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“Abstract” 

Purpose - This study investigates the effect of fine-tuning on model training, and the impact of model 
training on the environment in terms of carbon footprint emissions. As language modeling evolves, 
we are obtaining complex and large models with a large number of trained parameters. However, 
only large enterprises are able to train these large models using large datasets. It is not possible for 
small and mid-size enterprises due to their computation resources capability. This study proposes a 
fine-tuning model training pipeline for such enterprises to get the same model capability as large 
enterprises with less number of model parameters training using SQuAD benchmark. The pre-
trained BERT base model is incorporated in combination with fine-tuning methods in this study.  

Findings - The results explain us that fine-tuned models need less computation time and less number 
of trainable parameters without losing too much model capabilities compared to the fully trained 
model, which indirectly helps us to protect the environment as it emits less carbon footprints. 
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1 Introduction 

It is essential to look into alternative approaches of fine-tuning(FT) instead of full model training 
with the language model evolution. Pre-trained models learn the representation of languages and the 
inner semantics as well, which is helping day to day life of common people by solving impossible 
tasks in possible ways and establishing an interest for researchers to deep dive into this field. These 
models can be used by FT on small datasets for diverse tasks. SQuAD benchmark by Rajpurkar 
(2016) has helped a lot of research and researchers to get insights to solve diverse tasks in language 
modeling. We are using it to assess the effectiveness of FT methods. 

Here, we look into the different FT strategies and evaluate the effect of it on model training. We 
focus on model computation time and number of trainable parameters required for model training. 
This study aims to build effective strategies for optimizing language models for specific tasks, paving 
the way for more efficient and effective implementations without losing the model capability in real-
world applications. 

2     Background 

2.1 Benchmark dataset 

In this study, we selected a widely adapted benchmark dataset named as Stanford Question 
Answering Dataset (SQuAD) (Rajpurkar, 2016). It contains around 100000 question answer pairs. It 
is acquired using more than 500 Wikipedia articles where questions were framed by crowd-workers. 
These articles were from different domains. It contains the domain category, id, questions framed by 
crowd-workers, wikipedia article text paragraphs, and answers. It is divided in train and test dataset 
with 87599 and 10570 samples respectively. The dataset information can be found in Table I. 
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Dataset Features Number of Rows 

train [’id’, ’title’, ’context’, ’question’, ’answers’] 87599 

test [’id’, ’title’, ’context’, ’question’, ’answers’] 10570 

Table I: Dataset information 

2.2 Large language models 

Attention based transformer model by (Vaswani et al., 2017) revolutionized the research in the large 
language models (LLMs). Invention of LLMs like BERT (Devlin et al., 2018), GPT (Radford et al., 
2018), XLNET (Z. Yang et al., 2019) etc. attracted the attention of people. BERT used a bidirectional 
transformers training approach which improved the quality and efficiency to understand tokens and 
semantics of the token of a language. GPT was fine-tuned on large text data to generate coherent and 
contextually relevant text. XLNet was proposed to overcome the limitations of the BERT model. It 
used the permutation-based training objectives and looked at every possible permutation of the input 
pattern. Sun et al., (2019) proposed ERNIE which refines the embedding quality by incorporating 
knowledge from structured knowledge bases and semantic matching. ERNIE uses lexical and 
structural information better than the conventional pre-training methods. 
RoBERTa by Y. Liu et al., (2019) builds upon BERT’s success by tuning the hyperparameters and 
training objectives. This results in a robust model which outperforms BERT in various natural 
language understanding tasks. Trained on large datasets with dynamic masking and longer 
sequences, RoBERTa achieves cutting-edge findings in analysis of emotions, identification of 
specific entities and responding to inquiries and shows significant progress on various tasks. 
ALBERT by Lan et al., (2019) solves the LLMs problem by using parameter sharing and cross layer 
parameter sharing. Fewer parameters and same performance ALBERT is more efficient, it can scale 
to larger batch size and sequence length, faster training and inference time and same efficiency across 
various tasks. 
Raffel et al., (2020) introduced T5, a unified transformer architecture that every NLP task is framed 
as a problem involving the conversion of text to text. By unifying activities such as interpretation, 
condensing, and responding questions into a single text-to-text framework, T5 gets cutting edge 
results across many tasks. Zaheer et al., (2020) introduced Big Bird, a transformer model designed 
to handle longer sequences better. Big Bird combines sparse attention and local- global attention 
patterns to scale to sequences of tens of thousands while performing well on many sequence 
modeling tasks. 
Recently there have been more and more advanced and resource hungry LLMs that require a lot of 
memory (RAM). For example, the earlier models like BERT, RoBERTa, XLNet, T5 large and GPT-
3 have parameter count ranging from millions to billions. Deploying and FT, these models require a 
lot of memory resources, hence the need for solutions that reduce computational cost and are 
production ready applications. 

2.3 Fine-tuning approaches 

Fine-tuning (FT) of a full model involves adjusting all layers of a model on the target task, which is 
effective when the target dataset is more or less similar to the trained model (Devlin et al., 2018). 
Alternatively, feature extraction is applied only on the final layers of the model, keeping earlier layers 
fixed to reduce computational costs (Yosinski et al., 2014). Domain Adaptation reduces the 
difference between source and target domains by employing adversarial methods, allowing mod- els 
to perform well in different domains despite distributional differences (Zhang et al., 2019). It 
incorporates a layer with optical flow reversal to guarantee that feature representations remain 
consistent across different domains, thereby improving domain adaptation. Intermediate task FT 
involves adapting a model on a related but different task before FT on the final target task, so more 
effective adaptation (Howard and Ruder, 2018). In Parameter-Efficient FT (PEFT), Adapter layers 
add small modules in each model layer and fine-tuned, while keeping the original weights frozen to 
make it more efficient (Poth et al., 2023). LoRA (Low-Rank Adaptation) incorporates low-rank 
decompositions into the model’s weight matrices, reducing the number of parameters updated during 
FT (Hu et al., 2021). PEFT tackles the computational cost of full FT as model grows in size. PEFT 
methods update only the model parameters to optimize efficiency. Houlsby et al., (2019) comes up 
with new ways to tackle the computational cost of FT PLMs. The paper proposes Top-K Tuning, a 
method that updates only the top k layers of the PLM while keeping the lower pre-trained layers 
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intact, efficiency without performance compromise. Also, the authors explore adapter-based 
approaches, adding small adapter modules for FT instead of modifying the original model 
parameters. Through these strategies, the paper offers valuable insights into achieving parameter-
efficient in tasks, opening doors for increased scalable and efficient deployment of models in 
practical scenarios. Knowledge Distillation approach involves FT in a ”student” model by 
leveraging the output probabilities (soft targets) from a ”teacher” model, transferring knowledge 
effectively (Hinton et al., 2015). L2 regularization imposes an extra concept to the loss function in 
order to avoid fitting problems by constraining deviations from pre-trained weights (H. Wang et al., 
2020). Elastic Weight Consolidation (EWC) adds a quadratic penalty to preserve important weights 
from previous tasks, mitigating catastrophic forgetting (Kirkpatrick et al., 2017). The research paper 
by Lee et al., (2019) proposes Mixout, a novel regularization technique for FT models. It addresses 
overfitting by randomly mixing a fraction of weights with their pre-trained values during training. 
This encourages robust representations, improving generalization on text classification tasks. Mixout 
is easily integrated, outperforming dropout in generalization performance. The paper provides 
theoretical justifications and practical implementation guidelines, offering a promising approach for 
regularization in fine-tuned models, enhancing generalization and robustness. Task-specific data 
augmentation involves generating augmented training data to enhance model robustness (Shorten 
and Khoshgoftaar, 2019). Curriculum learning starts with simpler examples and gradually increases 
difficulty to aid in progressive learning (Bengio et al., 2009). In Multi-Task Learning, joint FT 
involves training a model on multiple tasks simultaneously, sharing representations across tasks to 
improve generalization (Peters et al., 2019). FT of sequential task leverages of prior task knowledge 
to enhance performance on subsequent ones (Rusu et al., 2016). Meta-Learning equips a model to 
rapidly adjust to new tasks with minimal extra training, improving its adaptability (Finn et al., 2017). 
Contrastive learning FT employs contrastive loss to improve the model’s capacity to differentiate 
between categories or tasks (Chen et al., 2020). Finally, pruning and quantization refine models by 
removing less significant weights or quantizing them to enhance efficiency (Han et al., 2015). 
Recent language models have made progress in two areas. Firstly, there’s been an adoption of  few-
shot learning methods, so models can be fine-tuned with minimal labeled data and be more versatile 
across tasks. For example, Brown et al., (2020) tested few-shot learning of LLMs. 
Secondly, efforts are being made to develop efficient FT methods to reduce computational cost and 
memory requirement of large models. Hu et al., (2021) proposed a method called LoRA for effective 
FT with low-dimensional adaptation. In this paper, we are focusing on the second area. 

3 Method 

In this study, we created a pipeline to perform experiments to see the impact of FT on SQuAD 
dataset, which has been depicted in Figure 1. It includes data normalization, pre-tokenization, 
tokenization, pre-trained model selection, FT method selection, model training, postprocessing of 
model output and finally model evaluation on test dataset. 

 
Figure 1: Study Methodology Pipeline 

3.1 Text normalization 

In this step, the dataset text is converted into a standard text. It involves removing extra spaces, 
special characters, ascents from the text and converts the text into lower case to make text uniform. 
There are many ways to normalize the text, we are discussing only which has been used in this study. 
There are many other data normalization standards as well, one can follow that as well based on the 
requirements by looking into pros and cons. This step helps the model to learn the text in a uniform 
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way without worrying about the cases and variations in the text. We have followed the same 
implementation for data normalization like in BERT (Devlin et al., 2018). 

3.2 Pre-tokenization 

This step includes splitting the text into chunks or words using spaces or special symbols. It prepares 
the data for the tokenization step. Special tokens [CLS] and [SEP] are added at the beginning of 
sentence and at the end of the sentence respectively. 

3.3 Tokenization 

This step takes input from the previous step (pre-tokenization) and converts words or chunks into 
tokens according to vocabulary. It uses a word-piece algorithm (Devlin et al., 2018) to convert into 
tokens. These tokens are mapped with sequence numbers in vocabulary to convert it into numeric 
form which is suitable for any model to train the model. 

3.4 Model selection 

There are many pretrained base models available which have been trained on large text with millions 
to billions of parameters. We selected the popular BERT model (Devlin et al., 2018) for this 
experiment which suits our computation resources. The statistics of this model can be found in Table 
II. 

 

Statistic Value 

Number of Parameters ≈ 110 million 

Number of Layers 12 

Hidden Size 768 

Number of Attention Heads 12 

Intermediate Layer Size 3072 

Maximum Sequence Length 512 

Vocabulary Size 30,522 

Token Embedding Dimension 768 

Attention Head Size 64 

Table II: Statistics of BERT-base-uncased Model 

3.5 Fine-tuning approaches 

There are many PEFT methods, however, we selected the more recent and popular methods for this 
study like full parameters FT (FT BERT), LoRA (Hu et al., 2021), LoHA (Hyeon-Woo et al., 2021), 
p-tuning (X. Liu et al., 2023), prefix tuning (Li and Liang, 2021), and IA3 (H. Liu et al., 2022). 
LoRA uses the low rank matrix for trainable parameters and updates it instead of updating the big 
matrix. LoHA is a variation of LoRA with a new concept of matrix product instead of multiplication. 
P-tuning and prefix-tuning are soft prompt-based FT approaches. IA3 focuses more on the attention 
part of the model, it was introduced to improve the LoRA. 

3.6 Model training, postprocessing and evaluation 

The selected pretrained model configured with the selected FT method is trained on a training dataset. 
After training, we process the output to make it usable for model evaluation. In the model evaluation 
step, we use the evaluation metric to get the model results on the test dataset. 

4 Implementation 
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To implement the above-mentioned pipeline in Section 3, we used python and pytorch packages. To 
track the experiment, we used MLflow (MLflow, 2024). The implemented code has been uploaded 
on GitHub1. 

5 Empirical Results 

As part of experimental setup configuration, we used the maximum sequence length 384 (question 
and text), sliding token window length (doc stride = 128), learning rate 2e-5, batch size 16, train 

epochs 2, weight decay 0.01, and maximum answer length 30 as a parameter to the model. As part 
of FT method configuration, we used LoRA(r = 8,alpha = 32,module dropout = 0.1), LoHA(r = 
8,alpha = 32,module dropout = 0.1), IA3(default), p-tuning(num virtual tokens = 20, encoder 
hidden size = 128), prefix-tuning(num_virtual_tokens = 20). The loss, Exact Match (EM), and F1-
score used to evaluate the model (Rajpurkar, 2016). We calculated the number of trainable 
parameters required and training time for this study as well. 
The table III shows the model performance calculated by us on a CPU machine (16GB RAM, 6 cores 
per task) based on the used FT approach and BERT base model. It lists training and testing losses, 
Exact Match (EM), F1-score, number of trainable parameters, total parameters, the percentage of 
trainable parameters, and the training time. It shows FT BERT and LoRA+BERT have the lowest 
training loss (1.16, 2.76) and test loss (1.02, 2.12) respectively compared to the others, while P-
tuning+BERT shows the highest test loss (4.56) on unseen data. FT BERT and  LoRA+BERT also 
perform best in terms of EM (79.20%, 46.23%) and F1-score (86.97%, 56.73%). P-tuning+BERT 
shows a relatively low F1-score (10.56%) and Exact Match (6.49%) compared to the other models. 
FT BERT, LoRA+BERT and LoHA+BERT have significantly higher numbers of trainable 
parameters (110 million, 296,450 and 591,362, respectively) compared to the other models. This 
gives them greater flexibility in adapting to the task. IA3+BERT has the smallest number of trainable 
parameters (66,050), which could explain its performance as the model has fewer parameters to 
adjust or train during training. FT BERT and LoHA+BERT have the highest percentage of trainable 
parameters (100%, 0.5401% respectively), meaning more of its parameters are being updated during 
training. IA3+BERT has the lowest percentage of trainable parameters (0.0606%), which suggests 
that only a small portion of the model is being fine-tuned, potentially limiting its ability to perform 
well on the task. FT BERT and LoHA+BERT require the longest training time (11504.30, 1170.57 
minutes respectively), which is expected due to its larger number of trainable parameters. P-
tuning+BERT has the shortest training time (911.17 minutes), which might be due to its fewer 
trainable parameters (230,914). 
 

Model Train 

Loss 

Test  

Loss 

EM  

(%) 

F1  

(%) 

Trainable 

Params 

Total 

Params 

Trainable 

 (%) 

Train Time 

(min) 

FT BERT 1.16 1.02 79.20 86.97 110 Million 110 Million 100 11504.30 

LoRA+BERT 2.76 2.12 46.23 56.73 296 450 109 189 636 0.2715 933.31 

IA3+BERT 4.42 4.11 5.62 12.56 66 050 108 959 236 0.0606 997.51 

LoHA+BERT 4.18 3.77 8.33 15.35 591 362 109 484 548 0.5401 1170.57 

Prefix-tuning+ 
BERT 

4.56 4.24 5.45 11.82 370 178 109 263 364 0.3388 964.67 

P-tuning+BERT 4.59 4.56 6.49 10.56 230 914 109 124 100 0.2116 911.17 

Table III: Model Results and Parameters Summary 

6 Discussion 

In this study, our aim was to propose a FT model pipeline and to see the effect of FT on computation 
time (train time) and memory resources (in this case the no. of trainable params) with limited 
computation resources as small and mid-size enterprises don’t have computation resources compared 
to large enterprises. So, they can fine tune the existing model as per their requirements. We can 
clearly infer from the Table III that FT reduces a significant train time compared to full model 
parameters training with significantly less required trainable parameters. So, it emits a significantly 
less Carbon footprint (Strubell et al., 2020) compared to full training of a model. As per Rajpurkar 
(2016), the human evaluation result on the test set was 77.0% (EM), and 86.8% (F1). The baseline 
result was 40.4%(EM) and 51.0% (F1) with a logistic regression model. In our case, LoRA+BERT 
is slightly better and FT BERT significantly better compared to baseline model, however it seems 
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there is a chance of under-fitting in LoRA+BERT. It needs more parameters to get trained. So, we 
need to correctly configure the parameters of the LoRA+BERT model because Hu et al., (2021) has 
shown comparable results with a fully trained model. Hyeon-Woo et al., (2021), H. Liu et al., (2022), 
Hu et al., (2021), X. Liu et al., (2023), and Li and Liang (2021) fine-tuned the model with 
significantly less number of parameters and have obtained the same capability like full model training 
with correctly configured parameters on other datasets. In our case, we need to find the right hyper-
parameters to get full capability like the full trained model. Due to our limited computation resources, 
we didn’t get a chance to search the hyper-parameters to configure in the model. The T5 (11 billion 
parameters) (Raffel et al., 2020) has provided the gold standard for this dataset with 90.06 (EM) and 
95.64 (F1). However, it is a single alone model with a significant large number of parameters and 
not fine-tuned. According to Zafrir et al., (2021), the fully trained BERT model (110 million 
parameters) got results with 80.80 (EM) and 88.50 (F1) on this dataset, which is approximately equal 
to our FT BERT model. 
P-tuning+BERT and prefix-tuning+BERT models use the soft prompt approach, and we didn’t have 
any prompts in this dataset so results on these models are not surprising, however still there is a scope 
to significantly improve it with right parameters configuration. 
Future research could look into the other PEFT methods on this dataset to get better performance. 
One can explore and investigate the impact of carbon footprints on the environment due to these 
models. 

7 Conclusion 

We have proposed a FT model pipeline with clear steps highlighting the FT using the SQuAD 
benchmark. This pipeline can be helpful for small and mid-enterprises which don't have enough 
computation resources. The results show that a fine-tuned model requires less training time and less 
number of parameters. So, it is more environmentally friendly in terms of carbon footprint emissions. 
While a fully trained model shows best performance, it will still be crucial to understand and optimize 
PEFT methods to build efficient and effective models for diverse applications in future. 

 

 

References 
 
Bengio, Y., Louradour, J., Collobert, R. and Weston, J. (2009) 'Curriculum learning'. Proceedings 

of the 26th annual international conference on machine learning, 41–48. 
Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan, A. et al. 

(2020) 'Language models are few-shot learners'. Advances in neural information processing 
systems, 33, 1877–1901. 

Chen, T., Kornblith, S., Norouzi, M. and Hinton, G. (2020) 'A simple framework for contrastive 
learning of visual representations'. International conference on machine learning, PMLR, 
1597–1607. 

Choudhary, S.K. (2024) [online] GitHub repository: https://github.com/sureshkuc/Freie-
Universitat-Berlin/tree/main/LLMs. 

Devlin, J., Chang, M., Lee, K. and Toutanova, K. (2018) 'BERT: Pre-training of deep bidirectional 
transformers for language understanding'. arXiv preprint arXiv:1810.04805. 

Finn, C., Abbeel, P. and Levine, S. (2017) 'Model-agnostic meta-learning for fast adaptation of 
deep networks'. International conference on machine learning, PMLR, 1126–1135. 

Han, S., Mao, H. and Dally, W. J. (2015) 'Deep compression: Compressing deep neural networks 
with pruning, trained quantization, and Huffman coding'. arXiv preprint arXiv:1510.00149. 

Hinton, G., Vinyals, O. and Dean, J. (2015) 'Distilling the knowledge in a neural network'. arXiv 
preprint arXiv:1503.02531. 

Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B. et al. (2019) 'Parameter-efficient transfer 
learning for NLP'. International conference on machine learning, PMLR, 2790–2799. 

Howard, J. and Ruder, S. (2018) 'Universal language model fine-tuning for text classification'. 
arXiv preprint arXiv:1801.06146. 

Hu, E. J., Shen, Y., Wallis, P., Allen-Zhu, Z. et al. (2021) 'LoRA: Low-rank adaptation of large 
language models'. arXiv preprint arXiv:2106.09685. 

https://github.com/sureshkuc/Freie-Universitat-Berlin/tree/main/LLMs
https://github.com/sureshkuc/Freie-Universitat-Berlin/tree/main/LLMs
https://github.com/sureshkuc/Freie-Universitat-Berlin/tree/main/LLMs


7 

Hyeon-Woo, N., Ye-Bin, M. and Oh, T. H. (2021) 'FedPara: Low-rank Hadamard product for 
communication-efficient federated learning'. arXiv preprint arXiv:2108.06098. 

Kirkpatrick, J., Pascanu, R., Rabinowitz, N. et al. (2017) 'Overcoming catastrophic forgetting in 
neural networks'. Proceedings of the national academy of sciences, 114(13), 3521–3526. 

Lan, Z., Chen, M., Goodman, S., Gimpel, K., Sharma, P. and Soricut, R. (2019) 'ALBERT: A lite 
BERT for self-supervised learning of language representations'. arXiv preprint 
arXiv:1909.11942. 

Lee, C., Cho, K. and Kang, W. (2019) 'Mixout: Effective regularization to fine-tune large-scale 
pre-trained language models'. arXiv preprint arXiv:1909.11299. 

Li, X. L. and Liang, P. (2021) 'Prefix-tuning: Optimizing continuous prompts for generation'. arXiv 
preprint arXiv:2101.00190. 

Liu, H., Tam, D., Muqeet, A., Agarwal, O. et al. (2022) 'Few-shot parameter-efficient fine-tuning 
is better and cheaper than in-context learning'. Advances in neural information processing 
systems, 35, 1950–1965. 

Liu, X., Zheng, Y., Du, Z. et al. (2023) 'GPT understands, too'. AI Open. 
Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D., Levy, O. et al. (2019) 'RoBERTa: A 

robustly optimized BERT pretraining approach'. arXiv preprint arXiv:1907.11692. 
MLflow (2024) 'MLflow'. Available at: https://mlflow.org/docs/latest/index.html. 
Peters, M. E., Ruder, S. and Smith, N. A. (2019) 'To tune or not to tune? Adapting pretrained 

representations to diverse tasks'. arXiv preprint arXiv:1903.05987. 
Poth, C., Winther, M., Thomas, P. et al. (2023) 'Adapters: A unified library for parameter-efficient 

and modular transfer learning'. arXiv preprint arXiv:2311.11077. 
Radford, A., Narasimhan, K., Salimans, T. and Sutskever, I. (2018) 'Improving language 

understanding by generative pre-training'. 
Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y. et al. (2020) 

'Exploring the limits of transfer learning with a unified text-to-text transformer'. Journal of 
machine learning research, 21(140), 1–67. 

Rajpurkar, P., Zhang, J., Lopyrev, K. and Liang, P. (2016) 'SQuAD: 100,000+ questions for 
machine comprehension of text'. arXiv preprint arXiv:1606.05250. 

Rusu, A. A., Rabinowitz, N. C., Desjardins, G. et al. (2016) 'Progressive neural networks'. arXiv 
preprint arXiv:1606.04671. 

Shorten, C. and Khoshgoftaar, T. M. (2019) 'A survey on image data augmentation for deep 
learning'. Journal of big data, 6(1), 1–48. 

Strubell, E., Ganesh, A. and McCallum, A. (2020) 'Energy and policy considerations for modern 
deep learning research'. Proceedings of the AAAI conference on artificial intelligence, 34(09), 
13693–13696. 

Sun, Y., Wang, S., Li, Y., Feng, S. et al. (2019) 'ERNIE: Enhanced representation through 
knowledge integration'. arXiv preprint arXiv:1904.09223. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J. et al. (2017) 'Attention is all you need'. 
Advances in neural information processing systems, 30. 

Wang, H., Zhang, Z., Li, Z., Zhang, Z. et al. (2020) 'Neural pruning via growing regularization'. 
arXiv preprint arXiv:2012.09243. 

Yang, Z., Dai, Z., Yang, Y. et al. (2019) 'XLNet: Generalized autoregressive pretraining for 
language understanding'. Advances in neural information processing systems, 32. 

Yosinski, J., Clune, J., Bengio, Y. and Lipson, H. (2014) 'How transferable are features in deep 
neural networks?'. Advances in neural information processing systems, 27. 

Zafrir, O., Boudoukh, G., Izsak, P. et al. (2021) 'Prune once for all: Sparse pre-trained language 
models'. arXiv preprint arXiv:2111.05754. 

Zaheer, M., Guruganesh, G., Dubey, A. et al. (2020) 'Big bird: Transformers for longer sequences'. 
Advances in neural information processing systems, 33, 17283–17297. 

Zhang, Y., Li, T., Ding, Z. and Sun, X. (2019) 'Domain-symmetric networks for adversarial 
domain adaptation'. Proceedings of the IEEE/CVF conference on computer vision and pattern 
recognition, 5031–5040. 

 
 
 

 

https://mlflow.org/docs/latest/index.html
https://mlflow.org/docs/latest/index.html

	1 Introduction
	2     Background
	2.1 Benchmark dataset
	2.2 Large language models
	2.3 Fine-tuning approaches

	3 Method
	3.1 Text normalization
	3.2 Pre-tokenization
	3.3 Tokenization
	3.4 Model selection
	3.5 Fine-tuning approaches
	3.6 Model training, postprocessing and evaluation

	4 Implementation
	5 Empirical Results
	6 Discussion
	7 Conclusion
	References

