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Abstract

MACHINE LEARNING APPLICATIONS IN PREDICTIVE MAINTENANCE: A
FOCUS ON CLUTCH FAILURES

NIRAJ DEV PANDEY
OCTOBER 2024

Dissertation Chair: Iva Buljubašić PhD.

This paper aims to present an overview of predictive maintenance in the automotive in-
dustry, focusing on machine learning (ML) techniques predicting failure of the Clutches.
The paper also aims to address the pros and cons of such an approach for business. How
it has and will impact the automotive industry in the coming future. Predictive main-
tenance is an important aspect of the automotive industry as it enables the proactive
identification of potential failures in equipment and systems, reducing the risk of down-
time and improving overall efficiency.

In recent years, machine learning techniques have emerged as powerful tools for
predictive maintenance (PdM), enabling the development of more accurate and efficient
predictive models. The paper will provide an overview of the various machine-learning
techniques used in predictive maintenance for vehicle Clutch damage prediction. This
research includes regression models, decision trees, and neural networks. Additionally,
it will explore the challenges and opportunities associated with the implementation of
predictive maintenance using machine learning in the automotive industry, including
data quality, class imbalance, model interpretation, and organizational buy-in.

Additionally, the paper will present some case studies of predictive maintenance
in the automotive industry that have successfully utilized machine learning techniques,
highlighting the business benefits and potential of this approach. Moreover, our research
highlights various instances of predictive maintenance implementation within the indus-
try, providing insightful and pertinent content for senior executives at manufacturing and
transportation companies. These decision-makers can gain valuable knowledge about

ii



the advantages of predictive maintenance solutions and gain insight into the advance-
ments made by their counterparts in this field. This paper contributes to the field of PdM
by identifying and discussing significant research gaps in the field. Our analysis of the
current literature highlights the need for further research in this area, and we propose
several avenues for future investigation.

Keywords— Machine Learning; Classification; Predictive Maintenance; Automotive; Vehi-
cle Clutch; Reliability; Lifetime prediction; Condition monitoring
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Chapter 1

Introduction

1.1 Introduction

The use of data-driven methods like machine learning (ML) is rapidly becoming a

norm in the automotive sector. As per (Magargle et al. 2017), beyond the challenges of

developing complex products, companies are actively looking to monitor and manage

the performance of developed products in operation to enhance safety, performance,

and consumer satisfaction. As argued by (Theissler et al. 2021), the topic ranges from

predictive maintenance (PdM) to predictive quality, including safety analytics, war-

ranty analytics, as well as plant facilities monitoring. As per (Cachada et al. 2018)

and (Bokrantz et al. 2020) various terms, including E-maintenance, Prognostics, digi-

tal twin, and Health Management (PHM), Maintenance 4.0, or Smart Maintenance, are

used to describe the development of methods that analyze, predict, or anticipate perfor-

mance issues that could compromise the safety and integrity of automotive components,

products, and systems. As argued by (Becker et al. 2017) and (Kim et al. 2013) that the

increasing demand for cost-efficient technical solutions is driven by the developments

towards automated driving and the transformation of the drive-train. Ensuring vehicles’

functional safety and reliability over their lifetime is crucial.

A significant investments directed towards industrial machinery and vehicle fleets,

maintenance plays a crucial role in facilitating their extended utilization and maximizing

return on investment. Nonetheless, the current maintenance processes in place exhibit a
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lack of efficiency, creating room for enhancement. To this end, companies are increas-

ingly embracing digital technologies such as the Internet of Things (IoT) and predictive

analytics to harness the data streams from these assets and transform them into value.

By leveraging predictive algorithms to process the data, companies can proactively iden-

tify potential asset failures and take corrective actions. This provides an opportunity to

boost utilization and productivity, while at the same time improving the consumer ex-

perience argued (Milojevic et al. 2018).

The airline is another major form of mobility that has been affected extensively by

predictive maintenance. In accordance with recent studies by (Meyendorf et al. 2018),

airline processes, specifically maintenance, are the primary cause of approximately 42

% of delayed flights. To improve their performance, airlines aim for better maintenance,

repair, and overhaul (MRO) with improved quality, cost, and turnaround times within

budget and schedule. A significant percentage of companies (over 90%) have reported

that their current maintenance processes are inefficient. However, it remains to be seen

whether these companies are prepared to undertake measures to optimize these pro-

cesses said, (Milojevic et al. 2018).

As per (Theissler et al. 2021), there has been considerable research on predictive

maintenance (PdM) and machine learning (ML) for automotive systems, but there is a

notable research gap in the current state-of-the-art solutions. Their extensive review pa-

per search concludes that none of the existing solutions have covered Condition-based

damage prediction for vehicle clutches. Thus, Analyzing clutch damages and predict-

ing their failure in vehicles using statistical data has been untouched as far as we know.

This paper aims to address this research gap by proposing a novel solution for predicting

clutch failure using PdM and ML techniques. The model is trained using data collected

from various vehicles, including parameters such as clutch shifting, engine mileage, and

retard shifting and counters of these features. The model aims to predict the potential

clutch damage before it occurs, thereby reducing maintenance costs and minimizing

downtime. The model is developed using machine learning algorithms and validated

through extensive testing. The results show that the model can accurately predict clutch

damage with high accuracy, demonstrating its potential to improve vehicle maintenance
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and reduce operating costs.

The paper is structured as follows: In section 1.1.1, we provide definitions for the

key terms discussed in this paper. The Literature Review section 2.1 examines the latest

research and developments related to maintenance, machine learning (ML), and their

application in the automotive industry. This section is based on a survey that explores

the current state of the industry. We identify research gaps in section 2.2, and then out-

line our proposed methodology for predicting damages in the Predictive Maintenance

(PdM) domain in section 3.1. Finally, we conclude this paper in section 6.5.

1.1.1 Predictive Maintenance — terminology and taxonomy

As per (Werbińska-Wojciechowska 2019) and (Theissler et al. 2021) the mainte-

nance strategies can be subdivided in various ways, a commonly used categorization is:

Figure 1: Types of predictive maintenance (MathWork 2021)

1. Corrective maintenance: The approach known as corrective maintenance, which

is also referred to as reactive maintenance, fix-upon-failure, or run-to-failure, is

implemented to repair a system or its components only after they have already

experienced a failure.

2. Preventive maintenance: Preventive maintenance relies on pre-scheduled main-

tenance intervals, typically utilizing fixed time intervals and occasionally incor-

porating a system’s usage (e.g. the mileage of vehicles). The primary objective

of preventive maintenance is to perform repairs on a system before any failure

occurs, without considering the current health status of the system.
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3. Predictive maintenance (PdM): The primary objective of PdM is to anticipate

the ideal timing for maintenance actions, utilizing information about the system’s

health state and/or past maintenance data. As per (Xiang et al. 2018) this approach

seeks to prevent premature and costly repairs to a system, while also ensuring that

repairs are performed promptly before any failure. Advanced techniques within

PdM strive to predict the anticipated time of a failure, thereby providing an esti-

mate of the remaining useful life (RUL).

As per (Chen et al. 2020) while condition-based maintenance (CBM) is often used

as a synonym for predictive maintenance, CBM is viewed as a subcategory of PdM,

subdividing PdM into:

Figure 2: Various RUL approaches (MathWork 2021)
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1.1.2 Statistical Predictive Maintenance (PdM)

Statistical Predictive Maintenance (PdM) is a data-driven approach used in various

industries, including automotive, to optimize the maintenance schedules of vehicles and

equipment. Unlike traditional preventive maintenance, which relies on fixed intervals

for service, statistical PdM leverages historical and aggregated data to predict potential

failures or maintenance needs before they occur. What sets statistical PdM apart from

other types of predictive maintenance is that it relies on data not directly tied to the state

of an individual vehicle, but rather on broader datasets, such as historical maintenance

records or data gathered from a fleet of vehicles or an entire vehicle population.

The foundation of statistical PdM lies in its use of large datasets that capture patterns

of wear, failure rates, and maintenance needs across many vehicles. These datasets often

include information such as the frequency of repairs, typical time-to-failure for specific

components, and the outcomes of previous maintenance activities. By analyzing these

historical trends, statistical models can be developed to forecast when a vehicle or a

specific component is likely to require maintenance, even if the vehicle in question has

not yet shown any signs of malfunction.

One key advantage of statistical PdM is that it allows manufacturers, fleet man-

agers, and service providers to anticipate issues that may arise based on the experiences

of other vehicles in the same category. For example, data from a fleet of similar vehi-

cles operating under similar conditions can provide valuable insights into the lifespan

of specific parts, such as brake pads or transmission systems. By analyzing this data, it

becomes possible to predict with a high degree of accuracy when a particular part in a

given vehicle will likely need to be replaced, thus preventing unexpected breakdowns

and reducing downtime.

Furthermore, statistical PdM allows for more effective resource allocation, as it en-

ables organizations to schedule maintenance activities only when necessary, rather than

adhering to rigid time-based intervals. This approach not only reduces costs associated

with unnecessary maintenance but also ensures that vehicles are serviced at the optimal

time, thus extending their operational lifespan and enhancing overall efficiency.
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Another significant advantage of statistical PdM is its applicability to entire vehicle

populations or fleets. This is especially beneficial for industries that operate large fleets

of vehicles, such as logistics companies, public transportation systems, or rental car

services. By leveraging aggregated data from the entire fleet, these organizations can

implement predictive maintenance strategies that minimize the risk of sudden failures

and maximize vehicle uptime. For instance, if a particular make and model of vehicle is

found to have a higher failure rate for a specific component after a certain mileage, fleet

managers can proactively schedule maintenance for those vehicles before issues arise,

thus avoiding costly repairs and disruptions.

However, it is important to note that statistical PdM is not without its limitations.

Since it relies on historical and population-level data, it may not always account for the

unique conditions or usage patterns of an individual vehicle. For instance, a vehicle that

operates in extreme climates or under unusually demanding conditions may experience

wear and tear at a different rate compared to the broader fleet. In such cases, statistical

PdM may not provide the most accurate predictions, as it is inherently based on gener-

alizations derived from the larger dataset.

Despite this limitation, statistical PdM offers a powerful tool for improving main-

tenance practices in the automotive industry. By harnessing the power of big data and

statistical analysis, it enables a shift from reactive maintenance approaches to proactive

and data-driven strategies. This transition not only enhances the reliability and perfor-

mance of vehicles but also delivers significant cost savings and operational efficiencies

for businesses and consumers alike.

In conclusion, statistical PdM represents a significant advancement in the field of

automotive maintenance. By utilizing historical maintenance data and insights from en-

tire fleets or vehicle populations, it allows for more accurate predictions of maintenance

needs, reducing the likelihood of unexpected breakdowns and extending the lifespan of

vehicles. While it may not account for every individual vehicle’s unique conditions, its

ability to draw from large datasets provides a robust framework for optimizing mainte-
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nance schedules and improving overall vehicle performance.

1.1.3 Condition-Based Predictive Maintenance (PdM)

Condition-Based Predictive Maintenance (PdM) is a sophisticated and highly effec-

tive maintenance strategy that relies on real-time data to assess the current health of

a system and make informed maintenance decisions. Unlike traditional maintenance

approaches, which depend on predetermined intervals, or statistical PdM, which draws

from historical or population-level data, condition-based PdM continuously monitors

the actual operating conditions and performance of individual vehicles. This approach

allows for a more precise and timely maintenance intervention, enhancing vehicle reli-

ability, reducing downtime, and minimizing costs.

The central concept behind condition-based PdM is the real-time monitoring of key

components and systems within a vehicle. Using a variety of sensors, the system col-

lects data on parameters such as temperature, vibration, pressure, fluid levels, and wear

patterns. This data is then analyzed to assess the current health of each component and

determine whether maintenance or repairs are needed. By doing so, condition-based

PdM enables maintenance teams to address issues as they arise, based on actual usage

and condition, rather than relying on preset schedules or generalized data.

One of the most important advantages of condition-based PdM is that it provides

insights specific to each individual vehicle, ensuring that maintenance decisions are tai-

lored to the unique operating conditions and performance of that vehicle. For example,

a vehicle operating in harsh environments, such as extreme heat or cold, will experience

different wear and tear compared to a vehicle operating in more moderate conditions.

The real-time data collected through sensors can detect early signs of component fa-

tigue, fluid degradation, or excessive wear, allowing for immediate maintenance actions

before a failure occurs. This level of precision ensures that vehicles receive the neces-

sary care exactly when they need it, reducing the risk of unexpected breakdowns and

enhancing operational efficiency.
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Real-time data analysis in condition-based PdM also enables continuous optimiza-

tion of maintenance strategies. With the ability to detect minor anomalies or gradual

performance deterioration, maintenance teams can take a proactive approach to address-

ing issues before they escalate into significant problems. For example, if sensors detect

abnormal vibrations in the engine or drivetrain, this could indicate the early stages of

mechanical wear. Rather than waiting for the part to fail completely, maintenance can

be scheduled to replace or repair the affected component, thereby preventing a larger

and more expensive repair later.

In addition to improving vehicle reliability, condition-based PdM offers consider-

able cost savings. Traditional preventive maintenance, which follows fixed schedules,

often results in unnecessary service appointments and premature replacement of compo-

nents that may still have significant operational life remaining. Conversely, condition-

based PdM ensures that maintenance is only performed when needed, based on the

actual condition of the vehicle. This targeted approach reduces the frequency of main-

tenance interventions, lowers material costs, and extends the lifespan of vehicle compo-

nents by avoiding premature replacements.

Furthermore, condition-based PdM plays a crucial role in enhancing safety. Real-

time monitoring can detect critical issues, such as brake system wear, tire pressure

anomalies, or engine overheating, that may compromise vehicle safety if left unad-

dressed. By alerting operators or maintenance personnel to these issues immediately,

condition-based PdM helps prevent accidents caused by component failure or malfunc-

tion. This is especially valuable for commercial fleets or public transportation vehicles,

where safety is a top priority.

The implementation of condition-based PdM also enables better planning and re-

source allocation. Real-time insights into vehicle health allow for more precise schedul-

ing of maintenance activities, reducing unscheduled downtime and improving fleet avail-

ability. For businesses that rely on vehicle fleets, such as logistics companies, delivery

services, or public transportation, minimizing downtime is essential for maintaining

operational efficiency and meeting service commitments. With condition-based PdM,
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vehicles can be taken out of service for maintenance only when necessary, and down-

time can be planned around operational needs, minimizing disruption.

However, condition-based PdM does present certain challenges. The initial invest-

ment in sensor technology, data processing systems, and analytics platforms can be sig-

nificant, particularly for organizations with large vehicle fleets. Additionally, the con-

tinuous flow of real-time data requires robust infrastructure and expertise to manage and

analyze the information effectively. Ensuring that the data is accurate and interpreted

correctly is essential for making the right maintenance decisions, which may require

skilled personnel and advanced analytical tools. Moreover, integrating condition-based

PdM into existing maintenance operations may require changes in workflow and pro-

cesses, which can pose challenges during the implementation phase.

Despite these challenges, the benefits of condition-based PdM are substantial. The

ability to monitor the actual condition of vehicles in real time and make data-driven

maintenance decisions significantly improves vehicle reliability, safety, and cost effi-

ciency. It allows organizations to move away from reactive maintenance models, where

issues are addressed only after they have occurred, and toward a proactive maintenance

strategy that maximizes vehicle uptime and operational performance.

In conclusion, condition-based predictive maintenance represents a significant ad-

vancement in automotive maintenance practices. By leveraging real-time data to assess

system health, it enables more precise, timely, and cost-effective maintenance decisions.

The adoption of condition-based PdM not only enhances the reliability and safety of in-

dividual vehicles but also contributes to broader operational efficiencies, particularly for

organizations managing large fleets. As sensor technology and data analytics continue

to evolve, condition-based PdM is poised to play an increasingly important role in the

future of automotive maintenance, driving improvements in both vehicle performance

and business outcomes.
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Chapter 2

Literature Review

2.1 Literature Review

In contrast to statistical predictive maintenance (PdM), condition-based PdM lever-

ages operational data from individual vehicles to determine the status of the overall sys-

tem or specific components. This approach facilitates component-specific maintenance

decisions. The detection of faults is a critical strategy for predicting failures. Identifying

faults early can halt their progression, and appropriate measures can be taken to avoid

breakdowns (Theissler et al. 2021). Thus increasing customer satisfaction and cost sav-

ing. This also provides original equipment manufacturers (OEM) with a view of their

particular automotive parts and the cause of their failures.

2.1.1 Current Challenges for Industry

Let’s have a look at some surveys to understand the current state-of-the-art and the

status of maintenance strategies in industries. Figure 3 depicts a report by CXP Group

where (Milojevic et al. 2018) shows the challenges faced by the industry they inter-

viewed. The figure is divided into two parts. Namely, major challenges and minor

challenges. See the figure below for references.

Figure 3 by (Milojevic et al. 2018) shows that there are various challenges faced

by European businesses. Such as unexpected downtime and emergency repairs (90%),
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Figure 3: CXP Report: Current Challenges for Industries

outdated IT infrastructure and technology (88%), integration of modern assets and data

analysis (76%), acquiring asset data (40%), integration of older legacy assets and ob-

taining data (29%), maintenance cycles (24%), integration of assets in remote locations

(24%), real-time asset monitoring (22%), and collaboration with vendors (20%).

Upon examining the outcomes of the report by (Milojevic et al. 2018), it can be

observed that the market is highly dynamic, with 55% of businesses have initiated pilot

projects for predictive maintenance (See figure 4). The transportation industry has taken

the lead, with 62% of companies in this field executing these initiatives. In addition to

this, 55% of the companies are beyond the planning and evaluation stage of predictive

maintenance initiatives.

2.1.2 Time Spent on Maintenance

Based on a survey conducted by (Mcleman et al. 2021) on a sample of plants, it

was found that approximately 31% of the plants spend less than 20 hours per week on

maintenance-related tasks. See the figure 5 below. The figure indicates that a significant

proportion of plants allocate relatively fewer hours to maintenance activities. On the

other hand, the average time spent on such tasks among the surveyed plants was found

to be around 33 hours per week, which suggests that the majority of plants invest a
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Figure 4: CXP Report: Status of your predictive maintenance initiatives

considerable amount of time in maintenance-related activities. It is important to note

that these findings are based on a specific sample and may not be representative of the

entire population of plants.

As per the survey by (Mcleman et al. 2021) approximately 52%, utilize a computer-

ized maintenance management system to monitor and manage their maintenance tasks.

Furthermore, the figure 6 below also revealed that other maintenance systems that are

popularly employed include in-house created spreadsheets and schedules, which were

utilized by approximately 49% of the plants surveyed. Additionally, Preventive mainte-

nance was found to be in use by around 88% of the plants included in the study.
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Figure 5: 2021 CFE Media Report on time spent on maintenance

According to a survey (figure 7), a majority of plants (56%) have plans to upgrade

their equipment as a means of addressing unscheduled downtime. Additionally, 47%

of the plants plan to improve training programs and increase training frequency, while

45% are considering adopting a predictive maintenance strategy (Mcleman et al. 2021).
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Figure 6: 2021 CFE Media Report on maintenance strategies in use

Figure 7: 2021 CFE Media Report on solution to downtime

Condition-based PdM typically employs anomaly detection or classification meth-

ods to accomplish this objective. The specific approach (unsupervised, semi-supervised,

or supervised learning) used will depend on the data and label availability. As (Wong et

al. 2016) Propose a method for the detection of faults in engines focusing on simultane-
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ous faults, i.e. multiple single faults occurring concurrently. They used an ensemble of

Bayesian extreme learning machines (ELM) in a supervised Machine Learning fashion.

Similar efforts were carried out by others such as (Zhong et al. 2018) and (Wolf et al.

2018). However, most of these researches focus on a part of the automotive vehicle.

Some focus on breaks (Jegadeeshwaran et al. 2015), some on battery (Sankavaram et al.

2012), and some on the power train or steering.

These are a few notable findings by (Milojevic et al. 2018):

• A considerable proportion of companies (55%) are currently piloting predictive

maintenance initiatives, with a notable 23% generating measurable business im-

pact.

• Almost half (49%) of the companies have already invested in predictive mainte-

nance initiatives and plan to increase their investment in the next two years.

• Data security and privacy concerns are major inhibitors of predictive maintenance

developments for 89% of the companies, while a significant lack of internal capa-

bilities also poses a challenge.

• To overcome these obstacles, companies seek assistance from vendors to facilitate

their journey toward enhanced operational efficiency.

As argued by (Theissler et al. 2021) in their survey paper, the most commonly em-

ployed machine learning (ML) methods are Artificial Neural Networks (ANNs), which

encompasses standard neural networks such as Multi-Layer Perceptrons (MLPs) and

their variations. Moreover, an escalating number of research articles adopt neural net-

work models, such as Convolutional Neural Networks (CNNs), Long Short-Term Mem-

ory networks (LSTMs), Extreme Learning Machines (ELMs), and autoencoders.

The survey paper is available here: 1

1https://www.sciencedirect.com/science/article/pii/S0951832021003835
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2.1.3 PdM Satisfaction Among Industries

Plant Services (Wilk 2022) conducted its PdM Survey in March 2022, gathering

insights from maintenance and reliability practitioners across the industry. The survey

received an overwhelming response, with participation from more than 100 profession-

als who shared their perspectives and experiences. The results of this year’s PdM Sur-

vey provide valuable insights into the current state of the industry, shedding light on

the trends, challenges, and advancements in the field of predictive maintenance. By

analyzing the survey data, we can gain a comprehensive understanding of the prevail-

ing practices and emerging approaches adopted by maintenance professionals. In this

research paper, we will delve into the findings of the PdM Survey, exploring the key

takeaways and implications for the industry. Through a detailed examination of the sur-

vey results, we aim to provide a comprehensive overview of the state of the industry,

offering valuable insights that can inform decision-making, drive improvements, and

contribute to the advancement of maintenance and reliability practices.

Figure 8: Plant Services Media Report on how satisfied industry is with PdM

In a notable shift, the recent survey conducted by Plant Services witnessed a signifi-

cant decrease in the proportion of respondents expressing dissatisfaction with their PdM

program, marking the first time this figure has fallen into the single digits, standing at

approximately 9%. This positive development is a marked improvement from previous

surveys, where the dissatisfaction rate consistently exceeded 15% in most years (see

figure 8).
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Conversely, the percentage of respondents indicating satisfaction with their PdM

program experienced a decline, falling below the 50% threshold. Specifically, only

48.7% of participants considered their program to be satisfactory or better. Notably,

program sentiment this year shifted toward a middle ground, as nearly 70% of respon-

dents categorized their program as either ”satisfactory” or ”in need of improvement.”

2.1.4 PdM Team Size in Industries

Despite the multitude of challenges faced by plant teams since early 2020, one no-

table aspect that remained remarkably consistent is the size of the maintenance and

reliability team (see figure 9). This finding is significant considering the persistent hir-

ing and retention issues reported by many plants, further highlighting the resilience and

stability exhibited by maintenance and reliability teams in the face of various pressures.

Figure 9: Plant Services Report on how big PdM team is in Industry

Within the survey, participants were queried about the specific predictive main-
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tenance technologies they utilize. Notably, this year’s results reaffirm the consistent

prominence of five key technologies that have consistently topped the survey rankings

in previous years: vibration analysis, infrared thermography, ultrasound testing, oil anal-

ysis, and electrical motor testing.

2.1.5 Which Components are Focus of PdM

In addition to exploring the adoption of predictive maintenance technologies, the

survey also inquired about the types of assets managed through PdM solutions. Notably,

rotational assets and electrical systems emerged as the leading categories (see figure

10). These findings indicate the significance of managing these specific asset types

and suggest a focus on the optimization and maintenance of rotational machinery and

electrical systems within organizations utilizing PdM practices.

Figure 10: Plant Services Report on which PdM technologies deployed

2.1.6 Obstacle Faced in PdM

The prevailing trend observed in various categories aligns with our findings, with

one exception - the ”limited engineering resources” category. Interestingly, respondents

indicated that this particular factor posed a greater stressor in 2022 (66.2%) compared

to 2020 (60.9%). While the strain caused by limited budgets may be a persistent stres-

sor, plant teams are currently experiencing the significant impact of constrained staffing

resources just as intensely ( see figure 11). This underscores the growing significance of

addressing challenges related to limited headcount and its implications for maintenance

and reliability operations.
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Figure 11: Plant Services Report on obstacle faced by industries

2.1.7 Data Collection Methods in PdM

In their continuous exploration of data collection methods, author (Wilk 2022) have

consistently pondered the potential transition from analog paper-based systems to digi-

tal alternatives. However, the results of this year’s survey indicate that we have not yet

reached the tipping point. Notably, 62.3% of respondents continue to rely on paper-

based systems as their primary method of data collection, as depicted in (see figure 12).

Interestingly, the use of consumer-grade smartphones experienced a slight increase since

2020, with a modest rise to 27.5%. Surprisingly, both wireless and internet-enabled

sensors witnessed a decline in usage among respondents, deviating from expectations.

These findings highlight the persistence of paper-based systems in data collection and

suggest that while progress is being made with the integration of consumer-grade smart-

phones, the transition to fully digital methods has yet to materialize
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Figure 12: Plant Services Report on Data Collection Methods

2.1.8 PdM Adaptation to Monitoring Tools

Research team conducted a comprehensive survey exploring the prevalence and uti-

lization of performance monitoring systems (PdM) within industrial settings. Among

the questions posed to participants were several queries related to the degree of inte-

gration between their PdM infrastructure and external systems. We hypothesized that

many such connections would exist based on prior reports indicating interoperability

benefits across domains like healthcare, logistics, and transportation infrastructures said

(see figure (Wilk 2022)).

Figure 13: Plant Services Report on PdM adaptation to monitoring tools
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Consequently, we were surprised by collected data by (Wilk 2022), which exposed

a drastic decrease in connectivity for most categories under consideration – specifically

for tools used to collect process data (data historians; -44%) as well as software applica-

tions intended to manage assets through condition monitoring (EAM/CMMS systems;

-34%) (see figure 13). These percentages suggest pronounced downturns in user adop-

tion compared to earlier estimations, thereby urgently necessitating further probes into

the causes behind these trends. By divulging these patterns in detail, our article intends

not only to summarize current knowledge but also to prompt follow-up investigations

focused on restoring the balance between autonomous PdM functionality and seamless

coordination with complementary tools. Such research may eventually guide practition-

ers toward better decision-making concerning their technology investments – ultimately

improving operational efficiency and competitiveness.

The survey paper is available here: 2

2https://www.sciencedirect.com/science/article/pii/S0951832021003835
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2.2 Research Gap

The remarkable progress of machine learning (ML) can be attributed to three main

factors, namely the accessibility of data, the breakthroughs in algorithm development,

and the advancements in computational power. The selection of ML methods for main-

tenance modeling is determined by the specific application requirements and, conse-

quently, the available data (Theissler et al. 2021).

Research on predictive maintenance in the automotive sector has primarily focused

on technical aspects such as sensor technologies, machine learning algorithms, and fault

detection. However, there is a research gap in understanding the business perspective

of implementing predictive maintenance in the automotive industry. Specifically, there

is a need to explore the business case for predictive maintenance, including the poten-

tial ROI, cost-benefit analysis, and the organizational changes required for successful

implementation. Additionally, the research could focus on identifying the key success

factors and barriers to adoption from a business perspective, including factors such as

organizational culture, change management, and the role of leadership in driving adop-

tion. Few other gaps we found in existing research are as follows:

• Lack of standardized metrics: While there is growing interest in using predictive

maintenance in the automotive sector, there is a lack of standardized metrics to

assess the effectiveness of such programs. Without clear metrics, it is difficult for

businesses to assess the Return On Investment (ROI) of implementing predictive

maintenance programs and compare the effectiveness of different approaches.

• Limited understanding of customer needs: While predictive maintenance has the

potential to improve customer satisfaction by reducing downtime and improving

the reliability of vehicles, there is a lack of research on customer needs and pref-

erences related to predictive maintenance. Businesses need to better understand

what features and services customers are willing to pay for in order to design ef-

fective predictive maintenance programs that meet customer needs.
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• Integration with existing IT systems: Predictive maintenance systems require in-

tegration with existing IT systems in order to collect and analyze data from ve-

hicles. However, there is a lack of research on the challenges and opportunities

associated with integrating predictive maintenance systems with existing IT sys-

tems, particularly in the context of legacy systems that may not be compatible

with modern predictive maintenance approaches.

• Real world data: Many studies in the field of predictive maintenance use simu-

lated or laboratory data to evaluate their methods. However, there is a lack of

research that evaluates the performance of predictive maintenance methods us-

ing real-world data from the automotive industry and evaluates the model perfor-

mance with customer feedback.

• Data privacy and security: Predictive maintenance programs rely on the collection

and analysis of large amounts of data from vehicles, which raises concerns about

data privacy and security. There is a need for research on how to design predictive

maintenance systems that protect customer data while still providing accurate and

effective predictive maintenance services.

In contrast to the named reviews, we (a) focus specifically on ML condition-based

damage prediction for vehicle clutches on real-world data, (b) tackle class imbalance

problems in the field as it is often the case, and (c) as a key contribution, identify open

challenges and research directions in the field. To the best of our knowledge, there is no

current research on condition-based damage prediction for vehicle clutches and tackling

class imbalance in predictive maintenance.
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Chapter 3

Proposed Methodology

3.1 Proposed Methodology

As argued by (Marchetti et al. 2016), the use of software has become ubiquitous in

modern vehicles, with nearly all activities, including critical safety functions like steer-

ing, braking, traction, and cruise control, being controlled by software. This reliance

on software is evident in city cars, which typically have around 80 Electronic Control

Units (ECUs) that communicate with one another via a Controller Area Network (CAN)

(Steve et al. 2002). The Controller Area Network (CAN) is a standard protocol used in

the automotive industry to collect and transmit data from various sensors and devices

within a vehicle. CAN is a message-based protocol, which means that data is transmit-

ted between different nodes on the network in the form of messages. These messages

contain information about the state of various systems within the vehicle, including en-

gine speed, temperature, and fuel level. CAN operates on a bus topology, which allows

all the nodes on the network to receive the same message simultaneously. This enables

real-time monitoring and data acquisition, which is essential for predictive maintenance

applications in the automotive sector.
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This data can also tell us more about the driver’s Clutch shifting pattern. And if

the data had been collected by having the objective to detect the failure in clutch then

we can model the pattern to fit the ML model on it. The idea is to collect real-world

data where the clutch had been failed/Healthy conditioned on other features. Such as

shifting the clutch, the mileage, retard shifting, the counter retard shifting, etc. We will

also collect the labels for each of these features. Finally, the whole process breaks down

to the Machine Learning problem.

We will show different kind of Machine Learning models and their performance on

automotive statistics data depending on the nature of the data. As is the case with most

data in this domain we will also tackle the problem of class imbalance in the data and

report our findings on what and how the current class imbalance works on real-world

automotive data (Elrahman et al. 2013). Section 3.1.3 talks about how we are going to

address the class imbalance problem in automotive data for PdM. Section 3.1.4 throws

light on how we can validate the result with ground truth. Within section 3.1.1, we

expound upon the foundational principles of this ML paradigm and delineate the various

classifications of machine learning, thereby establishing a rudimentary comprehension

of the subject matter.

3.1.1 Machine Learning

Machine learning is a vast field that encompasses numerous disciplines such as in-

formation technology, statistics, probability, artificial intelligence, psychology, and neu-

robiology. By creating a model that accurately represents a chosen dataset, machine

learning can effectively solve problems. It has evolved from an initial focus on teaching

computers to mimic human brain functions, resulting in a broad discipline that gener-

ates fundamental statistical computational theories for the learning processes (Nasteski

et al. 2017).

Machine learning is all about creating algorithms that allow the computer to learn.

Learning is a way of finding statistical regularities or irregularities in data. As argued by

(Muhammad et al. 2015) the primary aim of machine learning is to enable computers to

utilize data or past experiences to resolve a given problem. Numerous successful appli-

cations of machine learning exist, such as email classifiers that can distinguish between
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Figure 14: Basic types of Machine Learning (Shiksha 2022)

spam and non-spam messages, sales data analysis systems that can predict customer

buying behavior and fraud detection mechanisms. Machine learning can also be im-

plemented for association analysis using supervised, unsupervised, and reinforcement

learning techniques (Lindholm et al. 2019).
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3.1.1.1 Supervised Machine Learning

In machine learning, supervised learning refers to a type of algorithm that generates

a function capable of mapping inputs to desired outputs (Burkart et al. 2021). A com-

mon example of supervised learning is the classification problem, where the algorithm is

trained to approximate the behavior of a function that assigns a vector to one of several

pre-defined classes. This is achieved by analyzing multiple examples of input-output

pairs of the function (Nasteski et al. 2017).

The aim is to map a feature vector x ∈X ⊆ Rd to a target y ∈ Y ⊆ R. For this

purpose, a set of training data D = {(x1,y1) , . . . ,(xn,yn)} is used for the learning pro-

cess of the model. Supervised ML can be divided into the tasks of classification and

regression. For classification, the target y is a discrete value often called a label. For

instance, if y ∈ {0,1} or y ∈ {−1,1} one speaks about binary classification. The task of

regression is to predict a continuous target value y ∈ R. Linear regression problem can

be defined as follows:

Given a set D train := {(x1,y1) ,(x2,y2) , . . . ,(xN ,yN)} ⊆ R×R called training data,

compute the parameters
(

β̂0, β̂1

)
of a linear regression function

ŷ(x) := β̂0 + β̂1x (3.1)

s.t. for a set D test ⊆ R×R called test set the test error

err
(
ŷ;D test ) :=

1
|Dtest | ∑

(x,y)∈D test

(y− ŷ(x))2 (3.2)

is minimal.

Note: D test has (i) to be from the same data-generating process and (ii) not to be avail-

able during training.

In other words, supervised machine learning involves using a labeled dataset to train

a model to make predictions on new, unseen data. This can be represented mathemati-

cally as:

y = f (x;β ) (3.3)
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where y is the predicted output, x is the input data, β are the model parameters, and

f is the function that maps the inputs to the outputs. The goal of supervised learning is

to find the optimal values of β such that the predicted outputs are as close as possible to

the true labels in the training data.

3.1.1.2 Unsupervised Machine Learning

Dubbed as unsupervised learning, these approaches operate autonomously without

the need for a designated teacher, unlike supervised learning methods. Since there is no

single correct answer to be provided, the algorithms are granted the freedom to explore

and unearth the noteworthy patterns and relationships concealed within the data (Ma-

hesh et al. 2020). These unsupervised learning algorithms are designed to extract salient

features from the input data. Subsequently, when novel data is introduced, the algorithm

employs the learned features to classify and assign the data to a particular group. Typ-

ically employed in clustering and feature reduction applications, unsupervised learning

holds tremendous potential for discovering meaningful insights from complex datasets

(Bengio et al. 2012).

K-means represents a straightforward and rudimentary unsupervised learning al-

gorithm that tackles the widely recognized clustering problem. The algorithm’s core

approach revolves around categorizing a given dataset into a specified number of clus-

ters. At the heart of the K-means algorithm lies the concept of defining k centers, one

for each cluster. The critical aspect of this step lies in the positioning of these centers,

as different placement strategies can lead to disparate outcomes. The K-means can be

defined as follows:

Given a set X called data space, e.g., X :=RM, a set X ⊆X called data, a function

D :
⋃

X⊆X

Part(X)→ R+
0 (3.4)

called distortion measure where D(P) measures how bad a partition P∈Part(X) for a

data set X ⊆X is, and a number K ∈N of clusters, find a partition P= {X1,X2, . . .XK}∈
PartK(X) with K clusters with minimal distortion D(P).
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Figure 15: Machine Learning Algorithms (Akshay et al. 2021)

k-means is usually initialized by picking K data points as cluster centers at random:

µk := xn, n := argmax
n∈{1,...,N}

k−1

∑
ℓ=1
∥xn−µℓ∥2 , k = 2, . . . ,K (3.5)

(1) pick the first cluster center µ1 out of the data points at random and then (2) sequen-

tially select the data point with the largest sum of distances to already choosen cluster

centers as next cluster center

To optimize the algorithm’s efficacy, it is recommended to place these centers as far

apart from each other as feasible. One can envisage that such an approach may prove

to be effective in predicting failures from unlabelled data through clustering healthy

component in one side and the faulty one on the other.

29



3.1.2 Types of Machine Learning Predictive Modelling

In recent years there has been a shift towards using machine learning techniques

to perform Predictive Maintenance (PdM) tasks involving rolling bearing condition as-

sessment through analysis of their vibration signals. Conventional reliability-centered

maintenance strategies have shown their limitations when it comes to identifying faults

at an early stage before significant damage occurs. Hence, researchers have focused on

developing novel techniques capable of providing accurate detection rates while mini-

mizing false alarms.

Figure 16: PdM: types of approaches (MathWork 2021)

Despite promising results being reported, many PdM systems still face challenges

due to factors such as sensor noise, variability in operating conditions, and the presence

of multiple failure modes. Thus, improving system robustness remains a key concern

for engineers and scientists involved in the field of predictive maintenance of machines

subject to wear and tear (Aburakhia et al. 2022). There are several kinds of Predictive

Maintenance approaches when it comes to machine learning (Refer to figure 16). The

following section talks about major three approaches in ML for PdM.

3.1.2.1 Similarity Based Models

Data-driven techniques are extensively employed in smart manufacturing to monitor

the condition and diagnose faults in rotating machinery. Typically, supervised learning
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is used, where a classifier is trained on labeled data to classify the machine’s differ-

ent operational states. Nevertheless, labeled data is frequently inadequate in terms of

quantity and quality for many industrial applications, making it unsuitable for training

purposes.

Figure 17: Similarity Based PdM Approach (Aburakhia et al. 2022)

To overcome this challenge, the classification task is reframed as a similarity mea-

sure to a reference sample rather than a supervised classification task. Utilizing similarity-

based approaches reduces the need for large quantities of labeled data, making it an ideal

solution for industrial applications where data is limited. The similarity-based classifi-

cation framework is depicted in flowchart 17. Discriminative features are extracted from

labeled reference and test samples in the initial stage. The similarity between reference

and test samples is then computed in the feature space. Ultimately, the classification of

various operational states is accomplished by assessing the resultant similarity scores.

3.1.2.2 Survival Based Models

Survival analysis was originally developed for the examination of life tables. Nonethe-

less, the concept of an ’event’ forming the basis of survival analysis is not restricted to

biological organisms or human mortality; it encompasses a much broader scope, includ-

ing occurrences such as student graduation, criminal activity, or divorce. Therefore, the

adaptability of survival analysis is significant and accounts for its widespread adop-

tion. Additionally, this versatility is the reason behind the use of various synonyms for

survival analysis by various fields, such as event history analysis, duration analysis, or
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reliability analysis (Yang et al. 2022).

There are some limitations of such an approach too. Such as censoring. Censoring

is a significant issue in the study of survival data or time-to-event data, where an event’s

time is not observed for various reasons. Unlike other missing data types, censoring is

not due to any error or mistake but is an inherent feature of the phenomenon being in-

vestigated. For example, patients may withdraw from a clinical trial or service contract

customers may terminate the contract before the component failure, leading to missing

time-to-event data. A survival function is a statistical measure that defines the probabil-

ity of a population surviving beyond a particular time point.

S(t) = Pr(T > t) (3.6)

It is typically denoted by S(t), where t represents the time of interest. The survival

function is a fundamental concept in survival analysis and is commonly used to analyze

time-to-event data. The function calculates the probability that a given subject or group

of subjects will survive beyond a specific time point. The survival function provides

important information for predicting the probability of an event, such as mortality or

failure, occurring over a given time period.

where T > 0 is a random variable denoting the time of the failure of a component.

According to the definition of a cumulative distribution function, a variable T smaller

or equal to t can be written as:

F(t) = Pr(T ≤ t) (3.7)

Since S(t) is a probability, there exists a probability density function f with:

S(t) =
∫

∞

t
f (u)du (3.8)
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3.1.2.3 Trend Based Models

In contrast to traditional condition-based maintenance (CBM) methods that rely

solely on condition monitoring (CM) data from a system or component under surveil-

lance, the sensory-updated degradation-based maintenance (SUDM) policy employs a

combination of population-based degradation characteristics and real-time monitoring

information to forecast the remaining useful life (RUL). Initially, a generic degradation

model is utilized to compute the RUL of a partially degraded system, and an initial main-

tenance schedule is established based on the preliminary RUL estimates. Subsequently,

the RUL estimates are continuously updated in real-time using on-site degradation sig-

nals, which are used to adjust the corresponding maintenance actions according to the

most recently updated RUL predictions, said (Kaiser et al. 2009).

The foundation of the degradation modeling framework is founded on the premise

that the functional expression of a degradation signal is linked to the fundamental physi-

cal phenomena that manifest during the degradation process. The functional expression

is represented as a stochastic model characterized by continuous-time and continuous-

state dynamics. Typically, the magnitude of the degradation signal for the ith component

at time tj is denoted as follows:

S
(
ti j
)
= η

(
ti j;Φim,Ξik, Bil

)
+ ε

(
ti j
)

(3.9)

The degradation signal’s trajectory is encapsulated by the functional form η(·),
while Φm is a vector comprising of m deterministic parameters that represent constant

degradation attributes shared among all members of the population. The unit-to-unit

variability, such as degradation rates, across the population is captured by the vector

Ξik = (θi1, . . . ,θik), which comprises of k stochastic parameters. In other words, these

degradation models estimate RUL by predicting when the condition indicator will cross

the set threshold.

Selecting the appropriate model is contingent upon the nature of an organization’s

data and the associated attributes. For instance, the identification of the remaining useful

life (RUL) of a component or system is contingent upon the presence of timestamp

information within the dataset. If the dataset lacks such temporal data, it is not feasible
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to infer the RUL of the subject entity.

3.1.3 Tackling Class Imbalance

The continuous surge in data volume across various real-time applications has led to

disparate distributions within datasets. Dataset disparity arises when one class contains

a significantly higher number of specimens compared to another class. This condition

is commonly observed in datasets where the major class denotes specimens as negative,

having a greater number of instances, while the minor class represents positive speci-

mens, featuring a lesser count (Shuo et al. 2021). The class’s imbalance is characterized

by the dominance of majority class specimens over minority class specimens, with class

ratios such as 100:1 or 1000:1, and so forth. Datasets comprising only two classes are re-

ferred to as binary class, while datasets encompassing more than two classes are termed

multi-class. Both binary and multi-class datasets encounter challenges related to im-

balanced data, where the skewed distribution poses critical issues for various analytical

tasks (Elrahman et al. 2013; Longadge et al. 2013).

In such scenarios, the presence of majority classes often results in classifier bias to-

wards those classes, leading to suboptimal performance in classifying minority classes.

Consequently, the classifier predominantly identifies instances as belonging to the ma-

jority class, effectively disregarding the minority class. Addressing the challenges aris-

ing from class imbalance has been a subject of considerable investigation in the literature

(Ali et al. 2019).

In the context of external or data-level processing, pre-classification resampling

techniques are employed to address data imbalances. One common strategy involves

performing resampling to balance the dataset externally. For instance, in the case of

imbalanced data, specimens from the majority class may be randomly removed, while

specimens from the minority class are augmented by generating artificial instances, ef-

fectively adjusting the class ratio. Alternatively, in the ideal scenario, no specimen is

added or removed; instead, informed decisions are made about which specimens to cre-

ate or eliminate (Soltanzadeh et al. 2021).
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As argued by (Ali et al. 2019) an algorithmic approach can be adopted to address

the imbalance issue, wherein the learner is explicitly instructed not to favor the majority

class, thereby mitigating the overall cost of misclassification. Cost-sensitive methods

take into account various types of costs, with particular emphasis on minimizing mis-

classification costs, aiming to achieve an unbiased classifier while optimizing the total

cost incurred. By implementing these strategies, researchers endeavor to create clas-

sifiers that effectively manage imbalanced datasets, thus enhancing the accuracy and

reliability of classification outcomes while considering the broader implications of mis-

classification costs.

3.1.3.1 Sampling Approaches for Class Imbalance

The fundamental rationale behind employing sampling approaches lies in the recog-

nition that imbalanced distributions within the training sample can introduce bias into

learning systems, leading to solutions that do not align with the user’s preference goal.

This issue arises because the objective is to achieve predictive accuracy on data that

is underrepresented in the sample. Conventional learning systems typically search for

models that optimize specific criteria, often related to average performance metrics.

However, these metrics tend to reflect the performance on the most common cases,

which may not align with the user’s objectives (Ali et al. 2019; Shuo et al. 2021). In

this context, sampling approaches are devised to alter the data distribution within the

training sample, redirecting the focus of the learners towards cases that are of utmost

interest to the user. The goal of such approaches is to balance the distribution of the least

represented (yet more critical) cases with the more prevalent observations, thus steering

the learning process towards capturing the most important patterns and insights. By ad-

justing the sample distribution, sampling approaches aim to bridge the gap between user

preference and model optimization, enhancing the learning system’s ability to address

the user’s specific objectives.
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3.1.3.2 Under-Sampling Common Classes

The core concept of under-sampling is to effectively reduce the number of observa-

tions associated with the most prevalent target variable values, with the specific objec-

tive of achieving a more balanced ratio between these common observations and those

with less frequent but more significant target values.

Algorithm 1 SMOTE for Under-sampling
Require: Training set D with majority and minority class samples, k (number of nearest

neighbors to consider)
Ensure: Under-sampled training set D′

1: D′← /0
2: for each majority class sample x in D do
3: N← GetNearestNeighbors(x,D,k)
4: n← randomly choose one nearest neighbor from N
5: di f f ← n− x
6: rand← random number between 0 and 1
7: under sampled← x+ rand×di f f
8: D′← D′∪{under sampled}
9: end for

10: for each minority class sample x in D do
11: D′← D′∪{x}
12: end for
13: function SMOTE FOR UNDER SAMPLING(x, D, k)
14: for each sample s in D do
15: Calculate distance dist between x and s
16: s.dist← dist
17: end for
18: Sort D in ascending order of distances
19: return first k samples in D
20: end function
21: return D′

In the context of classification, this process involves randomly obtaining a sam-

ple from the training cases containing the frequent (yet less interesting) class values

(Fernández et al. 2018). This sample is then combined with the observations featuring

the rare target class value, culminating in the formation of the final training set utilized

by the selected learning algorithm. Consequently, the resulting training sample de-
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rived from this under-sampling approach will be smaller than the original (imbalanced)

dataset, offering a more equitable representation of both common and important obser-

vations for enhanced learning system performance (Fernández et al. 2018; Soltanzadeh

et al. 2021).

3.1.3.3 Over-Sampling Minority Classes

In the realm of addressing class imbalance problems, over-sampling emerges as a

significant strategy aimed at mitigating biases and improving the performance of ma-

chine learning models. The fundamental concept of over-sampling revolves around

increasing the instances of the minority class, which is relatively underrepresented in

the original dataset. By synthetically augmenting the number of minority class obser-

vations, the data distribution becomes more balanced, thereby enabling the learning

algorithm to make better-informed decisions and achieve higher accuracy on the minor-

ity class (Mohammed et al. 2020).

Figure 18: Over and Under Sampling

Several techniques are employed in over-sampling, such as Random Over-sampling

and Synthetic Minority Over-sampling Technique (SMOTE). Random Over-sampling

involves duplicating existing minority class instances, while SMOTE generates syn-

thetic instances by interpolating between neighboring minority class observations. These

techniques effectively enhance the representation of the minority class in the training

data, allowing the model to better capture the underlying patterns and reduce the risk of

the classifier being biased towards the majority class (Gosain et al. 2017).
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Algorithm 2 SMOTE for Over-sampling
Require: Training set D with minority class samples, k (number of nearest neighbors

to consider)
Ensure: Synthetic samples S

1: S← /0
2: for each minority class sample x in D do
3: N← GetNearestNeighbors(x,D,k)
4: for each nearest neighbor n in N do
5: di f f ← n− x
6: rand← random number between 0 and 1
7: synthetic← x+ rand×di f f
8: S← S∪{synthetic}
9: end for

10: end for
11: function SMOTE FOR OVER SAMPLING(x, D, k)
12: for each sample s in D do
13: Calculate distance dist between x and s
14: s.dist← dist
15: end for
16: Sort D in ascending order of distances
17: return first k samples in D
18: end function
19: return S
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However, it is crucial to exercise caution when applying over-sampling techniques to

avoid potential overfitting issues, as synthetic observations may introduce noise and hin-

der the model’s generalization ability. Careful validation and evaluation procedures are

essential to ensure that the model’s performance accurately reflects its predictive capa-

bilities on unseen data (Elrahman et al. 2013; Soltanzadeh et al. 2021; Shuo et al. 2021).

Figure 19: Hybrid Sampling Approach

In conclusion, over-sampling represents a valuable tool in combatting class imbal-

ance problems. By artificially boosting the representation of the minority class, over-

sampling empowers learning algorithms to discern and classify minority class instances

more effectively, ultimately leading to improved model performance and more equitable

data distribution. The appropriate utilization of over-sampling techniques, coupled with

rigorous validation and assessment protocols, can significantly enhance the reliability

and robustness of machine learning models in addressing class imbalance challenges.
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3.1.4 Validating the PdM Results

Validating the results of predictive maintenance in the automotive sector is a crit-

ical aspect of ensuring the accuracy and reliability of the predictive models. In this

research paper, we adopt several techniques for validation, including data collection,

establishing ground truth, cross-validation, and real-world testing. Collaboration with

Original Equipment Manufacturers (OEMs) plays a crucial role in enhancing the valida-

tion process. By collaborating with OEMs, we gain access to proprietary data sources,

encompassing diverse vehicle models and driving scenarios, which enriches the vali-

dation dataset. Additionally, OEMs provide historical maintenance records and perfor-

mance data that serve as reliable ground truth, enabling us to compare the predictive

maintenance model’s results with actual maintenance events.

3.1.4.1 Data Collection and Preprocessing

The first step in validating predictive maintenance results involves the meticulous

collection and preprocessing of data. For this purpose, collaboration with Original

Equipment Manufacturers (OEMs) proves to be highly beneficial. OEMs possess ex-

tensive data repositories, containing sensor readings, historical maintenance records,

performance metrics, and other relevant information from a wide range of vehicle mod-

els and driving scenarios. Access to this diverse and extensive dataset ensures that our

validation process is representative of real-world conditions. Additionally, OEM collab-

oration allows us to address potential data quality issues and ensures that the data used

for validation is accurate and reliable, enhancing the overall validity of our research.

3.1.4.2 Establishing Ground Truth

Validation of predictive maintenance models necessitates the establishment of a

ground truth against which the model’s predictions can be assessed. OEM collaboration

plays a pivotal role in this aspect by providing historical maintenance records, real-

world failure events, and component performance metrics. This ground truth, derived

from OEM-provided data, serves as a reliable reference point to validate the accuracy

of the model’s predictions. By comparing the model’s results with actual maintenance

events, we can determine the predictive maintenance model’s effectiveness and its abil-
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ity to anticipate and prevent potential failures.

3.1.4.3 Performance Metrics Selection

Selecting appropriate performance metrics is crucial in gauging the predictive main-

tenance model’s efficacy. Commonly used metrics include precision, recall, F1-score,

and receiver operating characteristic (ROC) curve analysis. However, domain-specific

metrics that align with automotive maintenance objectives are equally important for ac-

curate assessment. Through collaboration with OEMs, we gain insights into the specific

requirements and priorities of the automotive industry, enabling us to select relevant per-

formance metrics that accurately reflect the model’s impact on real-world maintenance

tasks.
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Chapter 4

Experiments

4.1 Data Collection

The automotive industry has witnessed a remarkable evolution in data collection

methodologies, particularly through the integration of Controller Area Network (CAN)

and Electronic Control Units (ECUs). Among the diverse range of data points, the

collection of vehicle mileage, along with a suite of critical features including con-

verter clutch shifting frequency, retard occurrence rate, A clutch shifting instances,

shifting time for a clutch, and the presence of clutch failures, holds paramount impor-

tance for various operational and analytical purposes. These features collectively offer

insights into vehicle performance, driver behavior, and component health, contribut-

ing to enhanced decision-making and driving experience optimization (Francis et al.

2022). CAN, the standardized communication network interlinking the vehicle’s ECUs,

emerges as a central conduit for transmitting these multifaceted data across the vehi-

cle’s electronic systems. Dedicated ECUs, tailored for each feature, work cohesively to

ensure accurate, real-time data collection. By leveraging the seamless communication

capabilities of the CAN bus, data is relayed efficiently, enabling real-time updates and

facilitating integration with telematics systems and diagnostic tools (Giobergia et al.

2018).

Furthermore, the integration of CAN and ECUs transcends the domain of individ-

ual features, capturing a spectrum of operational data that enriches the vehicle’s dig-
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ital ecosystem. Beyond the core features, ECUs collect and interpret data on engine

performance, braking dynamics, transmission behavior, and more. This comprehen-

sive approach fosters a holistic understanding of vehicle behavior, translating into in-

formed decision-making and proactive maintenance strategies. The interconnectedness

of CAN and ECUs also empowers drivers with real-time insights (Turner et al. 2020) and

(Giobergia et al. 2018). Certain ECUs, such as those governing the instrument cluster,

not only facilitate feature-specific data collection but also visualize crucial vehicle pa-

rameters, enhancing the driver’s situational awareness. Concurrently, diagnostic ECUs

identify potential issues promptly, ensuring minimal disruptions to vehicle operation.

The coalescence of CAN and ECUs, therefore, not only facilitates robust data collec-

tion but also forms the bedrock for data-driven advancements that encompass vehicle

performance, safety, and driver engagement (Maksymova et al. 2018).

4.2 Types of ECU’s

In the realm of automotive engineering, Electronic Control Units (ECUs) stand as

pivotal elements orchestrating the intricate symphony of vehicular functions. These

specialized microcontrollers are meticulously tailored to oversee distinct aspects of a

vehicle’s operation, shaping its performance, safety, and efficiency. Among the var-

ied categories of ECUs, several play indispensable roles in shaping the behavior of

vehicle clutches and their associated activities. The Engine Control Unit (ECU) takes

center stage, wielding authority over parameters such as fuel injection, ignition timing,

and exhaust emissions to optimize the operation of the powertrain, directly influencing

clutch engagement and disengagement. Complementing this, the Transmission Control

Unit (TCU) emerges as a crucial contender, directing gear shifts and torque converter

lockup, thus intricately influencing clutch interactions within automatic and automated

manual transmissions. Additionally, the Anti-lock Braking System (ABS) ECU, with its

capacity to prevent wheel lock during braking maneuvers, indirectly influences clutch

engagement during deceleration, enhancing stability. Moreover, the Electronic Stability

Control (ESC) ECU acts as a sentinel against skidding, a scenario where clutch activity

might be pivotal in stabilizing the vehicle.
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4.3 Data Overview

We have collected various information related to the clutches of the vehicle using

ECU and CAN signals. The data has the following attributes:

Mileage column represents the distance covered by the vehicle (in thousands). It can

be a crucial feature for predicting failures, as wear and tear on components, including

the clutch, can be influenced by the total mileage. Converter Clutch Shifting per km
column refers to the frequency of shifting the converter clutch per kilometer. A con-

verter clutch is used in automatic transmissions to improve fuel efficiency and control

slipping. Higher values here might indicate more frequent shifting. Counter of Retard
per km refers to engine braking in this context. This column represents how often the

engine braking is used per kilometer. Engine braking can affect components like the

clutch as well. Counter Shifting A Clutch per km column represents the frequency

of shifting the clutch per kilometer. Similar to the previous shifting feature, it could

affect wear and tear. Time in Shifting for A Clutch column indicates the time taken

for shifting the clutch. It’s essential for modeling, as longer shift times could indicate

potential issues. Failure of the Clutch is the target variable for our machine learning

model. It is a binary indicator (0 or 1) representing whether a clutch failure occurred

or not given the above driving situation. This column was collected and provided as a

ground truth.

Figure 20: Top 10 rows of the data set

The data above shows all the independent features and the last column is our de-

pendent target which we aim to predict. The dependent variable is the primary focus of
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our research, and it represents the outcome or response that we are trying to understand,

explain, or predict (Reddy et al. 2018). It is the variable that we observe, measure, or

analyze to assess the impact of other variables, particularly the independent variable(s).

Figure 21: Bottom 10 rows of the data set

In simpler terms, the dependent variable is what we are trying to explain or un-

derstand better through our research. It’s the variable that may change in response to

variations in other factors. For example, in a study investigating the effect of study time

on exam scores, the exam scores are the dependent variable because they depend on

how much time students spend studying. The independent variable, on the other hand,

is the factor or condition that you manipulate, control, or analyze to observe its effect on

the dependent variable (Rajbahadur et al. 2019). It represents the cause or the variable

that you believe has an impact on the dependent variable. Independent variables can be

categorical (e.g., gender, treatment groups) or continuous (e.g., time, temperature).

Table 1: Dependent and Independent Variables

Dependent Variable Independent Variables

failure of the clutch mileage (in thousands)
converter clutch shifting per km
counter of retard per km
counter shifting A clutch per km
time in shifting for A clutch
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For our use case, table 1 shows which are independent and which is our dependent

variable. In Machine Learning terms one can say that the independent variables are the

X and the dependent variable is our y which we are going to predict.

Table 2: Data Set Information

Index Column Count Data Type

1 mileage (in thousands) 1270 non-null float64
2 converter clutch shifting per km 1269 non-null float64
3 counter of retard per km 1269 non-null float64
4 counter shifting A clutch per km 1269 non-null float64
5 time in shifting for A clutch 1270 non-null float64
6 failure of the clutch 1270 non-null int64

Table 2 shows the columns’ name and their count in the data as well as the data

types. One can see that we do have some missing data points and in total, we have only

1270 data points.
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4.4 Class Distribution

Checking the class distribution in machine learning (ML) data is a fundamental and

crucial step in the data preprocessing phase. It involves examining how the data is dis-

tributed among different classes or categories within a dataset. The foremost reason

for checking class distribution is to identify whether there is a class imbalance in the

dataset. Class imbalance occurs when one class significantly outnumbers the others.

It’s essential to be aware of this issue because it can profoundly impact model perfor-

mance. Class imbalance can lead to model bias, where the algorithm tends to favor the

majority class. In scenarios with imbalanced data, the model may predict the majority

class most of the time to achieve high accuracy, neglecting the minority class. This can

result in misleadingly high overall accuracy but poor performance on the minority class.

Understanding the class distribution is crucial for assessing the real-world relevance

of the ML problem. In many applications, like fraud detection, disease diagnosis, or rare

event prediction, the minority class holds more significant importance. Neglecting the

minority class can have severe consequences. That is exactly the case with the damage

calculation in Clutches. The minority class holds more importance.

Figure 22: Class Distribution of the Target Variable
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The figure 22 showed the distribution of the classes in the data set. Here, we can see

that only 237 data points belong to class 1 (failure happened) and 911 data points are

coming from class 0 (failure didn’t happen). Since the data is skewed towards the class

0 we can safely say that there is a class imbalance in the data. Imbalanced data can lead

to poor model generalization. Models trained on imbalanced data-sets may over-fit to

the majority class and perform poorly on unseen data that follows a more balanced dis-

tribution. Checking and addressing class imbalance can improve model generalization.

Moreover, in certain applications, misclassifying instances from the minority class can

be more costly than misclassifications from the majority class. For example, in medical

diagnosis, failing to detect a rare disease can be life-threatening, making false nega-

tives more costly than false positives. Knowing the class distribution helps in deciding

which data preprocessing techniques to apply. Depending on the imbalance level, tech-

niques like oversampling, under-sampling, synthetic data generation (e.g., SMOTE), or

cost-sensitive learning may be employed to balance the data (Fernández et al. 2018;

Soltanzadeh et al. 2021). Later in this paper we will discuss and tackle this challenge as

well.

4.5 Analysis of Independent Variable

The distribution of each feature column in a machine learning (ML) data-set is cru-

cial for several reasons, and analyzing these distributions can provide valuable insights

for ML projects. Examining feature distributions helps you gain a deeper understanding

of the data you’re working with. It allows you to identify the range, spread, central ten-

dency, and other statistical properties of each feature. Detecting anomalies or outliers

in feature distributions can be a sign of data quality issues. Outliers may indicate errors

in data collection, measurement, or entry, which need to be addressed before building

ML models. One such method is to visualize the Histogram of the data. A histogram

is a graphical representation of the distribution of data in a data-set. It provides a vi-

sual summary of the frequency or count of values within specified bins or intervals.

Histograms are widely used in statistics and data analysis to understand the underlying

patterns and characteristics of a data-set.
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4.5.1 Distribution of Mileage

The x-axis of a histogram represents the range of values in our data-set, divided into

discrete bins or intervals. Each bin represents a specific range of values, and data points

are grouped into these bins based on their values. The y-axis of a histogram represents

the frequency or count of data points falling into each bin. It represents the probability

density if the histogram is normalized. In a frequency histogram, the y-axis shows

how many data points are in each bin. In a probability density histogram, it shows the

probability of a data point falling into each bin.

Figure 23: Distribution of Mileage

Mileage stands as a paramount consideration for vehicle owners, often taking prece-

dence even before the initial purchase of a car or motorcycle. In essence, mileage en-

capsulates the pivotal metric denoting the distance a vehicle can traverse on a single litre

of fuel, be it petrol or diesel. The nomenclature for this metric assumes various forms,

including ’bike average,’ ’bike mileage,’ ’car average,’ ’gas mileage,’ and a plethora of

alternatives. Nevertheless, irrespective of the nomenclature employed, the fundamental

concept remains unaltered—a quantification of a vehicle’s fuel efficiency.

For us, the Mileage is a bit different here. The Mileage column indicates the total

distance covered by the vehicle. We can see in the figure 23 that the data follows Skewed

Distribution. In other words, when data is not symmetric and has a longer tail on one
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side. It can be either positively skewed (long tail to the right) or negatively skewed (long

tail to the left).

4.5.2 Mileage and Clutch Failure Relation

The relationship between the total distance covered by a vehicle and the occur-

rence of clutch failures is an intriguing subject of inquiry within the automotive do-

main. Clutches are vital components in vehicles, facilitating gear transitions and power

transmission. Over time, clutches experience wear and tear due to engagement and dis-

engagement cycles. It is hypothesized that there may exist a correlation between higher

cumulative distances traveled and an elevated likelihood of clutch failure. As vehicles

accrue greater mileage, the clutch components endure extended usage, potentially lead-

ing to increased wear. This wear, in turn, could influence the clutch’s performance and

longevity.

Figure 24: Clutch Failure and Mileage Correlation

As depicted in the figure 24 we can see that it’s very hard to say for sure if there

exists any definite relationship between the total Mileage covered by the vehicle and its

Clutch Failure. In the plot 24 we can see that there exist two keys 0 and 1 where red

bars are for the moment where failure didn’t happen for a particular mileage. Mileage
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can be seen on the x axis. Remember the MILEAGE IS IN THOUSANDS. Important to

note is that the plot 24 is only part of a big visualization. However, it gives us an insight

that just by looking at the stacked bar chart it’s not possible to say that clutch failure

indeed is a reflection of vehicle total mileage. There can be other factors at play. The

upcoming sections cover a deep analysis of the other features.

4.5.3 Converter Clutch Shifting

The Converter Clutch Shifting per km column in our data-set pertains to the fre-

quency at which the converter clutch within a vehicle’s transmission system is engaged

and disengaged per kilometer traveled. In an automatic transmission, the converter

clutch plays a pivotal role in controlling power transfer from the engine to the trans-

mission and, subsequently, to the wheels. The converter clutch can be engaged to op-

timize fuel efficiency and engine performance. Therefore, the number of times it shifts

or toggles its state per kilometer is a crucial metric for evaluating the transmission’s

behavior. Understanding this parameter allows us to assess how often the clutch is ac-

tivated during typical driving scenarios, providing valuable insights into transmission

performance, and fuel economy, and potentially identifying patterns or anomalies that

may impact overall vehicle operation.

Figure 25: Histogram of Converter Clutch Shifting per km

The figure 25 also shows similar distribution as Mileage 23. It is Skewed Distri-
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bution where data is not symmetric and has a longer tail on one side. It can be either

positively skewed (long tail to the right) or negatively skewed (long tail to the left). As

depicted in plot 25 it is negatively skewed.

4.5.4 Counter of Retard

This parameter represents the number of times the vehicle’s transmission system

engages in retardation events (e.g., gear shifts or deceleration due to braking) within a

distance of one kilometer. In essence, it measures how frequently such events occur

during typical driving conditions. Analyzing this data could provide insights into the

vehicle’s transmission behavior and its relationship to clutch performance. Understand-

ing the relationship between retardation events and clutch behavior can be valuable for

predicting and preventing clutch failures. For instance, frequent and abrupt gear shifts

or excessive deceleration events may contribute to increased wear and tear on the clutch,

potentially leading to premature failures. Therefore, analyzing the ”Counter of Retard

per km” can be a crucial aspect of studying and predicting clutch failures in the context

of this data-set.

Figure 26: Histogram of Counter of Retard per km

The width of the histogram indicates the spread or dispersion of the data (see fig-

ure 26). A wide histogram suggests a greater variability in the data, while a narrow

histogram indicates lower variability.
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4.5.5 Counter Shifting of Clutch

The ”Counter Shifting of a Clutch per km” column within the data-set, specifically

collected for the prediction of clutch failures, serves as a significant parameter denoting

the frequency of clutch engagement and disengagement events per kilometer traveled

in a vehicle. In the intricate mechanics of automotive transmission systems, the clutch

plays a pivotal role in the seamless transition between gears, enabling the vehicle to

accelerate, decelerate, and maintain various speeds. This column’s value indicates how

often these clutch-shifting events occur over a standardized distance of one kilometer.

The frequency of clutch shifts is a critical metric for understanding the operational dy-

namics of the vehicle’s transmission system. By meticulously tracking the occurrences

of clutch engagements and disengagements in relation to the distance traveled, this pa-

rameter can unveil essential insights into the clutch’s performance, wear patterns, and

potential factors contributing to clutch failures. A comprehensive analysis of ”Counter

Shifting A Clutch per km” offers a valuable perspective on the interplay between clutch

behavior and the broader context of vehicle operation, aiding in the prediction and pre-

vention of clutch-related issues, which can be of paramount significance in automotive

maintenance and reliability.

Figure 27: Histogram of Counter Shifting of Clutch

The figure 27 also shows a similar distribution as Mileage 23. It is Skewed Distri-

bution where data is not symmetric and has a longer tail on one side. It can be either
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positively skewed (long tail to the right) or negatively skewed (long tail to the left). As

depicted in plot 27 it is negatively skewed.

4.5.6 Time in Clutch Shifting

The ”Time in Shifting for A Clutch” column within the data-set assumes a piv-

otal role in the modeling and evaluation of vehicle clutch performance, presenting a

crucial metric denoting the duration taken for the clutch-shifting process. In the in-

tricate mechanics of automotive transmission systems, the clutch serves as a linchpin,

orchestrating the seamless transition between gears, a process vital for acceleration, de-

celeration, and maintaining various speeds. This specific parameter encapsulates the

temporal aspect of these clutch engagements and disengagements, signifying the time

interval required for the shifting process to transpire. Notably, it can be a barometer for

assessing the efficiency and efficacy of the clutch operation. Longer shift times may

serve as potential indicators of underlying issues within the clutch mechanism, such as

wear and tear, misalignments, or sub-optimal performance. Therefore, a comprehensive

analysis of the ”Time in Shifting for A Clutch” parameter proves indispensable for un-

derstanding the intricacies of clutch behavior and pinpointing aberrations or anomalies

that could impact vehicle operation. In the context of modeling, it emerges as a valu-

able feature for predictive maintenance, facilitating the early detection of clutch-related

concerns and, subsequently, the preservation of vehicle reliability and performance.

Figure 28: Histogram of Time in Shifting of Clutch
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4.5.7 Feature Correlation

Numerous determinants exert influence on the efficacy of machine learning in the

context of a specific task. Notably, data quality stands out as a critical factor, wherein

the presence of irrelevant, redundant, or noisy information, along with data unreliability,

poses formidable challenges to the knowledge acquisition process during training (Cai

et al. 2018). Addressing this issue, feature subset selection emerges as a pivotal method-

ology aimed at judiciously identifying and eliminating superfluous and duplicative data

components. It endeavors to enhance the data’s informational efficiency by retaining

only the most pertinent attributes (Hall et al. 2000). It is noteworthy that machine learn-

ing algorithms exhibit variability in their prioritization of feature selection, with some

algorithms assigning greater significance to this process than others, underlining its role

in optimizing model performance and knowledge extraction (Senan et al. 2021).
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Figure 29: Correlation in Features

The core of the CFS (Correlation-based Feature Selection) algorithm resides in a

heuristic designed to systematically assess the value or significance of a subset of fea-

tures. This heuristic meticulously considers two fundamental aspects: firstly, the utility

of individual features in predicting the class label, and secondly, the degree of intercor-

relation existing among these features (Williams et al. 2006). The underlying hypothesis

guiding this heuristic operation posits that optimal feature subsets exhibit characteris-

tics wherein the constituent features demonstrate strong correlations with the class label

while simultaneously maintaining minimal correlations among themselves. This prin-

ciple underscores the pivotal role of feature selection in enhancing the discriminative
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power of machine learning models by selecting feature subsets that strike an ideal bal-

ance between class relevance and interfeature independence (Hall et al. 2000; Senan

et al. 2021). A correlation plot (see figure 29) in machine learning, often represented

as a correlation matrix or heatmap, provides a visual representation of the relationships

between variables (features) in a dataset. It is a valuable tool for exploring the degree

and direction of linear association between pairs of variables.

”A good feature subset is one that contains features highly correlated with (predic-

tive of) the class, yet uncorrelated with (not predictive of) each other”. —- (Hall et al.

2000)

High correlations between independent features (multicollinearity) can lead to in-

stability in Machine Learning models. A correlation plot can highlight multicollinearity

issues, allowing us to address them by selecting one feature from highly correlated

pairs or applying dimensionality reduction techniques. Moreover, When building pre-

dictive models, knowing the correlations between features can guide us in selecting an

appropriate algorithm. For example, linear models assume that features are not highly

correlated, while tree-based models can handle correlated features more robustly. If we

look at the figure 29, it shows some correlation between the 2 features. However, they

are not highly correlated thus, we are keeping all the columns for our modeling.

4.6 Experiment Setup

The ML (Machine Learning) experiment setup is a critical phase in the lifecycle of

any machine learning project. It encompasses the systematic arrangement of all essen-

tial components, processes, and resources required to conduct an ML experiment effec-

tively. This setup involves defining the problem statement, selecting appropriate data

sources, preprocessing and cleaning the data, choosing suitable machine learning algo-

rithms, specifying hyperparameters, splitting the data into training and testing sets, and

setting up performance metrics for evaluation. Moreover, it also includes considerations

for hardware and software infrastructure, such as selecting the right computing environ-

ment and ensuring compatibility with the chosen ML framework. The experiment setup
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phase is pivotal in ensuring that the experiment is well-organized, reproducible, and ca-

pable of yielding meaningful insights and results, ultimately guiding the development

of robust machine learning models. Some of the aforementioned components apply to

our use case. Such as data cleaning, choosing the right model, etc.

4.6.1 Data Cleaning

Data cleaning, often referred to as data cleansing or data scrubbing, is an integral

and meticulous process within the realm of data preprocessing (Li et al. 2019). It in-

volves the systematic identification, correction, and removal of errors, inconsistencies,

inaccuracies, and anomalies present in a dataset. These imperfections can arise from

various sources, including data entry errors, sensor inaccuracies, missing values (Hong-

hai et al. 2005), duplications, and outliers. The primary objective of data cleaning is to

enhance the quality, integrity, and reliability of the data, making it suitable for analysis

and modeling. This process typically encompasses tasks such as imputing missing val-

ues, correcting typos, handling outliers, and ensuring data consistency. The significance

of data cleaning cannot be overstated, as the accuracy and credibility of subsequent

data-driven analyses and machine-learning models heavily depend on the cleanliness of

the underlying data. It is an indispensable step in the data preparation pipeline, ensuring

that insights drawn from data are robust, trustworthy, and actionable (Chu et al. 2016).

4.6.1.1 Missing Value

As shown in the table 2, we have a few missing values. When dealing with missing

values, the key is to maintain data integrity while minimizing data loss. Depending on

the nature and context of the dataset, we can either remove the affected rows or impute

the missing values using straightforward methods. However, only one data point is

missing thus, we can easily remove the NaN value row. This is a reasonable strategy

when the proportion of missing values is negligible and won’t significantly impact your

analysis or model training.
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4.6.1.2 Data Point Removal

As you can see in the figure 21, there exist rows where Mileage is zero. And when

Total Mileage is zero then it means the vehicle didn’t move at all. and thus this data

point was collected due to an error in the data collection process. We will remove all

the rows where Total Mileage is recorded to be zero. There are many reasons to remove

such a data point. Such as,

1. Zero values can often skew the distribution of a feature. For some machine learn-

ing algorithms, especially those sensitive to feature distributions like linear regres-

sion, having a skewed distribution can lead to suboptimal model performance.

2. Zero values can interfere with scaling operations, such as standardization (mean

normalization) or min-max scaling. When you have zero values in a feature, it

can affect the calculation of mean and standard deviation, potentially distorting

the scaled values.

3. Sometimes, zero values are used as placeholders for missing data. In such cases,

it’s crucial to distinguish between true zero values and missing data. By removing

or handling zero values, you can treat missing data more appropriately, either by

imputing them or using other techniques.

4. Some machine learning models, especially those based on distances or similari-

ties, can be sensitive to zero values. For example, in clustering or nearest neighbor

algorithms, zero values can lead to unpredictable results or distort the notion of

similarity.

5. In certain scenarios, zero values might represent noise or irrelevant information.

Removing them can simplify the dataset and improve the signal-to-noise ratio,

potentially leading to more accurate models.

6. Zero values can affect the interpretability of models. For example, coefficients in

linear models may be challenging to interpret when zero values are present.

However, it’s important to note that removing zero values should be done thought-

fully and in consideration of the specific problem and dataset. In some cases, zero
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values may carry meaningful information, and removing them could result in the loss of

important insights. Therefore, the decision to remove or handle zero values should be

based on a thorough understanding of the data, the domain, and the goals of the machine

learning project. After initial data cleaning our data-set has following properties:

Table 3: Clean Data Set Information

Index Column Count Data Type

1 mileage (in thousands) 1148 non-null float64
2 converter clutch shifting per km 1148 non-null float64
3 counter of retard per km 1148 non-null float64
4 counter shifting A clutch per km 1148 non-null float64
5 time in shifting for A clutch 1148 non-null float64
6 failure of the clutch 1148 non-null int64

We have 1148 data points for each of the independent variables and also for the

Target column (dependent variable).

4.6.1.3 Split Training and Test Set

The process of splitting a data-set into training and test sets is a fundamental step

in the development and evaluation of machine learning models. This division serves

two essential purposes: training and validation. The training set, typically comprising a

substantial portion of the data, is used to train the model. It provides the algorithm with

examples from which it learns patterns and relationships within the data. On the other

hand, the test set is kept separate and serves as an independent data-set for evaluating the

model’s performance. By assessing the model’s predictions on unseen data, the test set

helps gauge its generalization capability—how well it can make accurate predictions on

new, previously unseen data. The split between training and test sets is a crucial aspect

of model development, ensuring that the model is not merely memorizing the training

data but can effectively apply what it has learned to make accurate predictions in real-

world scenarios. Properly conducted split and evaluation procedures are essential for

building robust and reliable machine learning models. We split our data-set where 70%
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will be used for training and 30% for testing.

Algorithm 3 Data Splitting: 70% Training, 30% Test
Dataset D with n samples
Training set Dtrain, Test set Dtest

Shuffle D randomly Calculate the split index: k = ⌊0.7n⌋
Split D into two subsets:
Dtrain containing the first k samples
Dtest containing the remaining n− k samples

return Dtrain,Dtest

The choice of the data split ratio, such as 70:30 or any other ratio, depends on sev-

eral factors, including the size of the data-set, the nature of the problem, and the specific

goals of the machine learning project. There isn’t a fixed standard split ratio, but 70:30

(or 80:20) is a commonly used default for several reasons. A 70:30 split provides a

reasonable balance between the amount of data used for training and testing. It allows

the model to learn from a substantial portion of the data while still having a sufficiently

large test set for robust evaluation. With a larger test set (30%), the evaluation results are

likely to be statistically more significant and reliable. This is especially important when

assessing model performance and making decisions based on the evaluation metrics.

Moreover, in practice, a 70:30 split often strikes a good balance between model

training time and evaluation effort. Using a larger training set can be computationally

expensive, especially for complex models. The choice of split ratio may also depend

on the size of the available data-set. If you have a limited amount of data, you might

opt for a larger test set to ensure a more rigorous evaluation. In addition to this, it’s

important to note that the choice of split ratio is not set in stone and can vary based

on the specific context. For very large data-sets, you might use a smaller percentage

for the test set (e.g., 90:10) because even a small test set can provide sufficient data for

evaluation. Conversely, for very small datasets, you might use a larger test set (e.g.,

50:50) to ensure a more representative evaluation.
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4.7 Model Selection

Machine learning model selection is a critical step in the development of predictive

models, as it entails choosing the most appropriate algorithm or architecture to solve a

specific problem. This process involves a delicate balance between various factors, in-

cluding the nature of the data, the complexity of the problem, computational resources,

and the desired model performance. Model selection often begins with an exploration

of different algorithms, such as decision trees, support vector machines, neural net-

works, or ensemble methods, among others (Shiksha 2022). Researchers and practi-

tioners assess how well each model generalizes to unseen data through techniques like

cross-validation. They consider factors like model complexity, interpretability, and the

potential for over-fitting. Ultimately, the goal of model selection is to identify the model

that achieves the best trade-off between accuracy, generalization, and practicality for the

given task (Badillo et al. 2020). It’s a process that requires domain knowledge, iterative

experimentation, and a deep understanding of both the data and the problem domain to

make informed choices and build robust machine learning systems (Akshay et al. 2021).

Clutch damage prediction falls into the Supervised Machine Learning arena. Super-

vised learning, at its core, involves providing a computer system with training data con-

sisting of observed inputs paired with their corresponding known output values (Bengio

et al. 2012; Lindholm et al. 2019; Muhammad et al. 2015). The objective is to acquire

overarching rules or a ”model” that can effectively establish a mapping from inputs to

outputs. This learning process enables the system to make predictions for new, previ-

ously unseen data instances, where we possess input information but lack knowledge

of their associated outputs. Supervised learning broadly falls into two primary cate-

gories: (i) classification, wherein the output values are categorical or discrete, and (ii)

regression, where the output values take on numeric or continuous values. These cate-

gories define the nature of the predictive tasks that the supervised learning algorithms

are designed to tackle (Badillo et al. 2020).
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4.7.1 Logistic Regression

Logistic regression is a widely used statistical method and supervised learning al-

gorithm primarily employed for binary classification tasks. In binary classification, the

goal is to predict one of two possible outcomes, typically represented as 0 and 1, true

or false, or positive and negative. Logistic regression accomplishes this by modeling

the relationship between a set of input features and the probability of an event occurring

(Minka et al. 2001).

The algorithm’s name, ”logistic,” stems from its underlying logistic function, which

transforms a linear combination of input features into a value bounded between 0 and

1. This transformed value represents the estimated probability that the instance belongs

to the positive class. A key strength of logistic regression lies in its simplicity and

interpretability. The model produces coefficients associated with each input feature,

indicating their impact on the prediction. The logistic regression model aims to model

the probability that a binary outcome variable (e.g., 0 or 1) takes a particular value based

on a set of input features. The logistic function (also known as the sigmoid function) is

used to transform a linear combination of these features into a probability value:

P(Y = 1|X) =
1

1+ e−(β0+β1X1+β2X2+...+βpXp)

Where: - P(Y = 1|X) represents the probability that the outcome variable Y takes

the value 1 given the input features X . - β0,β1,β2, . . . ,βp are the coefficients associated

with each feature X1,X2, . . . ,Xp. - e is the base of the natural logarithm.

The linear combination β0+β1X1+β2X2+ . . .+βpXp is computed, and the logistic

(sigmoid) function maps this value to a range between 0 and 1. If P(Y = 1|X) is greater

than or equal to 0.5, the model predicts the positive class (1); otherwise, it predicts

the negative class (0). This formula represents the mathematical foundation of logis-

tic regression, which estimates the coefficients β during the training process to make

probabilistic predictions for binary classification tasks (Feng et al. 2014).

During training, logistic regression optimizes these coefficients to minimize a loss

function, typically the log-likelihood or cross-entropy loss, which quantifies the model’s

deviation from the true labels. Once trained, the logistic regression model can classify
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Algorithm 4 Logistic Regression Algorithm for Binary Classification

1: Input: Training dataset {(X (i),Y (i))}m
i=1, learning rate α , number of iterations N

2: Initialize weights θ0,θ1, . . . ,θn to small random values
3: for k from 1 to N do
4: for i from 1 to m do
5: Compute the hypothesis: h(i) = 1

1+e−(θ0+θ1X(i)
1 +θ2X(i)

2 +...+θnX(i)
n )

6: Compute the error: error(i) = h(i)−Y (i)

7: for j from 0 to n do
8: Update weights: θ j = θ j−α · error(i) ·X (i)

j
9: end for

10: end for
11: end for
12: Output: Trained logistic regression model with weights θ0,θ1, . . . ,θn

new data points by evaluating the probability and applying a threshold (often 0.5) to de-

termine the predicted class. Due to its simplicity and effectiveness, logistic regression

is not only a valuable tool in binary classification tasks but also serves as a fundamen-

tal building block in more complex machine learning algorithms and models. It finds

applications in various domains, including medical diagnosis, finance, and marketing,

where distinguishing between two classes is a common and critical requirement (Liu

et al. 2018).

4.7.2 Decision Tree

A decision tree is a versatile and intuitive machine learning algorithm that is com-

monly used for both classification and regression tasks. It operates by recursively parti-

tioning the dataset into subsets based on the values of input features, ultimately forming

a tree-like structure of decision nodes and leaves. At each decision node, the algorithm

selects a feature and a corresponding threshold to split the data, aiming to maximize the

separation of classes or minimize variance in the case of regression. The tree’s struc-

ture is determined through a process called recursive binary splitting, guided by criteria

like Gini impurity or entropy for classification and mean squared error for regression

(Tangirala et al. 2020). Decision trees are highly interpretable, allowing users to trace
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the path of a decision and understand the rules behind predictions. However, they can

be prone to overfitting when the tree becomes overly complex, which is why techniques

like pruning are used to simplify the model. Decision trees are fundamental in ensemble

methods like random forests, which aggregate multiple trees to improve predictive ac-

curacy, making them a valuable asset in the field of machine learning and data analysis

(Charbuty et al. 2021).

A decision tree can be mathematically represented as a recursive structure, where

each node in the tree makes a binary decision based on a feature. Here’s a simplified

LaTeX formula to illustrate the concept of a decision tree:

if Xi ≤ thresholdi :

go to left subtree

else:

go to right subtree

In this representation:

- Xi represents the value of the i-th feature.

- thresholdi is the threshold value for feature Xi.

- The decision is made based on whether Xi is less than or equal to thresholdi.

- Depending on the decision, you navigate to the left or right subtree of the decision tree.
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Algorithm 5 Decision Tree Algorithm
1: function BUILDDECISIONTREE(data, features)
2: Create a node N
3: if data is pure or a stopping criterion is met then
4: Assign the class label to N
5: else
6: Select the best feature F and a splitting criterion
7: N.feature← F
8: Split data into subsets based on F
9: for all subsets do

10: Create child node Nc
11: Nc.threshold← splitting threshold
12: Recursively call BUILDDECISIONTREE(subset, features−{F}) and as-

sign result to Nc
13: Attach Nc to N
14: end for
15: end if
16: return N
17: end function

This formula captures the fundamental logic of a decision tree, where features are

examined at each node, and decisions are made based on whether a feature value meets

a specific condition. The process is recursive, allowing the tree to partition the data into

subsets and make predictions based on these binary decisions. The actual mathematical

formulas for determining the thresholds and conditions at each node can vary depending

on the specific algorithm used to construct the decision tree (e.g., CART or ID3) (Singh

et al. 2014).
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4.7.3 Support Vector Machine(SVM)

Support Vector Machines (SVMs) represent a powerful and versatile class of super-

vised machine learning algorithms with applications spanning various domains, making

them a prominent choice in the field of pattern recognition and classification. SVMs

are particularly renowned for their effectiveness in both linear and non-linear classifi-

cation tasks, and they excel in scenarios where complex decision boundaries need to

be established to separate data into distinct classes (Gold et al. 2003). SVMs aim to

find the optimal hyperplane that maximizes the margin between data points of different

classes, effectively enhancing generalization and robustness in classification tasks. This

optimal hyperplane is the one that minimizes the classification error while maintaining

the maximum separation margin, and it is this unique characteristic that distinguishes

SVMs from other classifiers. Furthermore, SVMs can handle high-dimensional data ef-

ficiently, mitigating the ”curse of dimensionality” problem (Cristianini et al. 2000).

SVMs offer adaptability through the use of various kernel functions, allowing them

to handle non-linearly separable data by mapping it into higher-dimensional feature

spaces, where linear separation becomes possible. This ability to handle non-linearity

makes SVMs well-suited for a wide range of applications, including text classifica-

tion, image recognition, bioinformatics, and financial forecasting. SVMs have demon-

strated excellent performance in scenarios with limited training data, making them ro-

bust against overfitting. However, it’s important to note that tuning parameters such as

the choice of kernel and regularization parameters can significantly impact the model’s

performance, and careful parameter selection is often necessary (Wu et al. 2006; Mukher-

jee et al. 1999). In summary, Support Vector Machines have earned their reputation as a

reliable and versatile tool in machine learning and data analysis. Their ability to handle

both linear and non-linear classification problems, their robustness, and their capacity

to work efficiently in high-dimensional spaces have made them indispensable in vari-

ous research and practical applications, contributing significantly to the advancement

of pattern recognition and classification tasks across diverse domains (Ukil et al. 2007;

Widodo et al. 2007).
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Algorithm 6 Support Vector Machine (SVM) Training Algorithm
Input: Training data {(xi,yi)}N

i=1, where xi is a feature vector and yi ∈ {−1,1}
is the class label.
Output: SVM model parameters w (weight vector) and b (bias).
Initialize w and b to zeros. Choose a regularization parameter C > 0. Compute the
kernel matrix K:

Ki j = yiy j · ⟨xi,x j⟩

Use a quadratic programming solver to solve the following optimization problem:

Minimize:
1
2
∥w∥2 +C

N

∑
i=1

ξi

Subject to: yi(⟨w,xi⟩+b)≥ 1−ξi, i = 1, . . . ,N
ξi ≥ 0, i = 1, . . . ,N

Extract the support vectors {xi} for which ξi > 0. Compute w as follows:

w = ∑
i

αiyixi

Compute the bias b as follows:

b =
1
|S | ∑

i∈S
(yi−⟨w,xi⟩)

where S is the set of indices of support vectors.

Input Data and Output: In this step, we define the input and output of the SVM

training algorithm. The input consists of a set of training data samples, denoted as

(xi,yi)
N
i=1, where each xi represents a feature vector, and yi is the corresponding class

label, typically -1 or 1. The goal is to determine the SVM model parameters w (weight

vector) and b (bias).

Initialization: Here, we initialize the SVM model’s weight vector w and bias b to

zero values. These parameters will be updated during the training process to find the

optimal hyperplane that best separates the data into different classes.

Kernel Matrix Computation: The algorithm computes the kernel matrix K to rep-

resent the similarity between data samples. The kernel matrix is calculated using the

dot product (inner product) between feature vectors and class labels. It serves as a basis

for the optimization process, allowing SVMs to work efficiently in high-dimensional
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spaces.

Quadratic Programming Optimization: The heart of SVM training involves solving

a quadratic programming problem. This optimization aims to find the hyperplane that

maximizes the margin between different classes while minimizing classification errors.

The objective function balances the margin width and the classification accuracy, con-

trolled by a regularization parameter C.

Support Vector Identification: After solving the optimization problem, we identify

the support vectors. These are data samples that lie on the margin boundaries or mis-

classified samples. Support vectors are crucial as they define the position of the optimal

hyperplane.

Weight Vector Calculation: The weight vector w is computed by summing the con-

tributions of the support vectors, scaled by their associated Lagrange multipliers αi and

class labels yi. The weight vector determines the orientation of the hyperplane that best

separates the data.

Bias (Intercept) Calculation: The bias term b is calculated to shift the hyperplane

away from the origin and align it with the data distribution. It’s determined by averaging

the differences between the true class labels and the predictions based on the support

vectors.

Each of these steps plays a critical role in the SVM training process, collectively

allowing the algorithm to find the optimal hyperplane that maximizes the margin while

minimizing classification errors, thus creating an effective classifier for various applica-

tions in machine learning and pattern recognition.
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4.7.4 Random Forest

Random Forest is a powerful ensemble learning technique widely employed in ma-

chine learning for both classification and regression tasks. This algorithm builds upon

the fundamental concept of decision trees, aiming to enhance predictive accuracy and

mitigate overfitting issues associated with individual trees. The core idea behind Ran-

dom Forest lies in constructing a multitude of decision trees during the training phase.

Rather than relying on a single tree’s prediction, the model aggregates the predictions

from multiple trees, ultimately yielding a more robust and reliable outcome. The ”ran-

dom” component in Random Forest manifests in two key ways: feature selection and

data sampling. For each tree, a random subset of features is considered at each split,

injecting an element of diversity that helps capture various aspects of the data’s com-

plexity. Additionally, the training data for each tree is sampled with replacement, in-

troducing variability and preventing the model from being overly sensitive to specific

patterns within the dataset (Rigatti et al. 2017).

One of the significant advantages of Random Forest is its ability to handle high-

dimensional datasets with numerous features, providing a solution to the ”curse of di-

mensionality.” The ensemble nature of Random Forest promotes model stability, reduc-

ing the risk of overfitting that may be associated with individual decision trees. More-

over, the algorithm inherently provides a built-in mechanism for feature importance

estimation, offering insights into the most influential variables driving the model’s pre-

dictions (Biau et al. 2016). Random Forest has demonstrated efficacy across diverse

domains, from finance to healthcare, owing to its versatility and adaptability to various

data complexities. However, it is essential to fine-tune hyperparameters carefully, such

as the number of trees and maximum depth, to optimize performance. Overall, Ran-

dom Forest stands as a formidable tool in the machine learning toolkit, renowned for its

versatility, accuracy, and robustness in addressing real-world challenges (Breiman et al.

2001).
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To maintain simplicity, our focus is solely on the binary classification challenge,

although it’s crucial to acknowledge that random forests inherently possess the capa-

bility to address problems involving multiple classes. Within this binary classification

context, the stochastic response variable Y assumes values in the set (0, 1). Given the

predictor variable X , the objective is to predict the corresponding value of Y. A classifier

or classification rule, denoted as mn, represents a Borel measurable function of both X

and Dn, aiming to provide an estimate of the label Y based on the information available

in X and Dn. Within this framework, the term ”consistent” is attributed to a classifier

mn if its conditional probability of error is minimized. In simpler terms, a consistent

classifier strives to minimize the likelihood of making errors when predicting the label

Y based on the given predictor variable X and auxiliary information Dn (Biau et al.

2016).

L(mn) = P [mn(X) ̸= Y ] →
n→∞

L⋆,

where L⋆ is the error of the optimal-but unknown-Bayes classifier:

m⋆(x) =

1 if P[Y = 1 | X = x]> P[Y = 0 | X = x]

0 otherwise.

In the classification context, the random forest classifier is obtained via a majority

vote among the classification trees, that is,

mM,n (x;Θ1, . . . ,ΘM,Dn) =

1 if 1
M ∑

M
j=1 mn

(
x;Θ j,Dn

)
> 1/2

0 otherwise.

If a leaf represents region A, then a randomized tree classifier takes the simple form.
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Algorithm 7 Random Forest for Binary Classification
Require: Training dataset D, number of trees T , number of features to consider at each

split m
Ensure: Random Forest classifier RF

1: RF ← /0
2: for t← 1 to T do
3: Dt ← Randomly sample with replacement from D
4: mt ← Randomly select m features
5: DT ← TrainDecisionTree(Dt ,mt) ▷ Train a decision tree
6: RF ← RF ∪{DT} ▷ Add the decision tree to the forest
7: end for
8: function RANDOMFORESTPREDICT(RF,x)
9: predictions← /0

10: for DT ∈ RF do
11: prediction← PredictUsingDecisionTree(DT,x)
12: predictions← predictions∪{prediction}
13: end for
14: return MajorityVote(predictions) ▷ Final prediction by majority voting
15: end function
16: function MAJORITYVOTE(predictions)
17: if ∑p∈predictions p > T

2 then
18: return 1 ▷ Classify as positive
19: else
20: return 0 ▷ Classify as negative
21: end if
22: end function
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4.7.5 Artificial Neural Networks(ANN)

The Artificial Neural Network (ANN) represents a cutting-edge technology rooted

in the intricate structure of the human brain, simulating its remarkable learning capa-

bilities. This neural approach holds the promise of deriving valuable insights from past

experiences. When an ANN undergoes training with historical data, it gains the pro-

ficiency to generate informed outputs based on the knowledge distilled from the data.

Numerous research endeavors have unequivocally demonstrated the potency of ANN

in the domain of classification. The adoption of ANN for classification tasks is under-

pinned by a multitude of compelling advantages. To begin, ANNs possess the remark-

able ability to adapt to data without imposing prior assumptions on underlying functions

(Jeatrakul et al. 2009; Min et al. 2009).

The architecture of neural networks plays a pivotal role in shaping the success and

efficacy of binary classification tasks, marking a crucial intersection between model

complexity, capacity, and interpretability. The structure of a neural network, charac-

terized by layers, nodes, and connections, governs its capacity to comprehend complex

representations, making it particularly well-suited for tasks involving intricate features

and non-linear relationships (Jeatrakul et al. 2009).

Furthermore, the architecture influences the network’s generalization ability. A

well-designed architecture ensures that the model not only performs optimally on the

training data but also generalizes effectively to unseen data. Overly complex architec-

tures may lead to overfitting, where the model memorizes training samples but struggles

with new, unseen instances. On the other hand, architectures with insufficient com-

plexity may fail to capture essential patterns, resulting in underfitting (Koehrsen et al.

2018). In binary classification tasks, the role of neural network architecture extends be-

yond mere predictive accuracy. It influences the interpretability of the model, providing

insights into the decision-making process (Zhang et al. 2018). Techniques such as atten-

tion mechanisms and interpretability-focused architectures contribute to understanding

which features are crucial for the classification decision (Lipton et al. 2018).

Additionally, they serve as universal function approximators, capable of closely ap-

proximating virtually any function with remarkable precision. Furthermore, ANNs of-

fer the invaluable attribute of nonlinearity, rendering them highly adaptable for complex

real-world applications across diverse fields such as industry, business, and science. The
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realm of successful applications for ANNs is extensive and includes noteworthy exam-

ples like bankruptcy prediction, handwriting recognition, fault detection, and medical

diagnosis, illustrating the profound impact of this technology in addressing real-world

challenges (Faris et al. 2016).

Algorithm 8 Binary Classification with Neural Network

1: Input: Training data {(xi,yi)}N
i=1, where xi is the input feature vector and yi ∈{0,1}

is the binary class label.
2: Output: Trained neural network parameters θ , which include weights and biases.
3: Initialize neural network architecture: Define the number of layers, neurons per

layer, activation functions (e.g., sigmoid, ReLU), and other hyperparameters.
4: Initialize model parameters θ : Initialize the weights and biases for each neuron in

the network randomly or using specific initialization methods (e.g., Xavier/Glorot
initialization).

5: Choose a loss function: Select a suitable loss function for binary classification tasks,
such as binary cross-entropy loss.

6: Choose an optimization algorithm: Select an optimization algorithm (e.g., gradient
descent, Adam) to update the model parameters θ in order to minimize the chosen
loss function.

7: for each training epoch do
8: for each training sample (xi,yi) do
9: Perform forward propagation: Compute the output of the neural network by

applying the activation functions to the weighted sum of inputs.
10: Compute the loss: Calculate the loss between the predicted output and the

true label using the chosen loss function.
11: Perform backward propagation: Compute the gradients of the loss with re-

spect to the model parameters θ using backpropagation.
12: Update model parameters: Update the weights and biases using the chosen

optimization algorithm to minimize the loss.
13: end for
14: end for
15: Output: Trained neural network with optimized parameters θ .
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4.7.6 Models Weakness and Strength

In the domain of machine learning (ML), binary classification is a fundamental task

where the objective is to assign one of two possible labels to each data point. Examples

of such tasks include spam detection, disease diagnosis, and customer churn prediction.

While there are numerous machine learning algorithms designed for binary classifica-

tion, the choice of the most suitable model is not always obvious. Thus, it is standard

practice to experiment with different models during the development process to deter-

mine which one yields the best performance. The rationale for this experimentation lies

in the fact that each model has distinct underlying mechanisms, assumptions, and capa-

bilities, leading to varying levels of effectiveness depending on the nature of the dataset

and the problem being addressed (Lindholm et al. 2019).

The main reason for experimenting with different ML models in binary classifica-

tion is the ”no free lunch” theorem. This principle suggests that no single algorithm

performs optimally across all types of problems or datasets. Each classification model

has specific strengths and weaknesses, and its performance is often contingent on the

characteristics of the data, such as feature distribution, data dimensionality, noise levels,

class imbalance, and the relationships between features and target variables. As a result,

selecting the right model is highly problem-dependent (Akshay et al. 2021).

Furthermore, different models have varying tendencies when it comes to bias and

variance trade-offs. Some models may be prone to overfitting, capturing too much

noise in the data, while others may be too simplistic and underfit the data, failing to cap-

ture complex relationships. By experimenting with multiple models, practitioners can

identify the algorithm that strikes the best balance between bias and variance, thereby

achieving better generalization on unseen data.

Additionally, the interpretability of different models plays a crucial role in selecting

the appropriate model for binary classification. In certain domains, such as healthcare

or finance, interpretability is just as important as accuracy. For example, decision trees

provide a level of interpretability by showing the rules that lead to a particular deci-

sion, whereas models such as neural networks are often considered ”black boxes” due

to their complex internal mechanisms. Depending on the domain requirements, exper-

imenting with models allows researchers to choose between high accuracy or higher

interpretability.
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• Logistic Regression: Logistic regression is a linear model that assumes a linear

relationship between the input features and the log-odds of the binary outcome.

It uses the sigmoid function to map predicted values to a probability between 0

and 1. Logistic regression is widely used due to its simplicity and interpretabil-

ity. However, its performance is limited when the true relationship between fea-

tures and the target is highly non-linear. It is also sensitive to outliers and multi-

collinearity in the data.

• Support Vector Machines (SVM): SVM is a powerful classification algorithm that

works by finding the hyperplane that best separates the data into two classes. SVM

is particularly effective for high-dimensional data and is capable of handling non-

linear relationships by using kernel functions. The choice of kernel (linear, poly-

nomial, radial basis function, etc.) significantly affects the model’s performance.

However, SVMs can be computationally expensive, especially for large datasets,

and require careful tuning of hyperparameters such as the regularization parame-

ter and kernel choice.

• Decision Trees: Decision trees split the dataset into subsets based on the values

of input features. They are highly interpretable, as they provide a visual represen-

tation of the decision-making process. Decision trees are also flexible, capable

of modeling both linear and non-linear relationships. However, they tend to be

prone to overfitting, especially when the tree becomes too deep. Regularization

techniques such as pruning or setting a maximum tree depth are often employed

to counteract this issue.

• Random Forest: Random Forest is an ensemble learning method that builds mul-

tiple decision trees during training and outputs the class that is the mode of the

classes from individual trees. The model’s strength lies in its ability to reduce

overfitting by averaging the predictions of various trees, leading to more robust

and stable predictions. Random Forests are versatile, handling both categorical

and continuous data well. However, their interpretability is lower than individual

decision trees, and they may be computationally expensive for large datasets.

• Artificial Neural Networks (ANN): Neural networks are a class of models inspired

by the human brain, consisting of layers of interconnected neurons that can learn
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complex, non-linear relationships in data. ANNs are particularly powerful when

there are many features or when the data exhibits complex interactions. However,

they require significant computational resources and are less interpretable than

other models like logistic regression or decision trees. Neural networks also tend

to require large amounts of training data to avoid overfitting and to perform well.

Experimenting with different machine learning models for binary classification is an

essential step in the model selection process. The diversity of algorithms, each with its

own strengths and weaknesses, reflects the varied nature of datasets and classification

problems. By testing multiple models, practitioners can optimize the trade-off between

bias and variance, account for data-specific characteristics, and choose a model that best

aligns with the problem’s requirements—whether that be accuracy, interpretability, or

efficiency. This experimentation process ensures that the final model not only performs

well on the data but is also suited to the real-world context in which it will be applied.
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Chapter 5

Results

5.1 Evaluation Metric

Evaluation metrics for binary classification in machine learning play a pivotal role

in assessing the performance and effectiveness of classification models. These metrics

provide valuable insights into the model’s ability to distinguish between two classes,

typically referred to as the positive class (e.g., presence of a disease) and the nega-

tive class (e.g., absence of a disease). One of the most fundamental and widely used

evaluation metrics is accuracy, which measures the overall correctness of predictions.

However, accuracy alone may be misleading, especially in imbalanced datasets where

one class vastly outnumbers the other (Canbek et al. 2022). In such cases, metrics like

precision, recall (sensitivity), and the F1-score come into play. Precision quantifies the

proportion of true positive predictions among all positive predictions, emphasizing the

minimization of false positives. Recall, on the other hand, gauges the ability to capture

all actual positive instances, thus minimizing false negatives. The F1-score strikes a

balance between precision and recall, serving as a harmonic mean of these two metrics,

which is particularly valuable when seeking a balanced trade-off between precision and

recall (Hossin et al. 2015; Chicco et al. 2020).

In addition to these metrics, the ROC (Receiver operating characteristic curve) curve

and AUC (Area Under the Curve) are essential tools for evaluating the classifier’s perfor-

mance across different thresholds, enabling a nuanced understanding of its discrimina-
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tive power (Purves et al. 1992; Mandrekarand et al. 2010). Beyond these common met-

rics, specific applications may necessitate domain-specific evaluation measures, high-

lighting the flexibility and adaptability of machine learning evaluation. Ultimately, the

selection of an appropriate evaluation metric depends on the nature of the problem, the

importance of different types of errors, and the overarching goal of the classification

task, underscoring the critical role of thoughtful metric choice in assessing the efficacy

of binary classification models. We have selected F1-Score and imbalanced accuracy to

evaluate model performance.

5.2 Results: Imbalanced data-set

In this section, we delve into the heart of our research findings, presenting a com-

prehensive evaluation of our machine-learning binary classification model. Here, we

scrutinize the model’s performance through a range of meticulously selected evaluation

metrics, shedding light on its ability to effectively distinguish between two classes - a

task of paramount importance in the context of our study. We provide a detailed account

of metrics such as accuracy, precision, recall, and F1-score, as well as the Receiver Op-

erating Characteristic (ROC) curve and the Area Under the Curve (AUC). These metrics

collectively form the foundation of our assessment, offering an in-depth perspective on

the classifier’s strengths and areas of improvement.

Moreover, we examine the influence of various experimental factors, including hyper-

parameter tuning, feature engineering strategies, and data pre-processing techniques, on

the model’s performance. Visual aids, including tables and graphs, will be employed

to enhance the clarity of our presentation, allowing readers to grasp the intricacies of

our classification results. This Results section represents a crucial juncture in our study,

providing empirical validation for our chosen machine-learning approach and paving

the way for a deeper understanding of the subject matter at hand. At first we will outline

the result with imabalnaced data as it is. In later section 5.3, we will Oversample the

data and report the accuracy of balanced data in section 5.4.

Note: The imbalanced data is denoted by Imb and the balanced data by balnc
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throughout this document.

5.2.1 Result Imb Data: Logistic Regression

Here we will outline the result of the Logistic regression with the imbalanced data-

set. The outcome of the logistic regression analysis conducted on the imbalanced dataset

will be delineated here. This comprehensive outline will encapsulate the findings and in-

sights derived from the regression model, accounting for the inherent imbalances within

the dataset. By addressing the intricacies of imbalanced data, the analysis will shed

light on the predictive performance, highlighting the nuances of the logistic regression’s

outcomes, including its efficacy in handling the disparities in class distribution.

Figure 30: Confusion Matrix for Imb Logistic Regression Prediction

Here in the picture above 30 we can see that the model favors class 0 and achieves

higher accuracy and the minority class 1 received disadvantages. The sole reason for

such a result can be the class imbalance which we have explained in the earlier chapter

4.4.

While the overall accuracy stands at an impressive 80%, it is essential to note that the

metrics portraying recall and F1 score exhibit notably lower values. This discrepancy
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Index Metric Score
0 Accuracy 0.800000
1 Precision 0.583333
2 Recall 0.098592
3 F1 Score 0.168675

Table 4: Evaluation Metrics for Logistic Regression with Imbalanced Data

arises primarily from the limited data availability for both classes within the dataset.

The inadequate representation of these classes skews the evaluation, resulting in dimin-

ished performance metrics like recall and F1 score.

Despite the commendable accuracy, the imbalanced nature of the dataset adversely

impacts the model’s ability to effectively capture and predict instances from the minor-

ity class, leading to a substantial drop in these crucial evaluation metrics. Addressing

the imbalance by potentially employing techniques like oversampling, undersampling,

or utilizing algorithms designed to handle imbalanced data could potentially improve

these specific metrics, ensuring a more comprehensive evaluation of the model’s perfor-

mance. In the later section, we will also show the results of the balanced data set.

The Receiver Operating Characteristic (ROC) curve is a graphical representation

used to illustrate the performance of a binary classification model across various thresh-

olds. The Area Under the Curve (AUC) metric measures the overall performance of this

curve (Marchetti et al. 2016; Tangirala et al. 2020). An AUC value of 0.77 signifies

that the model has a reasonably good ability to distinguish between the two classes.

Specifically, an AUC of 0.77 indicates that the model has a 77% chance of correctly

distinguishing between a randomly chosen positive instance and a randomly chosen

negative instance. In other words, if you randomly select a positive sample and a neg-

ative sample, the model correctly ranks them 77% of the time, based on their predicted

probabilities.

An AUC value closer to 1 suggests better overall performance, indicating that the

model has a higher true positive rate and a lower false positive rate across various thresh-

old values. However, an AUC of 0.77 still suggests that the model is capable of making
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Figure 31: ROC and AUC for Imb Logistic Regression Prediction

reasonably good predictions, although there might be room for further improvement

depending on the specific context and requirements of the application. In the figure

provided for plotting the ROC curve 31, there is a line that plots a diagonal dashed line

from the bottom left to the top right of the graph with the label ’Random Guessing’. This

line represents the performance of a random classifier that makes predictions by chance.

In a binary classification problem, a random classifier would essentially make ran-

dom guesses without considering the input data. It would have no discrimination abil-

ity and would randomly assign class labels. This line, which diagonally connects the

points (0,0) and (1,1) on the ROC curve, represents the scenario where the model’s per-

formance is no better than random guessing. By including this line on the ROC plot,

it serves as a reference point to demonstrate the performance of the actual classifier.

A good classifier’s ROC curve should be positioned as far away as possible from this
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diagonal line toward the top-left corner of the plot, indicating superior performance

compared to random guessing.

5.2.2 Result Imb Data: Decision Tree

Decision Tree provides valuable insights into the model’s performance and its abil-

ity to discern between two classes. The Decision Tree algorithm operates by recursively

splitting the feature space based on the most discriminative features, creating a hierar-

chical structure of decision nodes.

Figure 32: Confusion Matrix for Imb Decision Tree Prediction

The confusion matrix 32 showed that 43 instances were correctly predicted as pos-

itive (class 1). These are cases where the model correctly identified (True Positive)

instances belonging to the positive class. False Positives where 16 instances were incor-

rectly predicted as positive. These are cases where the model falsely identified instances

as belonging to the positive class when they actually belong to the negative class. True

Negatives where 258 instances were correctly predicted as negative (class 0). These are

cases where the model accurately identified instances belonging to the negative class.

And finally, False Negatives where 28 instances were incorrectly predicted as negative.

These are cases where the model falsely identified instances as belonging to the negative
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class when they actually belonged to the positive class.

With an accuracy of approximately 82.6%, the model demonstrates a commend-

able ability to correctly classify instances across both positive and negative classes.

Precision, denoting the accuracy of positive predictions, is calculated at approximately

58.2%. This implies that when the model predicts the positive class (clutch failure

happened), it is accurate around 58.2% of the time. Furthermore, the recall, or sensi-

tivity, stands at approximately 54.9%, indicating the model’s effectiveness in capturing

a substantial portion of the true positive instances. The F1 Score, a harmonized metric

balancing precision and recall, is calculated at approximately 56.5%, providing a con-

solidated measure of the model’s overall performance.

Index Metric Score
0 Accuracy 0.826087
1 Precision 0.582090
2 Recall 0.549296
3 F1 Score 0.565217

Table 5: Evaluation Metrics for Decision Tree with Imbalanced Data

These metrics 5 collectively suggest that while the model exhibits notable accu-

racy, there is room for improvement in precision and recall. This observation prompts a

nuanced interpretation, indicating that the model is reasonably adept at making correct

predictions overall, but there is potential for refinement in its ability to precisely identify

positive instances and capture a greater proportion of actual positive instances. These

insights derived from accuracy, precision, recall, and F1 Score collectively guide further

iterations and optimizations to enhance the model’s robustness and effectiveness in the

specific binary classification task at hand.

The ROC curve (ref: 33), which stands for Receiver Operating Characteristic, is a

graphical representation of the trade-off between the true positive rate (sensitivity) and

the false positive rate at various thresholds for a binary classification model. The AUC,

or Area Under the Curve, is a quantitative measure of the ROC curve’s performance,

providing a single value to assess the model’s ability to discriminate between the posi-

tive and negative classes.
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In the case of the Decision Tree model we have achieved an AUC of 0.72, the curve

suggests that the model performed moderately well in distinguishing between the two

classes. An AUC value closer to 1 indicates a stronger ability to differentiate between

positive and negative instances, while a value of 0.5 suggests random guessing. There-

fore, the AUC of 0.72 implies that the Decision Tree model demonstrated reasonable

discriminative power, although there is room for improvement.

Figure 33: ROC Curve for Imb Decision Tree Prediction

A higher true positive rate (sensitivity) and a lower false positive rate are desirable

for our model, as this signifies that the model correctly identifies positive instances

while minimizing the misclassification of negative instances. In the context of our De-

cision Tree model with an AUC of 0.72, there is evidence of satisfactory discrimination,

yet potential enhancements in performance could be explored to further improve the
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model’s ability to distinguish between positive and negative classes.

5.2.3 Result Imb Data: Support Vector Machine

The confusion matrix for the binary classification task conducted using a Support

Vector Machine (SVM) is presented in the figure.

Figure 34: Confusion Matrix for Imb SVM Prediction

This matrix encapsulates the outcomes of the SVM model’s predictions, where the

rows represent the actual class labels and the columns signify the predicted class la-

bels. In this context, the upper-left quadrant (299) corresponds to True Negatives (TN),

indicating instances accurately classified as the negative class. These instances likely

represent situations where the SVM correctly identified benign outcomes or the absence

of the targeted condition. On the contrary, the bottom-right quadrant (39) represents

True Positives (TP), signifying instances correctly identified as the positive class. These

instances likely pertain to the accurate detection of the presence or manifestation of the

targeted condition.

Conversely, the upper-right quadrant (7) denotes False Positives (FP), where in-

stances from the negative class were inaccurately predicted as positive. This introduces
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the possibility of misclassification, highlighting areas where the SVM model has falsely

identified instances as positive. Similarly, the bottom-left quadrant (33) signifies False

Negatives (FN), indicating instances from the positive class that were erroneously clas-

sified as negative. This suggests instances where the SVM model failed to detect the

presence of the targeted condition. The analysis of this confusion matrix 34 allows for

the computation of various performance metrics, such as accuracy, precision, recall, and

the F1 Score which are shown in the table 6.

Index Metric Score
0 Accuracy 0.894180
1 Precision 0.847826
2 Recall 0.541667
3 F1 Score 0.661017

Table 6: Evaluation Metrics for SVM with Imbalanced Data

Beginning with accuracy, the model achieved an impressive accuracy rate of approx-

imately 89.42%. This metric signifies the proportion of correctly classified instances

out of the entire dataset, reflecting the overall correctness of the model’s predictions.

The high accuracy suggests that the SVM model excels in making correct binary clas-

sifications, showcasing its robustness in distinguishing between the two classes under

consideration. However, while accuracy offers a holistic view, precision and recall pro-

vide a more nuanced understanding of the model’s behavior, especially in scenarios with

imbalanced class distributions.

Precision, computed at approximately 84.78%, offers a measure of the accuracy of

positive predictions among all instances predicted as positive. This indicates that when

the SVM model asserts a positive prediction, it is accurate around 84.78% of the time.

Precision becomes particularly relevant in scenarios where the cost of false positives is

significant. On the other hand, recall, or sensitivity, calculated at approximately 54.17%,

gauges the model’s ability to capture all positive instances among the actual positives.

The relatively lower recall suggests that the model misses a considerable portion of pos-

itive instances in the dataset (clutch failure happened). This trade-off between precision

and recall is encapsulated by the F1 Score, which harmonizes these metrics, yielding
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a value of approximately 66.10%. The F1 Score, being the harmonic mean of preci-

sion and recall, provides a balanced assessment, indicating a reasonable compromise

between the competing objectives of precision and recall in the SVM model’s binary

classification performance.

In summary, while the SVM model exhibited high accuracy, a more nuanced ex-

amination through precision, recall, and the F1 Score revealed valuable insights into

its strengths and limitations, guiding further optimization efforts based on the specific

requirements of the binary classification task.

Figure 35: ROC Curve for Imb SVM Prediction

In this context, an AUC of 88% indicates a relatively high level of discriminatory

power, as it measures the probability that the SVM model ranks a randomly chosen pos-

itive instance higher than a randomly chosen negative instance. The closer the AUC is to
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1, the better the model’s ability to distinguish between the positive and negative classes.

Therefore, an AUC of 88% suggests that the SVM model exhibits strong discrimina-

tory performance, providing confidence in its ability to make accurate predictions in the

binary classification task.

5.2.4 Result Imb Data: Random Forest

The provided confusion matrix 36 encapsulates the outcomes of a binary classi-

fication task conducted using a Random Forest model. In this matrix, the upper-left

quadrant (268) represents True Negatives (TN), indicating instances accurately classi-

fied as the negative class. These instances are likely cases where the Random Forest

correctly identified situations devoid of the targeted condition or outcomes character-

ized as benign. Conversely, the bottom-right quadrant (38) represents True Positives

(TP), signifying instances correctly identified as the positive class. These instances are

indicative of the model’s accurate detection of the presence or manifestation of the tar-

geted condition.

Figure 36: Confusion Matrix for Imb Random Forest Prediction

On the contrary, the upper-right quadrant (6) denotes False Positives (FP), where in-

stances from the negative class were inaccurately predicted as positive. This introduces
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the potential for misclassification, suggesting areas where the Random Forest model

may have falsely identified instances as positive. Similarly, the bottom-left quadrant

(33) signifies False Negatives (FN), indicating instances from the positive class that

were erroneously classified as negative. This implies instances where the Random For-

est model failed to detect the presence of the targeted condition.

The examination of these elements within the confusion matrix allows for a more de-

tailed understanding of the Random Forest model’s classification performance, offering

insights into both correct and incorrect predictions and serving as a foundation for fur-

ther evaluation.

Index Metric Score
0 Accuracy 0.886957
1 Precision 0.863636
2 Recall 0.535211
3 F1 Score 0.660870

Table 7: Evaluation Metrics for Random Forest with Imbalanced Data

In terms of performance metrics derived from the confusion matrix, the model

achieves an accuracy of approximately 88.71%, reflecting the overall correctness of

its predictions. Precision, computed at around 86.36%, signifies the accuracy of posi-

tive predictions among all instances predicted as positive. This suggests that when the

Random Forest asserts a positive prediction, it is accurate around 86.36% of the time.

Furthermore, the recall, or sensitivity, is calculated at approximately 53.52%, indicating

the model’s ability to capture all positive instances among the actual positives. The F1

Score, which harmonizes precision and recall, is approximately 66.67%. These metrics

provide a comprehensive evaluation of the Random Forest model’s efficacy in binary

classification, considering both its strengths in accurate predictions and areas that may

benefit from refinement in capturing positive instances.
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5.2.5 Result Imb Data: Artificial Neural Network

In the context of training a neural network model for binary classification, moni-

toring both training and validation accuracy is crucial for assessing the model’s per-

formance and generalization capabilities. During the training phase, the model learned

from the provided dataset, adjusting its internal parameters to minimize the discrepancy

between its predictions and the actual labels. The training accuracy reflected the propor-

tion of correctly classified instances within the training dataset, serving as an indicator

of how well the model is adapting to the training data. However, achieving high training

accuracy alone does not guarantee the model’s effectiveness on new, unseen data.

Figure 37: Neural Network Training and Validation Accuracy for Imb Data-set

Validation accuracy, on the other hand, is assessed on a separate dataset that the

model has not encountered during training. This dataset functions as a proxy for real-

world scenarios, allowing the evaluation of the model’s generalization performance.

A high training accuracy coupled with a significantly lower validation accuracy might

suggest overfitting, where the model becomes too specialized in capturing the training

data’s nuances but fails to generalize to new instances. Conversely, similar performance

on both training and validation datasets indicates that the model is likely learning es-

sential patterns without overfitting. Balancing training and validation accuracy is a key
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aspect of optimizing a neural network model for binary classification, ensuring its abil-

ity to make accurate predictions on previously unseen data. Regular monitoring, fine-

tuning, and the application of techniques like dropout or regularization contribute to en-

hancing both training and validation accuracy, fostering a robust and well-generalizing

neural network model.

Figure 38: Confusion Matrix for Imb Neural Network Prediction

Starting with the upper-left quadrant (268), these instances represent True Negatives

(TN), indicating cases where the model correctly classified instances as belonging to the

negative class (Clutch failure didn’t happen). In the context of binary classification, this

denotes situations where the model accurately identified benign outcomes or conditions

absent from the targeted class. The bottom-right quadrant (49) reflects True Positives

(TP), signifying instances accurately classified as belonging to the positive class (Clutch

failure happened). These instances showcase the model’s ability to correctly detect the

presence or manifestation of the targeted condition.

On the flip side, the upper-right quadrant (6) signifies False Positives (FP), where in-

stances from the negative class were inaccurately predicted as positive. This introduces

the misclassification, suggesting areas where the neural network model has falsely iden-

tified instances as positive. Similarly, the bottom-left quadrant (22) denotes False Neg-
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atives (FN), indicating instances from the positive class that were erroneously classified

as negative. This implies instances where the neural network model failed to detect the

presence of the targeted condition. Derived from these elements, several performance

metrics can be computed. These metrics collectively offer a comprehensive evaluation

of the neural network model’s performance in binary classification, considering both

correct and incorrect predictions and providing insights into its precision, recall, and

overall predictive accuracy. See table 8.

Index Metric Score
0 Accuracy 0.92134
1 Precision 0.89192
2 Recall 0.69012
3 F1 Score 0.77789

Table 8: Evaluation Metrics for Neural Network with Imbalanced Data

Achieving a remarkable Area Under the Receiver Operating Characteristic (ROC)

Curve (AUC) of 91% for the neural network model 39 underscores its robust discrim-

inatory capacity in binary classification. The AUC is a pivotal metric that evaluates

the model’s ability to distinguish between the positive and negative classes, providing a

comprehensive measure of its overall performance.
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Figure 39: ROC Curve for Imb Neural Network Prediction

In this context, the high AUC signifies a strong capacity to rank positive instances

higher than negative ones, demonstrating the model’s proficiency in capturing intricate

patterns and making accurate predictions. This result indicates not only the effectiveness

of the neural network in differentiating between the two classes but also its potential

for practical applications where the correct identification of positive instances holds

significant importance. The 91% AUC reflected a Neural Network model that excels in

both sensitivity and specificity, instilling confidence in its reliability for tasks requiring

precise binary classification.
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5.3 Sampling the Data-Set

We have already seen in the section 4.4 that our data-set is not balanced. Therefore,

sampling of data in the context of imbalanced datasets is a critical aspect of address-

ing the skewed distribution of class instances, where one class significantly outnumbers

the other. Traditional machine learning models tend to be biased towards the majority

class, leading to suboptimal performance in accurately predicting the minority class. To

mitigate this imbalance, various sampling techniques are employed. One common ap-

proach is oversampling the minority class, where instances from the minority class are

duplicated or synthetically generated to balance the class distribution. This ensures that

the model is exposed to a more equitable representation of both classes during train-

ing, preventing it from favoring the majority class. Alternatively, undersampling 1 the

majority class involves randomly removing instances from the majority class to create a

more balanced dataset. While these techniques address class imbalance, they come with

trade-offs. Oversampling can lead to overfitting, especially if the synthetic instances in-

troduce noise, while undersampling 1 risks losing potentially valuable information from

the majority class.

Furthermore, advanced sampling methods, such as SMOTE (Synthetic Minority

Over-sampling Technique), create synthetic instances for the minority class by interpo-

lating between existing instances. SMOTE 2 helps overcome the limitations of simple

oversampling by introducing diversity in the synthetic samples. It’s essential to care-

fully choose the appropriate sampling strategy based on the dataset’s characteristics and

the specific requirements of the classification task. Evaluating model performance us-

ing metrics like precision, recall, F1 score, and area under the ROC curve on both the

training and validation sets helps assess the effectiveness of the chosen sampling ap-

proach. Striking the right balance between addressing class imbalance and avoiding

potential pitfalls is crucial to ensuring the robustness and generalization of machine

learning models on imbalanced datasets.
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We decided to over-sample the data to deal with imbalanced class distribution. The

decision to opt for oversampling of the minority class in the face of a substantially small

dataset reflects a strategic approach to mitigating the challenges posed by class imbal-

ance while preserving the available data samples. In scenarios where the minority class

is underrepresented and limited in size, oversampling becomes an imperative technique

to rectify the imbalance and enhance the model’s ability to learn from instances belong-

ing to the minority class.

Figure 40: Class Distribution after Over Sampling

By duplicating or synthetically generating samples from the minority class, over-

sampling ensures a more equitable representation during model training, preventing bi-

ases towards the majority class. However, the decision to choose oversampling over
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other techniques, such as undersampling or more complex methods like SMOTE, is of-

ten influenced by the need to conserve as much valuable information as possible from

the original dataset. Since the dataset is already constrained by its small size, oversam-

pling 2 strikes a balance by addressing class imbalance without sacrificing an undue

proportion of the limited available samples. This approach acknowledges the trade-off

between addressing imbalance and retaining the entirety of the available data, with the

overarching goal of bolstering the model’s performance in scenarios where the minority

class is crucial but underrepresented.

The transformation achieved through oversampling is vividly depicted in the pie

chart 40, where the once skewed distribution has now been harmonized, resulting in an

equal representation of both classes. We can see that class 1 has 911 samples where

Clutch Failure happened and also 911 samples for class 0 where the clutch was healthy

and failure didn’t appear. This balanced presentation signifies the successful mitigation

of class imbalance, a critical preprocessing step in machine learning. The pie chart’s

symmetry underscores the deliberate efforts to enhance the model’s capability to discern

and accurately predict instances from both classes. With a more equitable class distribu-

tion, the machine learning model is poised to make informed and unbiased predictions,

promoting fairness and robustness in its classification task. The visual manifestation

of equal proportions in the pie chart encapsulates the positive impact of oversampling,

illustrating a dataset primed for training models that are sensitive to the intricacies of

both classes, ultimately contributing to potentially improved overall performance and

predictive accuracy.
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5.4 Result: Balanced Data-set

With the rebalanced dataset achieved through oversampling, an extensive evaluation

of various supervised machine learning algorithms has been conducted to gauge their

performance in the context of binary classification. Employing metrics such as accu-

racy, precision, recall, and F1 score, the models were rigorously assessed to capture

nuanced aspects of their predictive capabilities. Each algorithm, ranging from tradi-

tional models like logistic regression to more complex ones such as random forest and

neural networks, underwent a comprehensive scrutiny.

Our findings revealed in later sections the diverse strengths and weaknesses of each

algorithm trained on the balanced data-set. Logistic regression in section 5.4.1, known

for its simplicity, showcased commendable recall, while decision tree in section 5.4.2

models demonstrated robust performance too. Random forest in section 5.4.4, with its

ensemble nature, exhibited a balanced performance across multiple metrics. Support

Vector Machines (SVMs) in section 5.4.3 demonstrated high precision but relatively

lower recall. The neural network in section 5.4.5, being inherently flexible, displayed

competitive results in accuracy and F1 score. This multifaceted evaluation enables a

nuanced understanding of how each algorithm responds to the intricacies of the rebal-

anced dataset. It serves as a foundation for informed decisions regarding the selection

of the most suitable model for the specific requirements of the binary classification task,

considering factors like the relative importance of precision and recall based on the do-

main and application context. The thorough examination of these diverse models not

only facilitates optimal model selection but also provides insights into potential areas

for further refinement and enhancement in predictive performance.
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5.4.1 Result Balnc Data: Logistic Regression

Starting with the upper-left quadrant (192), these instances represent True Negatives

(TN), signifying the Logistic Regression model’s accurate classification of instances as

belonging to the negative class. In this scenario, these instances likely represent cases

where the logistic regression model correctly identified outcomes as benign or falling

into the absence of the targeted condition. The bottom-right quadrant (222) reflects

True Positives (TP), indicating instances accurately classified as belonging to the posi-

tive class. These instances illustrate the model’s capacity to correctly detect the presence

or manifestation of the targeted condition.

Figure 41: Confusion Matrix for Balanced Logistic Regression Prediction

Conversely, the upper-right quadrant (82) denotes False Positives (FP), where in-

stances from the negative class were inaccurately predicted as positive. This introduces

misclassification, highlighting areas where the logistic regression model has falsely

identified instances as positive. Similarly, the bottom-left quadrant (51) signifies False

Negatives (FN), indicating instances from the positive class that were erroneously clas-

sified as negative. This suggests instances where the logistic regression model failed
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to detect the presence of the targeted condition. It is safe to say that this very basic

ML model still achieved better results on the balanced data set as opposed to the imbal-

anced data set. Derived from these elements in 41, several performance metrics can be

computed. Refer to table 9:

Index Metric Score
0 Accuracy 0.7545
1 Precision 0.7306
2 Recall 0.8135
3 F1 Score 0.7796

Table 9: Evaluation Metrics for Logistic Regression with Balanced Data

This comprehensive evaluation table 9 offers insights into the logistic regression

model’s effectiveness in binary classification, considering both correct and incorrect

predictions and providing a nuanced understanding of its precision, recall, and overall

predictive accuracy.

Figure 42: ROC Curve for Balanced data Logistic Regression
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Overall, an AUC of 80% signifies a logistic regression model with substantial dis-

criminatory capability and suggests its potential utility in scenarios requiring accurate

and balanced predictions between two classes. The AUC for imbalanced data was re-

ported to be 74%. It is safe to say that the balanced data is effective in delivering better

results.

5.4.2 Result Balnc Data: Decision Tree

Starting with the upper-left quadrant (244), these instances signify True Negatives

(TN), representing cases where the decision tree accurately classified instances as be-

longing to the negative class. These instances are indicative of situations where the

model correctly identified outcomes as benign or not falling within the targeted condi-

tion. Moving to the bottom-right quadrant (246), we find True Positives (TP), indicating

instances accurately classified as belonging to the positive class. These instances show-

case the decision tree’s proficiency in correctly detecting the presence or manifestation

of the targeted condition.

Figure 43: Confusion Matrix for Balanced Decision Tree Prediction

On the contrary, the upper-right quadrant (29) denotes False Positives (FP), where

instances from the negative class were inaccurately predicted as positive. This intro-
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duces the potential for misclassification, highlighting areas where the decision tree

model has falsely identified instances as positive. Similarly, the bottom-left quadrant

(28) signifies False Negatives (FN), indicating instances from the positive class that

were classified as negative. This suggests instances where the decision tree model failed

to detect the presence of the targeted condition. Overall, the performance of the Deci-

sion tree stands out better than logistic regression.

In the previous section, we showed the result of the Decision tree while using the

imbalanced data set. The reported AUC was 75%. While on the balanced data, we have

achieved AUC of 90%.

Figure 44: ROC Curve for Balanced data Decision Tree

Since the precision, recall and other metrics have scored similar accuracy points, the

plot 44 above showed the ROC curve at 89% and does not follow similar depiction as

all other models.
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Index Metric Score
0 Accuracy 0.895795
1 Precision 0.894545
2 Recall 0.897810
3 F1 Score 0.896175

Table 10: Evaluation Metrics for Decision Tree with Balanced Data

5.4.3 Result Balnc Data: Support Vector Machine (SVM)

For Support Vector Machine (SVM), the presented confusion matrix unveils dis-

tinctive aspects of the model’s predictive performance. In the upper-left quadrant, the

count of 290 signifies True Negatives (TN), highlighting the instances correctly identi-

fied as part of the negative class. These instances represent scenarios where the SVM

accurately discerned outcomes as lacking the characteristic targeted in the classification

task. Conversely, in the lower-right quadrant, the count of 251 reveals True Positives

(TP), showcasing the SVM’s effectiveness in correctly recognizing instances belonging

to the positive class. These instances underscore the SVM’s capability in successfully

detecting the presence or manifestation of the characteristic under consideration.

Figure 45: Confusion Matrix for Balanced Data SVM Prediction

Moving to the upper-right quadrant, the count of 16 designates instances character-
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ized as False Positives (FP), where the SVM erroneously predicted negative-class in-

stances as positive. This introduces the possibility of misclassification, indicating areas

where the SVM may have inaccurately identified instances as positive. Simultaneously,

in the lower-left quadrant, the count of 55 represents False Negatives (FN), signifying

instances from the positive class that the SVM misclassified as negative. These instances

reflect situations where the SVM encountered challenges in capturing the presence of

the targeted characteristic. In summary, this comprehensive evaluation results in an ac-

curacy of approximately 89%, precision of 94%, recall of 82%, and an F1 Score of 87%.

These metrics collectively provide a nuanced understanding of the SVM’s performance

in binary classification, shedding light on its strengths and areas for potential improve-

ment in predictive accuracy.

Index Metric Score
0 Accuracy 0.883987
1 Precision 0.940075
2 Recall 0.820261
3 F1 Score 0.876091

Table 11: Evaluation Metrics for SVM with Balanced Data
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Figure 46: ROC Curve for Balanced data SVM

The AUC score for SVM trained on the balanced data set was recorded to be 96%.

While the AUC stands at 89% when trained on the imbalanced data set. Overall, an

AUC of 96% signifies that the SVM model has substantial discriminatory capability

and suggests its potential utility in scenarios requiring accurate and balanced predictions

between two classes.
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5.4.4 Result Balnc Data: Random Forest

The presented confusion matrix reflects the outcomes of a random forest model in

the domain of binary classification, exhibiting a matrix structure with distinct elements.

In the upper-left quadrant, the count of 249 signifies True Negatives (TN), denoting

instances accurately classified as part of the negative class. This outcome highlights

the model’s adeptness in correctly discerning cases absent of the characteristic targeted

by the classification task. Conversely, the lower-right quadrant exhibits a count of 261,

indicative of True Positives (TP). This element showcases the model’s proficiency in ac-

curately identifying instances belonging to the positive class, effectively capturing the

presence or manifestation of the targeted characteristic.

Figure 47: Confusion Matrix for Balanced Data Random Forest Prediction

On the upper-right side, the count of 24 represents False Positives (FP), signify-

ing instances where the model incorrectly predicted negative-class instances as positive.

This introduces the prospect of misclassification, delineating areas where the random

forest model has identified instances as positive. Simultaneously, the lower-left quadrant

discloses a count of 13, symbolizing False Negatives (FN). These instances represent

scenarios where the model misclassified instances from the positive class as negative,

indicating challenges in capturing the presence of the targeted characteristic.
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In a quantitative assessment, the model achieved an accuracy of approximately 93%,

precision of 91%, recall of 95%, and an F1 Score of 93%. These metrics collectively

provide a nuanced understanding of the random forest model’s binary classification per-

formance, emphasizing its strengths in correctly identifying both positive and negative

instances while acknowledging potential areas for refinement in minimizing false posi-

tives and false negatives.

Index Metric Score
0 Accuracy 0.932358
1 Precision 0.915789
2 Recall 0.952555
3 F1 Score 0.933810

Table 12: Evaluation Metrics for Random Forest with Balanced Data

Figure 48: ROC Curve for Balanced data Random Forest

The Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) for the
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random forest model stands at an impressive 98%, denoting its exceptional ability to

discriminate between positive and negative instances in a binary classification scenario.

This metric encapsulates the model’s capacity to rank true positives higher than false

positives across various classification thresholds. The AUC value near 1 signifies a

minimal overlap between the distributions of positive and negative instances, emphasiz-

ing the model’s robustness in distinguishing between the two classes. The high AUC

score underscores the random forest’s proficiency in achieving a balance between sensi-

tivity and specificity, showcasing its potential for reliable predictions in scenarios where

accurate discrimination between classes is paramount.
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5.4.5 Result Balnc Data: Artificial Neural Network

Neural Network performance depends on many factors. Such as, the architecture

of the neural network, the parameter, and hyper-parameter tuning, and the size of the

training data. Neural Networks are known to be a good choice if the data is not so small.

However, in our case, we had a relatively small data set to train. The figure 49 depicts

the training and validation accuracy.

Figure 49: Neural Network Training and Validation Accuracy for Balnc Data-set

The fig 49 revealed a scenario where the achieved training and validation accura-

cies do not exhibit a considerable level of proficiency. Despite the intricate architecture

and adaptability inherent to neural networks, the model’s training accuracy falls short

of reaching a level of excellence. Additionally, the validation accuracy mirrors this

trend, indicating limitations in the model’s ability to generalize well to unseen data.

The challenges in achieving robust accuracy metrics could potentially be attributed to

a constrained dataset, where the neural network may struggle to learn diverse and rep-

resentative patterns due to limited examples. The relatively small size of the dataset

109



might impede the model’s capacity to discern intricate relationships within the data,

leading to suboptimal performance. This underscores the significance of dataset size

and diversity in training neural networks, necessitating careful consideration and poten-

tial augmentation strategies to enhance the model’s learning capabilities and improve its

binary classification performance.

Figure 50: Confusion Matrix of Balanced Data for Neural Network Prediction

The upper-left quadrant (182) represents instances correctly identified as part of the

negative class, termed True Negatives (TN). This suggests the Neural Network model

accurately recognized cases where the condition being investigated was absent. On

the contrary, the lower-right quadrant (256) signifies True Positives (TP), indicating in-

stances correctly classified as part of the positive class, where the condition was indeed

present. Moving to the upper-right quadrant (91), these instances denote False Positives

(FP), where the model incorrectly predicted negative-class instances as positive. Lastly,

the lower-left quadrant (18) represents False Negatives (FN), signifying instances from

the positive class that the model erroneously classified as negative. In simple terms, the

model exhibited strengths in correctly identifying absence but faced challenges in cap-

turing instances where the condition was present, leading to a balance between accurate

and misclassified predictions.
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When training a neural network on a balanced dataset, the achieved Area Under

the Receiver Operating Characteristic (ROC) Curve (AUC) of 92% reflects the model’s

commendable ability to distinguish between positive and negative instances. However,

a marginal reduction to 91% AUC is observed when the same neural network is trained

on an imbalanced dataset. Several factors could contribute to this nuanced behavior.

Firstly, in a balanced dataset, the model encounters an equal representation of both

classes, fostering a more comprehensive understanding of the underlying patterns asso-

ciated with each category. Conversely, when trained on an imbalanced dataset, where

one class is underrepresented, the neural network might exhibit a bias toward the ma-

jority class, impacting its discriminatory performance.

Figure 51: ROC Curve for Balanced data Neural Network

Additionally, the limited instances of the minority class in the imbalanced dataset

may result in the neural network struggling to generalize well to such instances during

training, leading to a subtle reduction in AUC. The intricate interplay between class

distribution and the neural network’s learning dynamics emphasizes the importance of
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balanced datasets for optimal model performance, as imbalances can introduce chal-

lenges in capturing the intricacies of the underrepresented class.
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Chapter 6

Discussions & Conclusion

6.1 Discussions

The examination of machine learning model results before and after oversampling

presents a compelling narrative on the impact of addressing class imbalance. Before

oversampling, the models encountered challenges in effectively learning from the mi-

nority class due to its limited representation. This deficiency often translated into imbal-

anced performance metrics, particularly lower recall and sensitivity. However, after im-

plementing oversampling techniques, which involve synthetically increasing instances

of the minority class, a notable transformation is observed. The models exhibit im-

proved balance in their predictive capabilities, demonstrating enhanced sensitivity and

recall, crucial for correctly identifying instances of the minority class. This rebalanc-

ing act contributes to a more comprehensive and equitable evaluation of the models,

with metrics like accuracy, precision, recall, and F1 score reflecting a more accurate

depiction of their overall performance.

6.1.1 Result Interpretation: Imbalance Data

The interpretability of each model’s behavior, both before and after oversampling,

underscores the pivotal role that addressing class imbalance plays in refining the predic-

tive capacity of machine learning models, particularly in scenarios where minority class

instances are pivotal yet underrepresented.

113



Model Accuracy Precision Recall F1 Score
Logistic Regression 0.800000 0.583333 0.098592 0.168675

Decision Tree 0.826087 0.582090 0.549296 0.565217
SVM 0.894180 0.847826 0.541667 0.661017

Random Forest 0.886957 0.863636 0.535211 0.660870
Neural Network 0.921341 0.891922 0.690123 0.777892

Table 13: Evaluation Metrics for all models with imbalanced Data

The presented table outlines the performance metrics of different machine learning

models employed in a binary classification task. Each model is evaluated based on key

metrics such as accuracy, precision, recall, and F1 Score, providing a comprehensive

assessment of their predictive capabilities. The Logistic Regression model (Model 1)

demonstrates an accuracy of 80%, indicating a reasonable overall correctness of pre-

dictions. However, the low recall of 9.86% suggests challenges in effectively capturing

positive instances, potentially resulting in a higher number of false negatives. The De-

cision Tree (Model 2) exhibits a slightly higher accuracy of 82.61% with comparable

precision, recall, and F1 Score, reflecting a balanced performance in terms of correctly

identifying positive and negative instances.

Moving to the SVM (Model 3), the model achieves an accuracy of 89.42%, show-

casing robust overall correctness. The precision of 84.78% indicates a high accuracy of

positive predictions, while the recall of 54.17% suggests the model’s struggle in captur-

ing all positive instances, leading to a trade-off between precision and recall. Similarly,

the Random Forest (Model 4) attains an accuracy of 88.70%, with a well-balanced preci-

sion and recall, striking a compromise between accurately predicting positive instances

and capturing a substantial portion of them.

The Neural Network (Model 5) emerges as the top performer with an accuracy of

92.13%. This model demonstrates high precision (89.19%) and recall (69.01%), lead-

ing to a well-balanced F1 Score of 77.79%. The neural network excels in both accurate

positive predictions and capturing a significant proportion of positive instances, mak-

ing it a strong candidate for scenarios where a balance between precision and recall is
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crucial. In conclusion, the analysis of the model performances reveals nuanced trade-

offs between accuracy, precision, and recall. The choice of the most suitable model

depends on the specific requirements and priorities of the classification task, consider-

ing factors such as the consequences of false positives and false negatives in the given

context. However, Neural Network out performed all the other models in all the metrics

on imbalanced data set.

6.1.2 Result Interpretation: Balanced Data

Interpreting machine learning model results on a balanced dataset that has been

oversampled provides valuable insights into the impact of addressing class imbalance.

The process of oversampling involves synthetically increasing instances of the minority

class, thereby mitigating the effects of an imbalanced distribution. In this context, the

models exhibit improved overall accuracy, as they are now better equipped to handle the

intricacies of both classes. Precision and recall metrics also benefit from the balanced

dataset, with models demonstrating heightened accuracy in positive predictions and a

more comprehensive ability to capture instances of the minority class. The enhanced

F1 Score reflects a harmonious balance between precision and recall, showcasing the

models’ effectiveness in achieving a nuanced equilibrium. Overall, the interpretation

underscores the significance of addressing class imbalance through oversampling, lead-

ing to more robust and reliable machine learning models in scenarios where accurate

representation of both classes is imperative.

Model Accuracy Precision Recall F1 Score
Logistic Regression 0.7545 0.7306 0.8135 0.7796

Decision Tree 0.895795 0.894545 0.897810 0.896175
SVM 0.883987 0.940075 0.820261 0.876091

Random Forest 0.932358 0.915789 0.952555 0.933810
Neural Network 0.800412 0.737234 0.934432 0.825542

Table 14: Evaluation Metrics for all models with Balanced Data

The table 14 provides valuable insights into the performance of various machine

learning models in a classification task on a Balanced Data Set. The Logistic Regression

model demonstrates a modest accuracy of 75.45%, showcasing a reasonable capability
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in making correct predictions. In contrast, the Decision Tree model stands out with

an accuracy of 89.58%, reflecting its robust ability to capture complex patterns within

the data. The SVM model achieves an accuracy of 88.40%, combining high precision

(94.01%) with a respectable recall (82.03%), indicating its proficiency in accurate pos-

itive predictions while maintaining sensitivity to actual positive instances.

The Random Forest model emerges as a top performer with an accuracy of 93.24%,

demonstrating a well-balanced precision (91.58%) and recall (95.26%). The Neural

Network, while displaying a lower accuracy of 80.04%, exhibits notable recall (93.44%),

emphasizing its strength in capturing positive instances. Overall, these findings under-

score the diversity in model performances, emphasizing the importance of considering

various metrics such as precision, recall, and F1 Score to comprehensively evaluate their

effectiveness in different aspects of the classification task.

6.2 Limitations

In the realm of automotive research and data analysis, ensuring the accuracy and

integrity of collected data presents a multifaceted challenge. A variety of factors con-

tribute to the complexity of this task, each of which must be meticulously managed to

produce reliable and meaningful insights. Key among these challenges are sensor er-

rors, data entry mistakes, and inconsistencies in measurement methods, all of which can

compromise the validity of the data.

6.2.1 Sensor Errors and Data Entry Mistakes

Modern vehicles are equipped with a plethora of sensors that collect data on a range

of parameters, from engine performance to driver behavior. However, these sensors

are not infallible and can suffer from calibration issues, wear and tear, or even soft-

ware malfunctions, leading to erroneous data. Similarly, human errors during data en-

try—whether during the initial recording or subsequent transcription—can introduce

inaccuracies that skew results. Such errors are particularly problematic in large datasets

where manual review of every entry is impractical.
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6.2.2 Inconsistencies in Measurement Methods

Another significant challenge arises from inconsistencies in measurement methods

across different data sources or time periods. For example, the adoption of new sen-

sor technologies or changes in data collection protocols can lead to discrepancies that

complicate data analysis. This is especially problematic in longitudinal studies where

consistency over time is crucial for drawing valid conclusions. Without standardized

methods and protocols, comparing data across different datasets can lead to misleading

or inconclusive results.

6.2.3 Data Fragmentation and Access Restrictions

The fragmentation of data across various departments, organizations, or even ge-

ographic regions further complicates data consolidation and analysis. In the automo-

tive industry, data may be siloed within specific departments, such as manufacturing,

sales, or customer service, each using its own systems and standards. Moreover, access

to proprietary data from automotive manufacturers or suppliers is often restricted due

to intellectual property concerns or competitive considerations. Even when access is

granted, it typically requires navigating complex legal agreements, which can delay or

limit research efforts.

6.2.4 Data Privacy Regulations

Beyond technical and logistical challenges, automotive data collection and analysis

must also navigate the complex landscape of data privacy regulations, ethical consider-

ations, and potential biases that can undermine the generalizability of research findings.

With the advent of stringent data privacy regulations, such as the General Data Protec-

tion Regulation (GDPR) in the European Union and the California Consumer Privacy

Act (CCPA) in the United States, researchers must exercise extreme caution in handling

personal and sensitive data. These regulations impose strict requirements on how data is

collected, stored, and shared, often necessitating the anonymization of datasets to pro-

tect individual privacy. However, anonymization can sometimes strip the data of critical

context, reducing its utility for in-depth analysis.
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6.2.5 Ethical Considerations

Collecting and analyzing sensitive data—such as customer information, vehicle us-

age patterns, or biometric data—requires careful consideration of the ethical implica-

tions. Researchers must ensure that their work does not inadvertently harm individ-

uals or groups, whether through the misuse of data, unintended biases in analysis, or

breaches of confidentiality. Ethical guidelines and oversight mechanisms are essential

to prevent such outcomes, but they can also add layers of complexity and delay to re-

search projects.

6.2.6 Bias and Representativeness

Finally, biases in the data, whether due to regional disparities, market-specific trends,

or variations in driver behavior, can limit the generalizability of research findings. For

instance, data collected predominantly from urban areas may not accurately reflect driv-

ing patterns in rural regions, leading to skewed results. Similarly, the diversity of vehicle

types, models, and technologies poses a significant challenge in collecting representa-

tive data. Different vehicles may be equipped with varying sensors or may be driven in

different ways, further complicating efforts to standardize and compare data across the

automotive landscape.

In sum, the accuracy and integrity of automotive data are influenced by a multitude

of factors, ranging from technical issues and logistical challenges to regulatory, ethical,

and bias-related concerns. Addressing these challenges requires a concerted effort to

standardize data collection methods, ensure data privacy and ethical integrity, and miti-

gate biases to produce research findings that are both reliable and broadly applicable.

6.3 Research Implications

6.3.1 Research Implications for Industries

Predictive maintenance, a data-driven approach to maintenance, has emerged as a

powerful tool for industries seeking to reduce downtime and increase overall equipment

effectiveness (OEE). By leveraging advanced analytics and real-time data, predictive
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maintenance enables organizations to anticipate equipment failures before they occur,

thereby minimizing unplanned downtime and optimizing maintenance schedules.

Predictive maintenance involves the following steps: gathering real-time data from

sensors and other monitoring devices installed on equipment, applying advanced ana-

lytics techniques to analyze the collected data and identify patterns or anomalies that

indicate potential equipment failures, continuously monitoring equipment health based

on the analyzed data and setting thresholds for critical parameters, developing predictive

models that can forecast equipment failures based on historical data and current trends,

and using the predictive models to schedule maintenance tasks proactively, addressing

potential failures before they lead to unplanned downtime.

The benefits of predictive maintenance include reduced downtime, increased OEE,

improved asset management, cost savings, and enhanced safety. Predictive maintenance

is applicable across a wide range of industries, including manufacturing, energy, trans-

portation, healthcare, and oil and gas.

By leveraging data-driven insights and advanced analytics, organizations can proac-

tively address potential equipment failures, optimize maintenance schedules, and maxi-

mize the value of their assets.

6.3.2 Research Implications for Academia

Predictive maintenance, a data-driven approach to maintenance, has emerged as a

significant area of research in academia. Its applications across various industries, from

manufacturing to healthcare, have fueled interest in understanding its potential and lim-

itations. This section delves into the key research implications for predictive mainte-

nance in academia.

The development of novel machine learning algorithms, deep learning techniques,

and statistical models is crucial for accurately predicting equipment failures. Research

into data quality assessment, cleaning, and feature engineering techniques is necessary

to ensure the reliability of predictive models. Investigating efficient methods for pro-

cessing and analyzing large volumes of real-time data from sensors and other monitor-

ing devices is also essential.

Developing probabilistic models to quantify uncertainty in predictions and improve

the reliability of maintenance decisions is another important research direction. Study-
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ing the sensitivity of predictive models to different input variables and identifying criti-

cal factors affecting equipment health is also crucial. Researching methods to calculate

confidence intervals for predictions, providing a measure of uncertainty associated with

maintenance recommendations, is another area of interest.

Developing techniques to make predictive maintenance models more transparent

and understandable to human operators, facilitating trust and adoption, is essential. De-

signing interactive tools that integrate predictive maintenance insights with human ex-

pertise to enable informed decision-making is also crucial. Investigating how humans

and machines can effectively collaborate in maintenance tasks, leveraging the strengths

of both, is another area of interest.

Conducting case studies and field experiments to evaluate the effectiveness of pre-

dictive maintenance in various industrial settings is essential. Assessing the economic

benefits of predictive maintenance, including reduced downtime, improved asset utiliza-

tion, and cost savings, is also crucial. Investigating the scalability and generalizability

of predictive maintenance models across different equipment types and industries is

another area of interest.

By addressing these research implications, academia can contribute significantly to

the advancement of predictive maintenance and its widespread adoption across various

industries. Future research efforts should focus on developing innovative methodolo-

gies, addressing practical challenges, and ensuring the ethical and responsible applica-

tion of predictive maintenance technologies.
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6.4 Future Work

The field of clutch damage prediction in commercial vehicles using Machine Learn-

ing (ML) presents numerous exciting avenues for future research and development.

With the automotive industry increasingly transitioning toward data-driven solutions

for predictive maintenance, ML offers immense potential for improving the accuracy

and timeliness of clutch damage detection. However, to fully harness the power of these

technologies, several challenges need to be addressed and opportunities explored.

6.4.1 Expansion of Data Sources and Quality

One of the key areas for future work is the expansion and enhancement of data

sources. Current clutch damage prediction models typically rely on sensor data from ve-

hicle telematics, including parameters such as engine torque, clutch engagement times,

and vehicle speed. However, the integration of additional data sources, such as vibration

analysis, thermal imaging, and acoustic emissions, could greatly improve the robustness

and precision of these models. High-quality data from these diverse sources would allow

for a more comprehensive understanding of the conditions that lead to clutch damage.

Additionally, the introduction of standardized data formats across different vehicle mod-

els and manufacturers would facilitate better cross-industry collaboration and algorithm

performance.

6.4.2 Advanced Feature Engineering and Selection

Another avenue for future research lies in improving feature engineering and se-

lection techniques. Machine Learning algorithms, particularly deep learning models,

require relevant and well-curated features to perform optimally. Future work could fo-

cus on the development of advanced techniques for identifying the most critical features

related to clutch wear and tear. Additionally, real-time feature extraction and process-

ing, supported by edge computing, could allow for faster and more accurate predictions

directly within vehicles. This would lead to the immediate detection of clutch issues

and prevent costly failures.
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6.4.3 Utilization of Advanced Machine Learning Algorithms

Future work should also explore the application of more advanced ML algorithms,

such as ensemble methods and reinforcement learning, to improve prediction accuracy.

While current models often use traditional methods like Random Forests or Support

Vector Machines, newer techniques such as Long Short-Term Memory (LSTM) net-

works or Convolutional Neural Networks (CNNs) can capture temporal dependencies

and complex relationships in time-series data. Hybrid models, which combine the

strengths of multiple algorithms, could be particularly effective for handling the in-

tricacies of clutch damage patterns.

6.4.4 Predictive Maintenance Optimization

Predictive maintenance strategies leveraging ML should be further optimized. Cur-

rent approaches primarily focus on detecting imminent failures, but future research

could explore the optimization of maintenance schedules based on the severity and like-

lihood of damage. By refining these algorithms, it will be possible to provide more

accurate maintenance intervals that balance the cost of early repairs with the risks of

clutch failure. This could have a substantial impact on reducing downtime and mainte-

nance costs for commercial vehicle fleets.

6.4.5 Integration of Real-Time Feedback Loops

The integration of real-time feedback loops into ML-based prediction models is an-

other promising area for future work. By continuously updating the predictive model

based on new data from vehicles in operation, the system can learn and adapt to chang-

ing conditions, improving accuracy over time. This continuous learning process could

enable dynamic adjustments to the model based on different driving behaviors, environ-

mental conditions, or variations in vehicle loads, thus improving the generalizability of

the model across different scenarios.
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6.4.6 Explainable AI and Model Interpretability

As machine learning models become more complex, the need for explainable AI

(XAI) is crucial. Future work should focus on making ML models for clutch damage

prediction more interpretable to technicians and engineers. This will ensure that predic-

tions are trusted and actionable, enabling end-users to understand why a certain failure

is predicted and how to prevent it. Techniques such as SHAP (Shapley Additive Expla-

nations) values and LIME (Local Interpretable Model-agnostic Explanations) could be

employed to provide more transparency.

6.4.7 Scalability and Deployment in Real-World Applications

While promising, many of the current clutch damage prediction models are still in

the research phase or limited to small-scale testing. Future work should focus on the

scalability and deployment of these models in real-world commercial vehicle fleets.

This involves overcoming challenges related to the computational requirements of run-

ning ML models on limited hardware, such as in-vehicle embedded systems, and ensur-

ing that predictions are delivered in real-time without sacrificing accuracy.

6.4.8 Collaborative Data Sharing and Model Standardization

Collaborative data sharing across manufacturers and fleet operators could lead to

significant advancements in clutch damage prediction. The creation of a standardized,

industry-wide dataset for clutch wear and failure could enhance model performance and

generalizability. By pooling data from various sources, ML models could be trained on

more diverse datasets, leading to improved predictions that work across different vehicle

types and operational environments.

6.4.9 Ethical and Privacy Considerations

Lastly, as with any data-driven technology, ethical and privacy considerations must

be addressed. Future work must explore ways to protect driver and fleet operator data

while still enabling the benefits of ML-based predictive maintenance systems. This

involves ensuring that data collection complies with privacy regulations and that predic-
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tive systems are designed with transparency and fairness in mind.

The future of clutch damage prediction using Machine Learning is filled with op-

portunities for enhancing vehicle reliability, reducing operational costs, and minimizing

downtime. By advancing the integration of diverse data sources, improving feature

selection and model interpretability, and scaling the deployment of these systems, the

automotive industry can realize the full potential of ML in predictive maintenance. Ad-

dressing these future work areas will bring about a new era of intelligent, data-driven

fleet management and contribute significantly to the longevity and efficiency of com-

mercial vehicles.
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6.5 Conclusion

In conclusion, our analysis has successfully demonstrated the feasibility of predict-

ing failures in vehicle clutches using machine learning models when provided with

appropriate features and a substantial amount of data. The diverse set of algorithms

employed in our study, ranging from Logistic Regression and Decision Trees to SVM,

Random Forest, and Neural Networks, collectively showcase the potential of leverag-

ing advanced analytics for predictive maintenance in automotive systems. The models,

through their varying accuracies, precision, recall, and F1 Scores, collectively reinforce

the notion that predictive modeling can contribute significantly to identifying poten-

tial failures in vehicle clutches. This not only aids in preemptive maintenance but also

enhances operational efficiency and safety. The nuanced trade-offs observed in differ-

ent models highlight the importance of tailoring the choice of algorithms based on the

specific priorities and constraints of the application. Overall, this study marks a step for-

ward in leveraging data-driven approaches to enhance the reliability and performance of

automotive systems, particularly in anticipating and mitigating potential issues related

to vehicle clutches.

The automotive industry stands to benefit significantly from deploying more test ve-

hicles to gather high-quality data, despite the associated heavy costs for companies. As

vehicles become increasingly complex, laden with advanced sensors and interconnected

technologies, the amount and diversity of data generated during real-world testing be-

come crucial for enhancing safety, performance, and overall reliability. Deploying an

extensive fleet of test vehicles allows for the collection of diverse data sets under various

driving conditions, enabling a more comprehensive understanding of system behaviors

and potential failure modes. This data-driven approach not only facilitates the refine-

ment of existing technologies but also supports the development of innovative features

and the identification of potential issues before they escalate. While the upfront costs

may seem substantial, the long-term benefits in terms of improved product quality, re-

duced warranty claims, and enhanced customer satisfaction can ultimately outweigh the

initial investment. In an era where data-driven insights are pivotal for innovation and

competitiveness, the strategic deployment of test vehicles becomes an invaluable in-
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vestment for automotive companies striving to stay at the forefront of technological ad-

vancements and ensure the delivery of reliable and cutting-edge vehicles to consumers.

While over-sampling has proven effective in addressing class imbalance within datasets,

industries should prioritize acquiring real-world data over relying solely on data aug-

mentation techniques. While techniques like over-sampling can synthetically inflate

minority class instances, they may not fully capture the nuanced variability and com-

plexity present in authentic, on-the-road scenarios. Acquiring real-world data ensures

that machine learning models are exposed to the diverse and dynamic conditions en-

countered during actual vehicle operation. Authentic data encompasses a broader spec-

trum of scenarios, driving patterns, and potential failure modes, providing a more ac-

curate representation of the challenges faced by automotive systems. Emphasizing the

collection of real-world data not only enhances the robustness of predictive models but

also contributes to their adaptability in addressing unforeseen challenges and anoma-

lies. Therefore, industries should strive for a balanced approach, incorporating both

over-sampling techniques and a continuous effort to gather authentic, diverse data from

real-world driving conditions to ensure the optimal performance and reliability of pre-

dictive models in the automotive domain.

The availability of more open-source datasets from the automotive industry stands

as a catalyst for significant advancements in the digital field. OEMs and Automotive

industries should find a secure way to share the data to enable advanced development.

Currently, there are very few data-set open sourced. Open datasets, generously shared

by automotive companies, provide researchers, engineers, and data scientists with in-

valuable resources to explore and innovate. The diversity of data, ranging from vehicle

diagnostics to real-world driving scenarios, facilitates the development and refinement

of machine learning models, predictive algorithms, and other digital solutions. These

datasets not only contribute to the evolution of autonomous driving technologies but

also fuel progress in vehicle safety, energy efficiency, and smart transportation systems.

By fostering collaboration and knowledge-sharing, open-source datasets empower the

digital community to collectively address challenges, test hypotheses, and propel the au-

tomotive industry toward a future marked by technological excellence, safety enhance-
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ments, and sustainable innovation.

The comparison of model performances based on the result tables offers a nuanced

perspective on the strengths and weaknesses of each algorithm in the classification task

before and after the oversampling of the Data Set. In the first set of results 13, the mod-

els exhibit varying accuracies, with the Neural Network emerging as the top performer.

However, the precision, recall, and F1 Score metrics reveal trade-offs, emphasizing the

need for a balanced evaluation beyond accuracy alone. The second set of results 14

further highlights the diversity in model capabilities. The Decision Tree and Random

Forest models demonstrate high accuracy, precision, and recall, showcasing their effec-

tiveness in handling complex patterns. The SVM model excels in precision but with

a slightly lower recall, suggesting a focus on accurate positive predictions at the ex-

pense of potentially missing some positive instances. In contrast, the Neural Network

exhibits strong recall but lower precision, indicating its proficiency in capturing positive

instances but with a tendency for false positives. Overall, these findings underscore the

importance of considering multiple metrics and understanding the specific goals of the

classification task when selecting the most suitable model.

While metrics such as accuracy and F1 score provide valuable insights into the per-

formance of predictive models for clutch failures in the automotive domain, the ulti-

mate evaluation should extend beyond numerical values to practical outcomes observed

by Original Equipment Manufacturers (OEMs) in real-world settings. Witnessing the

models’ predictions in action, deployed across a fleet of vehicles, offers a more com-

prehensive understanding of their efficacy in identifying and mitigating clutch failures.

Direct feedback from OEMs, based on the observed reduction in actual failures and

the successful prevention of critical issues, becomes the most meaningful metric. This

real-world validation ensures that the models not only meet technical benchmarks but

also align with the broader goals of improving operational efficiency, reducing mainte-

nance costs, and enhancing overall vehicle reliability. By actively involving OEMs in

the assessment process, the automotive industry can bridge the gap between predictive

modeling in controlled environments and the dynamic challenges faced on the roads,

fostering a more robust and practical evaluation framework.
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