adopting a behavioral approach, 

which considers user interactions and behaviors alongside user attributes, including emotion 

detection from text, images, and videos, and fraud detection in crowdfunding, among other 

applications. 
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Despite these advancements, Behavioral Analysis for Log Anomaly Detection, 

particularly in cloud-based environments, has seen limited progresss. The system log behavior 

approach involves analyzing user and entity behavior to understand the WHO, WHICH, and 

HOW factors of an anomaly, rather than merely identifying the WHAT factor as done in 

conventional methodologies. This shift necessitates parsing through massive volumes of logs to 

extract meaningful insights about user and entity behaviors. 

The primary challenges in log-based behavioral analysis include the high volume of data, 

the increased rate of false alarms, and the computational demands associated with real-time risk 

score calculation. Effective anomaly detection through UEBA requires sophisticated algorithms 

capable of sifting through extensive log data to identify deviations from normal behavior. 

Furthermore, computational time and resource constraints pose significant hurdles, necessitating 

optimization techniques, and scalable architectures to ensure efficient processing. 

 

In summary, while UEBA offers a robust framework for detecting anomalies within log 

data, addressing the challenges of false alarm rates, computational efficiency, and resource 

limitations is crucial for its practical implementation and widespread adoption in cloud-based 

environments. Future research should focus on developing advanced analytical techniques and 

computational models to enhance the precision and scalability of behavioral anomaly detection 

systems. 
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3.2 Research Design 

 

The methodology deployed for the proposed log-based anomaly detection project 

involves key processes such as pre-processing the chosen data, transforming the data into a 

structured and comprehensible format, feature learning, building ML-based prediction models, 

and evaluating the machine learning performance using appropriate evaluation metrics.  

This project is using a preprocessed form of the widely used BGL Dataset for conducting 

experiments sourced from https://github.com/logpai/loghub/tree/master/BGL (Loghub/BGL at 

Master · Logpai/Loghub · GitHub, .) The raw BGL  Log is an open dataset of logs collected from 

a BlueGene/L supercomputer system at Lawrence Livermore National Labs (LLNL) in 

Livermore, California, with 131,072 processors and 32,768GB memory. The log contains alert 

and non-alert messages identified by alert category tags. The label information is amenable to 

alert detection and prediction research. It has been used in several studies on log parsing, 

anomaly detection, and failure prediction. (Oliner and Stearley, 2007; Zhu et al., 2023)  

The primary research method for this study involves a thorough literature review and 

experimental analysis of various machine learning models on the BGL Log Dataset, focusing on 

User and Entity Behavior Analysis and Log-Based Anomaly Detection. 

 

  

https://github.com/logpai/loghub/tree/master/BGL
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3.2.1 Methodology Overview 

 

(i).    Data Preprocessing and Feature Extraction: 

   Data Preprocessing: Perform data cleaning, encoding, oversampling, and 

normalization ,to prepare the dataset for analysis. 

   Feature Engineering: Extract and transform key features from the log data, focusing 

on behavioral, and contextual aspects relevant to anomaly detection. 

 

(ii). User and Entity Behavior Analysis: 

   Behavioral Feature Extraction: Develop profiles based on user and entity 

interactions, capturing patterns and anomalies in their behavior. 

   Risk Scoring: Use ML methods to calculate risk scores, assessing the likelihood of 

anomalous behavior based on behavioral trends. 

 

(iii). Machine Learning Model Development: 

   Model Selection: Conduct a comprehensive review of current industry practices and 

academic research to identify state-of-the-art machine learning and deep learning models suitable 

for log analysis and anomaly detection. 

   Model Training: Experiment with a variety of supervised and unsupervised learning 

algorithms, including Isolation Forest, Random Forest, Gradient Boosting, and Neural Networks. 

 

(iv). Performance Evaluation: 

   Evaluation Metrics: Assess the models using metrics such as Precision, Recall, F1-

Score, and AUC to determine their effectiveness in detecting anomalies. 
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   Optimization: Refine the models to enhance computational efficiency and scalability, 

addressing resource constraints. 

 

The research study, scheduled from January to June 2024, implemented a detailed 

experimental setup to validate the proposed methodology for log-based anomaly detection. The 

flow chart of methodology is depicted in Figure 3-1. This approach aims to overcome the 

challenges of high false alarm rates, computational inefficiency, and resource constraints, 

ultimately enhancing the precision and scalability of anomaly detection systems in cloud-based 

environments. By leveraging a behavioral approach for log analysis, this research intends to 

provide valuable insights for entity-oriented decision-making in enterprise solutions. 

Additionally, integrating behavioral analysis into anomaly detection could extend its applications 

to various fields, including cyber forensics, identity management, and social network profiling. 

This study aims to showcase the potential of behavioral analytics to transform anomaly detection 

and improve security and operational efficiency across multiple domains. 
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3.2.2 Flowchart 

 

 

 
Figure 3-1  Methodology 
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3.3 Dataset 

 

Overview of the Blue Gene/L (BGL) Dataset 

The BGL dataset is a significant resource for system log analysis, originating from the 

Blue Gene/L supercomputer, developed by IBM and operated at Lawrence Livermore National 

Laboratory (LLNL). This supercomputer was a groundbreaking system in high-performance 

computing, holding the title of the world’s fastest supercomputer during its operational period. 

The BGL dataset contains comprehensive system logs that capture various events, including 

hardware and software errors, warnings, and informational messages typically in plain text, with 

fields like timestamps (indicating when the event occurred), message types (e.g., ERROR, 

WARNING, INFO), event IDs (unique identifiers for different types of events), and detailed 

messages describing the events. 

 

BGL Dataset Applications 

Anomaly Detection: The BGL dataset is instrumental in developing and evaluating 

algorithms to detect unusual patterns in system logs, helping to preemptively address potential 

system issues. 

Fault Diagnosis: It is crucial to diagnose the root causes of system failures by analyzing 

sequences of logged events, aiding in understanding and mitigating underlying issues. 

Predictive Maintenance: By analyzing trends and patterns in log data, researchers can 

forecast potential system failures, allowing proactive maintenance to enhance system reliability 

and uptime. 

BGL Dataset in LogHub 

LogHub is a large collection of diverse system log datasets curated to facilitate research 

in log analysis, anomaly detection, and related fields. The BGL dataset within LogHub is 
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particularly valued for its real-world data from a high-performance computing environment. It 

provides a realistic basis for testing and validating log analysis techniques, as the logs come from 

an actual operational supercomputer. Moreover the log captures a wide range of system events, 

offering a rich dataset for analyzing different types of faults and anomalies. It is widely used as a 

benchmark dataset in academic and industrial research to compare the effectiveness of various 

log analysis methods and tools. 

The BGL dataset has been pivotal in advancing the field of system log analysis. 

Researchers use it to: 

Develop Log Parsing Algorithms: Automatic log parsing is essential for converting raw 

log data into structured formats that are easier to analyze. The BGL dataset provides the 

necessary data for training and testing these algorithms. 

Event Correlation: By studying the relationships between different log events, 

researchers can build models that correlate events leading up to failures, crucial for diagnosing 

complex issues in large-scale systems. 

Machine Learning Models: The dataset is used to train machine learning models for 

tasks such as anomaly detection and fault prediction, automating the monitoring and 

maintenance of the supercomputing environment. 

BGL Dataset Metadata 

The raw BGL  Log is an open dataset of logs collected from a BlueGene/L 

supercomputer system at Lawrence Livermore National Labs (LLNL) in Livermore, California, 

with 131,072 processors and 32,768GB memory. The log contains alert and non-alert messages 

identified by alert category tags. The label information is amenable to alert detection and 

prediction research. (Oliner and Stearley, 2007; Zhu et al., 2023). 
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The preprocessed version of BGL data sourced from Loghub contains 2000 data 

instances and 13 attributes. The attributes are shown in Figure 3-2 and the BGL dataset snapshot 

is presented in Table 3-1. 

According to the drawings from the literature review of the dataset landscape within the 

Intrusion Detection Systems (IDS) and User and Entity Behavior Analytics (UEBA) domain, 

outlined in section 2.6, Figure 2-3 provides an overview of the practical evaluation of essential 

performance metrics for leading Deep Learning (DL) algorithms applied to both the BGL and 

Hadoop Distributed File System (HDFS) datasets. The visualization highlights a notable area of 

research potential focused on enhancing the Precision score, particularly concerning the BGL 

dataset, which substantiated the selection of this dataset for this research study. 

In conclusion, the BGL dataset is a critical resource for understanding and improving the 

reliability of high-performance computing systems. Its detailed and diverse logs provide 

invaluable insights into system behavior, helping researchers develop advanced techniques for 

log analysis, anomaly detection, and fault diagnosis. The inclusion of the BGL dataset in 

LogHub further underscores its importance and utility in the field of system log research. This 

dataset supports a wide range of applications, including anomaly detection, fault diagnosis, and 

predictive maintenance, making it a cornerstone for studies aiming to enhance the reliability and 

efficiency of large-scale computing systems. 
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Figure 3-2  

BGL Dataset Attributes 
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Table 3-1 Dataset Snapshot 

 

  

LineId Label Timestamp Date Node Time NodeRepeat Type Component Level Content EventId EventTemplate

1 - 1117838570 2005.06.03
R02-M1-N0-

C:J12-U11

2005-06-03-

15.42.50.675872

R02-M1-N0-

C:J12-U11
RAS KERNEL INFO

instruction cache 

parity error 

corrected

E77
instruction cache 

parity error corrected

2 - 1117838573 2005.06.03
R02-M1-N0-

C:J12-U11

2005-06-03-

15.42.53.276129

R02-M1-N0-

C:J12-U11
RAS KERNEL INFO

instruction cache 

parity error 

corrected

E77
instruction cache 

parity error corrected

3 - 1117838976 2005.06.03
R02-M1-N0-

C:J12-U11

2005-06-03-

15.49.36.156884

R02-M1-N0-

C:J12-U11
RAS KERNEL INFO

instruction cache 

parity error 

corrected

E77
instruction cache 

parity error corrected

4 - 1117838978 2005.06.03
R02-M1-N0-

C:J12-U11

2005-06-03-

15.49.38.026704

R02-M1-N0-

C:J12-U11
RAS KERNEL INFO

instruction cache 

parity error 

corrected

E77
instruction cache 

parity error corrected

5 - 1117842440 2005.06.03
R23-M0-NE-

C:J05-U01

2005-06-03-

16.47.20.730545

R23-M0-NE-

C:J05-U01
RAS KERNEL INFO

63543 double-

hummer alignment 

exceptions

E3
<*> double-hummer 

alignment exceptions

6 - 1117842974 2005.06.03
R24-M0-N1-

C:J13-U11

2005-06-03-

16.56.14.254137

R24-M0-N1-

C:J13-U11
RAS KERNEL INFO

162 double-

hummer alignment 

exceptions

E3
<*> double-hummer 

alignment exceptions

7 - 1117843015 2005.06.03
R21-M1-N6-

C:J08-U11

2005-06-03-

16.56.55.309974

R21-M1-N6-

C:J08-U11
RAS KERNEL INFO

141 double-

hummer alignment 

exceptions

E3
<*> double-hummer 

alignment exceptions

8 - 1117848119 2005.06.03
R16-M1-N2-

C:J17-U01

2005-06-03-

18.21.59.871925

R16-M1-N2-

C:J17-U01
RAS KERNEL INFO

CE sym 2, at 

0x0b85eee0, mask 

0x05

E18
CE sym <*>, at <*>, 

mask <*>

9
APPRE

AD
1117869872 2005.06.04

R04-M1-N4-

I:J18-U11

2005-06-04-

00.24.32.432192

R04-M1-N4-

I:J18-U11
RAS APP FATAL

ciod: failed to read 

message prefix on 

control stream 

(CioStream socket 

to 

172.16.96.116:335

69

E33

ciod: failed to read 

message prefix on 

control stream 

(CioStream socket to 

<*>:<*>

10
APPRE

AD
1117869876 2005.06.04

R27-M1-N4-

I:J18-U01

2005-06-04-

00.24.36.222560

R27-M1-N4-

I:J18-U01
RAS APP FATAL

ciod: failed to read 

message prefix on 

control stream 

(CioStream socket 

to 

172.16.96.116:333

70

E33

ciod: failed to read 

message prefix on 

control stream 

(CioStream socket to 

<*>:<*>

11 - 1117942120 2005.06.04
R30-M0-N7-

C:J08-U01

2005-06-04-

20.28.40.767551

R30-M0-N7-

C:J08-U01
RAS KERNEL INFO

CE sym 20, at 

0x1438f9e0, mask 

0x40

E18
CE sym <*>, at <*>, 

mask <*>

12 - 1117955341 2005.06.05
R25-M0-N7-

C:J02-U01

2005-06-05-

00.09.01.903373

R25-M0-N7-

C:J02-U01
RAS KERNEL INFO

generating 

core.2275
E67 generating core.<*>

13 - 1117955392 2005.06.05
R24-M1-N8-

C:J09-U11

2005-06-05-

00.09.52.516674

R24-M1-N8-

C:J09-U11
RAS KERNEL INFO

generating 

core.862
E67 generating core.<*>

14 - 1117956980 2005.06.05
R24-M1-NB-

C:J15-U11

2005-06-05-

00.36.20.945796

R24-M1-NB-

C:J15-U11
RAS KERNEL INFO

generating 

core.728
E67 generating core.<*>

15 - 1117957045 2005.06.05
R20-M1-N8-

C:J04-U01

2005-06-05-

00.37.25.012681

R20-M1-N8-

C:J04-U01
RAS KERNEL INFO

generating 

core.775
E67 generating core.<*>

16 - 1117959501 2005.06.05
R24-M0-NE-

C:J14-U11

2005-06-05-

01.18.21.778604

R24-M0-NE-

C:J14-U11
RAS KERNEL INFO

generating 

core.3276
E67 generating core.<*>

17 - 1117959513 2005.06.05
R21-M1-N2-

C:J11-U01

2005-06-05-

01.18.33.830595

R21-M1-N2-

C:J11-U01
RAS KERNEL INFO

generating 

core.1717
E67 generating core.<*>

18 - 1117959563 2005.06.05
R24-M0-N8-

C:J04-U11

2005-06-05-

01.19.23.822135

R24-M0-N8-

C:J04-U11
RAS KERNEL INFO

generating 

core.3919
E67 generating core.<*>

19 - 1117973759 2005.06.05
R31-M0-NE-

C:J05-U11

2005-06-05-

05.15.59.416717

R31-M0-NE-

C:J05-U11
RAS KERNEL INFO

generating 

core.2079
E67 generating core.<*>

20 - 1117973786 2005.06.05
R36-M0-NA-

C:J06-U01

2005-06-05-

05.16.26.686603

R36-M0-NA-

C:J06-U01
RAS KERNEL INFO

generating 

core.1414
E67 generating core.<*>

21 - 1117973919 2005.06.05
R33-M0-N4-

C:J02-U11

2005-06-05-

05.18.39.396608

R33-M0-N4-

C:J02-U11
RAS KERNEL INFO

generating 

core.3055
E67 generating core.<*>

22 - 1117974206 2005.06.05
R22-M0-ND-

C:J10-U11

2005-06-05-

05.23.26.239153

R22-M0-ND-

C:J10-U11
RAS KERNEL INFO

generating 

core.201
E67 generating core.<*>

23 - 1117974463 2005.06.05
R27-M0-N6-

C:J10-U01

2005-06-05-

05.27.43.336565

R27-M0-N6-

C:J10-U01
RAS KERNEL INFO

generating 

core.1125
E67 generating core.<*>

24 - 1117975251 2005.06.05
R26-M1-N8-

C:J17-U11

2005-06-05-

05.40.51.726735

R26-M1-N8-

C:J17-U11
RAS KERNEL INFO

generating 

core.412
E67 generating core.<*>

25 - 1117976658 2005.06.05
R36-M1-N8-

C:J17-U01

2005-06-05-

06.04.18.406158

R36-M1-N8-

C:J17-U01
RAS KERNEL INFO

generating 

core.7828
E67 generating core.<*>

26 - 1117977497 2005.06.05
R33-M1-NB-

C:J06-U01

2005-06-05-

06.18.17.802159

R33-M1-NB-

C:J06-U01
RAS KERNEL INFO

generating 

core.5570
E67 generating core.<*>

27 - 1117979227 2005.06.05
R01-M1-N7-

C:J04-U11

2005-06-05-

06.47.07.157021

R01-M1-N7-

C:J04-U11
RAS KERNEL INFO

generating 

core.8275
E67 generating core.<*>

28 - 1117982609 2005.06.05
R35-M1-NE-

C:J05-U01

2005-06-05-

07.43.29.979844

R35-M1-NE-

C:J05-U01
RAS KERNEL INFO

generating 

core.4183
E67 generating core.<*>

29 - 1117984124 2005.06.05
R36-M1-NF-

C:J11-U01

2005-06-05-

08.08.44.281729

R36-M1-NF-

C:J11-U01
RAS KERNEL INFO

generating 

core.6545
E67 generating core.<*>
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3.4 Methodology 

The primary objective of this methodology is to develop and evaluate machine learning 

models for log anomaly detection along with UEBA, with a specific emphasis on reducing false 

alarms and optimizing computational efficiency. This study focuses on exploring the 

performance of three distinct algorithms—Isolation Forest, Random Forest, and XGBoost—as 

well as a simple neural network By systematically comparing these models, the study aims to 

identify the most effective approach for accurate and efficient log anomaly detection. Through a 

comprehensive process involving data collection, preprocessing, model training, hyperparameter 

tuning, and validation, this methodology seeks to balance predictive power and computational 

resource usage, ensuring robust and scalable anomaly detection solutions. 
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3.4.1 Data Preprocessing  and Feature Engineering 

 

   Data Preprocessing 

In this stage, data cleaning is performed to handle null values and remove duplicate 

entries. Various attributes are analyzed, and target variables are encoded for binary classification. 

Null Value Treatment: The dataset is examined for null values, and null entries are 

observed in the columns ['Node', 'NodeRepeat', 'Type']. Null values in ['Node', 'NodeRepeat'] are 

replaced with zero, as these attributes will eventually be converted to numeric. Null values in 

['Type'] are replaced with 'UNKNOWN' to facilitate the encoding of this categorical variable. 

 

Table 3-2 Null value counts 

 

 

Table 3-3 Null Value Treatment 

Attribute
Null replacement 

value

Node         0

NodeRepeat      0

Type             UNKNOWN
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Duplicate Value Treatment: The dataset is examined for duplicate values, and no 

duplicate entries are found row-wise. However, the columns 'Node' and 'NodeRepeat' are 

identical. Therefore, 'NodeRepeat' can be dropped. 

Identifying Unique Values:  The attributes are analyzed, and the unique values for each 

attribute are counted. 

 
Table 3-4 Unique Value Counts 

 

Label Marking:  The target labels are designated as NORMAL and ANOMALY for 

binary classification. The Isolation Forest algorithm predicts the labels as [1, -1], while Random 

Forest, Gradient Boost, and Neural Network predict the labels as [0, 1]. Therefore, two target 

variables are defined to facilitate performance evaluation. 

Feature Engineering 

 During this stage, key features are extracted from the log data, with a focus on 

behavioral and contextual aspects relevant to anomaly detection. The attributes are examined for 

their data types, and the numerical data is analyzed for statistical spread. Categorical values are 

ATTRIBUTES UNIQUE VALUES

A 64

B 2

C 16

E 2

G 17

H 2

EventId 120

Type 2

Component 5

Year 2

Month 8

Day 31

Hour 24

weekday 7
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converted to numerical values using dummy variable encoding. The preprocessed, feature-

extracted data then undergoes detailed analysis, as explained in the subsequent section. The 

dataset is normalized, split into training, testing, and validation sets, and then oversampled using 

SMOTE for model building. 

Feature Extraction:   Timestamp and Text processing is done for feature extraction. 

Timestamp Processing: Temporal parameters such as year, month, date, hour, day, and 

weekday are extracted from the 'Time' attribute. 

Text Processing: The 'Node' attribute, which follows a specific format, is parsed to 

extract multiple fields for further analysis of their impact on the target variable. For example, the 

'Node' value " R17-M1-N9-C: J05-U01" can be split into five different alphanumeric attributes 

and is shown in Table 3-5. 

 

 
Table 3-5 Splitting of Node values 

 

Changing Variable Datatypes: After feature extraction, the variables are analyzed for 

their data types and categorized as numeric, ordinal, or categorical. The data types of certain 

attributes are then adjusted to be numeric or categorical as appropriate. 
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Table 3-6 Variable datatypes 

Identifying Numerical Variables The categorical variables ['EventId', 'A', 'C', 'G'] contain 

multiple alphanumeric values. Therefore, the data type can be changed to numeric by converting 

the strings to integers using ASCII encoding. 

Identifying Categorical Variables; The ordinal variables ['Year', 'Month', 'Day', 'Hour', 

'Weekday'] are treated as categorical for dummy variable encoding to preserve their temporal 

effect on the target variables. 

Exploratory Data Analysis: Exploratory detailed analysis using Class, Component, Level, and 

Temporal variables is conducted to gain insights and is detailed in Section 3.6, Data Analysis. 

Dummy Variable Encoding: Dummy variable encoding transforms categorical variables 

into binary vectors (dummy variables), representing each category with binary features. This 

conversion allows categorical data to be used as input for machine learning algorithms, ensuring 

they can effectively process and interpret the categorical information. 

Normalization : The dummy-encoded categorical variables and numerical variables are 

then normalized using the Standard Scaler method.  
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Standard Scaler Normalization 

Standard Scaler normalization transforms numerical features to have a mean of zero and 

a standard deviation of one, ensuring all features are on a comparable scale. This normalization 

is crucial for many machine learning algorithms that rely on distance metrics or gradient-based 

optimization. Standard Scaler works by subtracting the mean of each feature and then dividing 

by the standard deviation of that feature. Mathematically, it can be represented as: 

 

where 
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Train and  Test Data Split 

 After normalizing the data, the next step involves splitting it into three subsets using a 

ratio of 0.7:0.3. 

1. Training Set: This subset is used to train the machine learning models. It contains a 

majority portion of the data, typically around 70-80%, depending on the size of the dataset and 

specific requirements.  

2. Validation Set: This subset is used to tune the hyperparameters of the models and to 

evaluate their performance during training. It helps prevent overfitting by providing an 

independent dataset that the model has not seen during training. The validation set is used 

iteratively to adjust the model's parameters until the best performance is achieved. 

3. Test Set: This subset is used to evaluate the final performance of the trained model 

after all parameter tuning and model selection decisions have been made. It serves as an unbiased 

estimate of the model's performance on unseen data. 

Typically, the dataset is split randomly into these subsets while ensuring that each subset 

represents the overall distribution of the data. This ensures that the evaluation metrics obtained 

from the test set are reliable indicators of the model's performance in real-world scenarios. 
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SMOTE Oversampling:  

Next, the dataset undergoes oversampling using the SMOTE Algorithm to reduce the 

data imbalance.SMOTE (Synthetic Minority Over-sampling Technique) oversampling is utilized 

in scenarios where the dataset exhibits significant class imbalance, such as the case in our dataset 

where anomalies represent only 7.9% of the total data.  

Addressing the imbalance between normal and anomaly classes is crucial for effective 

anomaly detection using machine learning algorithms. Imbalanced data can bias models, 

potentially overlooking important anomaly patterns. SMOTE addresses this by creating synthetic 

instances of the minority class, enhancing its representation in the training dataset. This balanced 

training data improves the model's ability to generalize and accurately detect anomalies during 

deployment. It's essential to apply SMOTE exclusively to the training set to maintain unbiased 

evaluation metrics on the validation and test sets, ensuring robust performance in real-world 

scenarios.  

Overall, SMOTE oversampling stands as a pivotal preprocessing step, enhancing the 

reliability and effectiveness of anomaly detection models in the face of class imbalance 

challenges. 
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3.4.2 Model Development 

The primary objective of this stage is to develop and evaluate machine learning models 

for log anomaly detection, with a specific emphasis on reducing false alarms and optimizing 

computational efficiency. This study focuses on exploring the performance of three distinct 

algorithms—Isolation Forest, Random Forest, and XGBoost—as well as a simple neural 

network. 

From the literature review, it is evident that the majority of log anomaly detection 

problems utilize supervised machine learning algorithms such as Support Vector Machines 

(SVM), Naive Bayes, Decision Trees, and Random Forests (RF). Additionally, deep learning 

techniques have been studied for their application in log anomaly detection, particularly 

Autoencoders, which are used for unsupervised anomaly detection by learning a compressed 

representation of the logs and identifying anomalies based on reconstruction error, and Long 

Short-Term Memory (LSTM) networks, which are used for automatic log pattern identification 

and anomaly detection by capturing temporal dependencies in the log data. Moreover, it has been 

observed that XGBoost, a robust algorithm widely used for credit card fraud detection and other 

anomaly detection tasks, is rarely exploited in log anomaly detection scenarios. 
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Model Selection  

. Considering the objective of achieving optimal computational and evaluation 

performance, the following models are selected for experimentation in log anomaly detection: 

Isolation Forest (IF), Random Forest (RF), XGBoost, and a simple Neural Network. Each model 

has been chosen based on its unique characteristics, computational efficiency, and potential to 

minimize false alarms. 

1. Isolation Forest (IF): 

    Type: Unsupervised 

Isolation Forest is an anomaly detection algorithm that isolates observations by randomly 

selecting a feature and then randomly selecting a split value between the maximum and 

minimum values of the selected feature. The logic behind this is that anomalies are few and 

different, making them easier to isolate. The algorithm constructs an ensemble of trees (isolation 

trees) to perform the isolation, where the path length to isolate a point is used as the measure of 

normality. 

The anomaly score for a data point  is calculated as: 
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Figure 3-3 Isolation Forest 

 
Source:https://donghwa-kim.github.io/iforest.html 

Salient Features: 

• Unsupervised: Does not require labeled data. 

• Computational Efficiency: Linear time complexity to the number of samples. 

• High-Dimensional Data: Effective in identifying anomalies in high-dimensional 

datasets 

 

Rationale: Isolation Forest is chosen for its efficiency in detecting anomalies in high-

dimensional data, especially in scenarios with scarce labeled data. Its unsupervised nature, 

computational efficiency, and linear time complexity make it ideal for real-time anomaly 

detection. By isolating observations, it effectively identifies anomalies due to their few and 

distinct nature, ensuring robust detection. 
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2. Random Forest (RF): 

    Type: Supervised 

Random Forest is an ensemble learning method that constructs multiple decision trees 

during training and outputs the mode of the classes (classification) or mean prediction 

(regression) of the individual trees. Each tree in the forest is built from a bootstrap sample from 

the training set, and during tree construction, each split is selected from a random subset of 

features. 

The decision function for Random Forest can be represented as: 
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Figure 3-4 Random Forest 
Source:https://williamkoehrsen.medium.com/random-forest-simple-explanation-377895a60d2 

Salient Features: 

• Robustness: Reduces overfitting by averaging multiple trees. 

• Scalability: Handles large datasets with high-dimensional features. 

• Interpretability: Provides feature importance measures. 

  Rationale: Random Forest is chosen for its robustness and ability to handle large, high-

dimensional datasets efficiently. Combining multiple decision trees, RF  improves 

generalization, accuracy, and interpretability, and is less prone to overfitting compared to single 

decision trees. 
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3. XGBoost: 

    Type: Supervised 

XGBoost (Extreme Gradient Boosting) is an optimized distributed gradient boosting library 

designed to be highly efficient, flexible, and portable. It implements machine learning algorithms 

under the gradient boosting framework, using decision trees as base learners. XGBoost adds 

regularization to the boosting procedure, enhancing its performance and preventing overfitting. 

The objective function for XGBoost is: 
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Figure 3-5 XGBoost 

Source: Scheme of XGBost operation. Source: (GUO et al., 2020). 

Salient Features: 

• High Performance: Efficient in terms of speed and accuracy. 

• Regularization: Reduces overfitting. 

• Scalability: Capable of handling large datasets. 

    Rationale: XGBoost is chosen for its high performance and scalability in handling 

large datasets and complex feature spaces. Its use of gradient boosting, combined with 

regularization techniques, makes it a powerful tool for supervised anomaly detection. Despite its 

rare use in log anomaly detection, its success in similar tasks suggests it can effectively reduce 

false alarms and enhance predictive accuracy. 

  



72 

 

4. Neural Network: 

    Type: Supervised 

A Neural Network is a computational model inspired by the human brain, consisting of 

interconnected units (neurons) that process information in layers. A simple feedforward neural 

network, used in this study, consists of an input layer, one or more hidden layers, and an output 

layer. The network learns to map inputs to outputs through backpropagation, adjusting weights to 

minimize the loss function. 

The output of a neuron is calculated as: 
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Figure 3-6 Neural Networks 

 

Salient Features: 

• Flexibility: Capable of learning complex patterns. 

• Scalability: Can be adjusted in complexity by varying the number of layers and 

neurons. 

• Efficiency: A simple architecture provides a balance between learning capability 

and computational cost. 

 

    Rationale: A simple Neural Network is chosen for its balance between complexity and 

computational efficiency, making it suitable for real-time log anomaly detection tasks. Unlike 

deep learning models such as LSTMs, which can be computationally intensive, a simple neural 

network provides sufficient learning capability without high computational costs. This pragmatic 

approach offers flexibility and scalability in model learning, ideal for scenarios where 

complexity needs to be balanced with efficiency. 
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By experimenting with these selected models, the study aims to identify the optimal 

approach that balances predictive accuracy, computational efficiency, and reduced false alarms 

in log anomaly detection tasks. 

  



75 

 

Model Training  

The process of training machine learning models involves fitting them to the training 

data, adjusting their parameters, and tuning hyperparameters to optimize performance. This 

section outlines the training methodologies for four different models: Isolation Forest (IF), 

Random Forest (RF), XGBoost, and a simple Neural Network. 

1. Isolation Forest (IF):  Isolation Forest is an unsupervised learning algorithm used to 

identify anomalies in the dataset. The model is fitted on the training data to learn the patterns of 

normal and anomaly logs. Key parameters such as the number of estimators and contamination 

rate are adjusted to optimize the model's performance. The number of estimators controls the 

number of trees in the forest, while the contamination rate defines the proportion of outliers in 

the data. 

2. Random Forest (RF): Random Forest is a supervised learning algorithm that builds 

multiple decision trees and merges them to get a more accurate and stable prediction. The model 

is trained on labeled training data, and hyperparameters such as the number of trees, maximum 

depth, and minimum sample split are tuned. Adjusting these parameters helps improve the 

model's accuracy and prevent overfitting. The number of trees determines how many decision 

trees are in the forest, the maximum depth limits how deep the trees can grow, and the minimum 

sample split sets the minimum number of samples required to split an internal node. 
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3. XGBoost: XGBoost is an efficient and scalable implementation of gradient boosting 

framework by leveraging decision trees. The model is fitted on labeled training data, and 

hyperparameters such as learning rate, maximum depth, subsample ratio, and the number of 

estimators are optimized to enhance predictive performance. The learning rate controls the step 

size at each iteration while moving toward a minimum of the loss function. The maximum depth 

sets the maximum depth of a tree, the subsample ratio determines the fraction of samples to be 

used for fitting the individual base learners, and the number of estimators specifies the number of 

boosting rounds. 

4. Neural Network: The Neural Network model is designed as a simple feedforward 

architecture with input, hidden, and output layers. The network is trained on labeled data using a 

suitable optimizer such as Adam and a loss function like binary cross-entropy. Hyperparameters, 

including the number of layers, neurons per layer, and learning rate, are adjusted to balance 

complexity and computational efficiency. The number of layers and neurons per layer determine 

the network's capacity to learn complex patterns, while the learning rate influences the speed and 

stability of the training process. 
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Model Validation 

Model validation ensures the effectiveness and reliability of machine learning models. This 

section outlines the process of model validation, which includes a simple train-validation split 

and hyperparameter tuning, for log anomaly detection models. The steps involved are data 

splitting, hyperparameter tuning, and model evaluation. 

 1. Data Split 

To ensure a robust evaluation, the balanced data obtained using the Synthetic Minority Over-

sampling Technique (SMOTE) is split into training and validation datasets in a 70:30 ratio. The 

training set is used to train the models, while the validation set is reserved for validating the 

models' performance. This split helps in maintaining a fair assessment of the models by ensuring 

that the validation data remains unseen during training. 

 2. Hyperparameter Tuning 

Hyperparameter tuning is conducted using the random search technique on the training set. The 

Random Search technique involves randomly sampling the hyperparameter space, which is more 

efficient than evaluating all possible combinations as done in a grid search. By applying random 

search, the best hyperparameters are identified based on their performance on the validation set. 

This step is crucial for optimizing the models' performance and ensuring they generalize well to 

unseen data. 
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3. Model Evaluation 

Once the optimal hyperparameters are identified, the models are evaluated on the validation set 

using a set of selected evaluation metrics. These metrics include accuracy, precision, recall, F1 

score, false positive rate (FPR), and false negative rate (FNR). Evaluating the models with these 

metrics provides a comprehensive understanding of their performance, highlighting areas that 

may require further hyperparameter tuning and optimization. The confusion matrix derived for 

each model is presented in APPENDIX D. 

 

The process of model validation involves splitting the data into training and validation sets, 

performing hyperparameter tuning using random search, and evaluating the models on the 

validation set. This approach ensures that the models are not only well-tuned but also thoroughly 

validated for their performance in detecting anomalies in log data. By using a variety of 

evaluation metrics, the effectiveness and reliability of the models are assessed, paving the way 

for further refinement and optimization.  
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Hyperparameter Tuning and Optimization 

Hyperparameter tuning is a crucial step in the model development process, as it aims to 

identify the best set of hyperparameters that improve the model's performance on the validation 

dataset. This section outlines the approach for tuning and optimizing the hyperparameters for the 

selected models: Isolation Forest, Random Forest, XGBoost, and the Neural Network. 

The hyperparameter tuning is performed using the Random Search technique. Random 

Search randomly samples the hyperparameter space instead of evaluating all possible 

combinations. It is more efficient than Grid Search and often finds good hyperparameters faster. 

The hyperparameter optimization process begins by defining the search space, which 

involves specifying the range or list of values for each hyperparameter to be tuned. Following 

this, the Random Search technique is employed to identify the best hyperparameters. Once the 

optimal hyperparameters are determined, the model is evaluated on the validation set to assess its 

performance. This process may be iterated as necessary, refining the search space based on the 

results and insights gained from previous iterations, to further enhance the model's accuracy and 

efficiency. 

By following this structured approach to hyperparameter tuning and optimization, the 

study aims to enhance the performance of the machine learning models for log anomaly 

detection, ensuring they are well-tuned for accuracy, precision, and computational efficiency. 
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Hyperparameters to Tune 

1. Isolation Forest (IF) 

 
Table 3-7  

IF Hyperparameters 

 

2. Random Forest (RF) 

 
Table 3-8  

RF Hyper paarmeters 

  

PARAMETER DESCRIPTION VALUE

 n_estimators  The number of trees in the forest. 155

 max_samples
 The number of samples to draw from the 

dataset to train each tree.
5

 contamination  The proportion of outliers in the data. 0.0665

 max_features
 The number of features to consider when 

looking for the best split.
9

PARAMETER DESCRIPTION VALUE

max_depth The maximum depth of the tree. 14

min_samples_split
The minimum number of samples 

required to split an internal node.
50

min_samples_leaf
The minimum number of samples 

required to be at a leaf node.
10

max_features
The number of features to consider when 

looking for the best split.
10
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3. XGBoost 

 
Table 3-9  

XGBoost Hyperparameters 

4. Neural Network 

 
Table  3-10  

Neural Network Model Summary 

 

PARAMETER DESCRIPTION VALUE

max_depth The maximum depth of a tree. 3

learning_rate
The step size shrinkage used to prevent 

overfitting.
0.2

subsample
The proportion of samples to be used for 

fitting the individual base learners.
0.9

colsample_bytree
The subsample ratio of columns when 

constructing each tree.
0.5

gamma
The minimum loss reduction required to 

make a further partition on a leaf node.
0.4
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Table 3-11  

Neural Network Hyperparameters 

  

PARAMETER DESCRIPTION VALUE

number of layers The number of hidden layers 6

activation 

functions
The activation functions for each layer RELU

learning rate The learning rate for the optimizer 0.001

batch size
The number of samples per gradient 

update
50

epochs The number of epochs to train the model 20
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3.4.3 User and Entity Behavior Analysis 

User and Entity Behavior Analysis (UEBA) involves detailed analysis of behavioral 

patterns within datasets to detect anomalies and assign risk scores to users,  entities, or 

components. This section outlines the methodologies used for behavioral analysis, anomaly risk 

scoring, and entity risk scoring, as well as their integration with machine learning models for 

performance evaluation. 

Entity Behavioral Analysis 

Behavioral analysis begins with a detailed examination of dataset attributes at the entity 

or component level. The attribute COMPONENT is treated as the user or entity variable to do 

the analysis  This analysis aims to identify specific behavioral patterns that may indicate 

anomalous activity. Visual inspection and statistical techniques are employed to capture and 

understand these patterns comprehensively, which is elaborated in Section 3.6 Data Analysis. 

This detailed analysis helps in identifying patterns and unusual behavior that could signify 

potential anomalies. The table lists the entities or components used for UEBA. 

 

 
Table 3-12 Entity  Components for UEBA 

  

 

  

SLNO ENTITY

1 APP

2 DISCOVERY

3 HARDWARE

4 KERNEL

5 MMCS
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Anomaly Risk Scoring 

Anomaly Risk scoring leverages the strengths of machine learning algorithms, 

particularly the high precision of Random Forest and the recall power of XGBoost. These 

algorithms are used to assign a risk score to each instance in the dataset. Isolation Forest-based 

scoring is used for a comparative analysis. The process involves training models using labeled 

data to develop Isolation Forest, Random Forest, and XGBoost models. Once trained, these 

models are applied to assign anomaly scores to each instance. By evaluating these assigned 

scores, the likelihood of anomalous behavior is assessed, allowing for the identification of trends 

and patterns indicative of potential anomalies. Entities or components within the dataset are 

subjected to detailed analysis based on the risk scores obtained from the machine learning 

models. This analysis determines which scoring metric better defines anomalies, enabling a 

deeper understanding of anomalous behavior and its implications. The insights and implications 

are detailed in Section 3.7. 

 

 Entity Score Assignment 

From the prediction scores derived earlier, each entity is assigned both a normality score 

and an anomaly score. Anomaly scores assess the likelihood of anomalous behavior based on 

behavioral trends, while normality scores indicate regular or expected behavior. These scores 

quantify the potential risk associated with the entity, helping to identify high-risk candidates and 

mitigate false alarms. Components with high anomaly scores are flagged as potential risks, 

guiding proactive risk management strategies. 
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 Integration of UEBA Score with Machine Learning Models 

The anomaly risk scores obtained from the UEBA stage are integrated as an additional 

attribute into the machine learning models. Isolation Forest, Random Forest, XGBoost, and 

Neural Network algorithms are experimentally evaluated using these scores to assess their 

performance in anomaly detection. Comparative evaluations focus on accuracy, precision, recall, 

and other relevant metrics to identify the most effective model leveraging UEBA  for detecting 

and mitigating anomalies in real-world scenarios. 

This section explored the application of UEBA techniques for anomaly detection through 

detailed behavioral analysis and risk scoring. By leveraging machine learning algorithms such as 

Random Forest and XGBoost, the study empirically scores User and Entity Behavior to identify 

potential anomalies. The integration of anomaly risk scores into model training and evaluation 

provides a comprehensive approach to assessing computational and performance efficiency 

achieved by using UEBA. 

Ultimately, this research advances the understanding and application of UEBA in 

cybersecurity and operational risk management. It aids in identifying high-risk insider threats 

and determining what constitutes an anomaly and who is behaving anomalously. This approach 

facilitates faster risk mitigation and enhances the overall security posture.  
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3.4.4. Performance Evaluation 

   Evaluating the performance of log anomaly detection models involves understanding how well 

these models distinguish between normal and anomalous data. Given the imbalanced nature of 

the dataset, where anomalies are rare compared to normal events, choosing the right evaluation 

metrics is crucial. Metrics such as confusion matrix, accuracy, precision, recall, F1 score, false 

positive rate (FPR), false negative rate (FNR), and computational time provide a comprehensive 

view of model performance from various angles. These metrics ensure that both the detection 

capability and efficiency are adequately assessed. This section elaborates on the various metrics 

used to evaluate the performance of both unsupervised and supervised algorithms in log anomaly 

detection. 

1. Confusion Matrix 

    Definition: A confusion matrix is a table used to describe the performance of a classification 

model. It summarizes the counts of true positives (TP), true negatives (TN), false positives (FP), 

and false negatives (FN). 

    Justification: The confusion matrix provides a detailed breakdown of correct and incorrect 

classifications, offering insights into specific types of errors the model makes, which is essential 

for understanding model behavior on imbalanced datasets. 

 

 
Figure 3-7 

 Confusion Matrix 
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2. Accuracy 

    Definition: Accuracy is the ratio of correctly predicted instances (both TP and TN) to the total 

number of instances.  

    Justification: While accuracy is a common metric, it can be misleading with imbalanced data 

since it may reflect the dominance of the majority class. However, it still provides a baseline 

measure of overall model performance. 

 

 

 

3. Precision 

    Definition: Precision is the ratio of true positive predictions to the total positive 

predictions    

Justification: Precision measures the accuracy of the positive predictions. High precision is 

crucial in anomaly detection to minimize false alarms (false positives). 

 

 

4. Recall 

    Definition: Recall, or sensitivity, is the ratio of true positive predictions to the actual positive 

instances. 

    Justification: Recall indicates the model’s ability to detect actual anomalies. High recall 

ensures that most anomalies are identified, which is critical in security contexts. 
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5. F1 Score 

    Definition: The F1 score is the harmonic mean of precision and recall . 

    Justification: The F1 score balances precision and recall, providing a single metric that 

accounts for both false positives and false negatives. It is particularly useful when dealing with 

imbalanced data. 

 

 

 

6. False Positive Rate (FPR) 

    Definition: FPR is the ratio of false positives to the total actual negatives  

    Justification: FPR measures the proportion of normal instances incorrectly classified as 

anomalies. A low FPR is essential to reduce the occurrence of false alarms. 
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7. False Negative Rate (FNR) 

    Definition: FNR is the ratio of false negatives to the total actual positives  

    Justification: FNR measures the proportion of anomalies missed by the model. Minimizing 

FNR is critical to ensure that true anomalies are not overlooked. 

 

 

8. Computational Time 

    Definition: Computational time refers to the total time taken by the model to train and make 

predictions. 

    Justification: Computational efficiency is important for real-time anomaly detection, where 

timely responses are required. Evaluating computational time helps in selecting models that 

provide a balance between performance and efficiency. 

 

In summary, evaluating log anomaly detection models requires a multi-faceted approach 

due to the imbalanced nature of the data. Metrics such as confusion matrix, accuracy, precision, 

recall, F1 score, FPR, FNR, and computational time collectively offer a comprehensive 

assessment of model performance. These metrics ensure that both the detection capabilities and 

efficiency of the models are thoroughly evaluated, leading to more reliable and effective 

anomaly detection in cybersecurity and operational risk management contexts. 
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3.4.5 Experimental Setup 

Hardware Resources : 

For this experiment, the hardware resources are specified to ensure that the computational 

tasks are handled efficiently. The following hardware configuration is used: 

 

 CPU: AMD Ryzen 7 4700U with Radeon Graphics, 2.00 GHz, RAM 16.0 GB 

The AMD Ryzen 7 4700U is an 8core, 8-thread processor with a base clock speed of 2.00 

GHz. It is part of AMD's mobile processor lineup, designed for high performance in portable 

devices. The integrated Radeon Graphics provide additional computational capabilities, useful 

for parallel processing tasks often required in machine learning. A total of 16 GB of RAM 

ensures that the system can handle large datasets and complex computations without significant 

memory bottlenecks. This amount of RAM is adequate for running multiple applications 

simultaneously, enabling efficient data processing, model training, and evaluation. 

 

 Software Resources: 

The experiment utilizes several software resources to implement and evaluate the log 

anomaly detection models. The chosen programming language and libraries are well-suited for 

machine learning tasks, providing robust tools for data manipulation, model building, and 

visualization. 

  



91 

 

Programming 

 Python 3.6 : Python 3.6 is selected for its simplicity, readability, and extensive support 

for machine learning libraries. Python is widely used in the data science community, making it 

an ideal choice for this experiment 

 

Libraries 

Pandas: Used for data manipulation and analysis. Pandas provides data structures like 

DataFrames, which are essential for handling structured data efficiently. 

 

Numpy: A fundamental library for numerical computing in Python. It provides support 

for arrays, matrices, and a collection of mathematical functions to operate on these data 

structures. 

 

Scikitlearn : A machine learning library that provides simple and efficient tools for data 

mining and data analysis. It is used for implementing the Isolation Forest, Random Forest, 

hyperparameter tuning and evaluation metrics. 

 

TensorFlow and Keras: TensorFlow is an open-source platform for machine learning, 

and Keras is a high-level neural networks API running on top of TensorFlow. These are used to 

implement and train the Neural Network model. 

 

Seaborn: A data visualization library based on Matplotlib. It provides a high-level 

interface for drawing attractive and informative statistical graphics. 
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Matplotlib: A plotting library for the Python programming language and its numerical 

mathematics extension NumPy. It is used for creating static, interactive, and animated 

visualizations. 

 

 

These hardware and software resources collectively provide a powerful platform for 

developing, training, and evaluating machine learning models for log anomaly detection. The 

combination of a high-performance CPU, ample memory, and robust programming tools ensures 

that the experimental setup is well-equipped to handle the demands of this research. 

 

 Implementation of  Workflow in Python 

This section outlines the implementation workflow for log anomaly detection using 

Python, covering data preprocessing, model training, hyperparameter tuning, scoring, and 

evaluation. Key techniques include Isolation Forest, Random Forest, XGBoost, and a simple 

Neural Network, enhanced with UEBA scores for better performance assessment. The workflow 

ensures data preparation, efficient model training, and comprehensive performance evaluation, 

with UEBA scores providing a nuanced understanding of anomalous behavior. The detailed 

Technical workflow is comprehended in APPENDIX D. 
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3.5 Data Analysis 

Exploratory detailed analysis using Class, Component, Level, and Temporal variables is 

conducted to gain insights and is detailed in the Data Analysis section. This analysis includes 

univariate, bivariate, and multivariate techniques to obtain meaningful insights. Visual 

representation of the data is achieved using Seaborn and Matplotlib plots, enhancing the 

interpretability of the analysis results. Univariate analysis focuses on the individual 

characteristics of each variable, bivariate analysis examines relationships between two variables, 

and multivariate analysis explores interactions among multiple variables, providing a 

comprehensive understanding of the data. 
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 3.5.1 Univariate Analysis 

Class Count Analysis 

The first chart shows the distribution of the two classes in the dataset. Here is a 

breakdown: 

• Class 0 (Normal): 1857 instances (92.85%) 

• Class 1 (Anomaly): 143 instances (7.15%) 

This indicates a significant class imbalance, with the anomalous class being a minority 

class, representing only 7.15% of the data. 

 

 

 
Figure  3-8 Class Count 
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Figure 3-9 Percentage of Anomaly 

         Label Count Analysis 

The second chart shows the distribution of different labels within the anomalous class (Class 1). 

Here's a detailed count of each label: 

 
Figure 3-10 Label Distribution 
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Table 3-13 Label Counts- 

Insights 

1. Class Imbalance: 

     The significant imbalance between Class 0 and Class 1 can pose challenges for training 

machine learning models. Models trained on this dataset might be biased towards the majority 

class (Class 0), leading to poor performance in detecting anomalies (Class 1). 

2. Label Distribution in Class 1: 

     Within the anomalous class, the label KERNDTLB has the highest count (60), indicating that 

this type of anomaly is the most common in the dataset. 

     KERNSTOR also has a significant count (30), followed by APPSEV (17) and KERNMNTF 

(11). 

     Other labels have relatively low counts, with APPCHILD and APPOUT being the least 

frequent (1 each). 
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 Implications  

 Handling Class Imbalance: Oversampling Techniques such as SMOTE Oversampling for 

minority class or  using algorithms that are robust to class imbalance (e.g., XGBoost) are 

necessary to improve model performance. 

 Label Distribution: Understanding the distribution of labels within the anomalous class provides 

insights into the nature of anomalies. This helps in feature engineering and selecting appropriate 

evaluation metrics that consider the imbalance. 

By addressing these aspects, the study prepares the data for building robust anomaly detection 

models. 
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3.5.2 Bivariate Analysis 

Bivariate Analysis- Class 

The figure presents four box plots that compare two classes (0 and 1) across four variables: 

Weekday, Month, Day, and Hour. 

For Weekdays, both classes show similar distributions with medians around mid-week 

days (3-4) and similar ranges, indicating weekdays is not a significant differentiator. 

In the Month plot, Class 0 exhibits a wider spread with an interquartile range (IQR) from 

months 6 to 10, whereas Class 1 has a narrower range and a lower median, suggesting potential 

seasonal variation.  

The Day plot reveals a noticeable difference: Class 0 has a wider spread and higher 

median day compared to Class 1, which features several outliers, indicating some specific days 

might be significant.  

The Hour plot shows both classes with similar distributions and a median around the 

middle of the day, but Class 1 has a slightly higher median and wider spread, suggesting some 

variation in timing.   - Class 0 shows a wider spread and a higher median day of the month 

compared to Class 1. 
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Figure 3-11 Bivariate Analysis -Class 
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Bivariate Analysis- Component 

The figure presents four box plots comparing five components (KERNEL, APP, DISCOVERY, 

HARDWARE, MMCS) across four variables: Weekday, Month, Day, and Hour.  

For Weekday, KERNEL and APP have similar distributions with mid-week medians, while 

DISCOVERY and HARDWARE show broader distributions, and MMCS has the narrowest 

spread around mid-week.  

In the Month plot, KERNEL shows a wider range, APP has a high median with a narrow range, 

DISCOVERY has a lower median with some outliers, HARDWARE has a moderate spread, and 

MMCS shows a consistent distribution around mid-months.  

For the Day variable, KERNEL and APP have wide distributions with similar medians, 

DISCOVERY shows a narrower range, HARDWARE has a low median with minimal spread, 

and MMCS shows a higher median and widespread.  

The Hour plot indicates that KERNEL and APP have similar wide distributions around midday, 

DISCOVERY shows a wider range with some outliers, HARDWARE has a narrow range, and 

MMCS has a higher median with a moderate spread. These variations highlight differences in 

timing and distribution across the components. 
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Figure 3-12 Bivariate Analysis -Component 
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Bivariate Analysis- Level 

The figure showcases four box plots comparing five levels (INFO, FATAL, WARNING, 

SEVERE, ERROR) across four variables: Weekday, Month, Day, and Hour.  

Insights 

For Weekday, INFO and FATAL show broad distributions with mid-week medians, while 

WARNING, SEVERE, and ERROR exhibit narrower spreads with different medians, indicating 

variation across levels.  

The Month plot shows INFO with a wide spread and higher median, FATAL with a narrower 

and lower median, WARNING with a tight range, SEVERE with minimal variation, and ERROR 

with a moderate spread around mid-months.  

The Day variable reveals INFO having a wide distribution and higher median, FATAL with 

numerous outliers and a lower median, WARNING and SEVERE with narrow ranges and low 

medians, and ERROR with a higher median and wider spread.  

For the Hour variable, INFO and FATAL show similar wide distributions around midday, 

WARNING has a tight range, SEVERE exhibits minimal spread with a low median, and ERROR 

shows a moderate spread with a higher median. These patterns highlight differences in timing 

and distribution across the levels, suggesting varying levels of significance for different time 

periods and dates. 
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Figure 3-13 Bivariate   Analysis -Level 
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Implications -Bivariate Analysis 

The bivariate analysis of class, component, and level, each comparing variables such as 

Weekday, Month, Day, and Hour through box plots presents the following insights. For class, 

both classes have similar weekday distributions, but Class 0 shows a wider month spread, higher 

day median, and slightly varied hour distribution compared to Class 1. In component analysis, 

KERNEL and APP have mid-week medians, with KERNEL showing a wider month range, 

while HARDWARE and MMCS exhibit minimal day and hour spread. For level, INFO and 

FATAL display broad weekday and hour distributions, INFO shows a higher month spread, and 

ERROR indicates higher day variance.  

The bivariant analysis suggests distinct patterns and variations across different categories, 

highlighting specific time-related characteristics that may influence class, component, and level 

distributions.  
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3.5.3 Multivariate  Analysis 

     Multivariate  Analysis-Component 

The multivariate analysis of Components compares the various components (KERNEL, 

APP, DISCOVERY, HARDWARE, MMCS) across multiple dimensions: Class, Level, Hour, 

Month, Day, and Weekday, providing several key insights and implications. 

Insights: 

1. Component Distribution by Class and Level 

• KERNEL significantly dominates the distribution, with a higher count in both 

Class 0 and Class 1 compared to other components. 

• APP has a smaller count, while DISCOVERY, HARDWARE, and MMCS 

have minimal representation. 

• KERNEL has the highest count across all levels, particularly in INFO and 

ERROR levels. 

• APP, DISCOVERY, HARDWARE, and MMCS have much lower counts, 

reinforcing KERNEL's prominence across levels. 

2. Temporal Distribution: 

• Hour: KERNEL and APP exhibit broader distributions throughout the day, with 

KERNEL showing high activity across all hours and APP having a peak around 

midday. DISCOVERY and HARDWARE have more confined hour ranges, while 

MMCS shows minimal variation. 

• Month: KERNEL has a wide distribution across months, indicating yearround 

significance, while APP and other components show narrower month ranges with 

some outliers. 

• Day: KERNEL and APP have wide day distributions, with KERNEL having 

higher variability. DISCOVERY and HARDWARE have limited day ranges, and 

MMCS shows minimal day variability. 
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• Weekday: KERNEL and APP show broad distributions across the week. 

DISCOVERY and HARDWARE exhibit moderate weekday variability, while 

MMCS has a very narrow weekday range. 

 

 
 

 

Figure 3-14  

Component Distribution by Class and Level 
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Figure 3-15 

 Temporal Distribution-Component 
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Multivariate  Analysis-Level 

The multivariate analysis of LEVEL compares the various levels (INFO, FATAL, WARNING, 

SEVERE, ERROR) and components (KERNEL, APP, DISCOVERY, HARDWARE, MMCS) 

across dimensions like Class, Hour, Month, Day, and Weekday.  

 Insights: 

1. Level  Distribution by Class and Component: 

• KERNEL has the highest count across all levels, particularly dominating the 

INFO level. 

• Class 0 shows significantly higher counts than Class 1 across most levels and 

components, especially for INFO and FATAL. 

• Components like APP, DISCOVERY, HARDWARE, and MMCS have much 

lower counts, indicating lesser significance compared to KERNEL. 

 

2. Temporal Distribution: 

• Hour: INFO and FATAL show broad distributions across various hours, with 

Class 1 peaking in the afternoon for FATAL. Other levels like WARNING and 

SEVERE have narrower hour ranges. 

• Month: INFO and FATAL have wide month ranges, suggesting consistent issues 

throughout the year, while other levels show narrower distributions. 

• Day: INFO displays wide day distributions, with FATAL showing numerous 

outliers around the middle of the month. WARNING and SEVERE levels have 

more confined day ranges. 

• Weekday: INFO and FATAL have broad weekday distributions, while other 

levels like WARNING and SEVERE show narrower spreads, indicating specific 

days might be more prone to these levels of issues. 
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Figure 3-16 

 Level  Distribution by Class and Component 

 

 

 
Figure 3-17  

Temporal Distribution- Level 
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Implications-Multivariate Analysis 

The multivariate analysis highlights the critical importance of the KERNEL and APP 

component, especially at the INFO level, suggesting it should be prioritized for monitoring and 

maintenance to prevent widespread operational impacts. While  DISCOVERY is less prominent, 

they exhibit significant patterns during specific hours and days, necessitating targeted monitoring 

during peak times to prevent issues. HARDWARE and MMCS have minimal representation, 

indicating a lower operational impact, but periodic reviews are essential to avoid overlooking 

potential issues. The variability observed across hours, days, and months provides valuable 

insights for scheduling maintenance during off-peak times, particularly focusing on high-activity 

periods for INFO and FATAL levels to minimize disruptions.  

 

Overall, the analysis underscores the need for a differentiated monitoring strategy for 

Class 0 and Class 1 and emphasizes the importance of focusing resources on key components 

while maintaining oversight on less significant ones to enhance system reliability and efficiency.  
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3.5.4 User and Entity Behaviour Analysis of Components 

Component-wise UEBA is conducted using  Class, Level, and Temporal variables to gain 

insights and is detailed in this section. The components KERNEL and APP are used as they are 

predominant in exploratory data analysis (EDA). Hardware, Discovery, and MMCS details are 

provided in Appendix B. This approach facilitates a comprehensive understanding of user and 

entity behavior, aiding in effective anomaly detection and risk assessment. 

KERNEL  

The analysis focuses on the KERNEL component's behavior across, various dimensions 

such as Class, Level, and Temporal parameters. 

Insights 

1. Class Distribution: 

• KERNEL occurrences are predominantly in Class 0 at both INFO and FATAL 

levels. 

• Class 1 shows a notable presence at the FATAL level, indicating critical issues 

are more frequent in this class. 

2. Level Distribution: 

• The majority of KERNEL occurrences are at the INFO level, with a significant 

number at the FATAL level. 

• This highlights the need to address both routine informational issues and critical 

problems. 

3. Temporal Distribution: 

• Hour: INFO level issues are distributed throughout the day, while FATAL issues 

for Class 1 peak in the afternoon and early evening. 

• Month: INFO level occurrences are spread throughout the year, while FATAL 

issues show several outliers, indicating specific months with higher critical issues. 

• Day: INFO level issues have a broad day distribution, while FATAL issues for 

Class 1 peak around the middle of the month with multiple outliers. 
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• Weekday: INFO level issues are evenly distributed across the weekdays, while 

FATAL issues exhibit higher variability, indicating certain days may be more 

prone to critical issues. 
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KERNEL-Class Analysis 

 
Figure 3-18 KERNEL -Class Analysis 

 

 
Figure 3-19 KERNEL -Temporal  Analysis by Class 
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KERNEL-Level Analysis 

 
Figure 3-20 KERNEL Level Analysis 

 

 

 
Figure 2-21 KERNEL -Temporal  Analysis by Level 
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APP 

The analysis focuses on the APP component's behavior across, various dimensions such 

as Class, Level, and Temporal parameters. 

Insights 

1. Class Distribution: 

• The APP component shows a higher count in Class 0 compared to Class 1 at the 

FATAL level. 

• Class 1 is significantly present at the FATAL level, indicating critical issues are 

more frequent in this class. 

 

2. Level Distribution: 

• The majority of APP occurrences are at the FATAL level. 

• This highlights the need for focused attention on critical issues within the APP 

component. 
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3. Temporal Distribution: 

• Hour: FATAL issues for APP are distributed throughout the day for Class 0, 

while Class 1 peaks in the afternoon and early evening. 

• Month: FATAL level occurrences are spread across the latter part of the year, 

with both classes showing variability. 

• Day: FATAL issues for APP have a broad day distribution, with Class 1 showing 

peaks around the middle of the month. 

• Weekday: Both classes show a wide weekday distribution, indicating that critical 

issues are spread across the week without a specific pattern. 
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APP-Component Analysis 

 
Figure 3-22 APP -Class Analysis 

 

 
Figure 3-23 APP-Temporal  Analysis by Class 
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APP-Level Analysis 

 
Figure 3-24 APPL-Level Analysis 

 

 
Figure 3-25 APP-Temporal  Analysis by Level 
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Implications 

For the KERNEL component, it is essential to focus on both INFO and FATAL levels, 

especially since Class 0 shows a high number of INFO issues, and Class 1 has significant 

FATAL issues. Prioritizing monitoring and maintenance for these levels can mitigate both 

routine and severe impacts. Comprehensive coverage for INFO issues is required to identify 

patterns and prevent escalation. Temporal analysis suggests optimal times for maintenance 

during off-peak hours, particularly early mornings, to minimize disruptions. Regularly reviewing 

data on hour, day, month, and weekday distributions can help in adjusting monitoring strategies 

and proactively addressing emerging trends. 

For the APP component, focused monitoring for FATAL issues is crucial given their 

significant presence in both Class 0 and Class 1. Prioritizing maintenance and implementing 

targeted interventions for Class 1 can help address and resolve these high-risk occurrences. The 

spread of FATAL issues across hours, days, months, and weekdays necessitates comprehensive 

monitoring to identify patterns and prevent escalation into more critical problems. Strategic 

maintenance scheduling during off-peak hours and periods of lower activity can minimize 

disruptions, and regularly reviewing temporal patterns can help adjust monitoring strategies and 

preemptively address emerging trends. 

The UEBA analysis highlights that both APP and KERNEL components predominantly 

experience issues at the FATAL and INFO levels, respectively. For APP, the critical nature of 

FATAL issues, especially in Class 1, necessitates prioritized monitoring and targeted 

interventions. Strategic scheduling and regular reviews of temporal patterns can enhance 

proactive management, ensuring a balanced focus on preventing and mitigating severe problems. 

For KERNEL, the high incidence of INFO issues in Class 0 and FATAL issues in Class 1 

underscores the need for comprehensive monitoring and maintenance. By focusing on strategic 

scheduling and regular pattern reviews, organizations can improve system reliability and 

efficiency, ensuring resources are effectively allocated to address both routine and critical issues. 
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3.5.5 Normal and Anomaly Data  Analysis 

The analysis focuses on the NORMAL Data behavior across, various dimensions such as 

Component, Level, and Temporal parameters. 

Insights  

1. Componentwise Analysis: 

• The KERNEL component has the highest count of messages, followed by APP, 

DISCOVERY, HARDWARE, and MMCS. 

• KERNEL has a variety of message levels, including INFO, FATAL, WARNING, 

SEVERE, and ERROR. 

 

3. Level Analysis: 

• INFO-level messages dominate across all components, particularly in the 

KERNEL component. 

• FATAL, WARNING, SEVERE, and ERROR levels are present but less frequent 

compared to INFO. 
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3. Temporal Analysis: 

• Hour: KERNEL component messages are spread throughout the day, with a 

concentration between 10 and 20 hours. Other components show more variability 

with specific peaks. 

• Month: Messages are consistent throughout the year for KERNEL, with some 

variability in other components. 

• Day: Messages in the KERNEL component are spread evenly across the month, 

while other components show more variability. 

• Weekday: Messages are consistent across weekdays for the KERNEL component, 

with some variation for other components. 
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NORMAL COMPONENT ANALYSIS 

 

 
Figure 3-26 NORMAL -Class Analysis 

 

 
Figure 3-27 NORMAL -Temporal  Analysis by Class 
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NORMAL-LEVEL ANALYSIS 

 

 
Figure 3-28 NORMAL- Level Analysis 

 

 
Figure 3-29 NORMAL -Temporal  Analysis by Level 
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ANOMALY  

The analysis focuses on the ANOMALY Data behavior across, various dimensions such 

as Component, Level, and Temporal parameters. 

Insights  

1. Componentwise Analysis: 

• The KERNEL component exhibits a higher count of anomalies compared to the 

APP component. 

• Both components have significant counts of FATAL level anomalies, with 

KERNEL showing a higher count. 

 

 

2. Level  Analysis: 

• FATAL level anomalies are predominant in both components. 

• The KERNEL component shows a higher frequency of FATAL anomalies 

compared to APP. 
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3. Temporal Analysis: 

• Hour: The KERNEL component shows a concentration of anomalies between 10 

and 20 hours, similar to the APP component, but with a more even spread. 

• Month: Anomalies are more frequent from September to November, with 

consistent minor anomalies in other months for the KERNEL component. 

• Day: Anomalies in the KERNEL component are distributed throughout the 

month, with APP having a broader distribution with outliers. 

• Weekday: Anomalies in the KERNEL component are consistent across weekdays, 

while APP shows an even distribution. 
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ANOMALY COMPONENT ANALYSIS 

 
Figure 3-30 ANOMALY -Class Analysis 

 

 
Figure 3-31 ANOMALY- Temporal  Analysis by Class 
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ANOMALY LEVEL ANALYSIS 

  
Figure 3-32 ANOMALY-Level Analysis 

 

 
Figure 3-33 ANOMALY-Temporal  Analysis by Level 
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ANOMALY UNIVARIATE  ANALYSIS 

 

 
Table 3-14 Anomaly Count- Component-wise 
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Figure 3-34 Anomaly Distribution- Component wise 

 

Insights 

The univariate analysis of anomaly labels reveals that the KERNEL component is 

significantly more prone to anomalies than the APP component, with 115 anomalies compared to 

28. The KERNEL component's anomalies are dominated by KERNTLB (60 instances), 

KERNSTOR (30), and KERNMNTF (11), indicating major issues in memory management, 

storage, and maintenance functions. In contrast, the APP component's anomalies are primarily 

severe errors (APPSEV) with 17 instances, highlighting critical application-level problems. The 

distribution of anomalies suggests that the KERNEL component has more diverse and severe 

issues than the APP component. 
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Implications- Normal and Anomaly Analysis 

The normal data analysis reveals that the KERNEL component generates the highest 

volume of messages, particularly INFO messages, indicating a well-instrumented system with 

thorough logging and active monitoring. Temporal patterns show consistent message generation 

with peaks during specific hours and months. Monitoring efforts should focus on peak periods to 

identify potential system load or stress, and regular checks on FATAL, WARNING, SEVERE, 

and ERROR messages can help detect and resolve critical issues early. Prioritizing maintenance 

of the KERNEL component is crucial to ensure INFO messages do not overshadow critical ones. 

In contrast, the anomaly data analysis indicates a high occurrence of FATAL anomalies 

in the KERNEL component, signaling significant reliability issues that need immediate attention. 

Temporal peaks in anomalies suggest periods of high system load, requiring targeted monitoring 

and mitigation strategies during peak hours (10-20) and months (September to November). 

Enhanced monitoring and regular maintenance are essential for addressing the high anomaly rate 

in the KERNEL component. Allocating more resources to resolve FATAL anomalies will 

improve overall system stability and performance. 

 

Overall, the KERNEL component shows the highest volume of both normal messages 

and anomalies, indicating active monitoring but also significant reliability issues. Temporal 

patterns in both normal and anomaly data highlight peak periods that require focused monitoring 

and maintenance. Addressing critical anomalies promptly and ensuring comprehensive 

monitoring will enhance the stability and performance of the system.  
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3.6 UEBA Score Analysis  

Anomaly risk scoring leverages the precision of the Random Forest, the recall power of 

XGBoost, and the Isolation Forest for comparative analysis to assign risk scores to each dataset 

instance. These models are trained with labeled data to develop robust classifiers. Once trained, 

the models are used to evaluate and detect anomalous behavior, identifying trends and patterns 

indicative of potential anomalies. The resulting risk scores facilitate a detailed analysis of entities 

or components within the dataset. This analysis provides a deeper understanding of anomalous 

behavior and its implications, as detailed in this section. Specifically, three scores are analyzed 

and compared: the recall score obtained using XGBoost, the precision score obtained from 

Random Forest, and the IF score from the Isolation Forest algorithm.  
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3.6.1 Recall Score 

The recall score is calculated using the Gradient Boost Algorithm. 

 

 
 

Figure 3-35 Recall Score Analysis 

 

Insights 

1. Distribution of Recall Scores: 

• The recall scores for the labels and components show significant variability. 

• For Class 0 (normal data), recall scores are mostly concentrated around 0, 

indicating that normal data is often correctly identified with low recall. 

• For Class 1 (anomaly data), recall scores are concentrated above 80 with many 

instances achieving high recall scores (close to 100). 
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2. Componentwise Analysis: 

• The KERNEL component has a wide range of recall scores, with many instances 

achieving high recall. 

• The APP component shows a more concentrated recall score distribution for Class 

0 and a wider spread for Class 1, indicating variability in correctly identifying 

normal and anomalous instances. 

• Other components such as DISCOVERY, HARDWARE, and MMCS have fewer 

normal data points only and have very low recall scores. 
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3.6.2 Precision Score 

The precision score is calculated using  Random Forest Algorithm  

 

 

Figure 3-36 Precision Score Analysis 

 

Insights 

1. Distribution of Precision Scores: 

• The precision scores for labels and components show distinct patterns. Class 0 

(normal data) generally achieves high precision, especially for the NORMAL 

label, indicating that normal data points are correctly identified with high 

accuracy. 

• For Class 1 (anomaly data), precision scores are more varied, with several labels 

showing lower precision scores. This suggests that the model has more difficulty 

precisely identifying anomalies. 
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2. Componentwise Analysis: 

• The KERNEL component has a wide range of precision scores, particularly for 

Class 1. While some anomalies are identified with high precision, others have 

much lower precision scores, indicating inconsistencies in the model's 

performance for this component. 

• The APP component also shows variability, with lower precision for Class 1 

compared to Class 0, highlighting the challenge of precisely identifying anomalies 

within the application component. 

• Other components, such as DISCOVERY, HARDWARE, and MMCS, have 

fewer normal data points only  with high precision scores. 
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3.6.3 Isolation Forest Score 

Isolation Forst score is calculated using IF estimatore 

 

 
Figure 3-37 IF score Analysis 

Insights 

1. Distribution of IF Scores: 

• The IF (Isolation Forest) scores for different labels and components show distinct 

patterns. For Class 0 (normal data), the scores are tightly clustered around 0, 

indicating that the Isolation Forest model effectively distinguishes normal data. 

• For Class 1 (anomaly data), the IF scores are more dispersed, with several labels 

showing higher scores. This suggests that the model can identify anomalies with 

varying degrees of confidence. 
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2. Componentwise Analysis: 

• The KERNEL component has a wide range of IF scores for Class 1, indicating a 

diverse set of anomalies that the model can detect with different confidence 

levels. 

• The APP component shows some overlap in IF scores between Class 0 and Class 

1, suggesting challenges in distinguishing normal data from anomalies in this 

component. 

• Other components, such as DISCOVERY, HARDWARE, and MMCS, have 

fewer normal data points only  but exhibit lower IF scores . 
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Comparative Analysis of Scores 

 

 
Figure 3-38 Comparative Analysis of scores 

Insight 

1. Recall Scores: 

• Class 1 (anomaly data) achieves consistently high recall scores, indicating the 

model's effectiveness in identifying anomalies. 

• Class 0 (normal data) has recall scores concentrated around 0, suggesting the 

model often correctly identifies normal data with low recall variability. 

 

2. Precision Scores: 

• Class 0 has high precision scores, indicating that normal instances are correctly 

identified with high accuracy. 

• Class 1 shows lower and more varied precision scores, indicating difficulty in 

precisely identifying anomalies and a higher rate of false positives. 

 

3. IF Scores: 

• IF scores for Class 0 are tightly clustered around 0, showing the model's 

effectiveness in distinguishing normal data. 

• Class 1 has higher and more dispersed IF scores, reflecting the model's varying 

confidence in detecting anomalies 
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      Implications 

The high recall scores for anomalies (Class 1) suggest that the model is effective in identifying 

most anomalies, although it struggles with precision, leading to false positives. This indicates 

that while the model can detect a significant number of anomalies, it needs a slight  improvement 

in its precision to reduce the number of false alarms. For normal data (Class 0), the high 

precision scores indicate accurate identification, but the low recall suggests potential oversight of 

some normal instances. The tight clustering of IF scores around 0 for normal data demonstrates 

effective differentiation, whereas the dispersed scores for anomalies reflect varying confidence in 

detection. 

For the KERNEL component, the primary focus should be on improving precision to reduce 

false positives while maintaining high recall. This involves addressing the underlying factors that 

cause low precision. On the other hand, the APP component requires balanced optimization to 

enhance both recall and precision for better anomaly detection. By improving the precision of 

anomaly detection in the KERNEL component and balancing recall and precision in the APP 

component, the overall model performance can be significantly enhanced. 

 

To summarize, in anomaly detection, recall is crucial as it ensures that most anomalies 

are detected, even if it means compromising precision to some extent. Therefore, the best 

candidate for anomaly scoring is a recall score. This approach ensures that the majority of 

anomalies are identified, which is critical in maintaining system reliability. Balancing this with 

efforts to improve precision will help in reducing false positives and enhancing overall detection 

performance. By focusing on high recall while maintaining a balance with precision, , the system 

can achieve more reliable and comprehensive anomaly detection 
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3.7 Research Design Limitations 

When designing research focused on User and Entity Behavior Analytics (UEBA) based 

anomaly detection using the BGL (Blue Gene/L) dataset, several limitations must be addressed 

to ensure the robustness and validity of the findings. This thesis explores the application of 

various machine learning algorithms, including Random Forest (RF), Extreme Gradient Boosting 

(XGBoost), Isolation Forest (IF), and Neural Networks (NN), to detect anomalies within the 

BGL dataset. Despite the potential of these approaches, the research design faces inherent 

challenges related to the nature of the dataset, the preprocessing steps, and the static anomaly 

detection, which is elaborated in this section. 

Domain-specific nature of the BGL dataset 

One major limitation is the domain-specific nature of the BGL dataset, which is tailored to the 

Blue Gene/L supercomputer environment. The components KERNEL, APP, DISCOVERY, 

HARDWARE, and MMCS  are considered entities, and their behavior is analyzed for anomaly 

detection. However, the specific patterns and characteristics of this environment may not 

generalize well to other systems or industries, limiting the broader applicability of the findings. 

Data Imbalance 

Additionally, the dataset's imbalance poses significant challenges. In anomaly detection tasks, 

normal instances often vastly outnumber anomalous ones, which can bias the machine learning 

models towards normal behavior, reducing their sensitivity and accuracy in detecting true 

anomalies. While oversampling techniques can partially mitigate this issue, they can also 

introduce noise and potentially lead to overfitting, thereby compromising the model's 

performance. 

Lack of contextual information 

Another critical issue is the lack of contextual information in the BGL logs. Effective anomaly 

detection often requires understanding the context in which events occur, such as system states, 

user activities, or environmental conditions. The BGL dataset, especially in its preprocessed 

form, lacks this detailed contextual information, making it difficult to distinguish between 
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normal and anomalous behavior accurately. The preprocessing steps, while necessary to prepare 

the data for analysis, may also strip away valuable information, further complicating the task. 

Static Anomaly Detection 

Finally, the static nature of anomaly detection models used in this research does not account for 

the temporal and dynamic aspects of system behavior. Static models analyze historical data 

snapshots or fixed time windows, which may not capture evolving patterns and trends over time. 

This limitation can lead to a failure in detecting dynamic or novel anomalies that deviate from 

historical patterns, reducing the overall effectiveness of the anomaly detection system. 

 

In summary, while the application of machine learning algorithms such as RF, XGBoost, IF, and 

NN to the BGL dataset holds promise for UEBA-based anomaly detection, several research 

design limitations must be addressed. The domain-specific nature of the dataset, data imbalance 

issues, lack of contextual information, and the static approach to anomaly detection all pose 

significant challenges. Addressing these limitations requires careful consideration of data 

preprocessing techniques, incorporating contextual information, and exploring dynamic anomaly 

detection methods to enhance the robustness and practical applicability of the research findings.  
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3.8 Conclusion 

In summary, the methodology of this study aimed to evaluate the effectiveness of 

machine learning models—Isolation Forest, Random Forest, XGBoost, and a simple Neural 

Network—in detecting anomalies within the BGL dataset, with a focus on UEBA to reduce false 

alarms and enhance computational efficiency. Through a structured approach that included data 

collection, preprocessing, model training, hyperparameter tuning, validation, and intensive Data 

analysis focusing on  UEBA  the study balanced predictive power with computational resource 

usage, creating a robust framework for log anomaly detection. 

 

However, several research design limitations emerged, including the domain-specific 

nature of the BGL dataset, data imbalance issues, and the lack of user and entity-related 

contextual information. These factors complicated model training and evaluation, despite 

oversampling efforts. Additionally, the static nature of the anomaly detection approach 

highlighted the need for methods that incorporate dynamic and temporal aspects of system 

behavior. Addressing these limitations is crucial for advancing UEBA-based anomaly detection. 

Future research should focus on integrating contextual information and dynamic detection 

methods to enhance model robustness, accuracy, and practical applicability, ultimately 

improving the reliability and security of high-performance computing systems. 

 

 

 

 

  



143 

 

CHAPTER IV:  

RESULTS 

This chapter presents the results from the experimental setup for UEBA-based anomaly 

detection in logs, as detailed in Chapter III: Methodology. The findings align with the literature 

and effectively address the study questions. 

4.1 Research Question One 

How much computational and performance efficacy can be brought out by 

leveraging UEBA techniques for log analysis? 

 

 

 

Table 4-1 Computational and Performance Metrics 
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Computational Efficacy 

 

 
Figure 4-1 Training Vs Prediction Time Analysis 

The integration of UEBA techniques into machine learning models for log analysis leads 

to an increase in training times.  

• XGBoost the training time increased from 0.1209 seconds to 0.2690 seconds,  

• Random Forest from 0.2955 seconds to 0.4052 seconds,  

• Neural Networks from 2.6467 seconds to 2.5980 seconds,  

• Isolation Forest from 0.4611 seconds to 0.5013 seconds.  

Despite the increased training times, UEBA techniques generally reduce the test 

prediction times, enhancing real-time performance. 

• XGBoost's prediction time decreased from 0.0175 seconds to 0.0127 seconds,  

• Random Forest from 0.0461 seconds to 0.0216 seconds,  

• Isolation Forest from 0.0256 seconds to 0.0211 seconds.  

• Neural Networks saw a slight increase in prediction time from 0.4611 seconds to 

0.4666 seconds.  
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 Performance Efficacy 

 

 
Figure 4-2  

Model Performance with UEBA and w/o UEBA 

UEBA techniques provide marginal improvements in various performance metrics across 

different models: 

• Isolation Forest: Precision increased slightly from 0.9441 to 0.9525, while recall 

remained perfect at 1.0000. F1-score also saw a minor improvement from 0.9434 

to 0.9518. The False Positive Rate (FPR) decreased from 0.7935 to 0.6739, and 

the False Negative Rate (FNR) remained unchanged at 0.0000. 

• Random Forest: Precision improved from 0.9517 to 0.9607, with perfect recall 

remaining at 1.0000. F1-score increased from 0.9753 to 0.9800. The FPR 

decreased from 0.5063 to 0.4297, and the FNR stayed at 0.0000. 
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• XGBoost: Precision remained at 0.9804, and recall stayed at 1.0000, with the F1-

score holding at 0.9804. The FPR decreased slightly from 0.0011 to 0.0010, while 

the FNR remained at 0.0000. 

• Neural Networks: No significant change in performance metrics was observed, 

with precision remaining at 0.9804, recall at 0.9804, and the F1-score at 0.9804. 

The FPR and FNR did not change significantly. 
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4.2 Research Question Two 

Which machine learning technique will predict anomalies from the structured log 

with optimal computational performance and reduced false alarm rate. 

 The machine learning techniques incorporated with UEBA are analyzed for predicting 

anomalies in structured logs, to find out the optimal choice due to its balanced performance 

metrics and computational efficiency.  

 

 
Table 4-2 UEBA Integrated Model Performance 

 

Comparison of Models with UEBA: 

1. Isolation Forest: 

• Consistent precision and recall but high false positive (FPR) and false negative 

rates (FNR), leading to many false alarms and missed anomalies. 

• Reasonable training (0.5135s) and testing times (0.0090s) but reliability issues 

due to high FPR and FNR. 
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2. Random Forest: 

• Perfect training metrics but precision drops during testing, while recall remains 

perfect. 

• Low FPR and zero FNR in testing indicate very few false alarms and no missed 

anomalies. 

• Precision drop during testing suggests possible inconsistencies. 

 

3. XGBoost: 

• Maintains high precision (0.9804) and recall (0.9804) from training to testing. 

• Strong F1-score (0.9804) and accuracy (0.9967) with the lowest FPR (0.0011). 

• Efficient computational times for training (0.2719s) and testing (0.0098s). 

 

4. Neural Networks: 

• Exceptional training performance but significant precision drop during testing 

while maintaining perfect recall. 

• Increased FPR during testing, leading to more false alarms. 

• High computational times (2.8170s for training, 0.2476s for testing) make it less 

suitable for real-time applications. 
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Optimal Results shown on Test dataset by XGBoost Algorithm with UEBA 

 

 
 

Table 4-3 XGBoost Model Performance 
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4.3 Research Question Three 

 

          What is the impact of UEBA based Log Anomaly Detection on small and 

medium enterprise  businesses. 

Entity Score 

 

Figure 4-3 Entity Score 

The analysis of the entity score graph reveals that the  

• APP and KERNEL components exhibit the highest anomaly scores,  

• The HARDWARE and DISCOVERY components show moderate anomaly 

scores,.  

• The MMCS component has the lowest anomaly score, indicating high stability 

and fewer issues.  
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Component wise Analysis Over Time Graph against Recall score 

 

Figure  4-4 Recall Score over Time 

• KERNEL (blue): The KERNEL component shows intermittent spikes in 

anomalies throughout the timeline. This indicates that the KERNEL experiences 

frequent, though not constant, issues. The spikes are relatively sharp, suggesting 

sudden and perhaps severe anomalies. 

• APP (orange): The APP component displays a high frequency of anomalies, 

especially towards the middle and end of the timeline. This component has the 

most persistent and prolonged anomalies, indicating chronic issues that need 

consistent monitoring. 

• DISCOVERY (green): Anomalies in the DISCOVERY component are less 

frequent but occur sporadically. This suggests that while the DISCOVERY 

component is generally stable, it does encounter occasional issues. 

• HARDWARE (purple): Similar to DISCOVERY, the HARDWARE component 

shows few anomalies, indicating overall stability with rare disruptions. 

• MMCS (red): The MMCS component has the least anomalies, pointing towards 

high stability and minimal issues. 
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4.4 Summary of Findings 

 

The integration of User and Entity Behavior Analytics (UEBA) techniques into machine 

learning models for log analysis has shown a notable impact on training and prediction times 

across different models. Training times increased for XGBoost, Random Forest, and Isolation 

Forest, while Neural Networks saw a slight decrease. Despite the increased training times, 

prediction times generally improved, for XGBoost, Random Forest, and Isolation Forest. 

However, Neural Networks experienced a slight increase in prediction time.  

 

UEBA techniques demonstrated marginal improvements in performance metrics across 

various models, with Isolation Forest, Random Forest, and XGBoost showing enhanced 

precision and F1 scores. Random Forest and XGBoost maintained perfect recall, while Neural 

Networks saw no significant change in precision, recall, or F1-score. The study also analyzed 

anomaly scores across different components, revealing that the APP and KERNEL components 

exhibited the highest anomaly scores, while HARDWARE and DISCOVERY showed moderate 

scores, and MMCS had the lowest scores. XGBoost emerged as the optimal choice due to its 

balanced performance metrics and computational efficiency, with consistently high precision, 

recall, and low FPR, along with efficient training and prediction times. 
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4.5 Conclusion 

 

This chapter presented the results and findings of the proposed research study in 

alignment with the research objectives and questions.The results are organized according to each 

research question, and corresponding insights are provided.. Despite the increased training times, 

UEBA techniques generally reduce prediction times and improve performance metrics, with 

XGBoost emerging as the optimal model due to its balanced precision, recall, and computational 

efficiency. This chapter offers a comprehensive overview, laying the groundwork for a detailed 

discussion of the results to address the research questions, which will be covered in Chapter V. 
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CHAPTER V:  

DISCUSSION 

5.1 Discussion of Results 

This chapter discusses the results presented in Chapter IV utilizing the experimental setup 

for UEBA-based log anomaly detection. The analysis focuses on interpreting the findings, 

evaluating their implications, and addressing the research questions based on the observed data. 

Through this discussion, we aim to provide a comprehensive understanding of the study's 

outcomes and their significance within the context of existing literature and practical 

applications. 

 

5.2 Discussion of Research Question One 

The findings reveal that leveraging UEBA techniques for log analysis significantly 

enhances both computational and performance efficacy. While training times increase across all 

models, this trade-off results in improved real-time prediction times, which is crucial for timely 

anomaly detection. XGBoost, in particular, demonstrates balanced computational performance, 

with only a marginal increase in training time but offering reduced prediction times. This 

efficiency is advantageous for SMEs requiring cost-effective solutions. 

Performance metrics highlight UEBA's effectiveness in reducing false positives, thereby 

increasing the reliability of anomaly detection models. Although improvements in precision, 

recall, F1-score, and accuracy are marginal, the significant reductions in FPR for models like 

Isolation Forest, Random Forest, and XGBoost underscore UEBA's value in enhancing model 

efficiency and trustworthiness. 

The integration of UEBA techniques into machine learning models for log analysis 

results in increased training times but generally reduces test prediction times, enhancing real-

time performance. This indicates that while UEBA demands more computational resources for 
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training, it improves prediction efficiency, making it particularly beneficial for real-time 

applications. 

 

In conclusion, incorporating UEBA techniques into log analysis models offers substantial 

benefits in computational and performance efficacy, making it a valuable approach for enhancing 

log analysis and anomaly detection systems. 
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5.3 Discussion of Research Question Two 

Among the machine learning techniques analyzed for predicting anomalies in structured logs, 

XGBoost emerges as the optimal choice due to its balanced performance metrics and 

computational efficiency.  

Comparison of Models with UEBA 

Isolation Forest: Isolation Forest shows improved precision and recall with UEBA integration 

during both the training and testing phases. The computational time remains reasonable, 

especially during testing. However, the high FPR and FNR values indicate a tendency towards 

more false positives and some missed anomalies, reducing its reliability for anomaly detection 

despite reasonable computational efficiency. 

Random Forest: Random Forest performs exceptionally well with perfect metrics during the 

training phase. During testing, it maintains high recall but experiences a slight drop in precision. 

The FPR and FNR values remain low, indicating few false alarms and missed anomalies. The 

computational times for training and testing are efficient, making Random Forest a strong 

contender for reliable and real-time anomaly detection with UEBA. 

 

XGBoost: XGBoost consistently maintains high precision and recall from training to testing, 

ensuring a balanced performance. The strong F1-score and accuracy, combined with the lowest 

FPR, highlight its capability to minimize false alarms while detecting anomalies effectively. The 

computational times for training and testing are optimal, making XGBoost the best choice for 

real-time applications where computational efficiency and reliability are paramount. 

 

Neural Networks: Neural Networks show excellent training performance with near-perfect 

metrics. However, the testing phase reveals a significant drop in precision while maintaining 

perfect recall. The increased FPR during testing indicates more false alarms, and the high 

computational times make Neural Networks less suitable for real-time applications compared to 

other models. 
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XGBoost stands out for its balanced precision, recall, and efficiency. It maintains high metrics 

across both training and testing phases, with minimal false alarms and reasonable computational 

times, making it the best choice for reliable and realtime anomaly detection in structured logs. 
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5.4 Discussion of Research Question Three 

In the fast-paced digital landscape, SMEs face increasing cybersecurity threats, making 

effective log anomaly detection crucial for real-time threat mitigation. This study evaluates the 

impact of UEBA-based log anomaly detection on SMEs, focusing on computational time, 

performance metrics, and entity scoring.  

Implementing UEBA techniques increases training times but maintains efficient test 

prediction times. XGBoost, in particular, demonstrates balanced computational performance with 

a training time of 0.2719 seconds and a testing time of 0.0098 seconds, making it suitable for 

SMEs with limited resources. Performance metrics for XGBoost with UEBA show high 

precision (0.9804) and recall (0.9804), ensuring reliable anomaly detection with minimal false 

positives (FPR 0.0011).  

Entity scores highlight the KERNEL and APP components as the most risky, facilitating 

targeted monitoring and insider threat detection. The recall score over time confirms XGBoost's 

consistent anomaly detection performance across components, essential for real-time 

surveillance. 

XGBoost stands out for SMEs due to its low computational time, high precision, and 

recall, ensuring efficient and reliable anomaly detection. Compared to high-cost UEBA systems, 

XGBoost offers a streamlined, cost-effective solution with robust monitoring and risk 

management capabilities, making it an optimal choice for SMEs 
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CHAPTER VI:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

6.1 Summary 

This thesis presents a critical review of integrating User and Entity Behavior Analytics 

(UEBA) techniques into various machine learning models to enhance log anomaly detection, 

aiming to identify performance improvements and optimal models for superior detection. The 

research focuses on guiding enterprise businesses in designing cost-effective and robust cloud 

log-based Security Information and Event Management (SIEM) systems, ultimately enhancing 

cybersecurity measures. 

The study compares models such as XGBoost, Random Forest, Neural Networks, and 

Isolation Forest, evaluating their training and prediction times, precision, recall, F1-scores, False 

Positive Rates (FPR), and False Negative Rates(FNR). The findings indicate that while UEBA 

techniques generally increase training times, they significantly reduce prediction times, thereby 

improving real-time performance. Among the models, XGBoost emerged as the most balanced 

and efficient choice due to its high precision, recall, and computational efficiency. 

Additionally, the research emphasizes the necessity for a benchmark UEBA-based log 

anomaly dataset, which would contribute to the advancement of the research community in this 

domain. Overall, this thesis provides valuable insights into integrating UEBA with machine 

learning models for superior log anomaly detection, addressing notable gaps and challenges in 

the field. 
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6.2 Implications 

The findings of this study have significant implications for organizations, especially 

SMEs, looking to enhance their cybersecurity measures through advanced log analysis. The 

integration of UEBA techniques not only improves the accuracy and reliability of anomaly 

detection but also optimizes computational resources, making real-time threat detection more 

feasible. The reduced prediction times and lower FPRs associated with models like XGBoost and 

Random Forest mean fewer false alarms and more timely responses to potential threats. This 

advancement supports better security management and risk mitigation strategies in a fast-

evolving digital landscape. The findings empower businesses to develop robust cloud log-based 

SIEM systems that deliver substantial cost savings, minimize false positives, enhance threat 

response, and proactively address emerging cybersecurity threats, ultimately safeguarding assets 

and preserving stakeholder trust. 
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6.3 Recommendations for Future Research 

Future research should build on this study's findings by addressing the identified research 

design limitations,  to enhance UEBA-based log anomaly detection using the following 

strategies. 

• Scalability Testing: Evaluate UEBA-integrated models in large-scale, diverse 

environments to ensure they handle increased log volumes and generalize across 

various systems, addressing the domain-specific nature of the BGL dataset. 

• Model Optimization: Apply advanced optimization techniques for Neural 

Networks and other models to reduce prediction times and false positive rates, 

improving their suitability for real-time applications and mitigating data 

imbalance issues. 

• Incorporating Contextual Information: Improve preprocessing steps to retain 

more contextual information from the logs, enhancing accuracy in distinguishing 

between normal and anomalous behaviors. 

• Dynamic Anomaly Detection: Implement dynamic anomaly detection methods 

to account for temporal and evolving system behavior, capturing trends and novel 

anomalies that static models might miss. 

• Testing on Diverse Log Sources: Validate models on various log types, 

including unstructured logs, to ensure applicability across different data formats 

and sources, generalizing the findings beyond the BGL dataset. 
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6.4 Conclusion 

The integration of UEBA techniques into machine learning models for log analysis offers 

substantial improvements in anomaly detection, balancing computational efficiency with high 

precision and recall. XGBoost, in particular, stands out for its optimal performance metrics and 

reduced prediction times, making it the best choice for real-time applications. This research 

highlights the potential of UEBA-enhanced machine learning models to provide reliable, 

efficient, and cost-effective solutions for anomaly detection, especially benefiting SMEs with 

limited resources. As cybersecurity threats continue to evolve, these advanced techniques will 

play a crucial role in ensuring robust and proactive threat management.. 
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APPENDIX A: EMPIRICAL ANALYSIS OF BGL AND HDFS DATASET 

 

 

 

Empirical Analysis of BGL and HDFS dataset 

 

 

 

 

 

 

  

Sl no Dataset Algorithm Precision Recall F1-Score Year Reference

1 BGL LogLS 0.68 0.99 0.8 2022  (Chen, Luktarhan and Lv, 2022)

2 BGL LogBERT 0.89 0.92 0.91 2021 (Guo, Yuan and Wu, 2021) 

3 BGL LogAnomaly 0.84 0.97 0.9 2019   (Meng et al. , 2019)

4 BGL A2Log 0.74 0.22 0.34 2022  (Wittkopp et al. , 2022) 

5 HDFS LogLS 0.96 0.98 0.97 2022  (Chen, Luktarhan and Lv, 2022)

6 HDFS LogC 0.94 0.98 0.96 2020 (Yin et al. , 2020) 

7 HDFS LogBERT 0.87 0.78 0.83 2021   (Guo, Yuan and Wu, 2021)

8 HDFS LogAutomata 0.93 0.81 0.86 2022   (Kazemimiraki, 2022)

9 HDFS LogAnomaly 0.83 0.94 0.88 2019   (Meng et al. , 2019)
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APPENDIX B: ENTITY-BASED UEBA -ATTRIBUTE WISE 

DISCOVERY 

DISCOVERY-Component Analysis 

 

 



165 

 

DISCOVERY-Level Analysis 

 

 

 

 

- 

  



166 

 

HARDWARE 

Hardware-Component Analysis 
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Hardware-Level Analysis 
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 MMCS 

 MMCS-Component Analysis 
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APPENDIX C: TECHNICAL WORKFLOW IN PYTHON 

 

  1.Dummy Encoding: Convert categorical variables into a numerical format using one 

hot encoding. 

 

2.Normalization: Apply standard scaling to normalize the feature values. 

 

3. SMOTE Oversampling 

    Oversampling: Use SMOTE to balance the dataset by oversampling the minority class. 

 

4. TrainTest Split 

    Splitting the Data: Split the data into training and validation sets. 
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5. Isolation Forest 

   Train and predict using the Isolation Forest model for anomaly detection.  

  

6. Random Forest 

    Train and predict using the Random Forest model. 

 

7. XGBoost 

Train and predict using an XGBoost model. 
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8. Neural Network 

 Design and train a simple feedforward neural network 

 

9. Hyperparameter Tuning 
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10. Model Evaluation 
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APPENDIX D: CONFUSION MATRIX -TRAIN, VAL, TEST 

 

 

 

 

 



174 

 

 

 

 

 

 

 



175 

 

 

 

 

 

 

 



176 

 

 

REFERENCES  

A Guide to User and Entity Behavior Analytics ( UEBA ) Contents’ (no date). 

Abbasi, F., Naderan, M., & Alavi, S. E. (2021, May). Anomaly detection in Internet of Things 

using feature selection and classification based on Logistic Regression and Artificial Neural 

Network on N-BaIoT dataset. In 2021 5th International Conference on Internet of Things and 

Applications (IoT) (pp. 1-7). IEEE. 

Adam J. Oliner, Jon Stearley. What Supercomputers Say: A Study of Five System Logs, in 

Proc. of IEEE/IFIP International Conference on Dependable Systems and Networks (DSN), 

2007. 

Ajzen, I. & Fishbein, M. (1980). Understanding attitudes and predicting social behavior. 

Englewood cliffs. 

Al-amri, R., Murugesan, R. K., Man, M., Abdulateef, A. F., Al-Sharafi, M. A., & Alkahtani, 

A. A. (2021). A review of machine learning and deep learning techniques for anomaly 

detection in IoT data. Applied Sciences, 11(12), 5320. 

Alghayadh, F. and Debnath, D. (2021) ‘A Hybrid Intrusion Detection System for Smart Home 

Security Based on Machine Learning and User Behavior’, Advances in Internet of Things, 

11(01), pp. 10–25. doi: 10.4236/ait.2021.111002. 

Anashkin, Y. and Zhukova, M. (2022) ‘Implementation of Behavioral Indicators in Threat 

Detection and User Behavior Analysis’, in CEUR Workshop Proceedings. CEUR-WS, pp. 17–

24. 

Bagaa, M., Taleb, T., Bernabe, J. B., & Skarmeta, A. (2020). A machine learning security 

framework for iot systems. IEEE Access, 8, 114066-114077. 

Baril, X., Coustié, O., Mothe, J., & Teste, O. (2020, October). Application performance 

anomaly detection with LSTM on temporal irregularities in logs. In Proceedings of the 29th 

ACM international conference on information & knowledge management (pp. 1961-1964). 

http://ieeexplore.ieee.org/document/4273008/
http://ieeexplore.ieee.org/document/4273008/
http://ieeexplore.ieee.org/document/4273008/


177 

 

Borghesi, A. et al. (2019) ‘Anomaly Detection Using Autoencoders in High-Performance 

Computing Systems’, AAAI Conference on Innovative Applications of Artificial Intelligence 

(IAAI-19) Anomaly. Available at: www.aaai.org (Accessed: 12 September 2021). 

Bouke, M. A., Abdullah, A., ALshatebi, S. H., & Abdullah, M. T. (2022). E2IDS: An 

Enhanced Intelligent Intrusion Detection System Based On Decision Tree Algorithm. Journal 

of Applied Artificial Intelligence, 3(1), 1-16. 

Brown, A. et al. (2018) ‘Recurrent Neural Network Attention Mechanisms for Interpretable 

System Log Anomaly Detection’, the First Workshop on Machine Learning for Computing 

Systems. 

Chai, J., Zeng, H., Li, A., & Ngai, E. W. (2021). Deep learning in computer vision: A critical 

review of emerging techniques and application scenarios. Machine Learning with 

Applications, 6, 100134. 

Chen, Y., Luktarhan, N., & Lv, D. (2022). LogLS: Research on System Log Anomaly 

Detection Method Based on Dual LSTM. Symmetry, 14(3), 454. 

Dai, Z., Li, N., Li, Y., Yuan, G., Zhao, X., Zhao, R., & Wu, F. (2022, July). Research on 

power mobile Internet security situation awareness model based on zero trust. In International 

Conference on Artificial Intelligence and Security (pp. 507-519). Cham: Springer International 

Publishing. 

Deng, S. et al. (2021) ‘User Behavior Analysis Based on Stacked Autoencoder and Clustering 

in Complex Power Grid Environment’, IEEE Transactions on Intelligent Transportation 

Systems. doi: 10.1109/TITS.2021.3076607. 

Dogo, E. M., Nwulu, N. I., Twala, B., & Aigbavboa, C. (2019). A survey of machine learning 

methods applied to anomaly detection on drinking-water quality data. Urban Water Journal, 

16(3), 235-248. 

Douiba, M., Benkirane, S., Guezzaz, A., & Azrour, M. (2022). Anomaly detection model 

based on gradient boosting and decision tree for IoT environments security. Journal of 

Reliable Intelligent Environments, 1-12. 



178 

 

Du, M. et al. (2017) ‘DeepLog: Anomaly detection and diagnosis from system logs through 

deep learning’, Proceedings of the ACM Conference on Computer and Communications 

Security, pp. 1285–1298. doi: 10.1145/3133956.3134015. 

Du, M., Li, F., Zheng, G., & Srikumar, V. (2017, October). Deeplog: Anomaly detection and 

diagnosis from system logs through deep learning. In Proceedings of the 2017 ACM SIGSAC 

conference on computer and communications security (pp. 1285-1298). 

Elmrabit, N. et al. (2020) ‘Evaluation of Machine Learning Algorithms for Anomaly 

Detection’, International Conference on Cyber Security and Protection of Digital Services, 

Cyber Security 2020. doi: 10.1109/CyberSecurity49315.2020.9138871. 

Elmrabit, N., Zhou, F., Li, F., & Zhou, H. (2020, June). Evaluation of machine learning 

algorithms for anomaly detection. In 2020 international conference on cyber security and 

protection of digital services (cyber security) (pp. 1-8). IEEE. 

Fan, J. et al. (2020) ‘Robust deep auto-encoding Gaussian process regression for unsupervised 

anomaly detection’, Neurocomputing, 376, pp. 180–190. doi: 10.1016/j.neucom.2019.09.078. 

Fan, L., Kang, C., Wang, H., Hu, H., Zhang, X., & Liu, X. (2020). Adaptive magnetic 

anomaly detection method using support vector machine. IEEE Geoscience and Remote 

Sensing Letters, 19, 1-5. 

Glanz, K., Rimer, B. K., & Viswanath, K. (Eds.). (2015). Health behavior: Theory, research, 

and practice. John Wiley & Sons. 

González-Granadillo, G., González-Zarzosa, S., & Diaz, R. (2021). Security information and 

event management (SIEM): analysis, trends, and usage in critical infrastructures. Sensors, 

21(14), 4759. 

Guo, H., Yuan, S. and Wu, X. (2021) ‘LogBERT: Log Anomaly Detection via BERT’. 

Available at: http://arxiv.org/abs/2103.04475. 

He, P. et al. (2016) ‘An evaluation study on log parsing and its use in log mining’, 

Proceedings - 46th Annual IEEE/IFIP International Conference on Dependable Systems and 

Networks, DSN 2016, pp. 654–661. doi: 10.1109/DSN.2016.66. 



179 

 

He, P. et al. (2017) ‘Drain: An Online Log Parsing Approach with Fixed Depth Tree’, 

Proceedings - 2017 IEEE 24th International Conference on Web Services, ICWS 2017, pp. 

33–40. doi: 10.1109/ICWS.2017.13. 

He, P. et al. (2018) ‘Towards Automated Log Parsing for Large-Scale Log Data Analysis’, 

IEEE Transactions on Dependable and Secure Computing, 15(6), pp. 931–944. doi: 

10.1109/TDSC.2017.2762673. 

Hindy, H. et al. (2020) ‘A Taxonomy of Network Threats and the Effect of Current Datasets 

on Intrusion Detection Systems’, IEEE Access, 8, pp. 104650–104675. doi: 

10.1109/ACCESS.2020.3000179. 

Jieming Zhu, Shilin He, Pinjia He, Jinyang Liu, Michael R. Lyu. Loghub: A Large Collection 

of System Log Datasets for AI-driven Log Analytics. IEEE International Symposium on 

Software Reliability Engineering (ISSRE), 2023  

Kamoona, A. M., Gostar, A. K., Bab-Hadiashar, A., & Hoseinnezhad, R. (2019, October). 

Sparsity-based naive bayes approach for anomaly detection in real surveillance videos. In 2019 

international conference on control, automation and information sciences (ICCAIS) (pp. 1-6). 

IEEE. 

Karthik, M. G., & Krishnan, M. M. (2021). Hybrid random forest and synthetic minority over 

sampling technique for detecting internet of things attacks. Journal of Ambient Intelligence 

and Humanized Computing, 1-11. 

Kaur, J., Kaur, K., Kant, S., & Das, S. (2022, November). UEBA with Log Analytics. In 2022 

3rd International Conference on Computing, Analytics and Networks (ICAN) (pp. 1-7). IEEE. 

Khaliq, S., Abideen Tariq, Z. U. and Masood, A. (2020) ‘Role of User and Entity Behavior 

Analytics in Detecting Insider Attacks’, 1st Annual International Conference on Cyber 

Warfare and Security, ICCWS 2020 - Proceedings. doi: 10.1109/ICCWS48432.2020.9292394. 

Khaliq, S., Tariq, Z. U. A., & Masood, A. (2020, October). Role of user and entity behavior 

analytics in detecting insider attacks. In 2020 International Conference on Cyber Warfare and 

Security (ICCWS) (pp. 1-6). IEEE. 

https://arxiv.org/abs/2008.06448
https://arxiv.org/abs/2008.06448
https://arxiv.org/abs/2008.06448


180 

 

Khan, M. Z. A., Khan, M. M., & Arshad, J. (2022, December). Anomaly Detection and 

Enterprise Security using User and Entity Behavior Analytics (UEBA). In 2022 3rd 

International Conference on Innovations in Computer Science & Software Engineering 

(ICONICS) (pp. 1-9). IEEE. 

Khanna, S. (2022) ‘Computer Vision User Entity Behavior Analytics’, (January). doi: 

10.13140/RG.2.2.29840.94721. 

Krishnaveni, S., Vigneshwar, P., Kishore, S., Jothi, B., & Sivamohan, S. (2020). Anomaly-

based intrusion detection system using support vector machine. In Artificial intelligence and 

evolutionary computations in engineering systems (pp. 723-731). Singapore: Springer 

Singapore. 

Kwon, T. H., Park, S. H., Park, S. I., & Lee, S. H. (2021). Building information modeling-

based bridge health monitoring for anomaly detection under complex loading conditions using 

artificial neural networks. Journal of Civil Structural Health Monitoring, 11, 1301-1319. 

LaCaille, L. (2020). Theory of reasoned action. Encyclopedia of behavioral medicine, 2231-

2234. 

Lakshminarasimman, S., Ruswin, S., & Sundarakantham, K. (2017, March). Detecting DDoS 

attacks using decision tree algorithm. In 2017 Fourth International Conference on Signal 

Processing, Communication and Networking (ICSCN) (pp. 1-6). IEEE. 

Landauer, M. et al. (2018) ‘Dynamic log file analysis: An unsupervised cluster evolution 

approach for anomaly detection’, Computers and Security, 79, pp. 94–116. doi: 

10.1016/j.cose.2018.08.009. 

Landauer, M. et al. (2020) ‘System log clustering approaches for cyber security applications: 

A survey’, Computers and Security, 92, p. 101739. doi: 10.1016/j.cose.2020.101739. 

Landauer, M. et al. (2022) ‘A User and Entity Behavior Analytics Log Data Set for Anomaly 

Detection in Cloud Computing’, Proceedings - 2022 IEEE International Conference on Big 

Data, Big Data 2022, pp. 4285–4294. doi: 10.1109/BigData55660.2022.10020672. 



181 

 

Landauer, M., Skopik, F., Höld, G., & Wurzenberger, M. (2022, December). A User and 

Entity Behavior Analytics Log Data Set for Anomaly Detection in Cloud Computing. In 2022 

IEEE International Conference on Big Data (Big Data) (pp. 4285-4294). IEEE. 

Lin, Q. et al. (2016) ‘Log clustering based problem identification for online service systems’, 

Proceedings - International Conference on Software Engineering, pp. 102–111. doi: 

10.1145/2889160.2889232. 

Lin, T. H. and Jiang, J. R. (2020) ‘Anomaly Detection with Autoencoder and Random Forest’, 

Proceedings - 2020 International Computer Symposium, ICS 2020, pp. 96–99. doi: 

10.1109/ICS51289.2020.00028. 

Lin, T. H., & Jiang, J. R. (2020, December). Anomaly detection with autoencoder and random 

forest. In 2020 International Computer Symposium (ICS) (pp. 96-99). IEEE. 

Liu, C., Gu, Z., & Wang, J. (2021). A hybrid intrusion detection system based on scalable K-

means+ random forest and deep learning. Ieee Access, 9, 75729-75740. 

Liu, H. (2021) ‘A insider threat detection system based on user and entity behavior analysis’, 

in Journal of Physics: Conference Series. IOP Publishing Ltd. doi: 10.1088/1742-

6596/1994/1/012021. 

Liu, Z. et al. (2018) ‘An integrated method for anomaly detection from massive system logs’, 

IEEE Access, 6, pp. 30602–30611. doi: 10.1109/ACCESS.2018.2843336. 

Lukashin, A., Popov, M., Bolshakov, A., & Nikolashin, Y. (2020). Scalable data processing 

approach and anomaly detection method for user and entity behavior analytics platform. In 

Intelligent Distributed Computing XIII (pp. 344-349). Springer International Publishing. 

Manimurugan, S. (2021). IoT-Fog-Cloud model for anomaly detection using improved Naïve 

Bayes and principal component analysis. Journal of Ambient Intelligence and Humanized 

Computing, 1-10. 

Market Guide for User and Entity Behavior Analytics (no date). Available at: 

https://www.gartner.com/en/documents/3872885 (Accessed: 18 January 2024). 



182 

 

Martín, A. G. et al. (2021) ‘An approach to detect user behaviour anomalies within identity 

federations’, Computers and Security, 108. doi: 10.1016/j.cose.2021.102356. 

Martín, A. G. et al. (2022) ‘Combining user behavioural information at the feature level to 

enhance continuous authentication systems’, Knowledge-Based Systems, 244, p. 108544. doi: 

10.1016/j.knosys.2022.108544. 

Martín, A. G., Beltrán, M., Fernández-Isabel, A., & de Diego, I. M. (2021). An approach to 

detect user behaviour anomalies within identity federations. computers & security, 108, 

102356. 

Meng, W. et al. (2019) ‘Loganomaly: Unsupervised detection of sequential and quantitative 

anomalies in unstructured logs’, IJCAI International Joint Conference on Artificial 

Intelligence, 2019-Augus, pp. 4739–4745. doi: 10.24963/ijcai.2019/658. 

Motiwalla, L. et al. (2019) ‘Leveraging Data Analytics for Behavioral Research’, Information 

Systems Frontiers, 21(4), pp. 735–742. doi: 10.1007/s10796-019-09928-8. 

Muliukha, V. et al. (2020) ‘Anomaly detection approach in cyber security for user and entity 

behavior analytics system’, ESANN 2020 - Proceedings, 28th European Symposium on 

Artificial Neural Networks, Computational Intelligence and Machine Learning, (19), pp. 251–

256. 

Otieno, O. C., Liyala, S., Odongo, B. C., & Abeka, S. O. (2016). Theory of reasoned action as 

an underpinning to technological innovation adoption studies. 

Patel, P., & Thakkar, A. (2020). The upsurge of deep learning for computer vision 

applications. International Journal of Electrical and Computer Engineering, 10(1), 538. 

Pawar, K., & Attar, V. (2019). Deep learning approaches for video-based anomalous activity 

detection. World Wide Web, 22(2), 571-601. 

Prathapchandran, K., & Janani, T. (2021). A trust aware security mechanism to detect sinkhole 

attack in RPL-based IoT environment using random forest–RFTRUST. Computer Networks, 

198, 108413. 



183 

 

Primartha, R. and Tama, B. A. (2017) ‘Anomaly detection using random forest: A 

performance revisited’, Proceedings of 2017 International Conference on Data and Software 

Engineering, ICoDSE 2017, 2018-Janua, pp. 1–6. doi: 10.1109/ICODSE.2017.8285847. 

Primartha, R., & Tama, B. A. (2017, November). Anomaly detection using random forest: A 

performance revisited. In 2017 International conference on data and software engineering 

(ICoDSE) (pp. 1-6). IEEE. 

Priya, V., Thaseen, I. S., Gadekallu, T. R., Aboudaif, M. K., & Nasr, E. A. (2021). Robust 

attack detection approach for IIoT using ensemble classifier. arXiv preprint arXiv:2102.01515. 

Raguvir, S. and Babu, S. (2020) ‘Detecting anomalies in users-An UEBA approach’, 

Proceedings of the International Conference on Industrial Engineering and Operations 

Management, 0(March), pp. 863–876. 

Raguvir, S., & Babu, S. (2020, March). Detecting Anomalies in Users–An UEBA Approach. 

In Proceedings of the International Conference on Industrial Engineering and Operations 

Managemen, Dubai, United Arab Emirates (UAE) (pp. 10-12). 

Rasheed Yousef and Mahmoud Jazzar (2021) ‘Measuring the Effectiveness of User and Entity 

Behavior Analytics for the Prevention of Insider Threats’, Journal of Xi’an University of 

Architecture & Technology XIII(X, 2021):175-181, XIII(X), pp. 175–181. doi: 

10.37896/JXAT13.10/313918. 

Rashid, F., & Miri, A. (2021, May). User and event behavior analytics on differentially private 

data for anomaly detection. In 2021 7th IEEE Intl Conference on Big Data Security on Cloud 

(BigDataSecurity), IEEE Intl Conference on High Performance and Smart Computing,(HPSC) 

and IEEE Intl Conference on Intelligent Data and Security (IDS) (pp. 81-86). IEEE. 

Rengarajan, R., & Babu, S. (2021, March). Anomaly Detection using User Entity Behavior 

Analytics and Data Visualization. In 2021 8th International Conference on Computing for 

Sustainable Global Development (INDIACom) (pp. 842-847). IEEE. 

Ribeiro, M., Lazzaretti, A. E., & Lopes, H. S. (2018). A study of deep convolutional auto-

encoders for anomaly detection in videos. Pattern Recognition Letters, 105, 13-22. 



184 

 

Sahu, N. K., & Mukherjee, I. (2020, June). Machine learning based anomaly detection for IoT 

network:(Anomaly detection in IoT network). In 2020 4th International Conference on Trends 

in Electronics and Informatics (ICOEI)(48184) (pp. 787-794). IEEE. 

Salitin, M. A., & Zolait, A. H. (2018, November). The role of User Entity Behavior Analytics 

to detect network attacks in real time. In 2018 International Conference on Innovation and 

Intelligence for Informatics, Computing, and Technologies (3ICT) (pp. 1-5). IEEE. 

Salitin, M. A., & Zolait, A. H. (2023). Evaluation criteria for network security solutions based 

on behaviour analytics. International Journal of Systems, Control and Communications, 14(2), 

132-147. 

Shaik, A. B., & Srinivasan, S. (2019). A brief survey on random forest ensembles in 

classification model. In International Conference on Innovative Computing and 

Communications: Proceedings of ICICC 2018, Volume 2 (pp. 253-260). Springer Singapore. 

Sharafaldin, I. et al. (2017) ‘Towards a Reliable Intrusion Detection Benchmark Dataset’, 

Software Networking, 2017(1), pp. 177–200. doi: 10.13052/jsn2445-9739.2017.009. 

Sharma, B., Pokharel, P. and Joshi, B. (2020) ‘User Behavior Analytics for Anomaly 

Detection Using LSTM Autoencoder-Insider Threat Detection’, in ACM International 

Conference Proceeding Series. Association for Computing Machinery. doi: 

10.1145/3406601.3406610. 

Sumologic (2020) What is a Log File? | Sumo Logic. Available at: 

https://www.sumologic.com/glossary/log-file/ (Accessed: 4 September 2021). 

Tao, Y. et al. (2020) ‘User Behavior Analysis by Cross-Domain Log Data Fusion’, IEEE 

Access, 8, pp. 400–406. doi: 10.1109/ACCESS.2019.2961769. 

Tsogbaatar, E., Bhuyan, M. H., Taenaka, Y., Fall, D., Gonchigsumlaa, K., Elmroth, E., & 

Kadobayashi, Y. (2021). DeL-IoT: A deep ensemble learning approach to uncover anomalies 

in IoT. Internet of Things, 14, 100391. 



185 

 

Tuan, T. A., Long, H. V., Son, L. H., Kumar, R., Priyadarshini, I., & Son, N. T. K. (2020). 

Performance evaluation of Botnet DDoS attack detection using machine learning. 

Evolutionary Intelligence, 13, 283-294. 

Vargaftik, S., Keslassy, I., Orda, A., & Ben-Itzhak, Y. (2021). RADE: resource-efficient 

supervised anomaly detection using decision tree-based ensemble methods. Machine Learning, 

110(10), 2835-2866. 

Viegas, E. K., Santin, A. O. and Oliveira, L. S. (2017) ‘Toward a reliable anomaly-based 

intrusion detection in real-world environments’, Computer Networks, 127, pp. 200–216. doi: 

10.1016/J.COMNET.2017.08.013. 

Vinayakumar, R., Soman, K. P. and Poornachandran, P. (2017) ‘Long short-term memory 

based operation log anomaly detection’, 2017 International Conference on Advances in 

Computing, Communications and Informatics, ICACCI 2017, 2017-Janua, pp. 236–242. doi: 

10.1109/ICACCI.2017.8125846. 

Weerasinghe, S., Erfani, S. M., Alpcan, T., & Leckie, C. (2019). Support vector machines 

resilient against training data integrity attacks. Pattern Recognition, 96, 106985. 

What is User Behavior Analytics (UBA) and User Entity Behavior Analytics (UEBA) | Splunk 

(no date). Available at: https://www.splunk.com/en_us/data-insider/user-behavior-analytics-

ueba.html (Accessed: 5 September 2021). 

Yadav, R. B., Kumar, P. S. and Dhavale, S. V. (2020) ‘A Survey on Log Anomaly Detection 

using Deep Learning’, ICRITO 2020 - IEEE 8th International Conference on Reliability, 

Infocom Technologies and Optimization (Trends and Future Directions), pp. 1215–1220. doi: 

10.1109/ICRITO48877.2020.9197818. 

Zhao, Z., Xu, C., & Li, B. (2021). A LSTM-based anomaly detection model for log analysis. 

Journal of Signal Processing Systems, 93, 745-751. 

Zhu, J. et al. (2019) ‘Tools and Benchmarks for Automated Log Parsing’, Proceedings - 2019 

IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in 

Practice, ICSE-SEIP 2019, pp. 121–130. doi: 10.1109/ICSE-SEIP.2019.00021. 



186 

 

Zhu, J. et al. (2023) ‘Loghub: A Large Collection of System Log Datasets for AI-driven Log 

Analytics’, Proceedings - International Symposium on Software Reliability Engineering, 

ISSRE, pp. 355–366. doi: 10.1109/ISSRE59848.2023.00071. 

 


