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ABSTRACT 

 

A MORTALITY PREDICTION MODEL FOR GENERAL SURGERIES       

USING A   SMALL DATA SET WITH EXPLAINABLE ARTIFICIAL 

INTELLIGENCE 

 

 

 

Anil Kumar Pandey  

2024 

 

 

Dissertation Chair: <Chair’s Name 

Co-Chair: <If applicable. Co-Chair’s Name> 

 

 

This study introduces a mortality prediction model for general surgeries, enhanced by 

Explainable Artificial Intelligence (XAI) to help surgeons anticipate postoperative 

outcomes and identify high-risk patients. Using a deep learning approach on a limited 

dataset, synthetic data generation via a variational autoencoder (VAE) was employed to 

simulate real-world accuracy. The deep learning model trained with VAE-augmented data 

emerged as the best performer in comparison to other machine learning models, including 

RF, KNN, extreme gradient boosting, support vector machines, and logistic regression., 

achieving the highest F1 score and balanced precision and recall.  

Patient data—including morbidities, laboratory results, and postoperative complications—

was processed through various models and evaluated on accuracy, F1 score, and AUROC 

metrics. The VAE data augmentation improved the performance of most models, especially 

complex ones such as decision trees, random forests, gradient boosting, and XGBoost. 

However, simpler models like logistic regression and support vector machines (SVC) 
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struggled with VAE-augmented data.  The ensembling approach incorporating Ensembles 

of VAE, Flipout in last layer, Flipout in all layers and Bayesian model was used to improve 

prediction, The ensemble model, VAE-Flipout Last Layer and Flipout All Layers 

Ensemble, demonstrated enhanced predictive accuracy and reliability surpassing other 

ensemble models . Calibration techniques, including Temperature Scaling, Platt Scaling, 

and Isotonic Regression, were applied to ensure robust probabilistic outputs. The VAE-

Flipout Last Layer and Flipout All Layers Ensemble achieved an F1 score of 0.77, a Brier 

score of 0.0254, and a ROC-AUC of 0.94. 

In terms of model explainability, LIME and SHAP identified the features influencing 

mortality, including Sepsis, Postoperative Urea, Small Bowel Resection, Omentoplasty 

ASA Classification, Chronic Liver Disease, and postoperative biomarkers like SGPT and 

bilirubin. LIME provided local insights tailored to individual predictions, while SHAP 

revealed a global perspective across all instances, consistently highlighting these key 

features. This consistency reinforces the relevance of identified factors in patient outcomes. 

Future research should focus on expanding the dataset through advanced augmentation 

techniques, like GANs, and on refining calibration metrics, such as Expected Calibration 

Error (ECE) and Maximum Calibration Error (MCE). This study offers a valuable AI-

driven tool to improve patient prognosis and postoperative outcomes.  
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CHAPTER I:  

INTRODUCTION  

1.1 INTRODUCTION 

 A small subset of high-risk patients accounts for the majority of surgical complications 

(Pearse et al., 2006). Research has shown that timely interventions can significantly reduce 

or even prevent perioperative complications (Kang et al., 2012; Leeds et al., 2017). 

Therefore, it is essential to develop methods that can quickly identify patients who are most 

at risk for perioperative complications (Hill et al., 2019). Non-Cardiac General surgeries 

are the most common surgical procedures. Unlike manufacturing where production and 

customer information are dealt with by separate divisions in the organization. In the 

healthcare sector, it is the treating surgeon who is responsible for both the actual conduct 

of surgery and patient information including prognostication of the outcome of surgery. 

Patients present with the main problem considered a diagnosis and often have other morbid 

conditions. These comorbidities have important implications for the outcome of surgeries. 

Baseline comorbidity adjustment plays a crucial role in both health services research and 

clinical prognosis (Austin et al., 2015). Mortality prediction models that incorporate 

comorbidities from patient profiles can assist surgeons in effectively communicating 

potential outcomes to patients and their families. The Charlson and Elixhauser comorbidity 

classification systems are among the most widely used in health research, with studies 

showing their significant association with various outcomes, including in-hospital 

mortality (Poses et al., 1996; Sundararajan et al., 2004). Traditionally, statistical 

approaches have been employed for outcome prediction; however, in recent years, 
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machine-learning techniques have become increasingly popular in clinical applications 

(Guillaume et al., 2017; Chen et al., 2015; Mišić et al., 2020; Frizzell et al., 2017). Further, 

with the wider availability of computing power, there is a trend towards making use of 

DNN models. 

In a somewhat simplified manner, machine learning tends to prioritize predictive accuracy 

over hypothesis-driven inference, often applying its methods to large, high-dimensional 

datasets with numerous covariates (Williams and Rasmussen, 2006; Breiman, 2001). This 

shift in focus has been critical in fields such as genomics, image processing, and, more 

recently, healthcare.  Regarding surgical outcomes, current risk prediction models include 

those developed by the American Society of Anesthesiologists (American Society of 

Anesthesiologists, 1963) and the Surgical Apgar Score. Additionally, the American 

College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) has 

introduced its own Surgical Risk Calculator (ACS-SRC) (Bilimoria, 2013). Despite the 

utility of these models, many rely heavily on traditional statistical approaches that may fail 

to capture complex, non-linear interactions between variables (Shilo et al., 2020). Most of 

these models are grounded in traditional statistical methods. However, machine learning 

and deep learning, both branches of artificial intelligence, have seen significant uptake in 

various fields in recent years. For example, Lee et al. (2018) developed a deep neural 

network model trained on intraoperative data to predict postoperative in-hospital mortality. 

This model, however, uses complex variables that may only be practical in advanced 

surgical settings. While deep neural networks are widely used across industries, their 

adoption in medicine has been slower. Some researchers criticize machine learning as a 
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“black box,” questioning its applicability in clinical practice (Cabitza et al., 2017). Recent 

advancements in artificial intelligence (AI), particularly machine learning (ML) and deep 

learning (DL), have sparked interest in applying these techniques to improve clinical 

outcomes. ML and DL models have shown remarkable accuracy in predicting 

postoperative complications, with their ability to analyse large amounts of data and detect 

patterns that conventional statistical models might overlook (Rajkomar et al., 2018; Topol, 

2019). Lee et al. (2018) developed a deep neural network model trained on intraoperative 

features to predict postoperative in-hospital mortality, demonstrating the potential of DL 

to significantly improve predictive accuracy. However, the model requires complex 

variables that may be accessible only in advanced surgical canters, limiting its 

generalizability. 

In clinical settings, the adoption of AI has been slower compared to other industries, in part 

due to concerns about the interpretability of these models. While the predictive power of 

machine learning is impressive, many view these models as “black boxes” that lack 

transparency, raising doubts about their clinical utility and acceptance (Cabitza et al., 

2017). To address this, new techniques such as Local Interpretable Model-Agnostic 

Explanations (LIME) and SHapley Additive exPlanations (SHAP) have been introduced, 

offering a way to make machine learning models more interpretable by identifying the 

importance of individual features in the prediction process (Lundberg & Lee, 2017; Ribeiro 

et al., 2016). These techniques enable clinicians to better understand the factors driving 

predictions, fostering trust, and enabling integration of ML models in healthcare decision-

making. 
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As deep learning continues to evolve, the potential for developing more robust and 

interpretable models for predicting postoperative outcomes grows. These models offer 

opportunities not only for improving clinical decisions but also for identifying key risk 

factors that can guide interventions to reduce perioperative complications, thus improving 

patient outcomes (Miotto et al., 2018). However, for a model to have any use for 

professionals like surgeons, the need for an explanation of the model in the prediction of 

surgical outcomes is very high. Recent advancements in model explainability techniques 

can meet this objective.  

1.1.1 Challenges in Current Approaches 

 

When addressing complex problems in machine learning, especially in fields like 

healthcare or financial forecasting, several significant challenges impede achieving optimal 

results. These challenges include data scarcity, overfitting, uncertainty quantification, and 

computational expense. Each of these issues presents both theoretical and practical 

difficulties that must be overcome for models to be both effective and reliable in real-world 

applications. 

 

A. Data Scarcity:  

i.  Theoretical Perspective: 

Machine learning models, intense learning approaches, typically require large amounts of 

labelled data to generalize well. The absence of sufficient data as in this study can lead to 

poor model performance since the models cannot learn the underlying distribution of the 

data. This is especially true in domains like hospitalized patient care, where annotated data 
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(e.g., patient records, diagnostic images) is limited due to privacy concerns, the high cost 

of obtaining data, and ethical considerations (Shorten & Khoshgoftaar, 2019). With small 

datasets, models are prone to high variance, leading to significant overfitting. Data scarcity 

also hinders the model’s ability to identify rare patterns, potentially missing out on valuable 

signals in the data.  

ii. Practical Perspective: 

Collecting a large and diverse dataset may not always be feasible. For example, in medical 

diagnosis, certain conditions (like rare diseases) affect a small fraction of the population, 

making it difficult to gather enough examples for robust training (LeCun, Bengio & Hinton, 

2015). The volume of data is a particular constraint which, however, entirely depends on 

the workload of the hospital. Data augmentation techniques, such as Variational 

Autoencoders (VAE), Generative Adversarial Networks (GANs), and Synthetic Minority 

Over-sampling Technique (SMOTE), are employed to mitigate data scarcity. However, 

these methods have limitations, including the risk of generating synthetic samples that may 

not reflect the true distribution of the target population (Chawla et al., 2002; Goodfellow 

et al., 2014) Additionally, external data sources (such as publicly available medical 

datasets) may not always match the local data context, leading to potential biases or 

inaccuracies when models are deployed in practice (He et al., 2020). 
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1.1.2 Overfitting 

i. Theoretical Perspective: 

 

Overfitting occurs when a model learns the noise in the training data rather than the 

underlying signal, resulting in excellent performance on the training set but poor 

generalization to new, unseen data. This is particularly prevalent in deep learning models 

due to their large number of parameters (Srivastava et al., 2014). 

In small datasets, overfitting becomes even more severe because the model has fewer 

examples to learn from, which can lead to exaggerated differences between the training 

and testing performance (Hawkins, 2004). 

ii.  Practical Perspective: 

Overfitting is a concern when models are deployed in high-stakes environments like 

healthcare, where false positives or negatives can have critical implications (Zhou et al., 

2020). For instance, overfitting can result in unreliable predictions of patient mortality, 

leading to incorrect clinical decisions. 

Regularization techniques such as dropout, L2 regularization, and early stopping are used 

to combat overfitting, but they may not always work well with highly complex models 

(Goodfellow, Bengio & Courville, 2016). Furthermore, extensive hyperparameter tuning 

is often required, increasing time and computational demands (Bengio, 2012). 
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1.1.3. Uncertainty Quantification 

i. Theoretical Perspective: 

In deep learning, especially in applications like healthcare and autonomous systems, 

uncertainty quantification plays a critical role. Traditional deep learning models, including 

neural networks, often produce highly confident predictions, even when they are incorrect, 

which poses a significant risk in decision-making processes that demand caution (Gal & 

Ghahramani, 2016). This is particularly dangerous in high-stakes situations, where 

inaccurate yet confident predictions can lead to adverse outcomes. 

Machine learning, including deep learning, shares a close relationship with statistics in its 

goal to construct models that capture the processes generating observed data. Probability 

theory plays an essential role here, allowing us to design models that best fit the data by 

using probabilistic rules. While probability allows us to model processes by capturing 

uncertainties as random variables, statistics focuses on observing outcomes and inferring 

the underlying processes that explain these observations. 

In machine learning, a key objective is to minimize generalization error, which refers to 

how well a model performs on new, unseen data rather than just the training data. This 

makes uncertainty quantification vital, as it helps ensure that the model's predictions are 

reliable when applied to future scenarios. Deep learning models typically lack a built-in 

mechanism to quantify uncertainty, leading to overconfident results in situations where 

predictions might be uncertain. 
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Bayesian methods, particularly Bayesian Neural Networks (BNNs), address this issue by 

treating model parameters as distributions rather than fixed values. This approach enables 

the estimation of predictive uncertainty, providing a more robust framework for managing 

uncertainty in high-risk applications (Blundell et al., 2015). Such probabilistic models can 

help reduce overconfidence and allow for safer, more cautious decision-making in 

scenarios where the stakes are high. 

iii. Practical Perspective: 

Implementing Bayesian models or probabilistic techniques is challenging due to the 

computational expense. Models like Monte Carlo Dropout or Flipout approximate 

Bayesian inference but introduce trade-offs between accuracy and speed (Gal & 

Ghahramani, 2016; Wen et al., 2018). 

Despite their potential, many deep learning applications neglect uncertainty 

quantifications, leading to overconfident, high-risk decisions (Amodei et al., 2016). 

Calibration techniques, such as Temperature Scaling and Platt Scaling, are essential for 

addressing this issue but require additional computational resources (Guo et al., 2017). 

 

1.1.4 Computational Expense 

i. Theoretical Perspective: 

Deep learning models, particularly large architectures like ResNet and DenseNet, are 

computationally expensive to train. As models grow in complexity, so do the training time 

and resource requirements, making it difficult to deploy these models in real-time 

applications (He et al., 2016). 
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Techniques like variational inference and ensemble learning often introduce additional 

computational overhead, further complicating deployment in practical settings (Dietterich, 

2000). 

iii.  Practical Perspective: 

The computational burden is often overwhelming for smaller research labs or companies 

lacking access to high-performance hardware (Silver et al., 2016). Cloud-based services, 

while helpful, add significant financial costs. 

Real-time applications, such as automated diagnostics, require quick inference times, 

which probabilistic and ensemble models may struggle to provide (Lakshminarayanan, 

Pritzel & Blundell, 2017). 

1.1.5. Generalization Across Domains 

i. Theoretical Perspective: 

Generalization remains a critical challenge. A model trained on one dataset may not 

perform well on another due to differences in data distributions (Daumé, 2009). Domain 

adaptation techniques, while promising, introduce additional complexity and uncertainty 

(Pan & Yang, 2010). 

ii. Practical Perspective: 

Transfer learning and domain adaptation techniques aim to help models generalize to 

different domains, but in low-data scenarios, their effectiveness is limited. This is 

especially true in healthcare, where variations in patient demographics and diagnostic 

practices lead to significant performance drops (Goodfellow, Bengio & Courville, 2016). 
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In short, the challenges of data scarcity, overfitting, uncertainty quantification, 

computational expense, and generalization across domains are central to the difficulties 

encountered in modern machine learning. Addressing these challenges requires a multi-

faceted approach, combining innovative model architectures, data augmentation 

techniques, regularization strategies, and probabilistic modeling (Zhou et al., 2020). 

However, the complexity of the solutions often introduces new difficulties, such as 

increased computational demands and the need for rigorous uncertainty quantification, 

which must be carefully balanced to ensure models are reliable and efficient in practical 

applications. 

1.2 Research Problem 

Artificial Techniques (AI) including Deep learning have been tried in mortality prediction 

with equivocal results.  In recent years, there has been a growing interest in leveraging 

artificial intelligence (AI), particularly machine learning (ML) and deep learning (DL), to 

predict patient outcomes and improve clinical decision-making. Ahmed et al. (2020) 

demonstrated the effectiveness of deep neural networks in predicting mortality among 

trauma patients admitted to intensive care units. Their model, which was supplied with 

statistically significant risk factors derived from patient data, outperformed conventional 

machine learning techniques such as Linear Discriminant Analysis (LDA), Gaussian Naive 

Bayes (GNB), K-Nearest Neighbors (KNN), and Decision Trees (CART). The deep neural 

network achieved a training accuracy of 93.8% and testing accuracy of 92.3%, with a 

sensitivity of 79.1%, specificity of 94.2%, positive predictive value (PPV) of 66.42%, 

negative predictive value (NPV) of 96.87%, and an area under the receiver operating 
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characteristic curve (AUROC) of 0.91. These results underscore the potential of deep 

learning to deliver superior predictive performance compared to traditional ML models, 

particularly in complex clinical settings. 

Despite the growing evidence supporting DL models, their adoption in medicine remains 

limited due to concerns about their interpretability. As with other AI applications, DL 

models are often perceived as "black boxes" because they do not inherently provide 

insights into how predictions are made (Cabitza et al., 2017). This is particularly 

problematic in high-stakes fields such as surgery, where understanding the underlying risk 

factors that contribute to a prediction is essential for clinicians. Techniques like Local 

Interpretable Model-agnostic Explanations (LIME) and SHapley Additive exPlanations 

(SHAP) are crucial tools that can help make machine learning models more interpretable 

by identifying key features driving their predictions (Lundberg & Lee, 2017; Ribeiro et al., 

2016). By making these models more transparent, clinicians can gain greater trust in their 

predictive outputs and better incorporate them into surgical decision-making processes. 

Lee et al. (2018) developed a deep neural network model trained on 87 

intraoperative features to predict postoperative in-hospital mortality. These features were 

calculated or extracted automatically at the end of the surgery, aiming to offer real-time 

predictive insights. The study compared the deep neural network’s performance to 

published clinical risk scores, administrative risk scores, and a logistic regression model 

using the same intraoperative features. While the deep neural network demonstrated the 

ability to predict in-hospital mortality, the authors concluded that it was not yet superior to 

existing clinical methods. This finding highlight both the potential and the current 

limitations of deep learning models in the medical field, emphasizing the need for 
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continued refinement and validation in diverse clinical settings. Deep learning (DL) models 

have gained significant attention due to their ability to operate without human-designed 

rules, relying instead on large datasets to map inputs to specific outputs. One of the most 

advantageous features of DL is its capacity for automatic feature extraction, which 

contrasts with traditional methods that often require extensive domain expertise to 

handcraft features. As Alzubaidi et al. (2021) highlight, DL algorithms achieve feature 

extraction automatically, minimizing human effort and the need for field knowledge. This 

has motivated researchers to leverage DL in tasks where extracting discriminative features 

is complex, such as predicting postoperative mortality, where nuanced patterns in data may 

be better captured by machine learning rather than human intuition. Health care has the 

problem of collection of large amounts of data due to privacy issues. This raises two 

questions: first, how can we compensate for small datasets to make them suitable for deep 

learning? Second, how can we address the issue of highly imbalanced data, particularly for 

targets such as mortality and complications? .Unequal distribution of classes in the training 

data set leads to poor predictive performance, particularly for the minority class. Classifiers 

trained on imbalanced data tend to be biased toward the majority class, resulting in higher 

classification errors for the minority class (Tomescu, Czibula, and Niţică, 2021). This is a 

common issue in clinical prediction models, where the class of interest (e.g., patients at 

high risk of mortality) often forms a small proportion of the overall dataset. To address 

this, deep generative models have shown remarkable potential in generating highly realistic 

content, such as images, texts, and sounds, and they can be similarly leveraged to create 

synthetic data to balance class distributions (Goodfellow et al., 2014). This capability offers 

a promising solution for overcoming the challenges posed by small, imbalanced datasets. 

Additionally, one of the major barriers to the broader adoption of machine learning in 

healthcare is the “black box” nature of many models. Both clinicians and patients often 
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struggle to understand how predictions are made, which raises concerns about trust and 

transparency (Lipton, 2017). This underscores the need for explainable and interpretable 

models in clinical settings to ensure that decisions based on machine learning can be 

understood and validated by medical professionals, facilitating greater acceptance and 

utilization of these technologies in healthcare. 

 

1.3 Purpose of research 

1.3.1. Overall Objective  

1. To create a deep learning model for forecasting mortality and assess its 

performance against various machine learning methods, with the goal of adopting 

the most effective model to aid surgeons in their decision-making process. 

2. To identify significant variables using model-agnostic interpretability methods 

such as Local Interpretable Model-agnostic Explanations (LIME) and SHapley 

Additive exPlanations (SHAP). 

1.3.2 Specific Aim 

To explore whether Variational Autoencoder (VAE) can augment the small data set of 

patients who underwent general surgical procedures in a deep learning model and correct 

for imbalance in training data with superior results.? 

1.4 The significance of the study 

 The significance of this study lies in the development of a calibrated probabilistic model 

that will provide accurate predictions of surgical outcomes. Once deployed, this model will 

assist surgeons in counselling patients and their families about the likely results of surgery, 

helping to inform decision-making, manage expectations, and improve overall patient care 

by offering personalized risk assessments. The model's ability to predict outcomes reliably 

will be especially valuable in enhancing preoperative discussions and supporting clinical 

decision-making.  
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1.5 RESEARCH PURPOSE AND QUESTION/HYPOTHESIS 

 

The purpose of this research is to develop a robust and interpretable deep-learning model 

for forecasting mortality among surgical patients, providing surgeons with a reliable tool 

to support critical decision-making. The study aims to create a model that not only achieves 

high predictive accuracy but also demonstrates its superiority over traditional machine 

learning techniques, identifying the most effective model for real-world application in a 

surgical setting. Additionally, by employing model-agnostic interpretability methods such 

as Local Interpretable Model-agnostic Explanations (LIME) and SHapley Additive 

exPlanations (SHAP), the research seeks to uncover key variables influencing patient 

outcomes. This approach not only enhances model transparency but also highlights 

clinically relevant factors, facilitating a deeper understanding of the determinants of 

surgical mortality and improving trust in the model’s predictions among healthcare 

professionals. Through these objectives, the study aspires to bridge advanced machine 

learning methodologies with clinical applicability, contributing a valuable tool for 

informed decision-making in healthcare. 

 

RQ1   Which approach, Machine Learning or Deep Learning, is more effective for 

predicting mortality in a small dataset supplemented with synthetic data 

 

RQ2 Whether Generational autoencoder can be used using variational autoencoder to 

correct for imbalance in training data with superior results? 

 

RQ3. Can the variables of importance identified by the explainability techniques, Local 

Interpretable Model-agnostic Explanations (LIME), and SHapley Additive exPlanations 

(SHAP), provide consistent results in explaining and interpreting the model for predicting 

postoperative mortality? 
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CHAPTER II:  

REVIEW OF LITERATURE 

 

2.1 Introduction & Theoretical Framework  

 The Charlson and Elixhauser comorbidity classification systems are the most frequently 

utilized in health research. According to Van Walraven et al. (2009), these systems, 

established by Charlson in 1994 and Elixhauser in 1998, are significantly linked to various 

outcomes, including in-hospital mortality (Poses et al., 1996; Sundararajan et al., 2004) 

and all-cause mortality after discharge, as noted by Charlson et al. (1994). When directly 

compared, research indicates that the Elixhauser comorbidity system is marginally more 

effective than the Charlson system in accounting for comorbidity (Southern, Quan, and 

Ghali, 2004; Stukenborg, Wagner, and Connors, 2001; Dominick et al., 2005; Lieffers et 

al., 2011). Despite this, the Charlson comorbidity index remains in use (Yu et al., 2003; 

Kil et al., 2012; Dailiana et al., 2013; Bannay et al., 2016; Lunde et al., 2019; Briongos-

Figuero et al., 2020). In adult population-based cohorts, Simard et al. (2018) demonstrated 

that combining the Elixhauser and Charlson indices yields better results for predicting 30-

day mortality than using either index alone. Gagne et al. (2011) also found that the 

Combined Comorbidity Score, which integrates conditions from both Charlson and 

Elixhauser, was more accurate in predicting mortality among Medicare patients. However, 

Van Walraven et al. (2009) noted that the Elixhauser comorbidity score’s poor performance 

in predicting hospital mortality rates is not surprising, as comorbidity is just one of several 

factors that significantly affect the risk of in-hospital death. Escobar et al. (2008) identified 
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four other factors—urgency of admission, service type, patient age, laboratory 

abnormalities, and admission diagnosis—that were as influential, if not more so, in 

predicting hospital death risk as comorbidities. Pine et al. (2007) highlighted the 

importance of incorporating 'present on admission' (POA) comorbidity codes and 

laboratory test results from the first 24 hours in the hospital when comparing inpatient 

mortality for certain conditions. In another study, Smith et al. (1991) examined the Health 

Care Financing Administration’s (HCFA) use of hospital billing data—such as age, sex, 

and diagnoses—to develop statistical models for estimating the risk of death during and 

after hospital stays. They compared these models to severity classifications and clinical 

risk factors for mortality prediction. Their findings indicated that the inclusion of clinical 

risk factors leads to more accurate death risk estimations and provides a better measure of 

care quality. Hanan et al. (1992) analyzed data from New York State's Cardiac Surgery 

Reporting System, which records cardiac preoperative risk factors, postoperative 

complications, and hospital discharge information. Their study aimed to identify 

significant clinical risk factors and pinpoint cardiac surgery centers with potential quality-

of-care issues. However, Pine et al. (1998) found that inpatient mortality prediction 

significantly improved when laboratory values were combined with administrative data 

that included only secondary diagnoses present on admission (i.e., comorbidities). They 

observed that adding further clinical data contributed little to predictive accuracy. Pine et 

al. also highlighted that risk adjustment methods that included conditions developed during 

hospitalization provided better mortality predictions than models focused only on 

admission diagnoses. However, they argued that including all diagnoses might undermine 
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the goal of adjusting for the patient's condition at the start of care. Risk adjustment models 

that claim to measure a patient’s illness severity at admission but also include fatal hospital-

acquired complications, such as cardiac arrest, shock, or hypotension, may obscure poor 

care by artificially inflating the perceived riskiness of patients who worsen during 

hospitalization. Glance et al. (2006) demonstrated that including complications in risk 

adjustment models can unfairly benefit hospitals with poor performance, as it may give 

them "credit" for their complications, potentially misclassifying them as delivering better 

care than they truly do. However, as noted by the previously mentioned authors, if the goal 

of the model is to predict patient mortality, it is reasonable to incorporate comorbidities, 

laboratory results, and any complications that arise during hospitalization. Numerous 

perioperative risk scores and prediction models have been developed globally 

(Moonesinghe et al., 2013), such as the American Society of Anaesthesiologists-Physical 

Status (ASA-PS) (Saklad, 1941), the Physiological and Operative Severity Score for the 

enumeration of Mortality and Morbidity (POSSUM) (Copeland, Jones, and Walters, 1991), 

the Surgical Outcome Risk Tool (SORT) (Protopapa et al., 2014), and the American 

College of Surgeons National Surgical Quality Improvement Program (ACS-NSQIP) 

(Bilimoria et al., 2013; Chiew et al., 2020). However, each of these tools has its limitations. 

For instance, the ASA-PS suffers from high inter-user variability (Cohen et al., 2009), 

POSSUM requires data not typically available preoperatively (Copeland, Jones, and 

Walters, 1991; Protopapa et al., 2014; Chiew et al., 2020; Cohen et al., 2009; Brooks, 

Sutton, and Sarin, 2005), and both SORT (Protopapa et al., 2014) and ACS-NSQIP (Chiew 

et al., 2020) lack external validation outside their original populations. Additionally, ACS-
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NSQIP is criticized for the complexity of its model (Reilly, 2021). These risk-scoring 

systems are primarily based on statistical techniques like logistic or Cox regression, which 

remain the standard for developing prediction models, even when the primary focus is 

accuracy over the interpretation of the regression coefficients (Knaus et al., 1991; Le et al., 

1993). Most of these tools are designed for preoperative risk assessment and thus rely only 

on variables available before surgery (Bilimoria et al., 2013).  However, the patient's 

operative procedure and complications in the immediate aftermath of surgery provide 

additional information for predicting mortality and potentially permitting early recognition 

of modifiable risk factors. Machine learning, often referred to as data mining, focuses on 

discovering meaningful patterns in data to address specific questions and may provide 

enhanced predictive performance, while also enabling automation and integration into 

clinical decision support systems (Taylor et al., 2016). It shares close ties with both 

statistics and engineering (Wu et al., 2010). Although machine learning algorithms have 

the potential to improve prediction accuracy compared to traditional regression models by 

capturing complex, nonlinear relationships within data, they cannot extract information 

that does not already exist in the dataset, regardless of the sophistication of the algorithm 

or computing power (Chen and Asch, 2017). 

                   In recent years, machine learning (ML) has gained widespread adoption in 

mortality and disease prediction, demonstrating superior classification and predictive 

performance with large datasets (Taylor et al., 2016; Rose, 2013; Lien et al., 2021; Rau et 

al., 2019; Delahanty et al., 2018; Fleuren et al., 2020). Traditional ML methods often rely 

on hand-engineered features, where each predictive outcome requires the creation of a 
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custom dataset with specific variables. The effectiveness of ML models is largely 

influenced by the quality of the data representation (or features) used (Bengio, Courville, 

and Vincent, 2013). As a result, a significant amount of effort in deploying ML algorithms 

is focused on designing preprocessing pipelines and data transformations to create 

representations that enable effective learning. This feature engineering process, while 

crucial, is time-consuming and emphasizes a key limitation of current algorithms: their 

inability to autonomously extract and structure relevant information from the data. In 

contrast, deep learning methods are recognized for their ability to automatically derive 

meaningful features from raw data (Cosgriff and Celi, 2020). A brief overview of various 

approaches is provided below:  

2.1.1 Machine Learning Techniques  

In constructing a machine learning system, three core components are essential: data, 

models, and the learning process (Deisenroth, Faisal, & Ong, 2020). At the heart of this 

system is the quest to determine what constitutes an effective model, and while the 

definition may vary with data and applications, a universally accepted principle is that a 

strong model should generalize well to new, unseen data. Establishing meaningful 

performance metrics—like accuracy or error rates—helps benchmark model effectiveness, 

ensuring that predictions approximate real outcomes. By focusing on automation, machine 

learning leverages algorithms to draw critical insights from data, thus providing adaptable 

solutions across a range of datasets without requiring extensive domain-specific knowledge 

(Deisenroth, Faisal & Ong, 2020). 
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Machine learning aims to devise universal methods for identifying key patterns within data, 

which is why data itself forms the foundation of the process. In practice, a model serves as 

an approximation of the underlying mechanism generating the observed data, designed to 

capture essential characteristics and uncover latent patterns. A well-built model enables the 

prediction of real-world events, potentially circumventing the need for actual 

experimentation (Deisenroth, Faisal & Ong, 2020). With a reliable model structure, one 

can draw valuable insights, furthering machine learning’s overarching goal of providing 

predictive power without exhaustive data collection. 

The learning phase in machine learning is critical. Given a dataset and a model framework, 

the objective is for the model to succeed on previously unseen data. This requirement 

distinguishes learning from mere memorization; a model focused solely on training data 

risks overfitting, leading to poor generalization. Hence, effective learning focuses on 

achieving configurations that perform optimally across a broader data landscape. In 

practical workflows, machine learning can be broken down into three key stages: prediction 

(or inference), training (or parameter estimation), and hyperparameter tuning (or model 

selection). The prediction stage applies the model to new data, with probabilistic models 

particularly benefiting from uncertainty quantification, a feature that aids in assessing 

predictive confidence. Incorporating probability theory, this step allows models to express 

the confidence level of each prediction based on the data context (Deisenroth, Faisal & 

Ong, 2020). 

Training focuses on optimizing parameters for maximal performance, with most 

techniques rooted in gradient-based methods that refine model accuracy. This optimization 
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is akin to ascending a hill, where reaching the peak equates to obtaining the best parameter 

configuration (Deisenroth, Faisal & Ong, 2020). For non-probabilistic models, the 

Empirical Risk Minimization (ERM) principle addresses overfitting by minimizing 

empirical risk; this approach optimizes the function to fit the training dataset closely, but 

overfitting often occurs when the empirical risk underestimates the true risk on new data 

(Deisenroth, Faisal & Ong, 2020). 

A machine learning system is fundamentally constructed around three essential 

components: data, models, and the process of learning (Deisenroth, Faisal, & Ong, 2020). 

A critical question in the field is, "What makes a model effective?" While defining a “good” 

model can be complex due to the nuances and variability of data, a core principle is that a 

robust model should generalize effectively to new, unseen data. To meet this criterion, it is 

necessary to establish clear performance metrics, such as accuracy or error rates compared 

to actual outcomes, and to fine-tune models to excel according to these standards. Machine 

learning ultimately focuses on developing algorithms that automatically derive significant 

insights from data, making “automation” a central theme (Deisenroth, Faisal & Ong, 2020). 

In this sense, machine learning is designed to be versatile, producing methods applicable 

across various datasets and yielding meaningful results without extensive domain-specific 

expertise. 

The primary aim of machine learning is to develop general-purpose methods that identify 

important patterns within data, with data being fundamental to the process. A model in 

machine learning typically seeks to replicate the underlying process that generates data 

similar to the dataset in question. An effective model is a simplified representation of the 
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data-generating process, capturing essential features needed to reveal patterns within the 

data. With a well-constructed model, predictions about real-world scenarios become 

feasible, eliminating the need for real-world experimentation to achieve similar outcomes 

(Deisenroth, Faisal & Ong, 2020). 

Learning, the third key component, is crucial. Given a dataset and a model framework, the 

primary goal is for the model to perform well on new data it has not encountered before, 

rather than just memorizing patterns from the training data. A model that performs well 

solely on training data may be overfitting, which often fails to translate to strong results on 

unseen data. In practical applications, machine learning models must adapt to scenarios 

they haven't previously encountered. Thus, the learning goal is to identify an optimal model 

configuration and its parameters to maximize performance on unseen data. In practice, 

three phases typically define machine learning workflows: 

1. Prediction or inference 

2. Training or parameter estimation 

3. Hyperparameter tuning or model selection 

During the prediction phase, a model is applied to new data to make inferences based on 

learned parameters. This phase differs based on whether the model is deterministic or 

probabilistic. When probabilistic models are involved, the prediction phase is referred to 

as inference, as it incorporates uncertainty into predictions. 

Uncertainty quantification is another important aspect of machine learning, allowing 

practitioners to gauge the confidence of predictions at specific data points. Probability 

theory underpins this uncertainty assessment, providing a theoretical framework for 
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expressing predictive confidence. In model training, the objective is generally to adjust 

parameters to maximize performance. Many training techniques depend on gradient-based 

optimization, which directs the adjustments needed to improve model accuracy. Training 

a model, therefore, involves refining its parameters based on a utility function that 

measures the model’s fit to the data. This optimization can be likened to climbing a hill, 

where the summit represents the optimal parameter set for the model (Deisenroth, Faisal 

& Ong, 2020). 

In the training or parameter estimation phase, we adjust our predictive model based on 

training data to identify effective predictors. Two primary strategies are employed in this 

process: finding the best predictor based on a measure of quality, often referred to as a 

point estimate, or utilizing Bayesian inference (Deisenroth, Faisal & Ong, 2020). While 

both strategies can apply to different types of predictive models, Bayesian inference 

specifically requires probabilistic models (Deisenroth, Faisal & Ong, 2020). 

Non-Probabilistic Models 

For non-probabilistic models, we typically follow the principle of Empirical Risk 

Minimization (ERM). This principle frames an optimization problem aimed at 

minimizing the empirical risk  

𝑅𝑒𝑚𝑝(𝑓; 𝐷) =
1

𝑛
∗ ∑ ℓ(𝑓(𝑥𝑖), 𝑦𝑖)

𝑛

1
 

• D  = (𝑓(𝑥𝑖), 𝑦𝑖)𝑖 𝑡𝑜 𝑛  

is the training dataset. 

• f is the predictive function. 
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• ℓ is the loss function that measures the difference between the predicted values f(x

i) and the true values yi. 

(Deisenroth, Faisal & Ong, 2020) 

This minimization allows us to find parameters that provide good predictions. However, it 

can lead to overfitting, where the model learns the training data too closely and fails to 

generalize well to new data. This phenomenon often occurs when the empirical risk on the 

training set Remp (f; Dtrain) significantly underestimates the true risk Rtrue(f) (Deisenroth, 

Faisal & Ong, 2020). 

Maximum Likelihood Estimation 

In the context of statistical models, the principle of Maximum Likelihood Estimation 

(MLE) is utilized to find a good set of parameters θ. MLE seeks to maximize the likelihood 

function   

𝐿(𝜃; 𝐷) = ∏ 𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝜃)

𝑛

𝑖=1

 

where: 

• p(yi ∣ xi, θ) is the probability of observing yi given xi and parameters θ (Deisenroth, 

Faisal & Ong, 2020). 

Maximizing the likelihood is equivalent to minimizing the negative log-likelihood L(θ) 

𝐿(𝜃) = − ∑ 𝑙𝑜𝑔 𝑝(𝑦𝑖 ∣ 𝑥𝑖, 𝜃)
𝑛

𝑖=1
 

This approach provides a powerful means of fitting statistical models to data, although it 

does not inherently account for uncertainty in the model's predictions or parameters 

(Deisenroth, Faisal & Ong, 2020). 
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Probabilistic Models 

Focusing solely on some statistic of the posterior distribution (such as the parameters θ that 

maximizes the posterior) leads to a loss of information which can be critical in a system 

that uses the prediction p(𝑥𝑖/𝜃) to make decisions. These decision-making systems 

typically have different objective functions than the likelihood of squared-error loss or a 

misclassification error. Therefore, having the full posterior distribution around can be 

extremely useful and leads to more robust decisions. Bayesian inference is about finding 

this posterior distribution (Gelman et al., 2004). For a dataset X, a parameter prior p(θ), 

and a likelihood function, the posterior  

𝒑(𝜽 ∣ 𝑿) =
𝒑(𝑿 ∣ 𝜽)𝒑(𝜽)

𝒑(𝑿)
 

is obtained by applying Bayes’ theorem. The key idea is to exploit the Bayes theorem to 

invert the relationship between the parameters _ and the data X (given by the likelihood) 

to obtain the posterior distribution 𝒑(𝜽 ∣ 𝑿)). The implication of having a posterior 

distribution on the parameters is that it can be used to propagate uncertainty from the 

parameters to the data. More specifically, with a distribution 𝒑(𝜽) on the parameters our 

predictions will be For probabilistic models, Bayesian inference is used to model 

uncertainty. This approach incorporates: 

• Prior p(θ): Represents initial beliefs about the parameter values before observing 

any data. 

• Likelihood 𝒑(𝒚 ∣ 𝒙, 𝜽): The probability of observing data y given input x and 

parameters θ 
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• Posterior  𝒑(𝜽 ∣ 𝒚): The updated beliefs about the parameters after observing data 

y (Deisenroth, Faisal & Ong, 2020). 

According to Bayes’ theorem, the posterior can be expressed as: 

                                                            𝑝(𝜃 ∣ 𝑦) = 𝑝(𝑦 ∣ 𝑥, 𝜃) ∗ 𝑝(𝜃)/𝑝(𝑦) 

 

For optimization purposes, since p(y) does not depend on θ, we can simplify this to: 

                                                          p(θ∣y)∝p(y∣x,θ)⋅p(θ) 

This formulation illustrates how prior knowledge can be integrated with observed data to 

refine parameter estimates. The process of estimating the parameters by maximizing the 

posterior distribution is known as Maximum A Posteriori (MAP) estimation 

(Deisenroth, Faisal & Ong, 2020). 

Regularization 

In non-probabilistic models, regularization techniques are often introduced to prevent 

overfitting. Regularization adds a penalty term Ω(θ) to the loss function: 

 

                                                     𝑅𝑟𝑒𝑔(𝑓; 𝐷) = 𝑅𝑒𝑚𝑝(𝑓; 𝐷) + 𝜆𝛺(𝜃) 

where: 

• λ controls the strength of the penalty, 

• Ω(θ) is a regularization function (e.g., L1 or L2 regularization) (Deisenroth, Faisal 

& Ong, 2020). 
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In probabilistic models, the concept of regularization is analogous to the prior distribution 

on the parameters p(θ), which biases the parameter estimates toward simpler models 

(Deisenroth, Faisal & Ong, 2020). 

Thus, in short, non-probabilistic models primarily use MLE and empirical risk 

minimization, focusing on optimization problems to reduce loss without explicitly 

modeling parameter uncertainty (Deisenroth, Faisal & Ong, 2020). 

Probabilistic models employ Bayesian inference, incorporating priors, likelihoods, and 

posteriors to comprehensively represent uncertainty (Deisenroth, Faisal & Ong, 2020). 

Each approach has its advantages, with non-probabilistic methods being straightforward 

for optimization tasks, while probabilistic models excel in situations that require 

uncertainty quantification (Deisenroth, Faisal & Ong, 2020). Thus, Model parameters can 

be estimated using either maximum likelihood estimation (MLE) or maximum a posteriori 

(MAP) estimation. Both methods yield a single best estimate of the parameter, making 

parameter estimation primarily an optimization problem. Once these parameters are 

estimated, they can be utilized for making predictions. Specifically, the predictive 

distribution takes the form  p(x ∣ θ) where the estimated parameters are applied within the 

likelihood function. However, relying only on a point estimate from the posterior 

distribution (such as the parameter θ that maximizes the posterior) may result in a loss of 

valuable information. This can be especially problematic in decision-making systems 

where predictions, like 𝑝(𝑥𝑖 ∣ 𝜃), are used. These systems typically have objective 

functions beyond just likelihood, such as minimizing squared-error loss or 
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misclassification errors. Hence, retaining the full posterior distribution can yield more 

robust decisions by providing a richer uncertainty measure (Gelman et al., 2004). 

In Bayesian inference, the posterior distribution is derived for a given dataset X, prior p(θ), 

and likelihood function, using Bayes' theorem: 

𝑝(𝜃 ∣ 𝑋) = 𝑝(𝑋 ∣ 𝜃)𝑝(𝜃)/𝑝(𝑋), 𝑝(𝑋) = ∫ 𝑝(𝑋 ∣ 𝜃)𝑝(𝜃)𝑑𝜃. 

 

The essence of Bayesian inference is to apply Bayes’ theorem to reverse the relationship 

between the parameters θ and the data X (as described by the likelihood function), resulting 

in the posterior distribution 𝑝(𝜃 ∣ 𝑋). The benefit of obtaining a posterior distribution for 

the parameters is that it allows for uncertainty in parameter estimates to be reflected in the 

predictions. By having a parameter distribution p(θ), the predictions are expressed as 

𝑝(𝑥) = ∫ 𝑝(𝑥 ∣ 𝜃)𝑝(𝜃)𝑑𝜃 = 𝐸𝜃[𝑝(𝑥 ∣ 𝜃)], 

where predictions are averaged over all plausible parameter values θ, with each value’s 

plausibility determined by p(θ) 

Comparing these approaches, parameter estimation through MLE or MAP provides a point 

estimate θ for the parameters, requiring optimization as the central computational step. On 

the other hand, Bayesian inference produces a distribution (posterior), making integration 

the core computational challenge. Predictions based on point estimates are direct, while 

predictions in a Bayesian context involve another integration to account for parameter 

uncertainty; Bayesian inference, however, offers a structured approach for incorporating 

prior knowledge, side information, and model structure, which is often challenging in 

conventional parameter estimation. Furthermore, transferring parameter uncertainty into 
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predictions can enhance decision-making, which is particularly beneficial in risk 

assessment and exploration for data-efficient learning (Deisenroth et al., 2015; Kamthe & 

Deisenroth, 2018). 

Deterministic Loss Function 

The mean squared error (MSE) is one of the simplest and most widely used loss functions, 

especially for regression tasks, as it provides a clear measure of prediction error. Here, 

MSE is used to calculate loss and adjust the weights of deterministic models accordingly: 

 

                                                  𝑀𝑆𝐸 = 1/𝑁  ∑ (𝑦^𝑖 − 𝑦𝑖)2𝑛
𝑖=1  

 

where N is the number of predictions,  𝑦^𝑖   represents the predicted data, and yi represents 

the true label data. MSE calculates the difference between each prediction and the actual 

value, squares it to avoid negative values, and then averages these squared errors. This 

result provides a single MSE value, indicating how far or close the model’s predictions are 

from the real values (Goodfellow et al., 2016). 

When dealing with binary outcomes, a common choice for the loss function is 

binary cross-entropy (or log loss), as it effectively measures the performance of a model 

where each prediction is a probability between 0 and 1. Binary cross-entropy is especially 

suitable for classification tasks with probabilistic outputs, where it penalizes incorrect 

predictions with an exponential increase in error for increasingly incorrect probabilities. 

The binary cross-entropy loss L is defined as follows: 
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                                         −1/𝑁  ∑ [𝑦𝑖 𝑙𝑜𝑔(𝑦^𝑖) + (1 − 𝑦𝑖) 𝑙𝑜𝑔(1 − 𝑦^𝑖)]𝑛
𝑖=1  

where: 

• N is the number of predictions, 

• yi is the true binary label (0 or 1), 

• y^i is the predicted probability of the positive class (i.e., the probability that yi=1). 

In this function, when the prediction aligns perfectly with the true label (e.g., yi=1y_i = 1yi

=1 and y^I is close to 1), the loss value is minimized. Conversely, if the prediction diverges 

from the true label, the loss increases. This nature of binary cross-entropy makes it highly 

effective for tasks like binary classification in deep learning and is commonly used in 

probabilistic models as well as traditional logistic regression (Goodfellow et al., 2016). 

Practical Applications 

Binary cross-entropy is critical in applications where the outcome is binary, such as 

medical diagnosis (e.g., disease present vs. absent), financial forecasting (e.g., market up 

or down), and other binary decision-making tasks (Chollet, 2018). In Bayesian neural 

networks, this function is often combined with probabilistic estimations, allowing models 

to produce not only a binary decision but also a measure of uncertainty. 

Bayesian Loss Function 

For Bayesian models, the loss function is more complex. Starting with the posterior 

distribution P(w∣D) over the model’s parameters, the direct calculation often lacks a 

closed-form solution (Wen et al., 2018). To approximate this, variational inference is used, 

transforming the problem into one of finding a distribution qθ(w) that is close to P(w∣D), 

with similarity measured by the Kullback-Leibler (KL) divergence: 
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                             𝐾𝐿(𝑞𝜃(𝑤) ∥ 𝑃(𝑤 ∣ 𝐷)) = ∫ 𝑞𝜃(𝑤)𝑙𝑜𝑔𝑃(𝑤 ∣ 𝐷)𝑞𝜃(𝑤)𝑑𝑤 

This setup allows us to approximate the posterior distribution by minimizing the KL 

divergence between our model’s parameter distribution and the target posterior. However, 

P(w∣D) is still difficult to calculate directly, so we use the Evidence Lower Bound (ELBO) 

to make this optimization computationally feasible (Chollet, 2018). The ELBO 

reformulates the objective, allowing the optimization problem to be reframed as 

maximizing ELBO: 

                               

                                        θ∗= 𝑎𝑟𝑔𝜃𝑚𝑎𝑥∫ 𝑞𝜃(𝑤)𝑙𝑜𝑔𝑞𝜃(𝑤)𝑃(𝐷 ∣ 𝑤)𝑃(𝑤)𝑑𝑤 

Maximizing this expression provides an efficient way to optimize the Bayesian loss 

function and train Bayesian neural networks. 

2.1.1.1 Tree-based models: Decision Tree 

 Decision trees divide sample data by splitting variables at specific points and are often 

visualized as a tree structure (Kuhn & Johnson, 2013; Hastie et al., 2009). Some well-

known decision tree algorithms include Quinlan’s ID3, C4.5, C5 (Quinlan, 1979, 1983, 

1993), and CART (Breiman et al., 1984). CART (Classification and Regression Trees) 

handles both classification and regression tasks. In CART, tests are always binary, and it 

uses the Gini diversity index to rank tests. Trees are pruned using a cost-complexity model, 

with parameters estimated through cross-validation. The Gini rule, favored by the CART 

authors, is similar to the more widely known entropy or information-gain criterion. 

For a binary (0/1) target, the "Gini measure of impurity" at node t is defined as: 

G(t)=1−p(t)2−(1−p(t))2          
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where p(t) is the (possibly weighted) relative frequency of class 1 at the node. The 

improvement (gain) from splitting a parent node Pinto left and right children L and R is: 

I(P)=G(P)−qG(L)−(1−q)G(R) 

where q is the (possibly weighted) fraction of instances going to the left. CART favors the 

Gini criterion because it is more computationally efficient than information gain and can 

be extended to include symmetric costs. Later versions of CART added information gain 

as an optional splitting rule. CART also introduced the modified towing rule, which 

compares the target attributes directly. For regression (continuous targets), CART offers 

Least Squares (LS) and Least Absolute Deviation (LAD) criteria to measure split 

improvements (Wu et al., 2010). Three machine learning algorithms—Random Forest 

(RF), Gradient Boosting Machine (GBM), and Extreme Gradient Boosting (XGB)—use 

decision trees as their base learner (Schapire, 2003). 

2.1.1.2 Random Forest (RF) 

Because decision trees often have limited predictive accuracy, several methods are used to 

combine multiple trees to enhance performance. These methods include bagged trees and 

boosted trees (Churpek et al., 2016). Random Forest (RF), a bagged tree model (Breiman, 

2001), is a classification and regression method that aggregates the predictions from a large 

number of decision trees. Specifically, RF builds an ensemble of trees from subsamples of 

the training dataset, internally validating them to predict the response based on the 

predictors. Each tree is a standard Classification or Regression Tree (CART) that uses the 

Decrease of Gini Impurity (DGI) as the splitting criterion, selecting a predictor from a 

randomly chosen subset of variables (different at each split). Each tree is constructed from 
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a bootstrap sample drawn with replacement from the original dataset, and predictions from 

all trees are combined using majority voting. 

One key feature of RF is the out-of-bag (OOB) error. For each tree, some observations are 

not used in the training process, making them OOB observations, which serve as an internal 

validation set. The OOB error is the average error frequency when OOB observations are 

predicted using the trees that did not include them during training, providing a less 

optimistic and reliable estimate of the error for independent data. 

RF requires setting two key parameters: the number of trees (ntree) and the number of 

randomly selected predictor variables (mtry). 

Pera et al. (2022) developed a 90-day mortality (90DM) risk prediction model using 

machine learning in a large multicentre cohort of patients undergoing gastric cancer 

resection with curative intent. They tested four 90DM predictive models based on 

preoperative clinical characteristics: Cross-Validated Elastic Net regularized logistic 

regression (cv-Enet), boosting linear regression (glmboost), random forest, and an 

ensemble model. Among the single models, RF showed the best discrimination ability, 

with a validated AUC of 0.844 (95% CI: 0.841–0.848), outperforming cv-Enet (AUC of 

0.796, 95% CI: 0.784–0.808) and glmboost (AUC of 0.797, 95% CI: 0.785–0.809). The 

ensemble model did not significantly improve the AUC (0.847, 95% CI: 0.836–0.858) 

compared to the RF model alone. 

The study, however, did not give details of other metrices including precision, recall and 

F1 score. For ‘‘imbalanced’ datasets, a metric such as the area under the precision-recall 

curve - plotting the positive predictive value (precision) against sensitivity (recall) - is often 
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more informative, particularly to quantify the presence of false alarms. For the clinician at 

the bedside, a model with a high false alarm rate is unlikely to be a useful model. In 

addition, if a false positive decision causes greater harm than a false-negative decision, a 

model with high specificity may be preferable to a model with high sensitivity and lower 

specificity, although the latter model might have, say, a higher AUROC (Vistisen et 

al.,2022). While random forests result in more reliable predictions than single trees, they 

are difficult to interpret as individual trees are lost in the overall forest. To achieve visual 

interpretability, a single tree most similar to the overall forest can be identified and 

extracted (Chirikov et al.,2017). Churpek et al.(2016) in a  Multicenter comparison of 

machine learning methods and conventional regression for predicting clinical deterioration 

including mortality in the wards found that the random forest model was the most accurate 

(AUC, 0.80 [95% CI, 0.80-0.80]) followed by the gradient boosted machine (AUC, 0.80 

[95% CI, 0.79–0.80]. The logistic regression model with spline terms was more accurate 

than the model utilizing linear predictor terms (AUC, 0.77 vs 0.74; p < 0.01), and all models 

were more accurate than the Modified Early Warning Score (AUC, 0.70 [95% CI, 0.70-

0.70]), a commonly utilized rapid response team activation tool. One‐year mortality was 

11% (n = 3738). The comparison with the Modified Early score displayed that nonlinear 

models are more accurate. However, the authors did not use Deep learning despite having 

a high volume of data which may have given better insight about nonlinear ML techniques. 

Hill et al.(2019)  reported on the use of machine learning algorithms, specifically random 

forests, to create a fully automated score that predicts postoperative in-hospital mortality 

based solely on structured data available at the time of surgery.  They used electronic health 
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record data from 53 097 surgical patients (2.01% mortality rate) who underwent general 

anesthesia between April 1, 2013, and December 10, 2018, in a large US academic medical 

centre to extract 58 preoperative features. The model was created using a set of features 

including basic patient information such as age, sex, BMI, BP, and HR; laboratory tests 

frequently obtained before surgery, such as sodium, potassium, creatinine, and blood cell 

counts; and surgery-specific information such as the surgical procedure codes. In total, 58 

preoperative features (including ASA status) were selected. For all variables, only the most 

recent value before surgery was included. Authors evaluated four different classification 

models: logistic regression, Elastic Net logistic regression, random forests, and gradient-

boosted trees.  A random forest classifier with area under the curve [AUC] of 0.932, 95% 

confidence interval [CI] 0.910e0.951) outperformed Preoperative Score to Predict 

Postoperative Mortality (POSPOM) scores (AUC of 0.660, 95% CI 0.598e0.722), 

Charlson comorbidity scores (AUC of 0.742, 95% CI0.658e0.812), and ASA physical 

status (AUC of 0.866, 95% CI 0.829e0.897). Including the ASA physical status with the 

preoperative features achieved an AUC of 0.936 (95% CI 0.917e0.955). Gradient boosting 

trees can be more accurate than random forests because the model includes training the 

trees to correct each other’s errors. Hence, it can capture complex patterns in the data. 

However, if the data are noisy, the boosted trees may overfit and start modeling the 

noise.  RF has only one hyperparameter to set: the number of features to randomly select 

at each node. However, there is a rule of thumb to use the square root of the number of 

total features which works pretty well in most cases (Bernard, Heutte, and Adam,2009). 

On the other hand, GBMs have several hyperparameters that include the number of trees, 

https://www.baeldung.com/cs/ml-underfitting-overfitting
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the depth (or number of leaves), and the shrinkage (or learning rate).  While it is not true 

that RF does not overfit (as opposed to what many are led to believe by Breiman's strong 

assertions), it is true that they are more robust to overfitting and require less tuning to avoid 

it. 

2.1.1.3 Boosting algorithm   

The principal difference between boosting and the committee methods such as bagging 

discussed above, is that the base classifiers are trained in sequence, and each base classifier 

is trained using a weighted form of the data set in which the weighting coefficient 

associated with each data point depends on the performance of the previous classifiers. In 

particular, points that are misclassified by one of the base classifiers are given greater 

weight when used to train the next classifier in the sequence. Once all the classifiers have 

been trained, their predictions are then combined through a weighted majority voting 

scheme (Bishop and Nasrabadi,2006).  Originally designed for solving classification 

problems, boosting can also be extended to regression (Friedman,2001). The most widely 

used form of boosting algorithm called AdaBoost, short for ‘adaptive boosting’, was 

developed by Freund and Schapire (1996). Extreme Gradient Boosting (XGBoost or XGB 

for short) is an optimized implementation of a GBM (Chen and Guestrin,2016). It uses 

decision (regression) trees as weak learners. To perform the gradient descent procedure, it 

calculates the loss and adds a tree to the model (always one at a time) that reduces it (i.e., 

follows the gradient). This is done by parameterizing the tree and modifying these 

parameters to move in the right direction by reducing the loss. The existing trees in the 

model are not changed. Trees are added until a fixed number is reached, until the loss 
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reaches an acceptable level, or until no more improvement is achieved. XGB’s final output 

is given by the (weighted) sum of all the predictions made by all the individual trees. Barash 

et al. (2022) developed an ML model for predicting 30-day mortality in patients discharged 

from the Emergency Department (ED). The overall rate of 7-day post-ED discharge 

mortality was 571/363 635 (0.2%), and the 30-day mortality rate was 2989/363 635 (0.8%). 

A gradient-boosting model was trained to predict mortality within 30 days of release from 

the ED. The default XGBoost parameters: eta=0.3, max depth=6, and scale pos weight=1 

was used. Estimators were set to 1000. The class imbalance was addressed by the XGBoost 

class weights feature. Missing values were modeled by the XGBoost algorithm. 

Bootstrapping validations (1000 bootstrap resamples) were used to calculate 95% CI. As 

reported by the authors, for the entire cohort, the gradient boosting model showed an AUC 

of 0.97 (95% CI 0.96 to 0.97). For a fixed specificity of 95% and a false positive rate (FPR) 

of 1:20, the model showed a sensitivity of 84% for oncology patients. Other matrices had 

a Positive predictive value of 0.18 (95% CI 0.17 to 0.19), Negative predictive value of 1.00 

(95% CI 1.00 to 1.00), F1 score of 0.29 (95% CI 0.27 to 0.30). For the non-oncological 

cohort model for a fixed specificity of 95% and FPR 1:20, the sensitivity of this model was 

74%. As can be seen, while the model has a high AUC, the F1 score is less due to low PPV. 

Chiew et al. (2020) compared the performance of machine learning models against the 

traditionally derived Combined Assessment of Risk Encountered in Surgery (CARES) 

model and the American Society of Anesthesiologists Physical Status (ASA-PS) in the 

prediction of 30-day postsurgical mortality and need for intensive care unit (ICU) stay >24 

hours. Candidate models were trained using random forest, adaptive boosting, gradient 
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boosting, and support vector machine. Models were evaluated on the area under the 

receiver operating characteristic curve (AUROC) and the area under the precision-recall 

curve (AUPRC). Gradient boosting was the best-performing model with an F1 score of 

0.28 and AUPRC of 0.23 and 0.38 for mortality and ICU admission outcomes respectively. 

Forte et al. (2017) developed ML algorithms to predict 5 yrs., long-term mortality in 

Coronary Artery Bypass Graft (CABG) patients using data from routinely measured 

clinical parameters from a large cohort of CABG patients (n=5868) and compared the 

accuracy of 5 different ML models with traditional Cox and Logistic Regression. In the 

validation dataset, the Gradient Boosted Machine (GBM) algorithm was the most accurate 

(AUROC curve [95%CI] of 0.767 [0.739-0.796]), proving to be superior to traditional Cox 

and logistic regression (p <0.01) for long-term mortality prediction. However, the only 

metric used by authors was ROC value which does not provide enough information in 

imbalanced data for adequate comparison in terms of False positives and False negatives. 

The authors did not use deep learning for comparison. Peng et al. (2022) developed 

machine learning models to predict postoperative major adverse cardiovascular events in 

geriatric patients. They trained various models, including extreme gradient boosting 

(XGB), gradient boosting machine, random forest, support vector machine, and Elastic Net 

logistic regression. The performance of these models was compared using the area under 

the precision-recall curve (AUPRC), the area under the receiver operating characteristic 

curve (AUROC), and the Brier score. XGB outperformed the other models, achieving an 

AUPRC of 0.404 (95% CI: 0.219–0.589), an AUROC of 0.870 (95% CI: 0.786–0.938), 

and a Brier score of 0.024 (95% CI: 0.016–0.032). The model trained on an under-sampled 
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dataset showed even better performance, with an AUPRC of 0.511 (95% CI: 0.344–0.667, 

p < .001), an AUROC of 0.912 (95% CI: 0.847–0.962, p < .001), and a Brier score of 0.020 

(95% CI: 0.013–0.028, p < .001). The results were expected, as XGB, which uses gradient 

loss correction with penalization, is more advanced than the other machine learning 

techniques. Notably, the authors did not employ deep learning methods. 

In a multi-center validation study, Lee et al. (2022) developed a machine learning model 

for preoperative prediction of postoperative mortality, using only 12–18 clinical variables 

for model training. The data came from 454,404 patients aged 18 or older who underwent 

non-cardiac surgeries across four independent institutions. The study compared the 

predictive performances of logistic regression, random forest, extreme gradient boosting 

(XGBoost), and deep neural network methods. To enhance model robustness and prevent 

overfitting, they employed bootstrapping and grid search with tenfold cross-validation. 

XGBoost achieved the best performance, with an AUROC of 0.9376 and an area under the 

precision-recall curve (AUPRC) of 0.1593. Despite the high AUROC, the study reported a 

relatively low AUPRC value. 

2.1.1.4 Support Vector Machines 

The Support Vector Machine (SVM) is designed to solve binary classification problems in 

supervised learning, where a set of examples 𝑋𝑛 ∈ 𝑅𝐷  is paired with corresponding binary 

labels  𝑦𝑛 ∈ {+1, −1}. Given a training dataset consisting of example-label pairs 

{(x1,y1),…,(xN, yN), the algorithm estimates model parameters to minimize classification 

errors (Deisenroth, Faisal, and Ong, 2020). The SVM seeks to identify a set of model 

parameters that effectively minimize classification errors. This process involves 
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constructing a decision boundary that maximally separates examples with different labels. 

SVM is known for delivering high accuracy and generalization across many applications, 

from text categorization to image classification, with strong theoretical performance 

guarantees (Steinwart and Christmann, 2008). 

A distinctive aspect of SVM is its reliance on geometric principles rather than probabilistic 

ones. In contrast to the maximum likelihood estimation (MLE) approach, where a 

probabilistic model is formulated based on an assumed distribution of the data, SVM 

operates on a geometric perspective. This perspective involves building a specific 

optimization function informed by geometric insights, such as the concepts of inner 

products, margins, and projections. The SVM approach focuses on finding a hyperplane or 

decision boundary that best separates the data points according to their labels. By 

maximizing the margin between the classes, SVM effectively reduces the risk of 

classification errors and improves model robustness to unseen data. 

In typical machine learning models, such as those using MLE or Bayesian inference, the 

data is represented through probabilistic models. Here, the model’s structure and 

parameters are inferred to reflect the likelihood of the observed data. Conversely, SVM 

views the problem through the lens of empirical risk minimization (ERM), aiming to 

minimize classification errors based on actual observed data. The optimization function 

within SVM is explicitly designed to increase the separation between different classes 

within the 𝑅𝐷  space. This is accomplished by adjusting the weights of the model to 

enhance the margin between positive and negative samples, ensuring that examples sharing 

the same label are clustered in the same region, and distinct from other labels. This 
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geometric orientation sets SVM apart from probabilistic and Bayesian methods, as it 

concentrates solely on spatial separation and data geometry to achieve high classification 

accuracy (Deisenroth, Faisal, & Ong, 2020). 

It uses concepts like inner products and projections, focusing on optimizing a specific 

function during training based on geometric intuitions (Deisenroth, Faisal, and Ong, 2020). 

In essence, many classification algorithms aim to represent data in RD and partition the 

space so that examples with the same label occupy the same region, ensuring separation 

from other examples. 

The algorithm considers a convenient partition by linearly splitting the data space into two 

halves using a hyperplane. Given a data point x∈ RD, the goal of SVM in a two-class 

learning task is to identify the optimal classification function to distinguish between the 

two classes in the training data. The concept of the "best" classification function can be 

understood geometrically. For a linearly separable dataset, this corresponds to a separating 

hyperplane f(x), which lies between the two classes. Once this function is determined, a 

new data point xn can be classified by checking the sign of f (xn); xn  is assigned to the 

positive class if f (xn) > 0. Since there are multiple potential hyperplanes, SVM aims to 

identify the best one by maximizing the margin between the two classes. The margin refers 

to the amount of separation between the classes as defined by the hyperplane. 

Geometrically, the margin is the shortest distance between the closest data points and the 

hyperplane. This approach ensures that only a few hyperplanes qualify as the solution for 

SVM, even though many could exist. The data points closest to the hyperplane, which has 

the minimum distance to it, are known as the support vectors (Witten and Frank, 2005). 
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2.1.1.5 Kernels 

The modular nature of SVM allows for flexibility by treating the choice of classification 

method (SVM) and the feature representation ϕ(x) as independent decisions. This 

separation enables the exploration of both aspects individually. Since ϕ(x) can be a 

nonlinear function, SVM, which typically assumes a linear classifier, can be adapted to 

create classifiers that behave nonlinearly concerning the input data xn.  For certain types of 

similarity functions known as kernels, the function implicitly defines a nonlinear feature 

transformation ϕ(x). A kernel is a function k: X×X→R, for which there exists a Hilbert 

space H and a feature mapping ϕ:X→H such that the kernel can be expressed as 

k(xi,xj)=⟨ϕ(xi),ϕ(xj)⟩. Each kernel k is uniquely associated with a reproducing kernel 

Hilbert space (RKHS) (Berlinet and Thomas, 2011). In this association, the canonical 

feature map is defined as ϕ(x)=k(⋅,x). The "kernel trick" (Schölkopf, Smola, and Bach, 

2002; Shawe-Taylor and Cristianini, 2004) generalizes the inner product to a kernel 

function, effectively concealing the explicit nonlinear feature transformation. The matrix 

K∈RN×N, derived from applying k(⋅,⋅) to a dataset or through inner products, is referred 

to as the Gram matrix or kernel matrix. For a function to serve as a kernel, it must be 

symmetric and positive semi-definite, ensuring that any kernel matrix K is symmetric and 

satisfies ∀z ∈ R N : z TKz ≥ 0. There is a unique reproducing kernel Hilbert space associated 

with every kernel k (Berlinet and Thomas 2011). In this unique association, φ(x) = k(·, x) 

is called the canonical feature map. The generalization from an inner product to a kernel 

function is known as the kernel trick (Schölkopf, Smola and Bach,2002; Shawe, 

Cristianini.2004), as it hides away the explicit non-linear feature map. The matrix K ∈ R: 
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N×N, resulting from the inner products or the application of k(·, ·) to a dataset, is called 

the Gram matrix, and is often just referred to as the kernel matrix. Kernels must be 

symmetric and positive semidefinite functions so that every kernel matrix K is symmetric 

and positive semidefinite ∀z ∈ R N : z TKz ≥ 0 . Some commonly used kernels for 

multivariate real-valued data xi∈RD include the polynomial kernel, the Gaussian radial 

basis function (RBF) kernel, and the rational quadratic kernel (Schölkopf, Smola, and 

Bach, 2002; Rasmussen and Williams, 2006). The primary tuning parameter in SVMs is 

the cost penalty, which determines how heavily misclassified observations are penalized—

higher values impose stricter penalties.  The modular nature of Support Vector Machines 

(SVMs) provides flexibility by separating the choice of classification method and feature 

representation. This separation allows researchers to independently explore the 

classification technique (SVM) and the feature representation ϕ(x), resulting in more robust 

experimentation with data. Notably, SVM assumes a linear classifier by default, but can be 

adapted to nonlinear data using an appropriate nonlinear transformation of the input 

features. This transformation can be done through a kernel function, which effectively 

allows SVM to create nonlinear decision boundaries (Schölkopf, Smola, and Bach, 2002; 

Shawe-Taylor and Cristianini, 2004). 

A kernel function, k(x, y), is a measure of similarity between data points in a transformed 

feature space. Essentially, it implicitly defines the nonlinear transformation ϕ(x) without 

requiring the explicit calculation of feature vectors. The beauty of the kernel trick is its 

ability to avoid the computational complexity of transforming data into high-dimensional 

spaces. For instance, the polynomial kernel, Gaussian radial basis function (RBF) kernel, 
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and rational quadratic kernel are widely used in practice (Berlinet and Thomas-Agnan, 

2011). These kernels provide SVM with the power to classify data with complex, nonlinear 

patterns, making SVMs a competitive choice even compared to deep learning models, 

especially in small or moderately-sized datasets. 

However, despite their success, SVMs also have limitations. As the complexity of the data 

grows—both in terms of features and the number of observations—the computational cost 

of building and training an SVM model increases dramatically. Large-scale datasets, often 

found in modern applications, can significantly slow down SVM training times. Moreover, 

as Huang et al. (2016) demonstrated, while SVMs perform remarkably well on relatively 

small and structured datasets like those in medical applications, they can struggle when 

applied to highly unstructured or massive data sources. 

In a study by Huang et al. (2016), a support vector machine (SVM) model was 

developed to predict mortality in burn patients and compared with a logistic regression 

(LR) model. The overall mortality in this study was 1.8%. Univariate associations with 

mortality were identified, and independent associations were determined through 

multivariate logistic regression analysis. Factors independently associated with mortality 

at admission included gender, age, total burn area, full-thickness burn area, inhalation 

injury, shock, time to admission, and others. 

The logistic regression model demonstrated a sensitivity of 99.75%, a specificity 

of 85.84%, and an area under the receiver operating characteristic (AUROC) of 0.989 (95% 

CI: 0.979–1.000; p<0.01). The model correctly classified 99.50% of cases. The 

subsequently developed SVM model exhibited even better performance, correctly 
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classifying nearly 100% of the test cases. It was also robust in predicting mortality for both 

adult and paediatric patients, with accuracy ranging from 92% to 100%. The study did not 

employ deep learning techniques. 

Wallert et al. (2017) developed a machine-learning model to predict two-year survival 

versus non-survival following a first myocardial infarction (MI). The study used data from 

51,943 first MI cases registered over six years (2006–2011) in the Swedish national quality 

registry, SWEDEHEART/RIKS-HIA, which covers 90% of all MIs in Sweden, with 

follow-up data obtained from the Cause of Death register (over 99% coverage). A Support 

Vector Machine (SVM) with a radial basis function kernel, using 39 predictors, achieved 

the best performance on the test set with an area under the receiver operating characteristic 

curve (AUROC) of 0.845, a positive predictive value (PPV) of 0.280, and a negative 

predictive value (NPV) of 0.966. The SVM model outperformed the Boosted C5.0 model 

(AUROC: 0.845 vs. 0.841, P = 0.028), though its performance was not significantly better 

than Logistic Regression or Random Forest. As the sample size and number of predictors 

increased, the models began to converge, showing minimal differences in performance 

across algorithms. Given the similarity of results across four machine learning techniques, 

the authors suggested that deep learning would be a logical next step, particularly with the 

large and complex dataset. The low PPV of 0.28 indicates room for improvement in the 

model's predictive accuracy. 

2.1.1.6 Deep learning methods  

A deep neural network (DNN) is an advanced structure of interconnected artificial neurons, 

known as nodes, designed to emulate the neural pathways found in the human brain 
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(Goodfellow, Bengio, and Courville, 2016). Each of these nodes includes several 

components: an input, a weight, a bias, and an activation function, which together process 

inputs to generate an output (Chollet, 2018). This basic unit within a neural network is 

referred to as a perceptron, and when these perceptrons are connected, they form a network 

layer. A typical DNN consists of multiple layers, including an input layer, one or more 

hidden layers, and an output layer, through which data passes sequentially (Choi et al., 

2020). As the network grows deeper with additional hidden layers, it gains the ability to 

capture increasingly complex patterns, which makes it particularly effective for intricate 

tasks like image recognition, natural language processing, and more. 

Deep learning has revolutionized fields such as speech recognition, image 

classification, and natural language processing by enabling machines to learn complex data 

patterns. This success stems from the use of multi-layer neural networks (DNNs) that 

progressively extract more abstract representations of data through layers of 

transformation. The hierarchical learning approach of DNNs allows simple features to 

combine into more complex ones, and while the concept may be straightforward, it has 

been remarkably effective in tasks such as autonomous driving and speech recognition 

(LeCun, Bengio, & Hinton, 2015). DNNs are structured into three main layers: the input 

layer, hidden layers, and the output layer. The input layer takes the original data features, 

and the hidden layers process these features by applying non-linear transformations to 

uncover meaningful patterns. This ability to learn abstract data representations makes 

DNNs highly effective at predicting outcomes in complex tasks (Bengio, Courville, & 

Vincent, 2013). 
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However, deep learning models often require large datasets and significant computational 

resources. Historically, such requirements rendered deep learning impractical, but 

advances in hardware—such as more powerful CPUs and GPUs—along with the 

increasing availability of data, have allowed deeper and more complex networks to be 

developed. These advancements have enabled DNNs to identify intricate patterns within 

large datasets, something previously unattainable due to hardware constraints. 

Despite their successes, deep neural networks (DNNs) encounter notable limitations, 

particularly in the realms of uncertainty quantification and overfitting, especially when data 

is limited. Overfitting manifests when models excel on training datasets yet struggle to 

generalize to unseen data. This issue becomes more pronounced as deep learning models 

often produce overly confident predictions, even in the presence of uncertainty within the 

data (Ghahramani, 2016). 

To mitigate these challenges, probabilistic deep learning models, such as Bayesian 

Neural Networks (BNNs), present a promising alternative. These probabilistic models 

effectively represent the uncertain elements of an experiment through probability 

distributions, offering a cohesive set of tools from probability theory for tasks related to 

modeling, inference, prediction, and model selection. Central to probabilistic modeling is 

the joint distribution p(x;θ)  of the observed variables x and the hidden parameters θ. This 

distribution encapsulates crucial information derived from the prior and the likelihood, 

reflecting the product rule. Additionally, the marginal likelihood p(x), which is pivotal for 

model selection, can be computed by integrating out the parameters, following the sum 

rule. The posterior distribution, obtained by dividing the joint by the marginal likelihood, 
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is unique to the joint distribution itself. Consequently, a probabilistic model is defined by 

the joint distribution of all its random variables. 

In contrast to traditional neural networks that depend on fixed weight estimates, BNNs 

utilize probability distribution to capture uncertainty in their predictions (Kendall & Gal, 

2017). Within the framework of Bayesian inference, a global probability model is 

constructed by integrating two fundamental components (Dempster, 1968). The first 

component, known as the prior distribution, embodies initial beliefs about the parameters 

before observing any data, reflecting assumptions about their likely values based on 

existing information or theoretical insights. The second component, the likelihood 

function, illustrates the relationship between the parameters and the observed data, 

indicating how probable the observed data is for various parameter values. Collectively, 

the prior and likelihood facilitate updated inferences about the parameters in light of new 

observations (Dempster, 1968). 

In Bayesian analysis, inferences are articulated as probabilities that quantify the 

likelihood of specific outcomes or parameter values, particularly when certain parameters 

remain unknown or when observations are yet to occur. These probabilities integrate prior 

knowledge encoded in the model with data-driven updates derived from observed 

information (Dempster, 1968). Essentially, Bayesian inference merges prior beliefs with 

empirical evidence from data to establish a probabilistic framework for understanding 

parameter values and making predictions about unseen data. This framework adapts 

dynamically as new information becomes available. Consequently, BNNs are better 

equipped to generalize effectively, especially in scenarios involving limited datasets, by 
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incorporating priors and regularizing model complexity. This adaptability enables BNNs 

to provide more reliable predictions by adequately accounting for uncertainty (Sun et al., 

2019). 

Flipout is a significant development in the training of Bayesian neural networks 

(BNNs) through variational inference. Aimed at improving model efficiency and 

robustness, Flipout minimizes the variance in gradient estimates by decorrelating them 

during backpropagation, allowing for faster and more stable convergence (Wen et al., 

2018). Unlike conventional regularization techniques that focus on network activations, 

Flipout’s unique approach works by creating pseudo-independent weight perturbations 

across mini-batches, enabling more efficient utilization of computational resources. 

Traditional weight perturbation methods are computationally intensive because they often 

require individual calculations for each sample, limiting their scalability. Flipout 

overcomes this by leveraging a distribution factorized by weight and cantered 

symmetrically around zero, thus supporting various network architectures such as fully 

connected networks, convolutional neural networks, and recurrent neural networks (Wen 

et al., 2018). 

The main advantage of Flipout lies in its ability to decorrelate gradient updates without 

adding bias, which improves the overall gradient quality and speeds up convergence. By 

generating decorrelated random perturbations in weight parameters, Flipout makes BNNs 

more robust and enhances their ability to quantify uncertainty. This is particularly valuable 

in high-stakes areas like healthcare, autonomous driving, and financial forecasting, where 

models must not only predict accurately but also provide well-calibrated confidence levels. 
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In these applications, reliable uncertainty estimation is essential to support decision-

making, as BNNs combined with Flipout can help prevent overfitting, a common issue in 

deep neural networks, especially when working with limited data (Wen et al., 2018; Joshi 

& Dhar, 2022). 

Moreover, Flipout contributes to the accuracy and calibration of BNN predictions by 

generating weight distributions rather than single-point estimates. This allows models to 

capture a broader range of data variability and deliver predictions with more accurate 

confidence estimates. This combination of regularization and enhanced uncertainty 

handling aligns the model's output probabilities more closely with actual likelihoods, 

helping create better-calibrated predictions. Ultimately, Flipout’s ability to balance 

computational efficiency with robustness makes it an ideal tool for probabilistic modeling 

in deep learning (Wen et al., 2018). 

Moreover, BNNs help control model complexity, a key factor in preventing 

overfitting. Integrating prior knowledge into the learning process allows BNNs to 

automatically manage model complexity, improving generalization, even with limited data. 

Over time, as more data becomes available, BNNs can make increasingly deterministic 

predictions, thus enhancing their performance in various applications (Blundell et al., 

2015). 

The probabilistic nature of BNNs, coupled with the efficiency gains from Flipout, makes 

these models particularly suitable for applications where uncertainty quantification is vital, 

such as medical diagnosis and autonomous driving. While traditional neural networks are 

primarily concerned with improving accuracy, BNNs, enhanced by Flipout, address both 
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accuracy and uncertainty, thus reducing the risk of overfitting and improving performance 

in uncertain environments (Srivastava et al., 2014; Wen et al., 2018). This combination has 

also been shown to outperform traditional dropout techniques, introducing less noise into 

the training process and enabling the model to retain more accurate feature representations. 

In addressing the problem of data scarcity, BNNs and Flipout can also be combined with 

data augmentation techniques to enhance model generalization. Generative models, such 

as Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs), can 

further complement BNNs by generating synthetic data, thus mitigating the risk of 

overfitting in scenarios with limited data. 

In conclusion, while deep learning models such as DNNs have demonstrated exceptional 

performance across various tasks, their limitations in uncertainty quantification, data 

efficiency, and overfitting necessitate the adoption of more advanced approaches like 

BNNs and Flipout. The integration of probabilistic deep learning methods, particularly 

BNNs enhanced by Flipout, represents a crucial step toward improving the reliability and 

robustness of models in real-world applications requiring both high accuracy and effective 

uncertainty management. 

Nudel et al. (2021) conducted a comparison between two machine learning techniques—

artificial neural networks (ANNs) and gradient boosting machines (XGBs)—against 

traditional logistic regression (LR) models in predicting anastomotic leaks and venous 

thromboembolism (VTE) following bariatric surgery. The models were trained and 

validated using preoperative data from 2015-2017, with a study cohort of 436,807 patients. 

The incidences of leaks and VTE were 0.70% and 0.46%, respectively. For predicting 
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leaks, ANN proved to be the most effective, achieving an AUC of 0.75 (95% CI, 0.73-

0.78), followed by XGB with an AUC of 0.70 (95% CI, 0.68-0.72), and LR trailing with 

an AUC of 0.63 (95% CI, 0.61-0.65), with all comparisons showing statistical significance 

(p < 0.001). For VTE detection, the performance of ANN, XGB, and LR was comparable, 

with AUCs of 0.65 (95% CI, 0.63-0.68), 0.67 (95% CI, 0.64-0.70), and 0.64 (95% CI, 0.61-

0.66), respectively, although the difference between XGB and LR was statistically 

significant (p = 0.001). Both ANN and XGB models surpassed traditional LR in predicting 

anastomotic leaks. Kasim et al. (2022) developed models to predict mortality among 

elderly patients presenting with ST-elevation myocardial infarction (STEMI) using both 

deep learning (DL) and traditional machine learning (ML) algorithms, including logistic 

regression (LR), random forests (RF), XGBoost (XGB), and support vector machines 

(SVM). These models were compared with common scoring systems like Thrombolysis in 

Myocardial Infarction (TIMI). Their study focused on integrating DL with ML feature 

selection techniques to better understand DL's "black box" nature, particularly in predicting 

mortality among elderly STEMI patients in an Asian cohort. The researchers hypothesized 

that combining DL with ML-based feature selection algorithms would improve in-hospital 

mortality predictions for this group. 

The main performance metric was the area under the receiver operating characteristic curve 

(AUC). The features selected by RF, XGB, SVM, and LR were applied to the DL model. 

The results indicated that ML models built using a reduced set of features outperformed 

those developed with the full set. For example, the AUCs for LR (0.91 vs. 0.83), RF (0.91 

vs. 0.89), XGB (0.89 vs. 0.89), and SVM (0.91 vs. 0.87) were higher when fewer features 
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were used. The DL model using all features achieved an AUC of 0.93, slightly better than 

the ML models using reduced feature sets. However, the DL model constructed with 

selected features (e.g., AUC of 0.95 using RF-selected variables) demonstrated superior 

performance compared to the model using all features (AUC 0.93). There was no 

statistically significant difference between the DL models developed with selected features 

from various ML algorithms (p > 0.05). 

In terms of positive predictive value (PPV), the models varied: LR (0.34), RF (0.57), SVM 

(0.53), XGB (0.49), and DL (0.43). While these metrics were reported, the authors did not 

provide comparisons based on the F1 score. They also highlighted a key limitation of DL—

that it lacks built-in feature importance mechanisms. Unlike ML models, which provide 

clear feature rankings, DL models automatically learn patterns from the data, making 

feature importance less transparent. To address this, the authors applied features selected 

from ML models (RF, XGB, SVM, and LR) to develop the DL models. Although DL using 

all features had slightly lower AUCs (0.93) than DL models using selected features (e.g., 

AUC 0.95 with RF-selected variables), there was no statistically significant difference 

between the models. 

The approach of developing a DNN with selected features contradicts traditional deep 

learning principles, where DNNs are typically designed to extract relevant features 

autonomously from raw data (Cosgriff & Celi, 2020). However, feature importance in DL 

models can be derived using interpretability techniques like LIME (Local Interpretable 

Model-agnostic Explanations) and SHAP (SHapley Additive exPlanations), which offer 

insights into model decision-making. 
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Nilsson et al. (2006) developed artificial neural networks (ANNs) to predict mortality 

based on preoperative evaluations from the EuroSCORE database, which included 18,362 

patients. Out of the original 72 risk variables, the model identified 34 as relevant for 

mortality prediction. The ANN model demonstrated a higher area under the receiver 

operating characteristic curve (AUC) of 0.81 compared to the logistic regression-based 

European System for Cardiac Operative Risk Evaluation (EuroSCORE), which had an 

AUC of 0.79 (P < .0001). However, the authors did not report other key performance 

metrics, such as precision, recall, or F1 score, which makes it difficult to fully assess the 

model's effectiveness and implications beyond AUC. 

Krittanawong et al. (2021) applied machine learning (ML) and deep learning (DL) 

techniques to predict mortality in patients with spontaneous coronary artery dissection, a 

rare cause of acute coronary syndrome (ACS), using a relatively small dataset of 375 

patients. The ML models tested included logistic regression, support vector machine 

(SVM), decision tree, random forest, K-nearest neighbors, AdaBoost, and extreme gradient 

boosting (XGBoost). The DL model employed a deep neural network built with Python 

(Keras and TensorFlow backend). To address class imbalance in the event data, random 

over-sampling was utilized. 

The models were evaluated based on the area under the receiver-operator characteristic 

curve (AUC) and adjusted for class imbalance. The DL model was the best performer, 

achieving an AUC of 0.98 (95% CI 0.97–0.99), accuracy of 98%, sensitivity of 98%, and 

specificity of 96%. In comparison, the AdaBoost model had an AUC of 0.95 (95% CI 0.93–

0.96), accuracy of 61%, sensitivity of 25%, and specificity of 97%. The SVM model 
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yielded an AUC of 0.92 (95% CI 0.89–0.94), with accuracy at 60%, sensitivity at 25%, and 

specificity at 96%. Other ML models also performed differently: K-nearest neighbors 

achieved an AUC of 0.91 (95% CI 0.88–0.93), accuracy of 50%, sensitivity of 74%, and 

specificity of 97%. XGBoost had an AUC of 0.90 (95% CI 0.86–0.93), accuracy of 54%, 

sensitivity of 83%, and specificity of 99%. The decision tree model had an AUC of 0.78 

(95% CI 0.72–0.83), accuracy of 53%, sensitivity of 87%, and specificity of 35%. Logistic 

regression performed poorly, with an AUC of 0.59 (95% CI 0.51–0.67), accuracy of 59%, 

sensitivity of 25%, and specificity of 94%. The random forest model had the lowest AUC 

of 0.50 (95% CI 0.41–0.58), accuracy of 52%, sensitivity of 25%, and specificity of 96%, 

showing no significant difference from logistic regression. 

The authors attributed the DL model's superior performance to its ability to handle 

multidimensional variables, potentially capturing more complex interactions through 

matrix multiplication, weights, and biases than kernel methods and regularization penalties 

used in SVM. However, they did not employ explainability techniques like LIME or SHAP 

to identify the features that contributed to the model's predictions, leaving the 

interpretability of the DL model unclear. 

 Chen et al. (2022) developed a model to predict 30-day postoperative mortality by 

incorporating deep neural networks (DNN) and natural language processing (NLP) 

techniques, specifically using BERT (Bidirectional Encoder Representations from 

Transformers). Their innovative approach included unstructured clinical text data (such as 

preoperative diagnoses and proposed procedures) to enhance postoperative mortality 

prediction. The BERT-DNN model achieved the highest area under the receiver operating 
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characteristic curve (AUROC) of 0.964 (95% CI 0.961-0.967) and an area under the 

precision-recall curve (AUPRC) of 0.336 (95% CI 0.276-0.402). The BERT-DNN model 

outperformed traditional logistic regression (AUROC = 0.952, 95% CI 0.949-0.955) and 

the American Society of Anesthesiologists Physical Status classification (ASAPS; 

AUROC = 0.892, 95% CI 0.887-0.896). However, the difference in AUROC between 

BERT-DNN and other models such as the standard DNN (AUROC = 0.959, 95% CI 0.956-

0.962) and random forest (AUROC = 0.961, 95% CI 0.958-0.964) was not statistically 

significant. 

In terms of AUPRC, the BERT-DNN model showed a significant improvement over all 

other models, including the DNN (AUPRC = 0.319, 95% CI 0.260-0.384), random forest 

(AUPRC = 0.296, 95% CI 0.239-0.360), logistic regression (AUPRC = 0.276, 95% CI 

0.220-0.339), and ASAPS (AUPRC = 0.149, 95% CI 0.107-0.203). Despite these 

promising results, the authors did not incorporate explainability techniques such as SHAP 

or LIME, leaving the interpretation of feature importance or insights into the decision-

making process of the model unaddressed. 

Ahmed et al. (2020) developed a deep neural network (DNN) model to predict mortality in 

trauma patients admitted to the intensive care unit. Their approach involved identifying 

statistically significant risk factors from the dataset, which were then input into the DNN 

model for mortality prediction. The DNN model demonstrated strong performance, with a 

training accuracy of 93.8% and a testing accuracy of 92.3%. Additional metrics included a 

sensitivity of 79.1%, specificity of 94.2%, positive predictive value (PPV) of 66.42%, 

negative predictive value (NPV) of 96.87%, and an area under the receiver operating 
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characteristic curve (AUROC) of 0.91. When compared to other conventional machine 

learning models—such as Linear Discriminant Analysis (LDA), Gaussian Naive Bayes 

(GNB), K-Nearest Neighbors (KNN), and Decision Tree (CART)—the DNN 

outperformed them in predictive power. However, a critical limitation of the study is the 

lack of model interpretability. While the model delivers excellent predictive results, the 

absence of techniques like SHAP (SHapley Additive exPlanations) or LIME (Local 

Interpretable Model-agnostic Explanations) makes it difficult to understand which features 

are driving these predictions. This issue is particularly relevant in medical decision-

making, where understanding the "why" behind a prediction is crucial for clinical 

acceptance and trust. Without explainability, the model remains a "black box," making it 

harder for clinicians to justify relying on it for life-or-death decisions. 

Lee et al. (2018) developed a deep neural network (DNN) aimed at predicting postoperative 

in-hospital mortality using 87 intraoperative features. These features, selected through 

clinical consensus, included vital signs like minimum and maximum blood pressure, 

interventions such as the total amount of blood and fluids administered, and anesthesia-

related descriptions such as the presence of an arterial line and type of anesthesia. This 

diverse set of features allowed the model to capture a broad range of intraoperative 

conditions, potentially predictive of patient mortality following surgery. To evaluate which 

features had the most predictive power within the model, the authors performed a feature 

ablation analysis. This method involves removing groups of features, retraining the model 

with the same architecture and hyperparameters, and then assessing the model's 

performance changes—specifically, changes in the area under the receiver operating 
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characteristics curve (AUROC). By observing how the removal of specific features 

affected performance, they aimed to quantify the importance of different feature sets to 

overall model accuracy. The deep neural network consistently outperformed logistic 

regression models in most feature combinations, demonstrating that the DNN captured 

complex, non-linear relationships in the data better than traditional methods. Interestingly, 

even when the feature set was reduced from 87 to 45 variables, the DNN’s performance 

remained high, indicating that the model was able to generalize well even with fewer 

inputs. Adding preoperative mortality scores and ASA (American Society of 

Anesthesiologists) scores further improved model performance, especially in the reduced 

feature set. Despite the model’s predictive strength, the study has several limitations. First, 

the use of intraoperative features—some specific to complex surgeries—limits its 

generalizability to a broader patient population. As noted by the authors, the model may 

not be directly applicable to other types of surgeries or clinical scenarios. This complexity 

makes the model less accessible for widespread use in various surgical settings. Another 

critical limitation lies in the method used to assess feature importance. The authors 

employed feature ablation analysis to evaluate the effect of removing features on the 

model's performance. While this method provides some insight, it is less sophisticated 

compared to modern techniques like LIME (Local Interpretable Model-agnostic 

Explanations) and SHAP (SHapley Additive explanations), which offer more granular, 

interpretable explanations about the contribution of individual features. These modern 

techniques can better address the black-box nature of deep neural networks by providing 

detailed explanations of how and why certain features impact.  



 

 

59 

2.1.1.7 The Challenge of Overfitting in SVM and Deep Learning 

Overfitting is a challenge that both SVM and deep learning models face. In the case of 

SVMs, the primary control mechanism for overfitting is the cost parameter, which 

regulates the trade-off between the misclassification of training examples and the 

simplicity of the decision boundary. A higher cost results in a stricter penalty for 

misclassified observations, thus leading to a more complex model that is more likely to 

overfit, especially in noisy datasets (Schölkopf, Smola, and Bach, 2002). Deep learning 

models, particularly deep neural networks (DNNs), also struggle with overfitting, 

especially when trained on limited data. This is due to their highly flexible and 

parameterized structure, which allows them to model even minute details in the training 

data, including noise (Ghahramani, 2016). 

Overfitting is further exacerbated in DNNs due to the large number of parameters involved. 

DNNs rely on large datasets to prevent overfitting and generalize well to unseen data. 

Probabilistic approaches such as Bayesian Neural Networks (BNNs) attempt to address 

this by incorporating prior knowledge about the model parameters and treating them as 

distributions rather than fixed values (Sun et al., 2019). BNNs help control overfitting by 

incorporating uncertainty into the model. This uncertainty is captured by learning 

distributions over the weights instead of point estimates. In doing so, BNNs provide not 

only point predictions but also a measure of uncertainty in their predictions. This is 

particularly useful when working with limited data or when encountering noisy or 

ambiguous inputs (Wang and Yeung, 2016). 
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2.1.1.8 Applications of SVMs, Deep Learning, and BNNs 

SVMs, deep learning models, and BNNs have been applied to a wide range of fields, from 

image recognition to healthcare diagnostics. For example, Huang et al. (2016) used an 

SVM model to predict mortality in burn patients, achieving near-perfect accuracy. 

Similarly, Wallert et al. (2017) applied an SVM with a radial basis function kernel to 

predict two-year survival after myocardial infarction, demonstrating that traditional 

machine learning models like SVM can still be highly competitive. 

In the context of deep learning, recent studies have shown that incorporating probabilistic 

models, such as BNNs, can significantly enhance the reliability and interpretability of 

predictions. This is especially crucial in sensitive fields such as healthcare, where 

understanding the uncertainty of a model’s prediction can be just as important as the 

prediction itself. Additionally, by utilizing the Flipout estimator, models can improve their 

robustness and convergence speed, leading to more accurate and reliable predictions, even 

with smaller datasets. 

Overall, while deep learning and SVMs have become mainstays in modern machine 

learning applications, the integration of probabilistic techniques like BNNs and Flipout is 

paving the way for more reliable and uncertainty-aware models. These advancements are 

particularly valuable as machine learning continues to tackle increasingly complex and 

high-risk tasks. The challenges faced by both SVMs and DNNs, particularly with respect 

to overfitting and uncertainty quantification, highlight the importance of probabilistic 

approaches like BNNs. By incorporating uncertainty directly into the model’s structure and 

leveraging techniques like Flipout, modern deep learning models can achieve better 
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generalization, especially in low-data regimes. Future research should continue exploring 

the combination of traditional machine learning methods, like SVMs, with probabilistic 

deep learning techniques to further enhance model robustness and accuracy in various 

application domains. 

2.1.2 Explainable AI Methods - Overview 

Artificial Intelligence (AI) is now foundational in numerous sectors that have embraced 

modern information technologies (Russell & Norvig, 2016). Although the origins of AI 

span several decades, there is a strong consensus on the critical role of intelligent systems 

equipped with capabilities like learning, reasoning, and adaptation. These capabilities 

enable AI to achieve unprecedented results across increasingly complex computational 

tasks, cementing its importance for future societal progress (West, 2018). Recent 

advancements in AI-driven systems have reached a level where minimal human input is 

required for their design and deployment. However, in contexts where AI-derived decisions 

impact human lives—such as in healthcare, law, or defense—there is an emerging need for 

transparency around the decision-making process of these systems (Goodman & Flaxman, 

2017). 

In the early stages, AI systems were more interpretable and straightforward to understand. 

Yet, recent years have seen the rise of opaque decision-making models, particularly in the 

form of Deep Neural Networks (DNNs). The empirical success of Deep Learning (DL) 

models like DNNs is attributed to both efficient learning algorithms and their extensive 

parametric space. This vast parameter count, consisting of hundreds of layers and millions 

of individual parameters, leads DNNs to be regarded as complex black-box models 
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(Castelvecchi, 2016). In contrast to this black-box nature is the concept of transparency, 

which emphasizes the importance of clear insights into the mechanisms behind a model’s 

function (Lipton, 2018). Deep learning has significantly revitalized machine learning 

research by showcasing its ability to learn from vast datasets to solve complex problems, 

often achieving performance levels that surpass humans in certain tasks (Mnih et al., 2015). 

This success has propelled AI into the mainstream, but its strengths also present challenges. 

Deep learning models, which consist of millions of parameters, are highly complex (Hu et 

al., 2021), making them difficult for humans to interpret (Lakkaraju, Arsov, and Bastani, 

2020). As these "black-box" models are increasingly used in critical, high-stakes areas like 

medical AI and autonomous driving, the consequences of their failures become more 

serious, such as medical errors or accidents involving autonomous vehicles. To address 

this, model-agnostic methods for explaining machine learning predictions have gained 

prominence. These techniques treat models as black-box functions, offering greater 

flexibility in selecting models, explanations, and representations. This enhances 

capabilities in debugging, model comparison, and creating interfaces tailored for different 

users and models (Ribeiro, Singh, and Guestrin, 2016). One of the primary challenges in 

fostering a shared understanding in the AI field is the frequent misuse and conflation of the 

terms interpretability and explainability in the literature. These concepts, while related, 

embody distinct characteristics. Interpretability refers to a model’s passive quality or the 

extent to which a model appears logical to a human observer—this quality is often referred 

to as transparency (Lipton, 2018). On the other hand, explainability is an active quality, 
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involving any actions or processes that clarify or reveal a model’s internal mechanics for 

human users (Guidotti et al., 2018). 

To clarify commonly used terms in ethical AI and Explainable AI (XAI) discourse, the 

terms are summarized as under with key distinctions and similarities in nomenclature: 

• Understandability (also called intelligibility) refers to a model's capacity to allow a 

human to understand its functionality—how it works—without necessarily 

detailing its internal workings or algorithms (Mueller et al., 2019). 

• Comprehensibility for machine learning models indicates the capacity of a learning 

algorithm to express its learned knowledge in a way understandable to humans. 

This concept, derived from Michalski’s postulates, suggests that “the outcomes of 

computer induction should resemble symbolic descriptions that an expert might 

produce when observing the same data. These descriptions should represent 

coherent information chunks, interpretable in natural language and combining 

quantitative and qualitative insights” (Michalski, as cited in Guidotti et al., 2018). 

• Interpretability is defined as the ability to elucidate or provide meaning in 

understandable terms for human users. 

• Explainability is conceived as an interface between humans and an AI decision-

maker, offering both an accurate representation of the decision-maker's logic and a 

format that is clear to human observers (Guidotti et al., 2018). 

• Transparency pertains to a model’s inherent understandability. Transparent models 

can be classified into simulatable models, decomposable models, and 
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algorithmically transparent models, each differing in how they facilitate user 

understanding of the model’s operations (Lipton, 2018). 

Across these definitions, understandability is fundamental in XAI. Both transparency and 

interpretability closely relate to understandability: while transparency involves a model’s 

inherent capacity to be understood, interpretability represents the ease with which a human 

can comprehend a model’s decisions. Similarly, comprehensibility ties into 

understandability by emphasizing the audience's ability to grasp the knowledge embedded 

in the model. Thus, understandability involves both the model’s clarity and the human 

observer's capacity to interpret the model's output. When developing a machine learning 

(ML) model, considering interpretability as an additional design factor can significantly 

enhance the model's implementability for three key reasons: 

1. Impartial Decision-Making: Interpretability can help ensure fair decisions by 

enabling the identification and correction of biases in the training dataset (Hall, 

2018). 

2. Robustness against Adversarial Perturbations: A clearer understanding of the 

model's decision boundaries aids in identifying areas susceptible to adversarial 

manipulation, thereby improving robustness (Hall, 2018). 

3. Meaningful Variable Influence: By focusing on interpretable models, we can 

confirm that only relevant variables contribute to the output, suggesting the 

existence of a genuine causal relationship within the model’s reasoning (Hall, 

2018). 
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For these reasons, an interpretable ML system should ideally provide insights into the 

model’s mechanisms and predictions, present visualizations of its decision rules, or identify 

potential perturbations that could influence its outcomes. 

 Interpretable machine learning models empower healthcare practitioners to make well-

informed, data-driven decisions, which can enhance personalized care and overall service 

quality. Broadly, interpretability methods for ML models are classified into global and 

local approaches. Traditionally, ML research has emphasized global interpretability, which 

helps users understand how the model's inputs relate to the entire range of predictions it 

makes (Bratko, 1997; Martens et al., 2008). In contrast, local interpretability aims to clarify 

how the model arrives at specific predictions for individual cases or for narrowly defined 

areas within the prediction space (Hall et al., 2017; Stiglic et al., 2020). Both approaches 

are critical in different contexts, depending on whether the focus is on the model's general 

behavior or individual predictions. In the context of Interpretability and explainability. 

  

2.1.3 Model-Agnostic Interpretability of Machine Learning 

The concept behind model-agnostic explanation methods is that they treat machine learning 

models as black-box systems, meaning they rely solely on the model’s outputs without 

needing access to its internal mechanics. This flexibility makes them highly adaptable since 

these methods do not require details about the model’s structure, such as in neural 

networks, where specifics like topology, weights, biases, or activation values remain 

unknown (Holzinger et al., 2020). This approach allows model-agnostic methods to be 
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applied across a broad range of models, enhancing their versatility in different machine-

learning contexts. 

2.1.3.1. LIME (Local Interpretable Model Agnostic Explanations) 

The core concept behind LIME (Local Interpretable Model-agnostic Explanations) is to 

clarify a prediction made by a complex model, such as a deep neural network (denoted as 

fM), by creating a simpler, more interpretable model, fS called a surrogate model. This 

surrogate model is easier to understand and explain, which is why LIME is often 

categorized as a surrogate-based explanation technique (Samek et al., 2021). 

LIME aims to create a model that is interpretable and accurately represents the behavior of 

the original model within the local neighborhood of a specific instance (Ribeiro, Singh, 

and Guestrin, 2016). Although it may be challenging to replicate the entire black-box 

model globally with a simpler model, it is feasible to achieve a close approximation in the 

area around a particular data point. In formal terms, the explanation model is denoted as 

: 𝑅 𝑑 → 𝑅 𝑤ℎ𝑒𝑟𝑒 𝑔 ∈ 𝐺 , belongs to a set of interpretable models G (such as linear models, 

decision trees, or rule lists). This allows the output g to be shared with the user as a clear, 

understandable explanation. Since not every model g∈Gg is easily interpretable, the 

complexity of g noted as Ω(g), acts as a measure to help maintain simplicity. Complexity 

can be regulated either as a soft constraint (like limiting the depth of a decision tree) or as 

a hard limit (where the complexity becomes infinitely high if certain thresholds are 

exceeded). 
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The black-box model to be explained is 𝑓: 𝑅𝑑 → 𝑅 f:Rd→Rf: which in classification cases 

represents the probability of a particular class for x. To assess locality, a proximity measure  

∏ (𝑍𝑥 ) is defined to indicate the closeness between an instance z and x. The goal is to 

measure the dissimilarity, 𝐿(𝑓, 𝑔, 𝛱𝑥) between f and g around the instance x, ensuring that 

the explanation model g both maintains low L and has manageable complexity Ω(g) for 

interpretability. The final explanation ξ(x)is determined by solving: 

                                           𝜉(𝑥) = 𝑎𝑟𝑔 𝑚𝑖𝑛𝑔∈𝐺𝐿(𝑓, 𝑔, 𝛱𝑥) + 𝛺(𝑔) 

This framework supports a variety of explanation families G, fidelity measures L, and 

complexity controls Ω. LIME estimates L by generating variations of the instance x, 

predicting them using the black-box model f, and adjusting the weights according to Πx.  

Primarily, The method involves generating a set of samples around the input of interest, xi, 

by exploring its local neighborhood, Nxi. These samples are then evaluated using the 

original complex model. LIME then approximates the behaviour of the complex model in 

this local region by fitting a straightforward linear function, serving as the surrogate model. 

Essentially, instead of directly explaining the original model's prediction for fM(xi), LIME 

provides an explanation based on fS(xi), where the surrogate model closely mimics the 

target model in the neighborhood of xi (i.e., fM(x) ≈ fS(x) for x ∈ Nxi )( (Holzinger et al., 

2020). This approach allows for simplifying and interpreting how the complex model 

behaves in small, localized regions, offering insights without needing to understand the full 

intricacies of the complex model. 
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2.1.3.2 SHAP (Shapley Values) 

The Shapley value method for explainability is grounded in Lloyd Shapley's foundational 

work in game theory (Shapley, 1953). This approach conceptualizes a regression problem 

as a cooperative game, where each predictor variable is treated as a "player" in the model's 

prediction process. This game aims to improve regression accuracy (or equivalently, to 

reduce error), with the Shapley value quantifying each predictor's unique contribution 

toward that goal (Molnar, 2022). Determining each predictor's contribution is complex 

because predictors interact in intricate, often non-linear ways, influenced by the model's 

structure—such as multiplicative interactions like X1⋅X2 (Lundberg & Lee, 2017). 

Shapley value methods tackle this complexity by evaluating the impact of every possible 

subset of predictors on the model’s output, providing a per-predictor, per-data point 

estimate of each predictor's influence. This approach offers a comprehensive breakdown 

of the model's behaviour for individual predictions, adding transparency to complex 

models (Vowels et al., 2022). 

The importance of predictor i is determined by analysing how adding i to a subset S of 

other predictors affects the function’s value eS. The contribution of predictor i, denoted as 

ϕ(i), is computed as a weighted average over all possible subsets S of the other predictors: 

𝜙(𝑖) = ∑
|𝑆|! (𝑝 − 1 − |𝑆|)!

𝑝!
𝑆⊆{1,...,𝑝}/{𝑖}

(𝑒𝑆∪{𝑖} − 𝑒𝑆). 

This formula is equivalent to 

𝜙(𝑖) =
1

|Π|
∑ 𝑒before(𝜋,𝑖)∪{𝑖}

𝜋∈Π

− 𝑒before(𝜋,𝑖), 
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Here, Π represents the set of all possible orderings of the p variables, and before(π,i) refers 

to the subset of variables that appear before predictor i in the ordering π. Each ordering 

describes how the values of eS shift as variables are added, starting from e∅ (the model's 

baseline) to f(x∗) (the model's prediction for a specific data point). In essence, the analysis 

of a single ordering shows how the model output changes as new predictors are added. 

SHAP values are derived by averaging these contributions across all possible orderings, 

making the approach robust and fair in terms of allocating credit to each variable. 

SHAP (Shapley Additive Explanations) is an extension of the Shapley value framework 

designed to explain individual predictions of machine learning models. Originally 

developed to fairly distribute rewards in cooperative games, Shapley values are the only 

solution that satisfies key fairness principles like efficiency, symmetry, dummy, and 

additivity. These principles ensure that the contributions are fairly distributed based on 

each predictor's true impact on the model. 

2.1.3.3 SHAP (SHapley Additive exPlanation) Values 

SHAP (SHapley Additive exPlanation) values were introduced by Lundberg and Lee 

(2017) as a unified approach to quantifying feature importance. These values are essentially 

the Shapley values of a conditional expectation function based on the original model. In 

this context, they serve as the solution to an equation where fx(z′)=f(hx(z′))=E[f(z)∣zS], 

and S represents the set of non-zero indexes in z′. SHAP values provide a unique, additive 

method of determining feature importance by utilizing conditional expectations to define 

simplified inputs. 
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The concept of SHAP values includes a simplified input mapping, denoted as hx(z′)=zS, 

where zS omits the values for features not included in set S. Since most models are not 

equipped to handle arbitrary patterns of missing data, the authors propose approximating 

f(zS) by using E[f(z)∣zS], the expected value of the model's output given the subset S. This 

approach was designed to align closely with other attribution methods, such as Shapley 

regression, Shapley sampling, and quantitative input influence, while also maintaining 

connections to techniques like LIME, DeepLIFT, and layer-wise relevance propagation. 

By taking this additive and consistent approach, SHAP values offer a comprehensive and 

flexible method for understanding how individual features contribute to model predictions. 

 

Figure 2.1   SHAP (Shapley Additive explanation Values (Lundberg et al.,2017) 

Moncada-Torres et al. (2021) conducted a study using data from the Netherlands Cancer 

Registry, which included 36,658 patients with non-metastatic breast cancer. They 

compared the performance of Cox Proportional Hazards (CPH) regression with machine 

learning techniques such as Random Survival Forests, Survival Support Vector Machines, 
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and Extreme Gradient Boosting (XGB) in predicting survival, with the c-index serving as 

the performance metric. To interpret the models' predictions, they employed SHAP 

(Shapley Additive Explanation) values, shedding light on both the classical CPH model 

and the best-performing machine learning model, XGB. 

The SHAP values were used to visualize the overall feature importance within each model. 

The authors generated SHAP dependence plots, which illustrated how individual features 

influenced the predictions of each model. By applying SHAP values, they were able to 

uncover the differences in performance between the reference model (CPH) and the top-

performing ML model (XGB), effectively demystifying the "black box" nature of the 

machine learning model. 

Interestingly, the feature importance derived from SHAP values was consistent with the 

feature significance suggested by p-values in traditional CPH analysis. The study 

highlighted that SHAP values enabled a detailed examination of how specific features 

impacted the model's predictions—something that can be challenging even for experts due 

to the complex and heterogeneous nature of the data. This made SHAP a valuable tool for 

model interpretation and comparison between traditional and modern approaches. 

Lee et al. (2022) developed a predictive model for 30-day mortality following non-cardiac 

surgery using data from 454,404 patients aged 18 and above, collected from four 

independent institutions: Seoul National University Hospital (SNUH), AMC, EUMC, and 

BRMH. The model was trained using a limited set of 12-18 clinical variables. Four 

different machine learning techniques—logistic regression, random forest, extreme 

gradient boosting (XGBoost), and deep neural networks—were applied to compare 
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prediction accuracy. To prevent overfitting and ensure model robustness, the researchers 

used bootstrapping and grid search with tenfold cross-validation. Among the methods, 

XGBoost showed the best performance on SNUH data, achieving an AUROC of 0.9376 

and an area under the precision-recall curve (AUPRC) of 0.1593. Additionally, when the 

SNUH model was validated using data from Ewha Womans University Medical Center 

(EUMC), it achieved an even higher AUROC of 0.941. 

SHAP (Shapley Additive Explanation) values were used to determine feature importance 

across models from each hospital. The results varied across institutions: in SNUH and 

AMC, albumin emerged as the strongest predictor of 30-day mortality, while in EUMC 

and BRMH, age and preoperative PT were the most significant predictors, respectively. 

However, the study was unable to fully explain the differences in feature importance 

between the institutions, attributing these discrepancies to variations in clinical 

environments and patient demographics across the hospitals. 

 Model calibration techniques are essential for adjusting predicted probabilities to 

better reflect actual outcomes. These methods improve the reliability of probabilistic 

predictions, which is crucial in clinical settings where accurate probability estimates 

directly inform decision-making. The most commonly used calibration methods include 

Platt Scaling, Isotonic Regression, and Temperature Scaling. In the context of mortality 

prediction, the goal is to ensure that the model's predicted probabilities of mortality closely 

align with the true outcomes, a task that is complicated by factors such as class imbalance, 

skewed data distributions, and the high complexity of machine learning models. 
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Platt Scaling (Platt, 1999) is one of the earliest calibration techniques, commonly applied 

to models that output uncalibrated scores. This method fits a logistic regression model to 

the raw output scores of a classifier, effectively transforming them into calibrated 

probabilities. While it is simple and effective for many models like Support Vector 

Machines (SVMs), it can underperform with more complex neural networks or models that 

output highly nonlinear scores. 

In contrast, Isotonic Regression (Zadrozny & Elkan, 2002) is a non-parametric calibration 

technique that can provide a more flexible mapping between the raw output and calibrated 

probabilities. It is particularly useful for models with more complex output patterns, but it 

requires large amounts of data to avoid overfitting, making it less suitable for small or 

highly imbalanced datasets. 

Temperature Scaling (Guo et al., 2017) has gained popularity for calibrating Deep Neural 

Networks (DNNs) and Bayesian Neural Networks (BNNs). This method involves dividing 

the logits (raw outputs) by a temperature parameter, which softens or sharpens the 

predicted probabilities. It has shown significant promise in improving calibration without 

substantial performance loss, especially when the dataset is imbalanced or when dealing 

with deep learning models, which tend to produce overly confident predictions. 

2.2 Summary  

Consolidated Summary of Literature Review on Artificial Intelligence and 

Interpretability 

The construction of effective machine learning systems hinges on the interplay of three 

fundamental components: data, models, and the learning process. This triad forms the 
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foundation for achieving robust performance, where a model's effectiveness is gauged by 

its ability to generalize to new, unseen data. Establishing meaningful performance metrics, 

such as accuracy and error rates, is crucial not only for model improvement but also to 

ensure predictions closely align with actual outcomes. Automation stands out as a pivotal 

aspect of machine learning, enabling algorithms to derive insights from data without 

extensive domain-specific knowledge, thus democratizing access to advanced analytical 

capabilities. The overarching goal of machine learning is to uncover key patterns within 

data, allowing models to approximate the mechanisms that generate such data. Well-

constructed models capture essential characteristics, enabling accurate predictions about 

real-world events without necessitating direct experimentation. The machine learning 

workflow can be delineated into three distinct phases: prediction (or inference), training 

(or parameter estimation), and hyperparameter tuning (or model selection). During the 

prediction phase, uncertainty quantification becomes increasingly vital, especially within 

probabilistic frameworks, as it allows practitioners to express confidence in their 

predictions. The training phase focuses on optimizing model parameters to enhance 

performance, often likened to a hill-climbing approach aimed at discovering optimal 

configurations. 

Non-probabilistic models typically employ Empirical Risk Minimization (ERM) to reduce 

empirical risk but run the risk of overfitting by closely adhering to training data. In contrast, 

Maximum Likelihood Estimation (MLE) seeks optimal parameters by maximizing the 

likelihood function without accounting for uncertainty. Probabilistic models utilize 

Bayesian inference, integrating prior knowledge with likelihoods and posterior 
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distributions to provide a comprehensive representation of uncertainty. Bayesian methods 

refine parameter estimates through Maximum A Posteriori (MAP) estimation, effectively 

merging prior beliefs with observed data. 

Regularization techniques are crucial in addressing overfitting in non-probabilistic models 

by incorporating penalty terms into the loss function, while in probabilistic models, the 

prior distribution plays a similar role by biasing parameter estimates towards simpler 

models. Ultimately, non-probabilistic models prioritize optimization without explicit 

uncertainty modelling, whereas probabilistic models excel in quantifying uncertainty via 

Bayesian methods. While both MLE and MAP yield point estimates that can obscure 

valuable information, retaining full posterior distributions is advantageous for enhanced 

predictive accuracy. 

Decision trees, including algorithms like CART, ID3, C4.5, and C5, efficiently partition 

sample data by splitting variables at specific thresholds, resulting in a structured tree 

format. CART (Classification and Regression Trees) is particularly versatile in handling 

both classification and regression tasks, utilizing the Gini index for binary classification 

and cost-complexity pruning for parameter estimation. Random Forest (RF) amplifies 

predictive accuracy by aggregating outputs from multiple decision trees built on 

bootstrapped samples of training data. By employing a random subset of predictors for 

each tree and using Gini impurity as the splitting criterion, RF not only enhances robustness 

but also incorporates out-of-bag (OOB) error as an internal validation metric, providing 

reliable estimates of model performance on unseen data. 
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Conversely, boosting methods like AdaBoost sequentially train base classifiers, placing 

more weight on misclassified points to enhance overall model accuracy. Extreme Gradient 

Boosting (XGBoost) is a powerful gradient boosting implementation that iteratively adds 

trees to minimize loss while emphasizing parameter adjustments without altering existing 

trees. Support Vector Machines (SVM) leverage geometric principles to tackle binary 

classification problems by identifying an optimal decision boundary that maximally 

separates classes, thus enhancing robustness to unseen data through empirical risk 

minimization. 

Deep Neural Networks (DNNs) have revolutionized fields such as speech recognition and 

image classification by extracting complex patterns from data through their interconnected 

layers. However, DNNs face challenges including overfitting and uncertainty 

quantification, especially with limited datasets. Bayesian Neural Networks (BNNs) address 

these issues by employing probability distributions over weights, managing uncertainty 

and improving generalization in data-scarce scenarios. Techniques like Flipout enhance 

BNN training efficiency by decorrelating gradient estimates, improving convergence and 

uncertainty quantification. 

In high-stakes applications, such as healthcare and autonomous driving, where both 

accuracy and uncertainty are critical, BNNs demonstrate significant promise. Research by 

Nudel et al. (2021) and Kasim et al. (2022) highlights the effectiveness of machine learning 

and deep learning models in predicting medical outcomes, illustrating how advanced 

techniques like BNNs and feature selection can substantially enhance prediction accuracy. 

Despite the "black box" nature of deep learning posing interpretability challenges, 
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integrating deep learning with feature selection methods improves both model 

interpretability and effectiveness, advocating for their application in real-world scenarios. 

The early AI systems were more interpretable, but the rise of Deep Learning (DL) models, 

characterized by complex architectures like DNNs, has resulted in a perception of these 

systems as "black boxes" (Castelvecchi, 2016). This complexity creates interpretability and 

accountability challenges, as failures in these systems can have significant consequences 

(Hu et al., 2021; Lakkaraju et al., 2020). Consequently, there is a growing emphasis on 

developing model-agnostic explanation methods to provide insights into these opaque 

models without needing access to their internal mechanics (Ribeiro et al., 2016). 

Key concepts related to interpretability encompass understandability, comprehensibility, 

interpretability, and explainability. Understandability refers to a model's capacity to be 

comprehensible to humans, while interpretability focuses on the human's ability to grasp 

the model's reasoning. Explainability involves actions that elucidate the model's processes 

for users (Guidotti et al., 2018; Lipton, 2018). Transparency is further categorized into 

different models based on their support for user understanding (Lipton, 2018). 

Enhancing interpretability in machine learning (ML) can improve decision-making by 

ensuring fairness, robustness against adversarial attacks, and validating causal 

relationships (Hall, 2018). Interpretability methods are categorized into global approaches, 

which provide an overview of model behaviour, and local approaches that focus on specific 

predictions (Bratko, 1997; Hall et al., 2017). 

Prominent model-agnostic explanation methods include LIME (Local Interpretable Model-

agnostic Explanations) and SHAP (Shapley Additive Explanations). LIME generates 
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simpler surrogate models to explain predictions made by complex models, focusing on 

localized behaviour (Ribeiro et al., 2016; Samek et al., 2021). SHAP values, derived from 

game theory, quantify each predictor's contribution to a model's predictions, allowing for 

a nuanced understanding of individual predictor influences (Lundberg & Lee, 2017; 

Molnar, 2022). Together, these methods provide crucial insights that enhance the 

interpretability and accountability of AI systems, particularly in high-stakes applications. 

Model calibration techniques are essential for adjusting predicted probabilities to 

better reflect actual outcomes. These methods improve the reliability of probabilistic 

predictions, which is crucial in clinical settings where accurate probability estimates 

directly inform decision-making. The most commonly used calibration methods include 

Platt Scaling (Platt, 1999), Isotonic Regression (Zadrozny & Elkan, 2002), and 

Temperature Scaling (Guo et al., 2017). In the context of mortality prediction, the goal is 

to ensure that the model's predicted probabilities of mortality closely align with the true 

outcomes, a task that is complicated by factors such as class imbalance, skewed data 

distributions, and the high complexity of machine learning models. Most traditional 

calibration methods struggle with highly complex, deep learning-based models, especially 

in the presence of imbalanced datasets common in healthcare applications. This gap in 

model calibration has driven recent research towards incorporating calibration techniques 

into Bayesian models and other ensemble methods for better alignment of predicted 

probabilities with true outcomes. 
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CHAPTER III:  

METHODOLOGY 

RESEARCH DESIGN AND METHODS 

 

3.1 Overview of the Research Problem   

This study investigates the prediction of in-hospital mortality among patients who 

underwent general surgery by utilizing various clinical and demographic variables derived 

from established comorbidity indices, namely the Charlson and Elixhauser indices. 

Previous research by Simard et al. (2018) indicated that integrating these indices improves 

the prediction of 30-day mortality when compared to using either index independently. The 

analysis incorporates a diverse range of additional variables, including surgical history 

within the past year, smoking status, and critical laboratory parameters such as total 

leukocyte count, urea, creatinine levels, liver function tests (e.g., total, direct, and indirect 

bilirubin, alkaline phosphatase, SGOT, SGPT), as well as electrolyte levels (sodium and 

potassium). The dataset also encompasses the American Society of Anaesthesiologists 

(ASA) classification, types of surgical procedures (including open cholecystectomy, 

hernioplasty, and more), and postoperative complications like surgical site infections, 

pulmonary and cardiac complications, urinary tract infections, sepsis, reoperation, and 

readmission rates. However, challenges related to privacy concerns hindered the collection 

of comprehensive data. 

The dataset in this study is relatively small, comprising approximately 931 samples, with 

a notable imbalance in the outcome variable (in-hospital mortality). To address this 

limitation, the study employs synthetic data generation techniques, particularly focusing 

on advanced generative models. The machine learning community has recently emphasized 
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the development of such models to autonomously capture intrinsic patterns in real-world 

data. Generative Adversarial Networks (GANs) have gained prominence for their 

effectiveness in generating realistic synthetic data while maintaining privacy (Goodfellow 

et al., 2014; Radford, Metz, and Chintala, 2015). In parallel, Variational Autoencoders 

(VAEs), introduced by Kingma et al. (2014), provide a powerful approach for data 

synthesis by approximating the underlying distribution of the data. 

While VAEs and GANs have become popular in deep learning for generating synthetic 

data, GANs are often seen as superior for producing realistic images. However, this 

advantage has not been uniformly observed in the generation of tabular data (Singh and 

Ogunfunmi, 2022). VAEs consist of two main components: an encoder that compresses 

the input data into a lower-dimensional latent space defined by multivariate normal 

distributions, and a decoder that reconstructs the data by sampling from these distributions 

(Kingma and Welling, 2019). 

This research focuses on constructing a tabular dataset from medical records collected over 

one year (2016-2017) from a teaching institution. Due to the small size of the dataset, the 

study employs the Variational Autoencoder (VAE) for synthetic data augmentation to 

enhance model development. The dataset is divided into training (75%) and validation 

(25%) subsets, with data normalization applied in batches to mitigate the impact of extreme 

values during model training. The deep learning model is designed using Keras, with 

dropout techniques implemented to reduce overfitting. 

Model performance is evaluated using a variety of metrics, including specificity, sensitivity 

(recall), positive predictive value (precision), and F1 score. Additionally, the area under 

the receiver operating characteristic curve (AUROC) are employed to assess the model's 

predictive accuracy. The performance of the deep learning model is compared against 

traditional machine learning classifiers, including logistic regression, K-Neighbors 
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Classifier, SVM, random forest, gradient boosting, and XGBoost, to ascertain whether the 

deep learning model can match or exceed their performance in identifying mortality risk. 

Moreover, the study explores the use of ensemble models combining Bayesian and 

probabilistic approaches to enhance true positive identification and improve the F1 score. 

To further refine the reliability of predictions, the probabilities obtained from these models 

are calibrated using techniques such as temperature scaling, Platt scaling, and isotonic 

regression. This multifaceted approach aims to advance understanding of how machine 

learning, particularly deep learning and generative models, can be leveraged to predict 

critical health outcomes in surgical patients. 

 

3.2 Operationalization of Theoretical Concern 

 

Data were collected from patients who had undergone general surgery, including variables 

from the Charlson and Elixhauser comorbidity indices to predict outcomes such as in-

hospital mortality. Simard et al. (2018) demonstrated that combining these indices provides 

better prediction of 30-day mortality compared to either index used alone. In addition to 

these indices, other variables included surgery within one year, recent smoking history, and 

various laboratory parameters such as total leukocyte count, urea, creatinine, and liver 

function tests (e.g., total, direct, and indirect bilirubin, alkaline phosphatase, SGOT, 

SGPT), as well as electrolyte levels (sodium and potassium). The data also included ASA 

classification, surgical procedures (such as Open Cholecystectomy, Hernioplasty, 

Herniotomy, Lithotomy, Pyeloplasty, Appendicectomy, Omentoplasty, Small Bowel 

Resection, Laparoscopic ligation of adhesions, Modified Radical Mastectomy, 

Hysterectomy, Prostatectomy, Diagnostic  Laparotomy,  Nephrectomy, Gastrectomy, 

Esophagectomy, Gastric outlet Obstruction, Generalized peritonitis, and others), and 
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postoperative complications like surgical site infections (superficial, deep, and organ-

space), pulmonary and cardiac complications, urinary tract infections, sepsis, reoperation, 

and readmission rates. Privacy concerns posed challenges in collecting comprehensive 

data.  

Since the dataset was relatively small, consisting of only around 931 samples with a 

significant imbalance in the targeted outcome, generating synthetic data emerged as the 

most feasible solution. Recently, the machine learning community has focused on creating 

advanced generative models that can autonomously capture intrinsic patterns within and 

across real-world data records. Among these, Generative Adversarial Networks (GANs) 

have shown remarkable success in generating highly realistic synthetic data while 

preserving privacy (Goodfellow et al., 2014; Radford, Metz, and Chintala, 2015). In 2014, 

Kingma et al. introduced the Variational Autoencoder (VAE), followed by Goodfellow et 

al.'s GAN architecture just a year later. Both models employ deep neural networks to 

synthesize data by approximating its underlying distribution, though they approach the task 

differently—GANs estimate the data distribution implicitly, while VAEs do so explicitly. 

VAEs and GANs are popular tools for generating synthetic data, particularly in deep 

learning (Mi, Shen, and Zhang, 2018). While GANs tend to outperform VAEs in generating 

highly realistic synthetic images, this advantage has not consistently extended to tabular 

data generation (Singh and Ogunfunmi, 2022). A VAE consists of two primary 

components: an encoder and a decoder. The encoder reduces the input data into a lower-

dimensional latent space characterized by multivariate normal distributions, typically 

Gaussian (Kingma and Welling, 2019). Each Gaussian distribution is defined by a mean 

and standard deviation, which determine the center and spread of the distribution, 

respectively (Kingma and Welling, 2014). The decoder then reconstructs the data by 
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sampling latent vectors from these distributions, ultimately generating the final output 

(Kingma and Welling, 2014). 

This study focused on constructing a tabular dataset from medical records collected over 

one year (2016-2017) from a teaching institution. Given the small size of the dataset, the 

synthetic data generation technique of Variational Autoencoder (VAE) was employed to 

augment the data for model development. The dataset was split into training (75%) and 

validation (25%) sets for all models. Data were normalized in batches to prevent 

misleading results caused by extreme values during forward and backward propagation. 

Keras layer initializations were used to set the initial random weights, and dropout was 

incorporated to mitigate overfitting during the development of the deep learning model. 

The deep learning model's performance was evaluated using metrics such as specificity, 

sensitivity (recall), positive predictive value (precision), and F1 score. Additionally, area 

under the receiver operating characteristic curve (AUROC) were used to assess the model's 

performance. These results were compared with those obtained from machine learning 

classification techniques, including logistic regression, K-Neighbors Classifier, SVM, 

random forest, gradient boosting, and XGBoost. The objective was to determine whether a 

deep learning model trained on a small dataset could perform as well as, or better than, 

traditional machine learning classifiers in identifying mortality. 

In addition to VAE-based generative probabilistic modelling, separate and ensemble 

models were developed using Bayesian and probabilistic models, with a focus on 

improving true positive identification and achieving a high F1 score. Probabilities from 

these models were calibrated using temperature scaling, Platt scaling, and isotonic 

regression to enhance the reliability of the predictions. 

 

3.2.1. Feature Importance  
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To enable interpretability, there are a variety of different interpretation methods. This study 

will concentrate on model-agnostic explainability techniques of Local Interpretable Model-

agnostic Explanations (LIME) and SHapley Additive exPlanations, commonly known as 

SHAP, to derive features of importance in the prediction of mortality since these are the 

most popular interpretation techniques for humans to understand decisions made by ML 

models. 

3.2.2. Additional statistics 

The results are presented as mean and standard deviation (SD) for continuous variables and 

as frequencies for categorical variables. Correlation analysis was conducted to determine 

any significant relationships between variables. Univariate analysis was performed using a 

logistic regression test to identify significant variables. Additionally, a two-sided 

independent Student's t-test (with a significance threshold of p < 0.05) was used to evaluate 

whether there was a statistical difference between values in the preoperative and 

postoperative periods. A p-value of less than 0.05 was considered to indicate statistical 

significance. 

3.3 Research Purpose and Questions  

The primary objective of this research is to develop predictive models for in-hospital 

mortality among patients who have undergone general surgery. This study aims to evaluate 

the effectiveness of various machine learning techniques, including deep learning and 

traditional classifiers, in predicting mortality outcomes based on a comprehensive dataset 

enriched through synthetic data generation techniques. 
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RQ1   Which approach, Machine Learning or Deep Learning, is more effective for 

predicting mortality in a small dataset supplemented with synthetic data 

RQ2 Whether Generational autoencoder can be used using variational autoencoder to 

correct for imbalance in training data with superior results? 

RQ3. Can the variables of importance identified by the explainability techniques, Local 

Interpretable Model-agnostic Explanations (LIME), and SHapley Additive exPlanations 

(SHAP), provide consistent results in explaining and interpreting the model for predicting 

postoperative mortality? 

3.4 Research Design 

The research employs a quantitative approach, utilizing a retrospective cohort design. The 

dataset was divided into training (75%) and validation (25%) subsets to facilitate model 

development and evaluation. 

3.4.1 Population: The study focuses on patients who underwent general surgery within a 

teaching institution from 2016 to 2017. 

3.4.2 Data Sources: Data were collected from medical records, including a variety of 

clinical and laboratory variables: 

• Comorbidity Indices: Charlson and Elixhauser indices to assess patient 

comorbidities. 

• Clinical Variables: Recent smoking history, ASA classification, surgical 

procedures (e.g., Open Cholecystectomy, Hernioplasty, etc.), and postoperative 

complications (e.g., surgical site infections, pulmonary complications, urinary tract 

infections). 
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• Laboratory Parameters: Total leukocyte count, urea, creatinine, liver function 

tests (total, direct, and indirect bilirubin, alkaline phosphatase, SGOT, SGPT), and 

electrolyte levels (sodium and potassium). 

3.4.3   Data Challenges 

• Sample Size: The dataset consists of approximately 931 samples, which presents 

challenges due to its relatively small size and the significant imbalance in the 

targeted outcome (in-hospital mortality). 

• Privacy Concerns: Comprehensive data collection faced challenges due to privacy 

issues, necessitating careful handling of sensitive patient information. 

3.4.4 Limitations of DataSet Size and Balance  

To address the limitations of the dataset size and balance, Variational Autoencoders 

(VAEs) were employed to generate synthetic data. This approach helps in augmenting the 

dataset while preserving the privacy of the original data. 

3.4.5 Model Development Machine Learning Techniques 

A range of classification models were utilized, including: Traditional Models: 

Logistic Regression, K-Neighbors Classifier, Support Vector Machine (SVM), Random 

Forest, Gradient Boosting, and XGBoost and Deep Learning Model: A deep learning 

architecture leveraging VAEs for synthetic data generation was developed. 

3.4.6 Model Evaluation Metrics 

The performance of the predictive models was evaluated using several metrics including  

Sensitivity and Recall: To assess the model’s ability to correctly identify true positives 

(i.e., patients who experienced in-hospital mortality) 
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Specificity: To measure the model’s accuracy in identifying true negatives. 

Positive Predictive Value (Precision): To evaluate the proportion of correct identifications.   

F1 Score: To provide a balance between precision and recall. 

Area Under the Area Under the Receiver Operating Characteristic Curve (AUROC): 

To assess the model's ability to distinguish between classes. 

3.4.7. Calibration Techniques 

To enhance the reliability of the predictions from the models, calibration techniques were 

applied, including: 

• Temperature Scaling 

• Platt Scaling 

• Isotonic Regression 

3.5 Population and Study Sample 

The study was retrospective with a population of patients in a small data set who underwent 

General Surgery procedures between 2016 to 2017, the data for which period was made 

available by authorities 

 

 

 

3.5.1 Sample Size and Selection of Sample  

To calculate the sample size with a presumptive mortality rate of 5% based on the hospital's 

past experience, the following formula was used for sample size estimation for proportions: 



 

 

88 

n=Z^2*p*(1−p)/E^2  

This formula is commonly used for estimating sample sizes in studies involving 

proportions (Daniel, 1999). The parameters are defined as follows: 

• n = required sample size 

• Z = Z-value (standard normal deviate) corresponding to the desired confidence 

level (e.g., 1.96 for 95% confidence) 

• p = estimated proportion (mortality rate), which is 0.05 (5% in this case) 

• E = margin of error (precision of the estimate) 

Steps: 

1. Confidence Level: A 95% confidence level was selected, with a corresponding Z-

value of 1.96. 

2. Margin of Error (E): The margin of error represents the maximum acceptable 

difference between the true population parameter and the estimate. For this study, 

the estimate of mortality was considered to be within ±2% of the true proportion, 

so an EEE of 0.02 was selected. 

3. Calculation: The values were then applied to the formula. 

The sample size assumes a confidence level of 95% (Z = 1.96), an estimated mortality rate 

of 5% (p = 0.05), and a margin of error of 2% (E = 0.02) the sample size is calculated as: 

457 as under  

n=(1.96)^2 * 0.05 * (1−0.05)/(0.02)^2 =457.2 

Thus, a sample size of approximately 457 participants is needed to estimate the mortality 

rate with a 95% confidence level and a 2% margin of error. 
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3.6 Participant Selection  

since deep neural networks typically require large amounts of data, all general surgeries 

performed between 2016 and 2017, for which data were available in medical records, were 

included in the study. The study was retrospective, analyzing a small dataset of patients 

who underwent general surgery procedures between 2016 and 2017, for which data were 

available for research. All surgical records from the specified period were included to 

ensure the most comprehensive dataset possible. 

3.7. Instrumentation 

An Excel sheet was used to collect data on all variables from anonymous patient records. 

Data were   sourced from the Medical Record department of a teaching Institution in India 

 

3.8 Data Collection Procedure 

Data were collected from Medical Records of patients who underwent surgery between 

2016 to 2017 in a teaching Institution in India. Data  consisted  of preoperative factors 

including comorbidities in the patient’s profile as enumerated by Charlson and Elixhauser 

including binary variables of Surgery within one year, smoking within one year ,alcohol 

Abuse, HIV+ve status, deficiency Anemia, Rheumatoid Arthritis, Cardiac Pulmonale, 

Diabetes  Mellitus, Chronic Hypertension, Hypothyroidism, Liver disease, Metastasis, 

Obesity, Renal failure, Tumour, Myocardial Infarction ,Bronchial Asthma, 

Cerebrovascular accident, Chronic lung disease, Chronic Liver disease, Hemiplegia, 

Moderately Severe Liver disease, Preoperative Renal Failure, type of surgeries, as are  

commonly performed in general surgery setup including Lap Cholecystectomy, Open 
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Cholecystectomy, Hernioplasty, Herniotomy, Lithotomy, Pyeloplasty, Appendicectomy, 

Omentoplasty, Small Bowel Resection, Laparoscopic ligation of adhesions, Modified 

Radical Mastectomy, Hysterectomy, Prostatectomy, Diagnostic  Laparotomy,  

Nephrectomy, Gastrectomy, Esophagectomy , Gastric outlet Obstruction, Generalised 

peritonitis,   postoperative factors which influence surgical mortality including  Deep 

Surgical Site Infection, Organ Space Surgical Site Infection, Abdominal wall Dehiscence, 

Pulmonary Complications, Cardiac Complication, Deranged Kidney Function Test, 

Urinary Tract Infection, Postoperative renal failure, reoperation,  Readmission   and Sepsis, 

Continuous variables will include , Laboratory parameters, Total Leucocyte Count, Urea, 

Creatinine, Total Serum Bilirubin ,Serum Bilirubin Direct ,Serum Bilirubin Indirect, 

Alkaline Phosphatase, SGOT,SGPT, Sodium and Potassium,   in preoperative and 

postoperative period  and duration of admission . The nominal variable included the 

American Society of Anaesthesiologists (ASA) Classification. Input variables were 

features as above that are used as input in the development of a model to predict the 

outcome (in-hospital mortality). The entire dataset Data is categorized into two classes 

based on whether the patient will experience mortality as an outcome of surgery during the 

hospital stay in the postoperative period.  

 

3.9 Data Analysis    

The study aimed to investigate the impact of various risk factors on mortality using a Deep 

Neural Network model, with a focus on identifying the key contributing variables rather 

than providing a precise quantification of their individual effects. The objective of this 
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study was to develop a machine-learning prediction model for in-hospital mortality 

following non-cardiac surgery. Although missing values were initially considered for 

imputation, the proportion of records with missing data was negligible. As a result, these 

records were excluded from the analysis instead of applying imputation techniques. 

3.9.1 Data Analysis Strategies 

The dataset for the study population, which included patient characteristics, comorbidities, 

preoperative and postoperative investigations, and complications, was organized into a 

CSV file. Machine learning models were built using Python 3.9 (Python Software 

Foundation, Wilmington, DE), utilizing the scikit-learn library and TensorFlow version 

2.13.0. These models were trained to predict outcomes on the test set and evaluated based 

on metrics such as specificity, sensitivity (recall), positive predictive value (PPV or 

precision), and F1 score, which is the harmonic mean of precision and recall (calculated as 

2 * (precision * recall) / (precision + recall)). Additionally, receiver operating characteristic 

(ROC) curves were generated, and the area under the curve (AUC) was computed for each 

model. 

Probabilistic models, including a Variational Autoencoder (VAE) and Bayesian models, 

were developed both individually and in ensemble configurations, focusing on accurately 

identifying true positives. The predicted probabilities of these models were calibrated using 

methods such as temperature scaling, Platt scaling, and isotonic regression. Furthermore, 

model-agnostic explainability techniques, including Local Interpretable Model-agnostic 

Explanations (LIME) and SHapley Additive exPlanations (SHAP), were employed to 

identify the most important features influencing mortality predictions. 
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3.10 Research Design Limitations 

Limitations of the Study 

Limitations of the study include firstly the Sample Size, although the study utilizes 

synthetic data generation to augment a dataset of approximately 931 samples, the original 

sample size remains relatively small. This may limit the generalizability of the findings to 

broader patient populations and reduce the robustness of the predictive models. Secondly, 

imbalanced Data,where in dataset exhibits a significant imbalance between the number of 

positive (in-hospital mortality) and negative outcomes, this imbalance can lead to biased 

model performance, where classifiers may struggle to accurately identify the minority 

class, potentially affecting sensitivity and recall, thirdly Data Quality and Completeness 

which were collected from medical records, may be subject to inaccuracies, missing values, 

or inconsistencies. Such data quality issues can impact the reliability of the predictive 

models and the validity of the results, fourthly, privacy issues posed challenges in the 

comprehensive collection of data, which may have limited the inclusion of relevant clinical 

variables that could enhance model performance, fifthly Generalizability, the study was 

conducted within a single teaching institution, which may limit the applicability of the 

findings to other healthcare settings. Variations in patient demographics, surgical practices, 

and clinical protocols across institutions could affect outcomes, sixthly, Model 

Complexity, while advanced models like Variational Autoencoders (VAEs) and ensemble 

methods are employed, their complexity may lead to overfitting, especially given the small 

dataset size. Careful validation is necessary to ensure that models generalize well to unseen 

data, seventhly, Evaluation Metrics, although a variety of evaluation metrics are used, 
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relying solely on these metrics may not capture all aspects of model performance. For 

example, high precision does not necessarily imply high recall and trade-offs between 

different metrics can complicate the assessment of model efficacy. Eighthly, assumption 

of Data Distribution, while generative models like VAEs assume that the underlying data 

distribution can be approximated effectively, if the true distribution of the data is complex 

or differs significantly from the assumed model, the generated synthetic data may not 

adequately represent real-world scenarios, ninthly, Calibration Limitations, while 

calibration techniques are applied to improve prediction reliability, their effectiveness can 

vary based on the model and data characteristics. Inadequate calibration may still lead to 

suboptimal prediction probabilities, affecting clinical decision-making, tenthly, Temporal 

Considerations, since the data was collected from a specific time frame (2016-2017), and 

changes in surgical practices, patient demographics, or advancements in medical 

technology since then may affect the relevance of the findings to current clinical settings. 

These limitations highlight the need for a cautious interpretation of the study results and 

suggest avenues for future research to address these challenges and enhance predictive 

modeling in surgical outcomes. 
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CHAPTER IV: 

RESULTS  

 

 

A statistical analysis of quantitative data comprising of mean, standard deviation, 

minimum, maximum proportion, and standard error for Qualitative data is attached as 

Appendix “A “.A  correlation analysis showed significant correlation of  Alcohol Abuse 

with Smoking within one year of surgery(.45),Hypertension with Diabetes (.24),Obesity 

with Chronic Pulmonary disease(.12) and Hypertension(.17),Renal failure with deficiency 

Anaemia(.23),Bronchial Asthma with Chronic Pulmonary Disease(.26), Cerebrovascular 

Accident with Chronic Hypertension(.17),Chronic Liver disease with Alcohol abuse within 

one year(.12) , Pre OP Total Leukocyte Count (.19) and deficiency 

Anaemia(.23),Moderately severe Liver disease with Surgery within one year(.16) and 

Chronic Pulmonary Disease(.21),Preop Total  Bilirubin with Surgery within one 

year(.13),Chronic Liver disease(.41),Moderately Severe Liver Disease (.31) and Pre  Op 

Creatinine (.10), Preop SGOT with Preop Bilirubin Total(.20), Preop SGPT with Preop 

Bilirubin Total(.25), Preop SGOT(.78), Post op Leukocyte Count  with Surgery within one 

year(.15),Post op Creatinine with Deficiency Anaemia(.14),Postop Urea(.56),Post OP 

SGOT  with Surgery within one year(.10),Preop SGOT(.12),Postop Urea (.14),Postop 

Creatinine(.16), Postop Bilirubin Total(.16), Post OP SGPT  with Surgery within one 

year(.21),Postop Creatinine (.11), Postop Bilirubin Total(.17), Post OP SGOT(.57),  Postop 

Potassium with Preop Potassium(.10),Postop Creatinine(.11),Deep Surgical Infection  with   

Deficiency Anaemia(.10), CVA(.15),Postop TLC(.12) Organ Space Infection  with 



 

 

95 

Chronic Pulmonary Disease (.11),Wound Dehiscence with Moderately severe Liver 

Disease (.16),Gastric Outlet Syndrome with  Surgery within one year(.12) and wound 

Dehiscence (.11),Generalised Peritonitis with Surgery within one year(.11),Pulmonary 

Complication with Deficiency Anaemia(.13),CVA(.19),Chronic Liver Disease (.11),Preop 

Urea (.12), Preop Creatinine (.13),Postop TLC(.14), Postop Urea(.10), Postop 

Creatinine(.10), Cardiac Complication with Smoking within one year of surgery(.11) , 

PreopCreatinine (.10),  Chronic Pulmonary Disease(.10),Postop Creatinine (.12) and 

Pulmonary Complications (.23),Sepsis with Surgery within one year(.13), Chronic 

Pulmonary Disease(.11) , Deficiency Anaemia(.13), Chronic Liver Disease(.14), Pre Op 

Urea(.13 ), PreopCreatinine(.17 ), Pulmonary Complications(.40) and Deranged 

Electrolytes(.27). ,Duration of Stay with Surgery within one year(.10 ), Smoking within 

one year of surgery( .14) , Alcohol Abuse(.14),Wound Dehiscence(.20),Gastric outlet 

Syndrome(.16),Generalised Peritonitis(.15), Pulmonary Complications(.30), Cardiac 

Complications(.15) and UTI(.31),   Reoperation with Surgery with in one year(.12), Pre 

Op Urea(.11 ), PreopCreatinine(.14 ),Preop Sodium(-.15),Preop SGOT(.12),Preop 

TLC(.12),Wound Dehiscence(.16),Gastric outlet Syndrome(.38),Generalised Peritonitis( 

.12),Pulmonary Complications(.10),Cardiac Complications(.17),Deranged 

Electrolytes(.15)  UTI(.14),Sepsis(.14),Duration of stay(.24) , Readmission with Wound 

Dehiscence(.55),Reoperation(.12),Pre op Renal Failure with Deficiency 

Anaemia(.13),Preop Urea(.33),Preop Creatinine(.72),Preop Sodium(-.26),Postop 

SGOT(.28),Postop SGPT(.19), Post Op Urea(.40 ) and Postop Creatinine(.77 ), Pulmonary 

Complications(.20), Cardiac Complications(.14),Electrolyte 
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Derangement(.69),Sepsis(.26),Reoperation(.15),Postop Renal Failure(.27),  Post op Renal 

Failure with Deficiency Anaemia(.12), Pre op Creatinine(.17), Post Op Urea(.40 ),Postop 

Creatinine(.77 ), Pulmonary Complications(.16), Cardiac Complications(.22),Electrolyte 

Derangement(.72),Sepsis(.26), Death with Chronic Pulmonary Disease(.12) and Diabetes 

Mellitus(.10),CVA(.13),Chronic Liver Disease (.11), Preop Urea(.20),Preop 

Creatinine(.17),Preop Sodium(-.13). Postop TLC(.19), Post Op Urea(.25) and Postop 

Creatinine(.25), Pulmonary Complications(.41), Cardiac Complications(.15),Electrolyte 

Derangement(.28),UTI(.10),Sepsis(.54),Reoperation(.28),PostopRenal Failure(.23),Preop 

Renal Failure(.18),Lapcholecystectomy(-.16),Herniotomy(-.10),Omentoplasty(.14),Small 

Bowel resection(.43) Preop Urea with Preop TLC (.12),Pre op Creatinine with Chronic 

Pulmonary Disease(.20), Pre OPTLC(.17) and Preop Urea(.44),Pre op Bilirubin Total with 

Chronic Liver Disease(.41),Moderately Severe Liver Disease(.31),  Preop TLC (.17) and 

Preop Creatinine(.10),Preop SGOT with Chronic Liver Disease(.14),Pre Op Urea(.17 ) and 

PreopCreatinine(.27 ), Preop SGPT with Chronic Liver Disease(.15),Moderately Severe 

Liver Disease (.13 ),Pre op TLC(.11) ,Pre op Creatinine (.20),Postop TLC with Chronic 

Liver Disease(.10),CVA (.10) and  Preop TLC(.26),Post op Urea with Preop TLC(.10), 

Preop Urea(.11 ) and Preop Creatinine(.14),Postop Creatinine with Preop TLC(.15), Preop 

Creatinine(.10) , Preop Urea(.20) and Postop Urea, Postop Bilirubin  Total with Chronic 

Liver Disease(.28),Deranged Electrolyte  with Preop Urea(.26),Preop Creatinine(.52), 

Preop Sodium(-.23),Preop SGOT(.19), Preop SGPT(.12), Postop Urea(.35), Postop 

Creatinine(.58), UTI with Preop TLC(.10),Postop Creatinine(.10). A few examples of 

Important corelation in variables cluster to note are Hypertension and diabetes (0.24), 
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presence of both increases the risk of complications and mortality. Renal Failure and 

Deficiency Anemia (0.23) with potential for adverse outcomes. Bronchial Asthma and 

Chronic Pulmonary Disease (0.26) with the possibility of requiring respiratory support 

post-surgery, High correlation of Pre-op Renal Failure with Deficiency Anaemia(.13), 

Preop Urea(.33), Preop Creatinine(.72), Preop Sodium(-.26), Postop SGOT(.28), Postop 

SGPT(.19), Post Op Urea(.40 ) and Postop Creatinine(.77) suggesting that pre-surgery 

renal function is a strong predictor of post-surgery outcomes of Renal failure and so on. A 

two-sample t-test Analysis was done to find the statistical difference in quantitative 

variables. Differences between Preop TLC and Postop TLC, Preop Sodium and Postop 

Sodium levels were significant which suggests that surgery significantly alters these 

parameters, potentially impacting recovery and outcomes. Univariate analysis with death 

as the dependent variable in logistic regression showed Variables with statistical 

significance at a 5% level in Univariate Analysis were Distance from Hospital within 50 

km, Deficiency Anaemia, Chronic Pulmonary disease, Diabetes Mellitus, Metastasis, 

Renal Failure, Chronic Liver disease, Preop TLC, Pre-op Urea, Preop Creatinine, Pre-op 

Sodium, Preop Direct Bilirubin, Omentoplasty, Small Bowel resection, Post OP TLC, Post 

op Urea, Post op creatinine, Post op Sodium, Post op Bilirubin Total, Postop bilirubin 

Direct, Post op bilirubin Indirect, Post op SGOT, Post op SGPT, Deep Surgical Site 

Infection, Organ Space Surgical site infection, Dehiscence, Pulmonary Complication, 

Cardiac complication, deranged KFT, UTI, Sepsis, Post op Renal Failure, Duration of stay 

and reoperation, There was a significant difference in TLC after  Surgical intervention with 

a mean decrease of 824.37, and Sodium level with a mean decrease of .663.There was no 
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significant change in values of Preoperative and Postoperative Urea, Creatinine, Hepatic 

enzymes i.e. SGOT, SGPT, and Alkaline Phosphate, and  None of the Bilirubin 

measurements. While overall there was no difference, the same cannot be generalized to 

individual data. 

4.1 Research Question One 

 Which method whether Machine Learning or Deep Learning is most capable of 

identifying mortality in a small dataset complemented with synthetic data? 

 

In this study, the small dataset consisting of 932 samples was split into training and 

evaluation sets in a 3:1 ratio. The training data exhibited class imbalance, with the target 

feature of mortality showing 658 instances of no mortality and 39 instances of mortality. 

The strategy used to balance data was oversampling by upsizing the minority 

class(Drummond and Holte, 2003). Variational Autoencoders were tried to correct the 

imbalance in training data with the generation of 619 samples to find which method yields 

better results. The parameters used to measure the performance of models with or without 

correction of class imbalance included accuracy, F1 score, recall, precision, true positive, 

and false negative. Table 1 and Table 2 show the results with and without correction of 

class imbalance. 
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Table 4.1 

Performance of Machine learning models without correction of class imbalance (Original 

Data) 

Data 

form 

Model accuracy f1 

score 

recall precision true 

+ve 

false     -

ve 

Original Logistic regression 0.88 0.47 0.92 0.32 12 1 

Original K neighbors classifier 0.96 0.38 0.23 1 3 10 

Original SVC 0.96 0.44 0.31 0.8 4 9 

Original Decision Tree classifier  0.91 0.40 0.53 0.31 7 6 

Original Random forest classifier 0.94 0.14 0.07 1 1 12 

Original Gradient boosting classifier 0.96 0.67 0.62 0.73 8 5 

Original         XGB classifier 0.95 0.59 0.62      0.57   8      5 

 

 

Looking at the comparison (Table 2), the Deep Learning model trained with VAE-

augmented data emerged as the best performer, offering the highest F1 score and a balanced 

recall and precision. The application of VAE data augmentation generally improved the 

performance of most models, particularly for complex models like Decision Trees, 

Random Forests, Gradient Boosting, and XGBoost. However, simpler models like Logistic 

Regression and SVC struggled with the VAE-augmented data. 
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Table 4.2 Comparison of Machine learning model with Deep Learning Model with 

data imbalance corrected from Data Augmentation by Variational Autoencoder 

(VAE) 

 

 

Data Form Model Accuracy 
F1 

Score 
Recall Precision 

True 

+ve 

False 

-ve 

Variational 

AE 
LogisticRegression 0.86 0.27 0.46 0.19 6 7 

Variational 

AE 
KNeighborsClassifier 0.93 0.47 0.53 0.41 7 6 

Variational 

AE 
SVC 0.93 0.12 0.07 0.33 1 12 

Variational 

AE 
DecisionTreeClassifier 0.91 0.47 0.69 0.36 9 4 

Variational 

AE 
RandomForestClassifier 0.96 0.66 0.53 0.87 7 6 

Variational 

AE 
GradientBoostingClassifier 0.96 0.64 0.61 0.67 8 5 

Variational 

AE 
XGBClassifier 0.96 0.71 0.76 0.66 10 3 

Variational 

AE   

Deep Learning Model 0.96 0.71 0.85 0.61 11 2 

 

The results indicate that while the DecisionTreeClassifier, RandomForestClassifier, 

GradientBoostingClassifier, and XGBClassifier show improved performance with 

variational Autoencoder transformed data, Logistic Regression and SVC do not perform 

well on the VAE data, indicating that simpler models may not be able to capture the 

complex patterns that the VAE is generating. The Deep Learning model, Random Forest, 

and XGBoost models can effectively handle the transformed feature space created by the 

VAE. Several models, especially Random Forest and KNN on the original data, struggled 
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with the imbalanced nature of the dataset. The VAE transformation appears to help mitigate 

some of these issues, particularly improving recall for these models.  The Generative, Deep 

Neural Network (DNN) outperforms them all in terms of identifying True positives, 

achieving the best performance. 

4.2 Research Question Two 

 Whether Generational autoencoder can be used using variational autoencoder to 

correct for imbalance in training data with superior results? 

 

The dataset utilized in this study is both limited in size and significantly skewed, given that 

mortality events are infrequent. In binary classification scenarios where the target class is 

highly imbalanced, standard machine learning algorithms tend to focus on maximizing 

overall accuracy. As a result, these algorithms often classify the majority of instances as 

belonging to the more prevalent class. This scarcity of examples for the minority class can 

hinder the learning algorithm's ability to effectively capture the characteristics of this class, 

leading to suboptimal performance in predictive accuracy (Japkowicz & Stephen, 2002). 

Consequently, this results in low recall for the minority class, which is usually the class of 

primary interest. To address the issue of imbalanced data, various techniques are available. 

This study explores how different oversampling methods can affect the performance of a 

Deep Learning model on an imbalanced dataset, specifically investigating whether the 

Variational Autoencoder (VAE) can yield superior outcomes. Two oversampling 

techniques were implemented: SMOTE (Synthetic Minority Over-sampling Technique) 

(Chawla et al., 2002) and its derivatives, alongside the VAE (Kingma et al., 2014). Similar 
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to SMOTE, the VAE generates new samples that are akin to those in the original dataset, 

albeit with slight variations (Zhang et al., 2018). While Random oversampling resulted in 

an F1 score of .61, the variational autoencoders method could achieve an F1 score of  

.77.Results are shown in Table. The table provides the performance metrics of a Deep 

Learning model under different data augmentation techniques, specifically various 

oversampling methods. Each row represents the results obtained by applying a different 

oversampling technique to address class imbalance in the dataset. The metrics include 

Accuracy, F1 Score, Recall, Precision, True Positives (TP), and False Negatives (FN) and 

ROC-AUC Score. The table below shows the results: 

            Table 4.3. Data augmentation techniques and performance of DNN models 

 
Data Form 

Oversampling 

Model Accuracy F1 

Score 

Precision Recall True 

+ve 

False 

-ve 

ROC-

AUC 

Score 

Random 

oversampling 

Deep 

Learning  

.96 .64 .67 .62 8 5 .93 

 SMOTE Deep 

Learning 

.95 .65 .56 .77 10 3 .86 

 BSMOTE Deep 

Learning 

.97 .71 .67 .77 10 3 .92 

Adasyn Deep 

Learning 

.94 .59 .48 .77 10 3 .91 

Deep Smote Deep 

Learning 

.96 .75 .63 .92 12 1 .97 

 Variational 

Autoencoder 

Deep 

Learning 

.96 .71 .61 .85 11 2 .95 



 

 

103 

 

Random oversampling leads to high precision but lower recall, but a relatively low F1 score 

(0.64). SMOTE improves recall (.77) but precision drops to .56 with an F1 score of 0.65. 

BSMOTE(Borderline-SMOTE) shows an F1 score of .71, and ROC-AUC is also higher 

(.92) showing better distinguishing between classes. Adasyn results in recall (0.77), 

meaning it misses many positive cases, and precision drops (0.48), which indicates a higher 

number of false positives. Deep SMOTE achieves a strong performance across the board, 

with high recall (0.92) and precision (0.63). The ROC-AUC score of 0.97 is the highest, 

indicating excellent overall model performance in separating the classes. The VAE-based 

model showed consistently high performance across multiple metrics. VAE transformed 

data produced a high F1 score of 0.71, a strong recall of 0.85, and an ROC-AUC score of 

0.95. It also identifies 11 true positives and only 2 false negatives, indicating robust 

detection of the minority class. This shows that the model based on VAE-transformed data 

is effective at identifying the minority class while maintaining high accuracy and precision 

The ROC-AUC of 0.95, though slightly lower than Deep SMOTE, is still very good. While 

both the Deep SMOTE and Variational Autoencoder models achieve comparable 

performance in terms of F1 score and recall, the VAE offers several additional advantages 

that make it a superior choice for mortality prediction. First, the VAE's ability to model 

complex latent representations allows it to uncover hidden patterns in the data, making it 

more adaptable to diverse datasets and robust to noise. Secondly, the generative capabilities 

of the VAE provide a novel approach to handling class imbalance and uncertainty, offering 

more flexibility for research and real-world applications. Thirdly, while Deep SMOTE 
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directly augments the dataset to handle imbalance, VAEs offer a different approach by 

learning a latent representation of the data distribution, allowing for complex generative 

capabilities (Kingma & Welling, 2014). VAE’s ability to generate synthetic samples that 

capture the underlying distribution of the minority class is particularly useful in medical 

datasets where the occurrence of death may be rare compared to survival. Given the critical 

nature of death prognostication, where missing a true positive can have severe 

consequences, the VAE model is the most appropriate choice. Lastly, VAEs are at the 

forefront of modern deep learning research and have been widely used for generative tasks, 

anomaly detection, and representation learning.  VAE-transformed data allows leveraging 

state-of-the-art machine learning techniques to tackle a challenging imbalanced 

classification problem. 

DNN model with Autoencoder for generation of synthetic data gave a probabilistic 

generative output which varied with each run creating high uncertainty in predicting the 

outcome of mortality with no definite bounds of prediction at individual level. At a broader 

level prognostic in health management face uncertainty problem which comes from the 

effects of two critical uncertainties: 1) epistemic uncertainty, accounting for the uncertainty 

in the model, and 2) aleatoric uncertainty, representing the impact of random disturbance, 

such as measurement errors (Kendall, Gal, 2017). To measure the effects of uncertainty, 

stochasticity is a key component of many modern neural net architectures and training 

algorithms. The most widely used regularization methods are based on randomly 

perturbing a network’s computations.  Wen et al. (2018) described Flipout, a technique for 

probabilistic modeling that reduces gradient variance during training. Regularization 

methods often involve perturbing weights, as in Bayesian neural networks, or applying 
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stochastic techniques like dropout to activations. Flipout specifically introduces 

independent weight perturbations to decorrelate gradients, but perturbing weights often 

incurs additional computational costs. There are (typically) many more weights than there 

are units in a neural network, so computing the weight perturbation for every single element 

in a mini-batch becomes incredibly costly on computational resources, As a result, methods 

that are regularized by weights will usually only use a single sample per mini-batch (Wen, 

et al.,2018). 

For Model development for prognostication of mortality, two approaches were tried. In the 

first approach, individual models were trained, which included a DNN model with VAE, a 

probabilistic generative model, two Probabilistic models with a Flipout layer at the end 

versus in all layers and a Bayesian model. To generate the bounds the models were run 200 

times and results were aggregated.  

 

 Smote                                                                                                           BS Smote     

 

  

 

                                                     Adasyn    
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                                                     VAE     

                                                                           

 

      

      

 

 
 

Fig 4.1 Comparison of SMOTE and Its Variants 

This comparison illustrates the effectiveness of various oversampling techniques on 

imbalanced datasets. VAE demonstrates superior performance in handling data imbalance, 
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while SMOTE and its variants show varying levels of improvement based on precision, 

recall, and F1 score. 

 

 DNN model with Autoencoder for generation of synthetic data gave a probabilistic 

generative output which varied with each run creating high uncertainty in predicting the 

outcome of mortality with no definite bounds of prediction at individual level. At a broader 

level prognostic in health management face uncertainty problem that comes from the 

effects of two critical uncertainties: 1) epistemic uncertainty, accounting for the uncertainty 

in the model, and 2) aleatoric uncertainty, representing the impact of random disturbance, 

such as measurement errors (Kendall, Gal, 2017). To assess the impact of uncertainty, 

stochasticity plays a crucial role in many contemporary neural network designs and training 

methods. Regularization techniques often incorporate stochasticity by introducing random 

perturbations to the network’s computations, which helps prevent overfitting and promotes 

better generalization. One such method, introduced by Wen et al. (2018), is Flipout, a 

regularization approach specifically designed for probabilistic modelling. 

Flipout operates by introducing decorrelated perturbations to a network's weights, unlike 

traditional Bayesian neural networks, which perturb weights in a correlated manner. The 

challenge with weight perturbation is that neural networks typically have far more weights 

than units, making it resource-intensive and computationally expensive to calculate weight 

perturbations for every element in a mini-batch. This limitation often forces weight-

regularized methods to utilize only one sample per mini-batch, hindering their ability to 

learn complex patterns (Wen et al., 2018). 
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In contrast, Flipout enables more efficient computations by allowing the network to 

leverage mini-batches effectively without the high computational costs associated with 

weight perturbation. By introducing stochasticity through decorrelated weight 

perturbations, Flipout enhances the model's ability to explore a wider range of parameter 

variations, thus improving generalizationThis efficiency not only enhances the scalability 

of probabilistic models but also promotes better generalization by incorporating a broader 

variety of samples during training (Wen et al., 2018). Therefore, Flipout presents a 

promising solution to address some of the inherent limitations faced by conventional 

regularization techniques in probabilistic neural networks. 

For Model development for prognostication of mortality, two approaches were tried. In  

the first approach, individual models were trained, which included a DNN model with 

VAE, a probabilistic generative model, two Probabilistic models with Flipout layer at the 

end versus in all layers, and a Bayesian model. To generate the bounds the models were 

run 200 times and results were aggregated.  

 

Table 4.4     Comparison of Probabilistic Models 

 
Probabilistic Model  Accuracy Precision Recall F1 

score 
True -
ve 

False 
-ve 

False      
+ve 

True+v
e 

ROC-
AUC 

Score 

Mean P of 
where 

class is 1 

&   SD 
and mean 

p of 
positive 

class &  

SD 

Global 
Entropy 

and 

/Entropy 
of 

positive 
class 

VAE .97 .77 .77 .77 217 3 3 10 .91 at 

thresho

ld of 

..47 

.64+/-.38 

.06+/-.20 

 

.03/.1

0 



 

 

109 

Flipout  Last layer .96 .67  .62 .64 216 4 5 8 .84 0.58+/

-.32 

.21+/- 

.15 

 

 

5.3/ 

2.3 

 

Flipout   All layers .06 .06 1 .11 0 220 0 13 .30 . .52 

+/-.0009  

52+/-.001 

161.16/8.

99 

Bayesian .96 .70 .54  .61 217 3 6 7 .80 .63+/-.009 

.55+/-.003 

109.44/5.

27 

VAE Model: 

 

This model had strong performance across all metrics, with a balanced precision, recall, 

and F1 score of 0.77. The model achieved high accuracy (0.97), indicating that it correctly 

predicted most of the cases. The ROC-AUC score of 0.95 suggests excellent discriminatory 

ability between the classes. With a   Global Entropy (0.03),the model was generally 

confident in its predictions. Positive Class Entropy (0.10) means there is more uncertainty 

in the predictions for the positive class compared to the overall dataset, reflecting the 

model's challenge in predicting the minority class with high certainty. Mean Probability 

for Class 1 at 0.64 means that in predicting the positive class (Class 1), the average 

probability the model assigns to this class is approximately 0.64  which indicates that when 

the model identifies a sample as belonging to Class 1, it does so with fairly high confidence, 

as the probability is well above 0.5.  The model assigns a low overall probability to the 
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positive class(.06), which means that in most cases, it predicts the negative class (class 0)  

However, for samples where the true class is 1, the model is much more confident, At the 

threshold of 0.47, the model's global entropy is very low (0.03 for global entropy, 0.10 for 

positive class entropy). This indicates that the model's predictions are generally confident, 

with minimal uncertainty, especially when it predicts positive cases. A low entropy means 

the model is not "uncertain" about its classification and is making more deterministic 

decisions.  

Flipout (Last Layer): 

 

 The model underperforms compared to the VAE, with a significant drop in precision (67), 

recall (.62), and F1 score (0.64). The accuracy is still relatively high (0.95), but the lower 

precision and recall suggest that it may struggle with classifying the positive class 

correctly. With ROC-AUC of 0.84, it is less capable of distinguishing between the classes 

compared to VAE. The mean probability of the positive class is relatively low (0.21 ± 

0.15), indicating some uncertainty or low confidence in predicting the positive class, which 

could explain the lower recall. Global entropy values show that there is some uncertainty 

in predictions, though it is better compared to the Flipout All Layers model. 

Flipout (All Layers) 

The Flipout All Layers model performs poorly with extremely low accuracy (0.06) and 

precision (0.06), although its recall is 1.0. This means that while it identifies all the true 

positives, it does so at the expense of many false positives, resulting in poor overall 

performance.  The F1 score of 0.11 reflects this imbalance, with very low precision but 
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perfect recall.  The ROC-AUC of 0.30 suggests that the model does not differentiate 

between the two classes well, essentially performing no better than random guessing.   The 

mean probability for both the positive class and Class 1 is very stable (0.52 ± 0.0009), 

which suggests the model is assigning similar probabilities across instances, possibly due 

to overfitting or lack of sufficient uncertainty propagation through the layers. High global 

entropy values (161.16) indicate significant uncertainty across the model, which suggests 

that adding Flipout to all layers introduces too much stochasticity, leading to a breakdown 

in prediction accuracy. 

Bayesian Model: 

The Bayesian model performs similarly to the Flipout Last Layer model, with an accuracy 

of 0.96 and higher precision (0.70), but lower recall (0.54). This indicates that the model 

is better at avoiding false positives than it is at capturing all true positives, which was 

desirable considering that the objective was to predict mortality in clinical settings. The F1 

score of 0.61 reflects this trade-off between precision and recall, showing slightly lower 

performance compared to the Flipout Last Layer model  ROC-AUC of 0.80 is slightly 

lower than that of the Flipout Last Layer model (0.84), suggesting a moderate ability to 

differentiate between classes. Mean probabilities for both Class 1 (0.63 ± 0.009) and the 

positive class (0.55 ± 0.003) are higher than in the Flipout Last Layer model, indicating 

more confidence in its positive predictions. Global entropy (109.44) is lower than the 

Flipout All Layers model but higher than the Flipout Last Layer model. This suggests that 

the Bayesian model incorporates uncertainty effectively without introducing excessive 

randomness. 
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Thus, the VAE model appears to be the most balanced, while the Flipout model and the 

Bayesian model both struggle with significant uncertainty. These two models either need 

further refinement or are not suitable for the prediction of mortality in the current context. 

VAE model, with its balanced precision and recall, high accuracy, and low uncertainty is 

a strong candidate for   Deployment in hospitals for the prediction of mortality 

 

                                                     VAE Model    

                                                                                           

  

                                               Flipout at the End Model                                                                            

  
Flipout in All layers Model  

 

 

 

 

Model_2 – ROC-AUC Score: 0.30 
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                                                     BNN Model 

  

 

Figure 4.2 Comparison of ROC of VAE and Bayesian Models 

Ensemble Modeling as a Strategy: 

 

Since probabilistic models did not perform well, and the aim was to move from a 

deterministic approach to a stochastic approach to better capture variability in data, explore 

a wider solution space, and provide probabilistic output, in the second approach Ensembles 

models were used where in a combination of  VAE, Model_1, Model_2, Bayesian were 

was combined and evaluated for accuracy, precision, recall, F1 score, True positive (TP), 

False positive (FP), False negative(FN), True positive (TP), Area Under the Curve, Mean 

probability where the outcome is mortality i.e. 1, mean global probability, global entropy 

and mean entropy where the outcome is 1(Table-4.5). The table uses the mean probability 

of class which is equivalent to the mean probability of class 1 and  mean probability where 

the class is 1 which is more of an evaluation metric rather than a fundamental model output 

and is important in the context of performance evaluation, such as when model predicts 
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the positive class (class 1) and where ground Truth is also positive class. The details of the 

results are as under: 

 

 

 

 Table 4.5 Comparison of Ensemble models 

 
Ensemble Configurati

on 

 
Acc Pric

e 

Rec F1 TN FP FN TP ROC 

AUC 

Mean P of 

where the 

class is 1 

&   SD 

and mean 

p of 

positive 

class &  

SD 

Enter(Gl

obal/Pos

itive cl

ass 

VAE + Flipout at Last 

Layer+Bayesian_ 

 

.97 .65 .85 .73 214 6 2 11 .86 .54+/-.03 

64’+-.06 

 

5.4/2.5 

VAE+Bayesian+Flipout All 

layers 

.97 .65 .85 .73 214 6 2 11 .83  .63+/- 

0.04 

 0.56 

+/-.02 

 

5.4/2.5 
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VAE+Bayesian+Flipout All 

layers+Last layer 

.97 .65 .85 .73 214 6 2 11 .90 .63+/-,05 

.56+’-.05 

5.4/2.5 

VAE+Flipout Last Layer+ All 

layers 

.97 .65 .85 .73 214 6 2 11 .94 .63+/-.04 

56+’-.02. 

5.4/2.55 

Baysian +Flipout  last 

layer+Flipout All layers 

.96 .67 .62 .64 216 4 5 8 .90 .63+/-.07 

55+/-.03 

5.44/2.5

5 

 

Baysian +Flipout  last layer .96 .67 .62 .54 216 4 5 8 .88 .63+/-.03 

.59+/-.04 

 

5.4/2.56 

Baysian +Flipout All layers .96 .67 .62 .64 216 4 5 8 .82 .55+/-.16 

.37+/-.07 

5.43/2.5

1 

Flipout All layer+Flipout last 

layer 

.96 .67 .62 .64 216 4 5 8 .82 .55+/-.16 

.37+/-.07 

5.43/2.3

8 

VAE+Flipout_last_Layer .96 .62 .77 .69 214 6 3 10 .95 .61+/-.31 

.13+/-.16 

76.81/5.

3 

VAE+Flipout_all Layer .97 .77 .77 .77 217 3 3 10 .90 .57+/-.02 

.64+/-.04 

5.4/2.5 

VAE+Bayesian .97 .65 .85 .73 214 6 2 11 .89 .67+./-20 

.13+/-.16 

 

5.4/2.8 

 

Pre-Calibration Summary of models 

 

Of all the models, VAE +Flipout Last Layer had the ROC-AUC score (.95) and strong 

precision, recall, and F1 score, making it an excellent choice before calibration. The 
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ensemble had high recall with slightly lower precision, which is good for identifying more 

positive cases. Other models which had high performance were VAE + Flipout All Layers 

with a balance between high F1 score and a value of .77  across other matrices of precision 

and recall and ROC-AUC score at .90, VAE+ Bayesian+ Flipout All layers+ Last layer 

with equivalent matrices and ROC-AUC score of .90, VAE+Flipout Last Layer+ All layers 

with precision (.65  ).recall ( .85), F1 score( .72) and ROC-AUC (.94 ), Baysian +Flipout  

last layer+Flipout All layers with precision of .67, recall of .62, F1 score of .64, and ROC-

AUC value of .90, VAE+Bayesian+ Flipout all with precision of (.65), recall of .85), F1 

score of (.73, ROC-AUC score of .90. 

Identifying models that accurately predict the true underlying probabilities for each 

test case would be ideal. However, the challenge lies in our inability to train models to 

effectively estimate these probabilities. This difficulty can stem from a lack of knowledge 

about the appropriate parametric model type, the limited size of the training sample 

hindering accurate parameter estimation, or the presence of noise within the data. 

Typically, a combination of these issues manifests to varying degrees. Furthermore, we 

often lack access to the true underlying probabilities; we only know whether a case is 

positive or negative, complicating the task of determining if a model accurately predicts 

these probabilities (Caruana, 2004). 

Guo et al. (2017) highlighted that the extensive capacity of neural network models, 

combined with their propensity to overfit complex datasets, makes them particularly 

susceptible to calibration problems. In many cases, standard deep learning approaches 

generate probabilistic predictions that are overly confident, especially when training sets 
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are small. This tendency exacerbates existing issues and can lead to undesirable outcomes 

when deep neural networks are implemented in situations requiring precise uncertainty 

quantification. Consequently, various calibration techniques, such as temperature scaling, 

Platt scaling, and isotonic regression, have been employed for ensembles. 

Achieving well-calibrated probabilistic predictions is essential for effective risk 

management, especially when decisions hinge on the reliability of probabilistic model 

outputs. Calibration refers to a model's ability to generate probabilistic predictions that 

accurately reflect the true likelihood of various outcomes. Specifically, a model should 

provide a calibrated measure of confidence alongside its predictions; in other words, the 

probability linked to the predicted class label should mirror its actual likelihood of 

correctness. In models with good calibration, the predicted probabilities correspond with 

the observed frequency of events. For instance, if a model forecasts an event with a 

probability of 0.9, that event should occur 90% of the time over an extended period. 

Rahaman (2021) emphasized that creating well-calibrated models is vital for fostering 

public trust in machine learning applications, particularly in AI-driven medical diagnostics, 

as it directly relates to the acceptance of new technologies. Common methods for 

calibrating deep learning models in low-data situations include ensembling, Platt scaling, 

temperature scaling, and mixup data augmentation (Rahaman, 2021). 

. Accordingly, Ensembles of all the basic models were calibrated with temperature scaling, 

Isotonic regression, and Platt’s scaling. However, calibration techniques have problems for 

two reasons firstly, most calibration methods assume a more balanced distribution of 

classes, and secondly, the model could be biased toward predicting the majority class 
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(zeros), which would result in poor calibration of the probabilities for the minority class 

(ones). Hence, calibrated probabilities were assessed using Brier’s score to see how close 

are predicted probabilities with the actual before and after the calibration of models. 

 

Table 4.6 Evaluation of models as per matrices with Temp Scaling, Platt Scaling, 

and Isotonic regression 

 

 
Ensemble Configurati

on(calibrated with t

emp scaling 

 

Method 

of 

calibrat

ion 

Accur

acy 

Preci

sion 

Recall F1 TN FP FN T

P 

Best T

hresho

ld  

ROC AU

C scor

e 

VAE+Flipout_last_Layer 

Temp 

Scaling 

.96 .62 .77 ,69 214 6 3 10 .99  

 

Platt 

Scaling 

.94 .52 .76 .62 211 9 3 10 .08 .85 

 

Isotonic 

regressi

on 

.97 .67 .77 .71 215 5 3 10 .20 .87 

VAE+Flipout_all_Layer 

Temp 

Scaling 

.97 .71 .77 .74 216 4 3 10 .58  

 

Platt 

Scaling 

.97 .77 .77 .77 217 3 3 10 .26 .87 

 

Isotonic 

regressi

on 

.97 .77 .77 .77 217 3 3 10 .24 .87 
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VAE + Flipout all  Lay

er+Bayesian_ 

 
Temp 

scaling 

.97 .77 0.77 0.7

7 

217 3 3 10 .57  

 

Isotonic 

regressi

on 

.97 .77 0.77 0.7

7 

217 3 3 10 .50 .87 

 

Platt 

Scaling: 

 

.97 .77 0.77 0.7

7 

217 3 3 10 .21 .85 

 

VAE + Flipout at Last 

Layer+Bayesian_ 

 

 

Temp 

scaling 

.97 .77 .77 .77 217 3 3 10 .79  

 

Isotonic 

regressi

on 

.97 .77 .77 .77 217 3 3 10 .25 .87 

 Platt 

Scaling: 

 

.97 .66 .77 .71 215 5 3 10 .14 .85 

VAE+Flipout at 

Last+Flipout All 

layers 

Temp 

scaling 

.97 .77 .77 .77 217 3 3 10 .59  

 Isotonic 

regressi

on 

.97 .77 .77 .77 217 3 3 10 .50 .87 

 Platt 

Scaling: 

 

.97 .77 .77 .77 217 3 3 10 .20 .86 

VAE+Flipout  Last 

+Flipout All 

layers+Bayesian 

Temp 

scaling 

.97 .75 .69 .72 217 3 4 9 .58  

 Isotonic 

regressi

on 

.97 .69 .69 .69 216 4 4 9 .57 .83 

 Platt 

Scaling: 

 

.96 .62 .76 .69 214 6 3 10 .15 .84 

VAE+ Bayesian_ 

 

Temp 

scaling 

.97 .77 .77 .77 217 3 3 10 .78  

 Isotonic 

regressi

on 

.97 .77 .77 .77 217 3 3 10 .2 .87 

 Platt 

Scaling: 

 

.97 .77 .77 .77 217 3 3 10 .26 .90 

Baysian +Flipout  last 

layer+Flipout All 

layers 

Temp 

scaling 

.94 1 0 0 220 0 13 0 .5 .38 
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 Isotonic  

regressi

on 

.88 .10 .15 .12 202 18 11 2 .51 .40 

 Platt 

Scaling: 

 

.39 .07 .84 .13 80 14

0 

2 11 .05 .55 

Bayesian+Flipout  Last 

Layer 

Temp 

scaling 

.06 .06 1 .11 0 22

0 

0 13 .56  

 Isotonic  

regressi

on 

.94 .50 .15 .24 218 2 11 2 .6 .37 

 Platt 

Scaling: 

 

.69 .10 .61 .18 154 66 5 8 .06 .63 

Bayesian+Flipout  All 

Layer 

Temp 

scaling 

.06 .06 1 .11 0 22

0 

0 13 .10  

 Isotonic 

regressi

on 

.08 .06 1 .11 5 21

5 

0 13 .34 .51 

 Platt 

Scaling: 

 

.48 .07 .69 .13 104 11

6 

4 9 .06 .52 

Flipout last Last 

Layer+Flipout All 

Layer  

Temp 

scaling 

.06 .06 1 .11 0 22

0 

0 13 0  

 Isotonic 

egressio

n 

.06 .06 1 .11 1 21

9 

0 13 .04 .38 

 Platt 

Scaling: 

 

.94 .25 .08 .12 217 3 12 1 .39  

 

 

Temperature scaling consistently performed well across most ensemble models. It 

maintained high accuracy and a strong balance between precision and recall, making it a 

reliable choice for calibrating models. The results are shown in Table 4.7.  
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Table 4.7 Calibration of ensemble models with Temperature Scaling and brier score 

before and after 

 

Model Combination 

Brier Score 

(Before 

Scaling) 

Brier Score 

(After 

Scaling) 

Difference 

After 

Scaling 

Observation 

vae_model + 

model_1 + model_2 
0.2889 0.2656 -0.0233 

Moderate reduction in Brier 

Score, indicating improved 

probability calibration after 

scaling. 

     

vae_model + 

model_2 + 

bayesian_model 

0.2963 0.2685 -0.0278 

Significant improvement after 

scaling. The initial Brier 

Score was high, indicating 

poorer performance. 

     

vae_model + 

model_1 + 

bayesian_model 

0.2526 0.2528 0.0002 

Minimal change after scaling, 

indicating good probabilistic 

performance even before 

scaling. 

     

vae_model + 

model_1 
0.2466 0.2383 -0.0083 

Lowest initial Brier Score, 

showing that this combination 

has good probability estimation 

pre- and post-scaling. 

     

vae_model + 

model_2 
0.3128 0.2749 -0.0379 

The largest reduction in Brier 

Score after scaling, indicating 

substantial improvement in 

probability estimation. 

     

bayesian_model + 

model_1 + model_2 
0.2942 0.2678 -0.0264 

Noticeable reduction, showing 

improved calibration after 

scaling. 

     

bayesian_model + 

model_1 
0.255 0.2521 -0.0029 

Small improvement after 

scaling, indicating good 

initial calibration. 

     

bayesian_model + 

model_2 
0.3211 0.2783 -0.0428 

Highest initial Brier Score, 

indicating poor calibration 

before scaling. Scaling 

substantially improved it. 

     

model_1 + model_2 0.3092 0.2737 -0.0355 

Large reduction in Brier Score 

after scaling, indicating that 

scaling helps to align 

predicted probabilities. 
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Figure 4.3 Brier Score for Different Ensemble  Models before and after Temp 

Scaling 

 

Platt Scaling struggled with certain models particularly those which involves probabilistic 

models involving  Bayesian + Flipout layers) with  poor performance in terms of precision 

and F1 score while  it worked fine with simpler VAE-based ensembles. Isotonic 

Regression came out as  relatively stable and provided  competitive performance close to 

Temperature Scaling but tended to be slightly more conservative in probability estimation, 

leading to slightly lower precision in some cases. For most configurations, the best 

threshold post-calibration was generally lower with temperature scaling than with Platt or 

Isotonic methods. The AUC generally remained stable, with most calibrated models 

achieving scores between 0.85 and 0.90. 
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Table 4.8 Brier Score (Before and After Isotonic Calibration) 

 

Ensemble Model 

Brier Score  

(Before 

Calibration) 

 

Brier Score  

(After  

Isotonic 

Calibration) 

Comments 

VAE + Model_2 + 

Model_1 

0.0321 0.0254 

Significant 

improvement after 

calibration. 

VAE + Model_2 0.0412 0.0335 

Improved accuracy 

after calibration. 

VAE + Bayesian + 

Model_2 + Model_1 

0.0289 0.0228 

Calibration reduced 

overconfidence. 

VAE + Bayesian + 

Model_2 

0.0395 0.0307 

Calibration improved 

performance. 

VAE + Bayesian 0.0423 0.0330 

Better post-

calibration results. 

Bayesian + Model_2 0.0348 0.0265 

Reduced Brier score 

after calibration. 
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Ensemble Model 

Brier Score  

(Before 

Calibration) 

 

Brier Score  

(After  

Isotonic 

Calibration) 

Comments 

VAE + Model_1 0.0456 0.0361 

Notable improvement 

with isotonic 

calibration. 

  

 

 

 

Figure 4.4:  Brier Score for Different Ensemble Models before and after Temp 

Scaling 
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Figure 4.5:  Brier Score for Different Ensemble Models before and after Isotonic 

Regression 

 Zoomed Calibration 

 
Figure 4.6:  Brier Score for Different Ensemble Models before and after Isotonic 

Regression 

 

Post-Calibration Insights (Suitability for Mortality Forecasting) 

 

1. VAE + Flipout at Last Layer: High entropy values,(76.81 (Global), 5.3 (Positive 

Class), indicate this model has significant uncertainty in its predictions despite decent 
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metrics( ROC-AUC: 0.95 , Precision: 0.62, Recall: 0.77 and  F1 Score: 0.69). High 

uncertainty is a major concern for mortality forecasting where reliable uncertainty 

estimation is important. Post-calibration improvements show that the model benefits from 

calibration. Despite decent recall, this model is not well-suited for mortality forecasting 

due to high entropy and uncertainty. The model's substantial uncertainty undermines its 

suitability for practical applications.  

2.VAE + Flipout All Layers (Model_2). This combination shows robust performance, 

achieves the perfect balance between precision (.77) and recall (.77), a highly desirable 

outcome in mortality forecasting, and Platt Scaling further enhances precision and recall, 

making it ideal for models with uncertain predictions. The initial score of 0.3128, 

significantly reduced to 0.2749 after Temperature Scaling and 0.0335 after Isotonic 

However ,the model has low ROC-AUC value of .90 and  elevated entropy pre-calibration 

suggests considerable uncertainty, raising concerns about reliability in clinical settings. 

3. Ensemble of VAE + Model_2 + Bayesian_Model. This ensemble exhibits significant 

improvement post-calibration, reflected in the notable reduction in Brier Score especially 

when calibrated with Isotonic Regression. The high recall (.85) indicates a strong 

capability in identifying mortality cases. However, the elevated entropy pre-calibration 

suggests considerable uncertainty, raising concerns about reliability in clinical setting. 

Despite the improvements post-calibration, relatively lower precision (.65), indicates 

potential overestimation of mortality cases. Elevated entropy suggests moderate 

uncertainty in probability estimates.  ROC_AUC is low (.83) 

4.The ensemble of VAE + Flipout   Last Layer + Bayesian Despite the improvements 

post-calibration, relatively lower precision(.65) indicates potential over-estimation of 

mortality cases. Elevated entropy suggests moderate uncertainty in probability estimates. 

with the ROC-AUC around 0.86, may not be   the best choices for mortality forecasting.  
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5. VAE + Model_1 (Flipout Last Layer) + Model_2 (Flipout All Layers) Ensemble -

The ensemble) stands out as the best performing model across all key metrics, calibration 

techniques, and uncertainty assessments for the following reasons. Firstly, it has Balanced 

Metrics Across Precision(.65), Recall(.85), and F1 Score(.73),mean probability of 

positive class(.63+/-.004).Post calibration the ensemble consistently achieves an F1 score, 

precision, and recall of 0.77, demonstrating a strong balance between precision 

(correctly identifying positive cases) and recall (capturing as many true positives as 

possible). This is crucial in mortality forecasting, where both false positives and false 

negatives carry significant implications. Secondly, it has High Accuracy and ROC-AUC 

with an ROC-AUC of 0.94. This ensemble has proven to be highly effective at 

distinguishing between positive and negative classes, reinforcing its ability to perform well 

in mortality prediction. Thirdly Low Entropy and Reduced uncertainty. The ensemble 

exhibits low entropy values (Global- 5.4, Positive Class- 2.5), indicating that the model 

is making confident predictions. This is essential in critical applications like mortality 

forecasting, where predictive confidence matters. Fourthly it has Well-Calibrated 

Probabilities. The ensemble demonstrates strong performance in terms of calibration 

using all three techniques (Temperature Scaling, Isotonic Regression, Platt Scaling). 

Isotonic Regression yielded a Brier score of 0.0254, highlighting the ensemble's 

reliability in providing calibrated probabilities—important for real-world deployment 

where uncertainty in predictions needs to be managed effectively. Fifthly ,it is robust on 

Imbalanced Data. Given the imbalanced nature of the dataset, with a small number of 

positive cases, the ensemble has shown robustness with low false positives (3) and false 

negatives (3). This indicates that it can handle skewed class distributions without 

sacrificing performance and lastly  it shows Consistency Across Various Metrics where 

unlike other ensembles that show variability across calibration techniques or suffer from 
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high uncertainty, this ensemble maintains consistent performance across metrics, 

making it more dependable for practical, high-stakes applications like forecasting 

mortality. 

 

Figure 4.7:  ROC_AUC Ensemble of VAE Model, Model_1 and Model_2 

 

6.VAE + Bayesian  Model  has good Pre-Calibration Metrics with an Accuracy of 

0.97,Precision( 0.65),Recall ( 0.85),F1 Score (0.73),ROC-AUC (0.89),Mean Probability of 

Positive Class (0.67 ± 0.20),Mean Probability of All Predictions (0.13 ± 0.16),Entropy 

values of  5.4 (Global), 2.8 (Positive Class) and   initial Brier Score of  0.0423(Isotonic 

regression).Post-Calibration Brier Score got reduced to 0.0330 (This reduction indicates 

that the model improves its reliability and reduces uncertainty post-calibration.).  The 

initial high Recall (0.85) indicates that this model effectively identifies positive mortality 

cases before calibration ROC-AUC of 0.89 pre-calibration is quite strong, showing good 

discrimination ability. However, the mean probability values and standard deviations show 

considerable uncertainty pre-calibration (e.g., 0.67 ± 0.20), indicating that the model is less 

confident in its positive class predictions. Post-calibration temperature Scaling leads to 

the most significant reduction in Brier Score and a moderate ROC-AUC of 0.78, indicating 

more reliable probability estimates post-calibration but slightly reduced discriminative 
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performance. Isotonic Regression increases ROC-AUC to 0.87 but results in a higher 

Brier Score compared to temperature scaling, suggesting less effective alignment of 

probabilities.  Platt Scaling improves ROC-AUC to 0.90 but fails to reduce the Brier Score 

significantly, indicating potential overfitting of probability estimates. The mean 

probability of positive class shows high variability (0.67 ± 0.20), suggesting substantial 

pre-calibration uncertainty. Overall ensemble demonstrates good overall performance, 

with high recall and improved reliability post-calibration. It is a strong contender for 

mortality forecasting, especially with Temperature Scaling. However, due to the 

considerable pre-calibration uncertainty, it may not be the best standalone choice without 

calibration or additional model enhancements. This variability indicates that predictions 

for positive cases are less reliable, which is a concern for clinical applications. 

7.  Bayesian model + model_1 Model had  Initial brier  score of 0.2550, reduced to 0.2521 

after Temperature Scaling and further to 0.0265 after Isotonic Calibration, precision( 

0.67),Recall ( 0.62),F1 Score (0.64), ROC-AUC (.88) Lower recall indicates this model 

misses some mortality cases, which is a drawback in clinical settings. 

8. Bayesian + Flipout All Layers (model_2)  Model has average Metrics with Accuracy 

(0.96),Precision (0.67),Recall ( 0.62),F1 Score( 0.64),ROC-AUC(0.82),Mean Probability 

of Positive Class ( 0.55 ± 0.16), Mean Probability of All Predictions( 0.37 ± 0.07),Entropy 

values of  5.43 (Global), 2.51 (Positive Class). With respect to Post-Calibration Suitability, 

its strength is in good precision and stable F1 Score. The mean probability values are 

relatively lower compared to other models, which indicates more conservative estimates. 

However , Lower ROC-AUC suggests weaker discriminative performance compared to 

other ensembles. The lower mean probability values indicate less confidence in predictions. 

Model as such is not as Suitable due to lower ROC-AUC and its overall performance is not 

optimal for mortality forecasting. With respect to Post-Calibration Suitability when 
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comparing Bayesian + Model_2, Bayesian + Model_2 has lower ROC-AUC and a wider 

range of probability values, indicating higher uncertainty. 

9.Flipout All Layer + Flipout Last Layer Ensemble Analysis-Model has good pre- 

calibration matrices with  an Accuracy  (0.96), Precision (0.67),Recall ( 0.62),F1 Score 

(0.64), ROC-AUC: (0.82),Mean Probability of Positive Class (0.55 ± 0.16),Mean 

Probability of All Predictions ( 0.37 ± 0.07) , Entropy values of  5.43 (Global), 2.38 

(Positive Class) and initial Brier Score of 0.3092(Temp scaling).Post-Calibration Brier 

Scores was 0.2737(Temp Scaling) with a reduction of -0.0355 .Large reduction indicates 

that temperature scaling effectively reduces prediction errors and uncertainty.).Isotonic 

Regression Post-Calibration Brier Score was 0.06 (Indicates strong improvement in 

alignment of predicted probabilities with true outcomes),Platt Scaling, Post-Calibration 

Brier Score was 0.94 (Indicates poor calibration and alignment, possibly due to the limited 

flexibility of Platt Scaling for this model).Overall ensemble had good performance across 

metrics and shows large reductions in Brier Score after calibration, particularly with 

Isotonic Regression. The pre-calibration ROC-AUC of 0.82 was lower compared to some 

other models, suggesting it might not have strong discriminative capability before 

calibration. Additionally, the mean probability of positive class shows high variability 

(0.55 ± 0.16), indicating pre-calibration uncertainty and its lower pre-calibration ROC-

AUC  also makes it less reliable along with low initial confidence i. 

.10. Bayesian + Flipout All Layers (Temp Scaling) The model has Moderate 

performance with a tendency to underperform in recall compared to others. Although this 

model has relatively stable mean probability and entropy, it doesn't perform as well in 

terms of recall and calibration. 

10.VAE + Bayesian + Flipout All Layers + Last Layer   The model has good  Metrics 

with ROC-AUC of 0.90, Precision of  0.65, Recall of  0.85, F1 Score of  0.73,Mean 



 

 

131 

Probability of Positive Class: 0.63 ± 0.05, Entropy values of  5.4 (Global), 2.5 (Positive 

Class). High ROC-AUC post-calibration indicates strong discriminative power. The model 

maintains a good F1 Score and recall with stable mean probability. Higher entropy in mean 

probability indicates some variability, suggesting the need for further adjustments. The 

model is suitable due to its balance of metrics and ROC-AUC improvement post-

calibration. 
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Figure 4.8 Comparison of ROC of Ensemble Models I 

 

 VAE+Model_1 +BNN 

   
 

 
 

 

 
 

 

 

VAE+ Model_1+ Model_2 +BNN 

 

  

 

Figure 4.9 Comparison of ROC of Ensemble Models II 
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Model_1+Model_2+BNN Model                          Model_1 + BNN Model 

 

   

 

Model_2+BNN Model                                                  Model_1+Model_2 
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VAE +Bayesian Model 

 

Figure 4.10 Comparison of ROC of Ensemble Models III 

 

The ensemble of VAE + Model_1 (Flipout Last Layer) + Model_2 (Flipout All Layers) 

is recommended as the best ensemble for mortality forecasting due to its High precision 

and recall, ensuring that both true positives and true negatives are captured effectively 

Low uncertainty and well-calibrated outputs, making it suitable for real-world 

deployment in healthcare settings, Consistency in performance across various calibration 

techniques, further enhancing its reliability in uncertain environments, Ability to handle 
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imbalanced data with minimal false positives and false negatives, which is crucial in 

clinical applications where the stakes are high. 

This ensemble balances performance and uncertainty management, making it the most 

suitable for mortality forecasting tasks in your research. 

Best Overall Performance -VAE + Flipout Last Layer + All Layers offered the highest 

ROC-AUC score and maintained strong precision, recall, and F1 score. This made it an 

excellent choice before calibration. 

Good Balance-VAE + Flipout All Layers and VAE + Flipout Last Layer showed 

excellent balance between precision, recall, and AUC scores. These models were well-

suited for scenarios where both metrics needed to be balanced. Bayesian + Flipout Last 

Layer had higher precision at the expense of recall, making it suitable when reducing false 

positives was critical. Meanwhile, VAE + Flipout Last Layer had high recall with slightly 

lower precision, which was good for identifying more positive cases. 

 

 

 

 

4.3 Research Question Three 

 

 Whether the variable of importance derived from model explainability techniques of Local 

Interpretable Model-agnostic Explanations (LIME)  and SHapley Additive exPlanations,  

commonly known as SHAP can explain and interpret the model for prognostication of 

postoperative mortality with identical results? 
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Two techniques of model Interpretability were experimented. Understanding of the feature 

importance can help validate the model's behaviour, identify potential biases, and improve 

model transparency and interpretability. In LIME (Local Interpretable Model-agnostic 

Explanations), the prediction of an outcome depends on the presence or absence of a 

combination of features which through linear regression decide the outcome. For example, 

the feature value of <= 0.00 may indicate a threshold condition. If the value of the "Sepsis" 

feature, first feature in a given instance is less than or equal to 0.00, then the value <= 0.00 

might indicate "no sepsis." The weight of feature  which is  highest for all variables will 

shows that  the feature has a significant impact on the model's prediction. Thus, changes in 

this feature's value can meaningfully affect the prediction.  

The other model interpretability technique is SHAP. In SHAP the expected value, also 

known as the base value, represents the model's average prediction for all data points in the 

dataset. It serves as a reference point for interpreting SHAP values. When interpreting 

SHAP values, the expected value provides context for understanding the contribution of 

each feature to the model's prediction. SHAP values represent the difference between the 

actual prediction for a specific instance and the expected value. 

At the Local Level two single  identical  data instances were chosen and results  of  LIME 

Coefficients and SHAP values were evaluated to understand the features 

contribution for  comparison . Both Lime and SHAP identified some common features with 

high feature importance as under: -.  

In one data instance. a 10th row of test data, X_test, the feature names and features values 

were as under: - 

Reoperation 0.00, Readmission 0.00, ChroLiverDis 0.00, Tumor 0.00, renal_Failure 0.00, 

PostopUrea 0.22, UnimpDis_LAMA 0.00, Hysterectomy 0.00, Mets 0.00, 

hypo_Thyroidism 0.00, Generalised Peritonitis 0.00 cardiac_Complication 0.00, 
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liver_Disease 0.00, Laproscopic LysisOfAdhesions 0.00, Oesophagotomy 0.00, 

SmallBowelResection 1.00,Lithotomy 0.00, GastricOutletObs 0.00, Hernioplasty 0.00, 

LapCholi 0.00, SuperficialSurgicalSiteInfection 0.00, hypertension_Chronic 0.00, 

Gastrectomy 0.00, HIV+ 0.00, OpenCholi 0.00, Obesity 0.00 Dehiscence 0.00 ,UTI 0.00, 

Omentoplasty 0.00 etc. 

 Lime drew the following table with a probability of .99 for positive outcome of mortality. 

As the values suggest, and table confirms that small bowel resection with a coefficient of 

.11 and postop urea with a coefficient of .09 predicted mortality. Sepsis, reoperation, 

Readmission, ChroLiverDisease, Tumor, and ren_Failure are on the blue side, indicating 

that they are below the threshold and are considered to be negatively impacting the 

prediction with the values as shown against them.  

 

 

Figure:4.11 Data instance 10th row with interpretation from LIME 
 

For the same data instance , SHAP too  listed Small Bowel resection with the highest SHAP 

value of .33 .however, other features   contributing to  motility are different which include 
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ASA classification with a SHAP Value of  .13 ,PreopCretinine with SHAP  value of .04, 

renal_Failure, 0.01, liver Disease,  0.02   contributing to mortality. SHAP value of 0  means 

that the absence or presence of the feature has a neutral impact on the model's prediction 

compared to the expected value whereas Model output (fx) of 1means that  prediction for 

this instance is positive. The red color typically represents high feature values or feature 

effects that contribute positively to the prediction. 

 
 
 

 
The  SHAP values are  Small Bowel Resection,0.33,ASAclassification, 0.14, PreopCreatinine,  0.04, Pre
OP TLC ,.04, PreopSodium .03, renal_Failure, 0.01, liver Disease,  0.02 
 
 

Figure:4.12   Data Instance 10th with interpretation from SHAP 
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Figure:4.13 SHAP Values of Important Variables 
 
 
 

In another data instance  of the 6th row of test data where surgery was done was Lap Cho

lecystectomy, while  both LIME and SHAP predicted no Mortality, Feature values and Li

me coefficients are  as under  :-    
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Figure:4.14 Data Instance 6th with interpretation from LIME 

 
 

LapCholi had a coefficient value of 0.03 and is highlighted in blue, indicating that its 

presence reduces the probability of class 1. Despite its positive value, LapCholi seems to 

have a negligible effect on the overall prediction, given its low coefficient value compared 

to other features. Therefore, the model's high confidence in predicting class 0 is primarily 

driven by the absence or low influence of features associated with class 1, as indicated by 

their low or negative coefficient values.In the case of SHAP too for the same data instance 

has features which  lowers the risk of death. The SHAP force plot has a  base value is 0.509 

and the color of the features is blue except for a bar where  few variables LapCholi with  

SHAP Value of 0.011, PreOpTLC, with SHAP value of  0.009,Renal Failure,  with SHAP 

value of 0.008, Organ Space SSI,  with SHAP Value: 0.005 etc are gathered and have 

negligible effect over the model. . In the context of i.e. a SHAP force plot, blue color 

indicates that the feature values are lower than the corresponding baseline values. Blue 
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features contribute to pushing the model's prediction towards a lower output compared to 

the baseline prediction.  

 

 
 

Figure:4.15 Data Instance 6th with interpretation from SHAP 

 

 

 
Shap waterfall graph displays the values of coefficients for features and similar to force p

lot.  

 
 

 

 
 

 

Figure:4.16 Data Instance 6th with interpretation from SHAP Showing SHAP Value

s in Waterfall 
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Summary of feature Importance at the Global level however varied for LIME and SHAP 

with different Coefficients and weights respectively as also the order for feature importance 

for predicting mortality.  

In LIME output, the coefficients are used to interpret the contribution of each feature 

towards the prediction made by the model for a particular instance. When a coefficient is 

displayed in orange and it is greater than 0, it indicates a positive contribution of that feature 

towards the prediction of the corresponding class label. Conversely, when the coefficient 

is less than 0, it indicates a negative contribution. Here’s how to interpret the coefficients 

in orange: 

Greater than 0: This means that an increase in the value of the feature will likely result in 

an increase in the probability of the corresponding class label being predicted. 

Less than 0: This means that an increase in the value of the feature will likely result in a 

decrease in the probability of the corresponding class label being predicted. 

While LIME’s predictions are Local by nature a consolidated summary of mean lime 

coefficients was calculated, the value of coefficients is as under: 

 

Less than 0: This means that an increase in the value of the feature will likely result in a 

decrease in the probability of the corresponding class label being predicted. 

While LIME’s predictions are Local by nature a consolidated summary of mean lime 

coefficients was calculated ,the value of coefficients is as under: 
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Table 4.9 LIME OUTPUT WITH VALUES OF COEFFICIENTS 

 

Sr 

No 
Feature 

Positive 

Coefficient 

Sr 

No 
Feature 

Negative 

Coefficient 

0 Sepsis  > 0.00 2.327883 62 
PostOpALP  

.11<=.14 
-0.002194 

1 UnimpDis_LAMA <= 0.00 1.250733 63 PostOpSGPT   <=.01 -0.008995 

2 Obesity  <=0 1.1906 64 
PreopPotassium 

<=.12 
-0.009662 

3 Hysterectomy <= 0.00 1.174704 65 PreOpBilD   <=.02 -0.010606 

4 Lithotomy    <= 0.00 1.143281 66 
PreopSodium  

.62<=.68 
-0.01169 

5 ren_Fail     <= 0.00 1.113642 67 PostopCreat <=.10 -0.012598 

6 PostopUrea  > 0.13 1.106336 68 
PostOpPotassium  

<=.48 
-0.013398 

7 GeneralisedPeritonitis <= 0.00 1.100541 69 PostopCreat  <=.06 -0.015088 

8 c_Complication   <= 0.00 1.092594 70 PreopUrea<=.07 -0.015109 

9 liver_D            <= 0.00 1.081784 71 PreopCreat  .03<=.04 -0.015245 

10 SmallBowelResection  > 0.00 1.054477 72 PreopCreat  <=.03 -0.018905 

11 
Laproscopic_LysisOfAdhesions   

<= 0.00 
1.036002 73 PostOpSGPT <=.02 -0.024968 

12 Oesophagotomy   <= 0.00 1.034304 74 PostopUrea  <=.10  -0.027095 

13 MRM  <= 0.00 1.003282 75 
PostopUrea   .10 

<.=13 
-0.030578 

14 Hernioplasty  <= 0.00 0.993488 76 PreopUrea  .07 <.=13 -0.031156 
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15 LapCholi       <= 0.00 0.97768 77 PostOpALP >.14 -0.031661 

16 GastricOutletObs  <= 0.00 0.938631 78 PostopUrea <=.07 -0.040938 

17 SuperficialSSI       <= 0.00 0.908357 79 
PostOpPotassium  

>.48 
-0.042257 

18 UTI            <= 0.00 0.832508 80 PostOpSGPT   <.01 -0.043488 

19 htn_C       <= 0.00 0.799847 81 htn_C               >0.00 -0.05797 

20 HIV             <= 0.00 0.784619 82 OpenCholi       >0.00 -0.062354 

21 OpenCholi    <= 0.00 0.777723 83 PostOpBilT     >.08 -0.065091 

22 c_Pulm           <= 0.00 0.757509 84 
pul_Complications 

<=0 
-0.070766 

23 Gastrectomy     <= 0.00 0.709402 85 Hysterectomy   >0.00  -0.087939 

24 BA                  <= 0.00 0.689688 86 Herniotomy       <=0 -0.088217 

25 Dehiscence      <= 0.00 0.67251 87 liver_D              >.00 -0.089892 

26 DeepSurgicalSSI  <= 0.00 0.625793 88 PreOpBilT       >.04 -0.090484 

27 DiagLaprot          <= 0.00 0.548667 89 PostOpBilD  >.04 -0.113323 

28 
ASAclassification  0.50 <= 

1.09  

0.505842 90 DiagLaprot  >0.00 -0.119151 

29 PostOpSGPT  >0.02 0.378935 91 PostOpSodium  <.53 -0.128315 

30 Pyeloplasty  <=0.00 0.37154 92 PreOpSGOT      >.04 -0.136333 

31 ChroLiverDis  >0.00 0.336464 93 
ASAclassification <-

.50 
-0.145592 

32 PreopCreat  > 0.328804 94 PreOpTLC  >.19 -0.154272 

33 PostopCreat  >0.06 0.311245 95 DM<=.00 -0.174515 

34 Tumor            >0 0.302301 96 ALP  >.15 -0.205158 
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35 PostOpPotassium <=.35 0.299689 97 
DeepSurgicalSSI  

>.00 
-0.222295 

36 Reoperation  >0.00 0.253629 98 ren_Fail >0.00 -0.222651 

37 PostOpSodium       >0.67 0.219148 99 
SmallBowelResection 

<=.00 
-0.295664 

38 PreOpTLC    <=0.11 0.201695 100 Omentoplasty <=0.00 -0.452172 

39 PreopUrea  >.14 0.195143 101 hypo_Thy  <=0.00 -0.712808 

40 Mets     >0.00    0.165948 102 Mets <0.00 -1.475026 

41 PostOpSGOT   >.05 0.110666 103 
ChroLiverDis  

<=0.00 
-1.575212 

42 Appendicectomy  <=0.00 0.109825 104 Readm  <=0.00 -2.629983 

43 Omentoplasty     >.00 0.087355 105 Sepsis  <= 0.00 -2.645693 

44 ALP      <=.09 0.072571 106 Tumor  <=0.00 -3.047706 

45 PreOpTLC    <=.15 0.059122 107 Reoperation <=0.00 -3.353869 

46 PreOpSGOT     <=.02 0.056368    

47 def_Anemia  <=0.00 0.046376    

48 DM      >.00 0.039826    

49 
PreOpBilT                    

.01<=.02 
0.037867 

   

50 pul_Complications   >.00 0.03543    

51 PreopSodium   <=.51 0.03386    

52 ALP      .09<=.12 0.033165    

53 PostOpALP   <=.08 0.033138    

54 PostOpBilT .04<=.05 0.018208    

55 PreOpSGOT  .02<-<=.02 0.01535    
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56 PostOpTLC <+.17 0.011931    

57 PostOpPotassium <=.42 0.011038    

58 PostOpBilD  .02<=.04 0.010766    

59 PostOpBilD  <=.02 0.010325    

60 ALP            .12<=.15 0.007825    

61 PreOpBilD              <=.01 0.004383    

 

Positive Coefficients indicate that the presence or higher value of a feature increases the 

likelihood of the predicted outcome whereas Negative Coefficients indicate that the 

presence or higher value of a feature decreases the likelihood of the predicted outcome. 

The coefficients indicate the magnitude of the feature's impact on the outcome. For 

instance, a higher positive coefficient means the feature strongly increases the likelihood 

of the outcome, while a higher negative coefficient means the feature strongly decreases 

the likelihood of the outcome.In this ,important features identified are as under: 

 

For example ,Sepsis > 0.00: 2.32. indicates that the presence of sepsis significantly 

increases the likelihood of the predicted outcome, with a high coefficient of 2.327. 

UnimpDis_LAMA <= 0.00: 1.2. If the patient is nor leaving against medical advice 

(LAMA), it increases the likelihood of the outcome of mortality . 

Obesity <= 0.00: 1.19. Absence of obesity increases the likelihood of the predicted 

outcome. A counterintuitive result but features are only suggestive base on correlation and 

are not considered causal 



 

 

147 

Hysterectomy <= 0.00: 1.17. Not having had a hysterectomy increases the likelihood of the 

outcome as it is simple procedure. 

Lithotomy <= 0.00: 1.14.  Not having undergone a lithotomy (surgical removal of stones) 

increases the likelihood of the outcome as it is a simple procedure. 

ren_Fail <= 0.00: 1.113642190240061. Absence of renal failure increases the likelihood 

of the outcome.This is Acute Renal injury following Surgery which gets treated subsequent 

to surgery over the time in many cases. Patients with Acute  renal injury might be receiving 

more intensive monitoring and aggressive treatment, leading to better-than-expected 

outcomes. 

PostopUrea > 0.13: 1.10. Postoperative urea levels above 0.13 increase the likelihood of 

the outcome. This is because of the fact that patient with Chronic renal disease and those 

with Acute Kidney injury not responding to management  will have high Blood urea level 

and has adverse prognosis.  

Other positive features follow similar logic, where the absence of a condition or the 

presence of a certain threshold value increases the likelihood of the predicted outcome.  

Many of the results appear counterintuitive but these coefficients only tell about 

correlations and not causation. 

With respect to SHAP the red colour denotes high value and  blue colour low value on 

either side positive or negative. Positive and Negative weights are as under: 
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Table 4.10 SORTED POSITIVE SHAP VALUES FOR VARIABLES 

     

       
     

Sorted positive SHAP values for y=1:  Sorted negative SHAP values for y=1: 

SmallBowelResection 0.18234673637678156  ren_Fail -0.014429419335756729 

Sepsis  0.09819226988202501  ALP -0.013658995537857866 

PostOpSGPT 0.046634751852670187  Omentoplasty  -0.011305369345782048 

ChroLiverDis 0.030318443970439337  PostOpBilD -0.009119278806813486 

Hernioplasty 0.02781855255131928  reoperation -0.008823615329846794 

ASAclassification  0.02287675129673326  PreOpTLC -0.0062409372752514685 

PostopCreat 0.02252254410640177  PostOpBilT -0.0060433165160105546 

pul_Complications  0.021551255015035367  DiagLaprot  -0.004741266119464331 

DM 0.017436566519715334  PreopSodium -0.004716811213989488 

DeepSurgicalSSI 0.011857645745236536  PreopUrea  -0.004567400681978511 

 PostOpPotassium 0.011688300348512788  LapCholi  -0.004551492957978039 

PostOpSodium 0.011521893848428631  Tumor -0.0031879373855149256 

liver_D 0.010122196049912305  CVA -0.0031399630739585124 

PostopUrea 0.009780539221517866  Readm -0.002738235088495108 

OrganSpaceSSI 0.008928766862425412  c_Pulm -0.002682942485646804 

PreOpSGOT 0.008894080019202343  htn_C -0.0023062002168726167 

PreOpBilD  0.007439960104409799  Prostectomy  -0.0015687732788280573 

PreopCreat 0.006710931263822279  PostOpALP -0.0014664571225033324 

PostOpTLC 0.004825369677437139  BA -0.0010370133546462339 

PostOpSGOT 
0.0047638777479090495  

Laproscopic 
LysisOfAdhesions -0.0010214386162803268 

SuperficialSSI 0.004409163624958699  MI -0.0008698971466552228 

OpenCholi 
 
0.0041424415158161955  Hysterectomy 

 -
0.0007675449054255132 

Lithotomy 0.002906090893402156  c_Complication -0.0006451518190264177 

Mets 0.0024765917624669648  Hemiplegia -0.0005717984768389342 

GeneralisedPeritonitis 0.002240953234739925  Obesity -0.0005436729122828631 

Herniotomy 
0.001876411917357886  Dehiscence 

 -
0.0005253967634293204 

Oesophagotomy 0.001790581359688539  Nephrectomy -0.00024674727294986 

UnimpDis_LAMA 
0.00175027051553751  PreopPotassium 

-4.9570656069694016e-
05 

GastricOutletObs 0.0015413009987989396  hypo_Thy -3.13119389807454e-05 

PreOpBilT 
 
0.0013361866138165658    

MRM 0.0011760715347959709    
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Appendicectomy 0.0008994733931824052    
UTI 0.0008753648437528089    
def_Anemia 0.0006100325454171744    

Pyeloplasty 
 
0.0002463559002564049    

       

 

Meaning of Positive SHAP Values for features with positive SHAP values: 

Small Bowel Resection (0.182): Indicates that having Small Bowel Resection significantly 

increases the likelihood of the outcome (y=1). 

Sepsis (0.098): Presence of Sepsis increases the likelihood of the outcome. 

Post Op SGPT (0.0466): Higher Postoperative SGPT levels increase the likelihood of the 

outcome. 

Chronic Liver Dis (0.0303): Chronic Liver Disease increases the likelihood of the outcome. 

Hernioplasty (0.0278): Undergoing Hernioplasty increases the likelihood of the outcome. 

ASA classification (0.0229): Higher ASA classification (indicating worse preoperative 

health) increases the likelihood of the outcome. 

Post op Creatinine (0.0225): Higher postoperative creatinine levels due to Chronic Renal 

Failure /Acute Kidney injury  increase the likelihood of the outcome. 

Pulmonary Complications (0.0216): Pulmonary complications increase the likelihood of 

the outcome. 

DM (0.0174): Having Diabetes Mellitus increases the likelihood of the outcome. 

Deep Surgical SSI (0.0119): Deep Surgical Site Infections increase the likelihood of the 

outcome. 

Post Op Potassium (0.0117): Higher postoperative potassium levels increase the likelihood 

of the outcome. 
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Post Op Sodium (0.0115): Higher postoperative sodium levels increase the likelihood of 

the outcome. 

liver_D (0.0101): Liver disease increases the likelihood of the outcome. 

PostopUrea (0.0098): Higher postoperative urea levels increase the likelihood of the 

outcome. 

OrganSpaceSSI (0.0089): Organ/space surgical site infections increase the likelihood of 

the outcome. 

Pre Op SGOT (0.0089): Higher preoperative SGOT levels increase the likelihood of the 

outcome. 

Pre Op BilD (0.0074): Higher preoperative direct bilirubin levels increase the likelihood 

of the outcome. 

Preop Creat (0.0067): Higher preoperative creatinine levels increase the likelihood of the 

outcome. 

PostOpTLC (0.0048): Higher postoperative total leukocyte count increases the likelihood 

of the outcome. 

PostOpSGOT (0.0048): Higher postoperative SGOT levels increase the likelihood of the 

outcome. 

SuperficialSSI (0.0044): Superficial surgical site infections increase the likelihood of the 

outcome. 

OpenCholi (0.0041): Undergoing open cholecystectomy increases the likelihood of the 

outcome. 

Lithotomy (0.0029): Undergoing lithotomy increases the likelihood of the outcome. 

Mets (0.0025): Presence of metastasis increases the likelihood of the outcome. 

Generalised Peritonitis (0.0022): Generalized peritonitis increases the likelihood of the 

outcome. 
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Herniotomy (0.0019): Undergoing herniotomy increases the likelihood of the outcome. 

Oesophagotomy (0.0018): Undergoing oesophagotomy increases the likelihood of the 

outcome. 

UnimpDis_LAMA (0.0018):  Discharge against medical advice increases the likelihood of 

the outcome for patients in the system compared to those who have left against medical 

advice. 

GastricOutletObs (0.0015): Gastric outlet obstruction increases the likelihood of the 

outcome. 

PreOpBilT (0.0013): Higher preoperative total bilirubin levels increase the likelihood of 

the outcome. 

MRM (0.0012): Undergoing modified radical mastectomy increases the likelihood of the 

outcome. 

Appendicectomy (0.0009): Undergoing appendectomy increases the likelihood of the 

outcome. 

UTI (0.0009): Urinary tract infections increase the likelihood of the outcome. 

def_Anemia (0.0006): Deficiency anaemia increases the likelihood of the outcome. 

Pyeloplasty (0.0002): Undergoing pyeloplasty increases the likelihood of the outcome. 

 

 

Meaning of Negative SHAP Values for features with negative SHAP values: 

 

ren_Fail (-0.0144): Renal failure decreases the likelihood of the outcome (y=1).Pertains to 

Acute Kidney injury following Surgery 

ALP (-0.0137): Higher alkaline phosphatase levels decrease the likelihood of the outcome. 
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Omentoplasty (-0.0113): Undergoing omentoplasty decreases the likelihood of the 

outcome. 

PostOpBilD (-0.0091): Higher postoperative direct bilirubin levels decrease the likelihood 

of the outcome. 

reoperation (-0.0088): Need for reoperation decreases the likelihood of the outcome. 

PreOpTLC (-0.0062): Higher preoperative total leukocyte count decreases the likelihood 

of the outcome. 

PostOpBilT (-0.0060): Higher postoperative total bilirubin levels decrease the likelihood 

of the outcome. 

DiagLaprot (-0.0047): Diagnostic laparoscopy decreases the likelihood of the outcome. 

PreopSodium (-0.0047): Higher preoperative sodium levels decrease the likelihood of the 

outcome. 

PreopUrea (-0.0046): Higher preoperative urea levels decrease the likelihood of the 

outcome. 

LapCholi (-0.0046): Undergoing laparoscopic cholecystectomy decreases the likelihood of 

the outcome. 

Tumor (-0.0032): Presence of a tumor decreases the likelihood of the outcome. A Benign 

tumor  

CVA (-0.0031): Cerebrovascular accident decreases the likelihood of the outcome. 

Readm (-0.0027): Readmission decreases the likelihood of the outcome. 

c_Pulm (-0.0027): Chronic pulmonary disease decreases the likelihood of the outcome. 

htn_C (-0.0023): Controlled hypertension decreases the likelihood of the outcome. 

Prostectomy (-0.0016): Undergoing prostatectomy decreases the likelihood of the 

outcome. 
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PostOpALP (-0.0015): Higher postoperative alkaline phosphatase levels decrease the 

likelihood of the outcome. 

BA (-0.0010): Bronchial Asthma decreases the likelihood of the outcome. 

Laproscopic LysisOfAdhesions (-0.0010): Laparoscopic lysis of adhesions decreases the 

likelihood of the outcome. 

MI (-0.0009): Myocardial infarction decreases the likelihood of the outcome. 

Hysterectomy (-0.0008): Undergoing hysterectomy decreases the likelihood of the 

outcome. 

c_Complication (-0.0006): Cardiac Complications  decrease the likelihood of the outcome. 

Hemiplegia (-0.0006): Hemiplegia decreases the likelihood of the outcome. 

Obesity (-0.0005): Obesity decreases the likelihood of the outcome. 

Dehiscence (-0.0005): Wound dehiscence decreases the likelihood of the outcome. 

Nephrectomy (-0.0002): Undergoing nephrectomy decreases the likelihood of the 

outcome. 

PreopPotassium (-0.00005): Higher preoperative potassium levels decrease the likelihood 

of the outcome. 

hypo_Thy (-0.00003): Hypothyroidism decreases the likelihood of the outcome 

While there is a dissimilarity in how the variables weights are calculated in LIME and 

SHAP ,there is considerable amount of match between variables of importance in two 

methods of interpretability. Both LIME and SHAP has identified similar features impacting 

the mortality in surgical procedures .Some of the features negatively impacting the 

outcome are  shared by both for example obesity  <0 with coefficient 1.1906 in LIME and  

-0.0005436729122828631  in SHAP, Alkaline Phosphate  0.11   to <= 0.14 with coefficient  

-0.002194086349926584  and  -0.0137 in SHAP. Omentoplasty  feature with value <=0 

has a LIME coefficient of -.45 whereas SHAP has a weight of  -0.011,Postop Direct 
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Bilirubin with value with >.04 has a LIME coefficient of -0.11 and a SHAP weight of .009, 

, PreopTLC  <.11 has a LIME coefficient  of .20 whereas PreopTLC >.19 has a negative 

LIME coefficient of .17 whereas SHAP weight for the feature is -.006.The same is true for 

other variables like PostopBilirubin Total(LIME if >.08, a coefficient of -.06 and SHAP 

weight of -.006,Diagnostic Laprotomy >0 ,a LIME weight of -0.11 and SHAP weight of -

.004,PreopSodium .62 <=.68 ,a  LIME Coefficient of .011 and SHAP weight of -

.004,PreopUrea <= .07 ,a LIME  coefficient of -.015 and a SHAP weight of -.004.Lap Choli 

<=0 has a LIME coefficient of .93 whereas SHAP has a weight of  -.004 meaning the same 

thing . For patients who did not undergo Laparoscopic Cholecystectomy, the LIME model 

assigns a coefficient of 0.97. This suggests that not having the surgery is associated with a 

higher risk of the outcome (mortality) whereas SHAP weight is -0047. For feature Chronic 

Pulmonary disease <0 ,LIME coefficient is .75 whereas  SHAP value is -002. 

 

There are however a few differences . While LIME emphasizes a more local perspective, 

focusing on individual predictions, SHAP provides a global understanding of feature 

contributions across all predictions. For example, LIME identifies Sepsis as the most 

important variable with a contribution of 2.32, whereas SHAP assigns it a mean value of 

0.09. This discrepancy highlights the different interpretations and utility of each 

method.Reoperation >0 has a Lime coefficient of .25  whereas SHAP  has a negative weight 

of -.008. In case of Tumor >0 ,LIME assigns a value of .30 whereas SHAP has a negative 

weight of -.003. Omentoplasty >0 .087 and SHAP has a feature weight of -.011.  

Here's a simplified and clearer analysis  of the variables' importance according to both 

LIME (Local Interpretable Model-agnostic Explanations) and SHAP (SHapley Additive 

exPlanations) values.The first 10 variables in descending order  as per the LIME  and SHAP 

are as under : 
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For  LIME Importance Scores (Descending Order) include  

Sepsis > 0.00: 2.32 

Postoperative Urea > 0.13: 1.10 

Small Bowel Resection > 0.00: 1.05 

ASA Classification 0.50 to <= 1.00: 0.50 

Postoperative SGPT > 0.02: 0.37 

Chronic Liver Disease > 0.00: 0.33 

Preoperative Creatinine > 0.06: 0.32 

Postoperative Creatinine > 0.10: 0.31 

Tumor > 0.00: 0.30 

Reoperation > 0.00: 0.25 

These values indicate how much each variable contributes positively to the likelihood of 

the outcome, with higher values reflecting greater influence on the model’s predictions 

(Ribeiro et al., 2016). Gonzalez and Franks (2018) highlight the local interpretability aspect 

of LIME, emphasizing its utility in understanding specific predictions.LIME Values show 

that Sepsis is the most important variable with a significant positive impact (2.32), followed 

by Postoperative Urea and Small Bowel Resection. These variables contribute strongly to 

the model's predictions. 

In contrast, the same 10 variables assessed by SHAP provide different mean values for 

importance: 

Mean SHAP Values for the Same Variables include  

Sepsis: 0.09 

Postoperative Urea: 0.009 

Small Bowel Resection: 0.18 

ASA Classification: 0.02 
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Postoperative SGPT: 0.04 

Chronic Liver Disease: 0.03 

Preoperative Creatinine: 0.006 

Postoperative Creatinine: 0.002 

Tumor: -0.003 

Reoperation: -0.008 

 

SHAP values reflect the average contribution of each feature to the prediction across all 

instances, providing a consistent measure of feature importance. Notably, while some 

variables, like Sepsis and Small Bowel Resection, retain a positive importance in both 

methods, others show significant differences in their contributions (Lundberg & Lee, 2017; 

Molnar, 2020). SHAP Values approach is  a more nuanced view, indicating that while 

Sepsis is still important, its mean contribution is much lower (0.09). The values for most 

other variables are considerably lower, with some like Reoperation having negative SHAP 

values, suggesting they might decrease the risk or likelihood of the outcome being 

predicted. 

This comparison highlights the differences in how LIME and SHAP assess variable 

importance, with LIME often indicating stronger effects overall compared to the more 

granular, average contributions shown by SHAP. 

Choosing between LIME and SHAP depends on the specific needs and context, as each 

method has its strengths and weaknesses. The considerations for use of LIME decision are: 

 LIME is to be used When: 

Local Interpretability: When quick insights into individual predictions is required rather 

than global feature importance. 
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Simplicity: A straightforward method  that provides easy-to-understand explanations 

without deep statistical grounding is needed 

Speed: A faster results is need of the hour, as LIME can be computationally less intensive 

compared to SHAP, especially with large datasets. 

SHAP is to be used  When: 

Consistency and Fairness have prime importance as  SHAP values are based on game 

theory and provide a consistent approach to feature importance, ensuring that the 

contributions of features add up to the model's output. 

Global Interpretability: Global insights into how features affect predictions across the 

entire dataset is required , not just for individual instances. 

Comparative Analysis:  A method that allows comparison of  feature importance across 

different models or datasets reliably. 

Capturing Interaction Effects: SHAP can capture complex interactions between features 

better than LIME, especially when using the TreeSHAP algorithm for tree-based models. 

Recommendation 

For Global Interpretability: SHAP is to be used , as it offers a comprehensive view of 

feature importance and their contributions. 

For Local Insights:  LIME  is to be used for specific predictions where  need is  to explain 

individual cases. 

In many cases, it can be beneficial to use both methods in tandem: SHAP for a broad 

understanding and LIME for deeper dives into specific predictions. This approach can 

provide a more rounded interpretation of your model's behavior. 
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FIGURE 4.17: SHAP VALUES OF VARIABLES 

 



 

 

159 

4. Summary of Findings  

 

Prediction of mortality in surgical procedure is   an important task for surgeon in doctor 

patient relationship. Various conventional  techniques based on statistical methods are 

available including  American Society of Anesthesiologists (American Society of 

Anaesthesiologists,1963) classification,  Surgical Apgar Score, Surgical Risk Calculator 

(ACS-SRC) of American College of Surgeons National Surgical Quality Improvement 

Program (ACS-NSQIP). Artificial Intelligence based models using Machine learning and 

Deep Learning were developed and compared using a small data set for their accuracy and 

reliability in predicting the outcome.  

First objective of the study was to assess which method whether Machine Learning or  

Deep Learning is  most capable of identifying mortality in  a small dataset   

 

The  small  dataset with sample size of 932 was highly skewed with serious class imbalance 

due to rare occurrence of mortality in hospital .  Machine learning models were used with  

correction of class imbalance with variational  auto encoder, and without correction of class 

imbalance (Original Data) but with the parameter class_weight “balanced" for  certain 

models like Logistic Regression, Decision Tree Classifier, and Random Forest Classifier. 

While the Decision Tree Classifier, Random Forest Classifier, Gradient Boosting 

Classifier, and XGB Classifier show improved performance with variational Autoencoder 

transformed data, Logistic Regression and SVC did not perform well on the VAE data, 

indicating that simpler models may not be able to capture the complex patterns that the 
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VAE is generating. . The Generative ,  Deep Neural Network (DNN) outperformed all 

machine learning all in terms of identifying True positives, achieving the best performance.  

Second question was whether Generational autoencoder can be used using variational 

autoencoder to correct for class imbalance in training data  with superior results.  To 

understand  that  synthetic data with oversampling techniques like  SMOTE and its 

derivatives were compared with  variational Auto encoder augmented data in  deep learning 

model for prediction of mortality  

 

To evaluate the effectiveness of two oversampling methods—SMOTE (Synthetic Minority 

Over-sampling Technique) (Chawla et al., 2002) and its variants, along with VAE 

(Variational Autoencoder) (Kingma et al., 2014)— were employed to enhance the dataset 

for Deep Neural Network (DNN) models. The approaches utilized encompassed, Random 

Oversampling, SMOTE, BSSMOTE, Adasyn, Deep SMOTE, and VAE.  

While Random Oversampling achieved high precision, it resulted in lower recall and a 

modest F1 score of 0.64.  SMOTE improved recall(.77) but precision dropped to .56 with 

a F1 score of 0.65.BSMOTE(Borderline-SMOTE) showed F1 score of .71,  ROC-AUC 

was also higher(.92) showing better distinguishing between classes . Adasyn resulted in  a  

recall parameter of 0.77, meaning it missed many positives cases,  precision dropped to  

0.48, which indicated a higher number of false positives. Deep SMOTE achieved a strong 

performance across the board, with high recall (0.92) and precision (0.63). The ROC-AUC 

score of 0.97 was the highest, indicating excellent overall model performance in separating 

the classes. VAE-based model showed consistently high performance across multiple 

metrics. VAE transformed data produced a high F1 score of 0.71, a strong recall of 0.85, 

and a ROC-AUC score of 0.95.  This showed that the model based on VAE-transformed 

data is effective at identifying the minority class while maintaining high accuracy and 
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precision The ROC-AUC of 0.95, though slightly lower than Deep SMOTE, was  still very 

good but  VAE's ability to model complex latent representations allows it to uncover hidden 

patterns in the data, made it most  suitable. Further  DNN model with Autoencoder for 

generation of synthetic data gave a probabilistic generative output deterministic in nature 

for each single run creating high uncertainty in predicting the outcome of mortality with 

no definite bounds of prediction due to two critical uncertainties: 1) epistemic uncertainty, 

accounting for the uncertainty in the model, and 2) aleatoric uncertainty, representing the 

impact of random disturbance, such as measurement errors. Accordingly, probabilistic 

models that measure the stochasticity and provide the range were tried. For Model 

development for prognostication of mortality, two approaches were tried. In the first 

approach, individual models were trained, which included a DNN model with VAE, a 

probabilistic generative model, two Probabilistic models with a Flipout layer at the end 

versus in all layers, and a Bayesian model. To generate the bounds the models were run 

100 or more times and the results were aggregated. VAE model had strong performance 

across all metrics, with a balanced precision, recall, and F1 score of 0.77. The model 

achieved high accuracy (0.97), indicating that it correctly predicted most of the cases. The 

ROC-AUC score of 0.95 suggested excellent discriminatory ability between the classes. 

Of the probabilistic models, first model with Flipout at last layer underperformed compared 

to the VAE, with a significant drop in precision (67), recall (.62), and F1 score (0.64). The 

accuracy was still relatively high (0.95), but the lower precision and recall suggested that 

it may struggle with classifying the positive class correctly. With ROC-AUC of 0.84, it 

was less capable of distinguishing between the classes compared to VAE. The Flipout in 

All Layers model performed poorly with extremely low accuracy (0.06) and precision 

(0.06), although its recall was 1.0. This meant that while it identified all the true positives, 

it did so at the expense of many false positives, resulting in poor overall performance.  The 
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F1 score of 0.11 reflected this imbalance, with very low precision but perfect recall.  The 

ROC-AUC of 0.30 suggested that the model did  not differentiate between the two classes 

well, essentially performing no better than random guessing. The Bayesian model 

performed similarly to the Flipout Last Layer model, with an accuracy of 0.96 and higher 

precision (0.70), but lower recall (0.54). This indicated that the model was better at 

avoiding false positives than it was at capturing all true positives, which was desirable 

considering that the objective was to predict mortality in clinical settings. The F1 score of 

0.61 reflected this trade-off between precision and recall, showing slightly lower 

performance compared to the Flipout Last Layer model  ROC-AUC of 0.80 is slightly 

lower than that of the Flipout Last Layer model (0.84), suggesting a moderate ability to 

differentiate between classes. Since probabilistic models did not perform well, and the aim 

was to move from deterministic approach to stochastic approach to better capture 

variability in data, explore a wider solution space, and provide probabilistic output ,in the 

second approach Ensembles models were used where in combination of  VAE 

,Model_1,Model_2,Bayesian were  combined to develop Ensemble models which were 

then evaluated for accuracy, precision, recall ,F1 score ,True positive (TP),False positive 

(FP),False negative(FN) ,True positive (TP),Area Under the Curve, Mean probability 

where outcome is mortality i.e. 1  , mean global probability ,global entropy and mean 

entropy to select the best model for prediction of mortality in clinical settings. Ensemble 

model developed were 

vae_model + model_1 + model_2 

vae_model + model_2 + bayesian_model 

vae_model + model_1 + bayesian_model 

bayesian_model + model_1 + model_2 

vae_model + model_1 + bayesian_model+model_2 
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vae_model + model_1 

vae_model + model_2 

bayesian_model + model_1 

bayesian_model + model_2 

model_1 + model_2 

In numerous cases, conventional deep learning methods tend to generate overly confident 

probabilistic predictions, particularly when the training datasets are limited in size. This 

issue often becomes more pronounced, leading to complications when deep neural 

networks are used in contexts where accurate uncertainty quantification is essential. To 

address this, ensemble models were calibrated using temperature scaling, Platt scaling, and 

isotonic regression. Producing well-calibrated probabilistic predictions is vital for effective 

risk management, especially when decisions hinge on the outputs of these models. The 

effectiveness of the calibration techniques was evaluated using the Brier Score, which 

showed a notable decrease after calibration, indicating that the predicted probabilities 

became better aligned with the actual outcomes. Temperature scaling generally yielded 

strong performance across most ensemble models, maintaining high accuracy while 

achieving a good balance between precision and recall, making it a dependable method for 

model calibration. Conversely, Platt scaling encountered challenges with certain models, 

especially those incorporating Bayesian layers with Flipout, where it exhibited poor 

precision and F1 scores, although it performed adequately with simpler VAE-based 

ensembles.  

 Isotonic Regression came out as  relatively stable and provided  competitive performance 

close to Temperature Scaling.Post Calibration, the ensemble of VAE + Model_1 (Flipout 

Last Layer) + Model_2 (Flipout All Layers) stood out as the best performing model across 

all key metrics, calibration techniques, and uncertainty assessments for the following 
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reasons. Firstly, it had Balanced Metrics Across Precision(.65), Recall(.85), and F1 

Score(.73),mean probability of positive class(.63+/-.004).Post calibration the ensemble 

consistently achieved an F1 score, precision, and recall of 0.77, demonstrating a strong 

balance between precision (correctly identifying positive cases) and recall (capturing as 

many true positives as possible). Secondly, it had High Accuracy and ROC-AUC with a 

value  of 0.94, Thirdly Low Entropy and Reduced Uncertainty  ,since the ensemble 

exhibited low entropy values (Global- 5.4, Positive Class- 2.5), indicating that the model 

was making confident predictions. Fourthly it had Well-Calibrated Probabilities .The 

ensemble demonstrated strong performance in terms of calibration using all three 

techniques (Temperature Scaling, Isotonic Regression, Platt Scaling). Isotonic Regression 

yielded a Brier score of 0.0254, highlighting the ensemble's reliability in providing 

calibrated probabilities—important for real-world deployment where uncertainty in 

predictions needs to be managed effectively. Fifthly ,it is robust on Imbalanced Data. Given 

the imbalanced nature of the dataset, with a small number of positive cases, the ensemble 

showed robustness with low false positives (3) and false negatives (3). This indicated that 

it can handle skewed class distributions without sacrificing performance and lastly,  it 

showed Consistency Across Various Metrics where unlike other ensembles that showed 

variability across calibration techniques or suffered from high uncertainty, this ensemble 

maintained consistent performance across metrics, making it more dependable for 

practical, high-stakes applications like forecasting mortality. This study emphasises the 

importance of  Brier scores before and after calibration and underscores the importance of 

employing calibration techniques to improve model reliability in predicting probabilities. 

The effectiveness of temperature scaling and isotonic regression is evident, with both 

techniques providing valuable adjustments to probability estimates. Overall, this analysis 

highlights the need for careful calibration to enhance the performance of ensemble models, 
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especially in contexts where prediction accuracy is critical. These insights not only validate 

the calibration techniques employed but also contribute to the ongoing discussion on 

improving model performance in machine learning, particularly in challenging 

environments characterized by class imbalance 

 

The third  question was whether  the variable of importance derived from model  

explainability techniques of Local Interpretable Model-agnostic Explanations (LIME)  and 

SHapley Additive exPlanations,  commonly known as SHAP can explain and interpret the 

model for prognostication of postoperative mortality with identical results? 

There was considerable amount of match between variables of importance in two methods 

of interpretability. Both LIME and SHAP  identified similar features impacting the 

mortality in surgical procedures .Some of the features negatively impacting the outcome 

were  shared by both for example obesity  <0 with coefficient 1.1906 in LIME and  -

0.0005436729122828631  in SHAP, Alkaline Phosphate  0.11   to <= 0.14 with coefficient  

-0.002194086349926584  and  -0.0137 in SHAP. Omentoplasty  feature with value <=0 

has a LIME coefficient of -.45 whereas SHAP has a weight of  -0.011,Postop Direct 

Bilirubin with value with >.04 has a LIME coefficient of -0.11 and a SHAP weight of .009, 

, PreopTLC  <.11 had a LIME coefficient  of .20 whereas PreopTLC >.19 has a negative 

LIME coefficient of .17 whereas SHAP weight for the feature is -.006.The same is true for 

other variables like Postop Bilirubin Total(LIME if >.08, a coefficient of -.06 and SHAP 

weight of -.006,Diagnostic Laprotomy >0 ,a LIME weight of -0.11 and SHAP weight of -

.004,PreopSodium .62 <=.68 ,a  LIME Coefficient of .011 and SHAP weight of -

.004,PreopUrea <= .07 ,a LIME  coefficient of -.015 and a SHAP weight of -.004.Lap Choli 

<=0 has a LIME coefficient of .93 whereas SHAP has a weight of  -.004 meaning the same 

thing . For patients who did not undergo Laparoscopic Cholecystectomy, the LIME model 
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assigns a coefficient of 0.97. This suggests that not having the surgery is associated with a 

higher risk of the outcome (mortality) whereas SHAP weight is -0047. For feature Chronic 

Pulmonary disease <0 ,LIME coefficient is .75 whereas  SHAP value is -002. 

In this study, both LIME and SHAP were applied to understand the factors impacting 

surgical mortality. Despite differences in how variable weights are calculated, both 

methods identified several common features influencing mortality, such Sepsis, 

Postoperative Urea, Small Bowel Resection,ASA Classification ,Postoperative SGPT, 

Chronic Liver Disease, Preoperative Creatinine, Postoperative Creatinine, Tumor: 

Reoperation , obesity, alkaline phosphatase levels, omentoplasty, and postoperative 

bilirubin etc. These features were consistently highlighted across both methods, reinforcing 

their significance in predicting patient outcomes. However, LIME provided more local 

insights, focusing on individual predictions, while SHAP offered a global perspective 

across all instances. For example, LIME emphasized sepsis as a crucial factor with a high 

positive impact, while SHAP showed a more balanced view with lower average 

importance. Some discrepancies, such as reoperation and tumor, were also observed, with 

LIME indicating a positive contribution while SHAP suggested a negative impact. 

The analysis revealed that using LIME is beneficial for specific case-by-case 

interpretability, while SHAP excels in offering a comprehensive overview of feature 

importance across the entire dataset. Both methods together provided a thorough 

understanding of how various features influence surgical mortality, and their combined use 

is recommended for more accurate model interpretation. 
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4.5 Conclusion 

 

Deep Learning model outperformed traditional Machine Learning techniques. By 

integrating insights from all three models -Variational Auto Encoder, Probabilistic models 

with flipout and the Bayesian Model , it became possible to leverage the strengths of each 

model to enhance overall predictive performance and reliability. 

VAE Model: Demonstrated robust overall performance and provided a solid baseline for 

mortality predictions. 

Probabilistic Model with Flipouts: Offered valuable insights into prediction uncertainty, 

which is critical for assessing the reliability of predictions in clinical settings. 

Bayesian Model: Highlighted areas of improvement in precision and contributed to refining 

the model's interpretability 

Together, these models enhanced the reliability and accuracy of mortality predictions, 

leading to the development of an ensemble model incorporating the VAE, Model_1, and 

Model_2 as the best predictor of mortality. This study emphasises the importance of  Brier 

scores before and after calibration and underscores the importance of employing calibration 

techniques to improve model reliability in predicting probabilities. The effectiveness of 

temperature scaling and isotonic regression is evident, with both techniques providing 

valuable adjustments to probability estimates. Overall, this analysis highlights the need for 

careful calibration to enhance the performance of ensemble models, especially in contexts 

where prediction accuracy is critical. These insights not only validate the calibration 

techniques employed but also contribute to the ongoing discussion on improving model 



 

 

168 

performance in machine learning, particularly in challenging environments characterized 

by class imbalance. With respect explainability of models, the two methods used LIME 

and SHAP identified several common features influencing mortality, such Sepsis, 

Postoperative Urea, Small Bowel Resection,ASA Classification ,Postoperative SGPT, 

Chronic Liver Disease, Preoperative Creatinine, Postoperative Creatinine, Tumor: 

Reoperation , obesity, alkaline phosphatase levels, omentoplasty, and postoperative 

bilirubin etc. These features were consistently highlighted across both methods, reinforcing 

their significance in predicting patient outcomes. However, LIME provided more local 

insights, focusing on individual predictions, while SHAP offered a global perspective 

across all instances. For example, LIME emphasized sepsis as a crucial factor with a high 

positive impact.  
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CHAPTER V: 

Discussion of Results 

 

5.1 Discussion of Results 

The prediction of mortality in surgical procedures represents a crucial intersection of 

clinical decision-making and patient safety. This study aimed to evaluate the effectiveness 

of various machine learning and deep learning models in predicting surgical mortality 

using a small dataset characterized by significant class imbalance. By employing 

traditional statistical methods alongside advanced AI techniques, the research provides 

insights into the capabilities and limitations of these models in a healthcare context. 

Machine Learning Versus Deep Learning: The first objective of the study was to 

determine which methodology—machine learning or deep learning—was more effective 

in identifying mortality outcomes. Despite the small sample size of 932, machine learning 

models that employed techniques to address class imbalance i.e. Variational Autoencoders 

(VAE), showed promising results. The Decision Tree Classifier, Random Forest Classifier, 

and Gradient Boosting Classifier performed better with the VAE-transformed data. 

However, simpler models like Logistic Regression struggled to capture the complex 

patterns generated by the VAE, suggesting that a more sophisticated approach is necessary 

for datasets with significant class imbalance. 
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The deep learning model, particularly the Generative Deep Neural Network (DNN), 

outperformed the machine learning models, achieving the highest true positive 

identification rates. This underscores the potential of deep learning techniques to extract 

intricate features and relationships in data, which may be particularly beneficial in clinical 

settings where accurate risk stratification is essential. 

Impact of Synthetic Data and Oversampling Techniques: The second objective 

explored the efficacy of various oversampling methods, including SMOTE and its 

derivatives, compared to VAE-generated synthetic data. While traditional methods like 

Random Oversampling showed high precision, they resulted in lower recall. In contrast, 

Deep SMOTE demonstrated a strong overall performance with high recall and precision. 

The VAE, however, maintained a high F1 score, indicating its robustness in identifying the 

minority class while achieving good precision. This aligns with the study’s findings that 

VAE-based models can effectively manage class imbalance without compromising the 

accuracy of predictions. 

The exploration of epistemic and aleatoric uncertainty through probabilistic models further 

enriched the analysis. The probabilistic outputs from the ensemble models highlighted the 

inherent uncertainties in predicting surgical mortality, revealing the necessity of reliable 

risk assessment tools in clinical environments. 

Ensemble Modeling and Calibration Techniques: The investigation into ensemble 

models revealed that combining VAE, Bayesian models, and other deep learning models 

resulted in improved performance metrics across the board. The calibrated ensemble model 

with the best balance of precision and recall underscores the importance of integrating 
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multiple predictive strategies. The successful application of calibration techniques, 

particularly temperature scaling and isotonic regression, illustrates their significance in 

refining model predictions and enhancing reliability. By reducing the Brier score post-

calibration, the study underscores the need for accurate probability estimates in clinical 

decision-making. 

Interpretability of Models: Lastly, the study's examination of model interpretability 

through LIME and SHAP demonstrated that both techniques yielded similar insights 

regarding important variables influencing surgical mortality. The alignment of variable 

importance between these methods enhances the credibility of the findings, providing 

clinicians with actionable insights into the factors contributing to mortality risk. 

In summary, this research highlights the potential of advanced machine learning and deep 

learning techniques to improve the prediction of mortality in surgical procedures. By 

addressing class imbalance, employing effective calibration techniques, and utilizing 

interpretable models, the study contributes valuable knowledge to the field of surgical risk 

assessment, ultimately aiming to enhance patient outcomes through informed clinical 

decision-making. 

 

5.2 Discussion of Research Question One 

Deep learning techniques outperformed traditional machine learning methods, including 

logistic regression, K-nearest neighbors (KNN), decision trees, random forests, gradient 

boosting, and XGBoost, in predicting mortality when utilizing Variational Autoencoders 

with small datasets. In a study by Wang et al. (2020), a model was developed for the early 
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diagnosis of Parkinson’s disease (PD) using a limited dataset comprising 183 healthy 

individuals and 401 patients in the early stages of PD. The authors employed both deep 

learning and various other machine learning techniques to differentiate between 

Parkinson's patients and healthy controls. They noted that methods such as logistic 

regression (LOGIS), penalized logistic regression (LOGIS_PEN), random forest (RF), 

discriminant analysis (DIS), KNN, support vector machines (SVM), and classification 

trees were efficient. However, the deep learning model demonstrated superior detection 

capabilities, achieving an impressive accuracy of 96.45%. This high performance was 

largely attributed to the deep learning model's ability to automatically learn both linear and 

nonlinear features from PD data without requiring manual feature extraction. 

 

In this study, variational autoencoder was used to correct the serious class imbalance 

The study supports the facts that VAE transformed data when applied to traditional 

machine learning and deep learning showed better performance by DNN model, 

particularly in improving recall by way of comparison.  The Generative, Deep Neural 

Network (DNN) outperformed them all in terms of identifying True positives, achieving 

the best performance. The closely running model was XGB classifier which had an 

accuracy of .96, precision of .71 and a recall of .71 with F1 score of .66, as against accuracy 

of .96, precision of .61, recall of .85 and F1 score of .71, whose performance was not equal 

in terms of identifying True positives a major concern in predicting mortality. 
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5.2 Discussion of Research Question Two 

Whether Generational autoencoder can be used using variational autoencoder to correct for 

imbalance in training data with superior results? 

The Variational Autoencoder (VAE) achieved the best overall performance with high 

precision and recall, making it a strong candidate for cases requiring a balance between 

detecting positives accurately and minimizing false positives and negatives.  Fajardo et al. 

(2018) described a method extending Variational Autoencoders (VAEs) to address 

imbalanced data. which showed that the new method outperformed SMOTE with respect 

to a downstream binary classification task. The study compared results across three 

classifiers—logistic regression (LR), random forest (RF), and multi-layer perceptron 

(MLP)and found that oversampling with VAE led to improved accuracy metrics on the test 

set.). Oversampling with VAE significantly outperformed SMOTE and helped the 

classifier to achieve outstanding accuracy metrics on the test set. In particular, when using 

LR and MLP, the precision and F1 scores of the VAE were significantly higher. In their 

2021 study, Islam et al. observed that the Variational Autoencoder (VAE) outperformed 

other data augmentation techniques. When compared to SMOTE, VAE led to an 8% and 

4% improvement in specificity for VAE-Logistic Regression (LR) and VAE-Support 

Vector Machine (SVM) models, respectively. Similarly, when compared to ADASYN, the 

sensitivity increased by 6% for VAE-LR and 5% for VAE-SVM, highlighting the 

effectiveness of VAE in enhancing model performance. 

In the current experiment, VAE demonstrated superior performance, outperforming 

other methods both in data augmentation and mortality prediction by accurately identifying 
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the target. VAE also made the most significant contribution in ensemble models. However, 

while VAE can provide an overall measure of uncertainty, it cannot quantify uncertainty 

at the individual case level. This limitation highlights the need to combine VAE with 

probabilistic models to obtain a range of probabilities for each outcome. By integrating 

insights from both models, it became possible to achieve a more comprehensive 

understanding of the VAE model's performance and the uncertainty in its predictions. 

Amodei et al. (2016) emphasized that although neural networks (NNs) can achieve high 

accuracy in supervised learning tasks, they often fail to effectively quantify predictive 

uncertainty, leading to overconfident predictions. Such overconfidence in incorrect 

predictions can have serious or even harmful consequences, underscoring the importance 

of proper uncertainty quantification in practical applications. The paper identifies AI safety 

concerns, particularly regarding overconfident neural network outputs, and stresses the 

need for uncertainty quantification in real-world scenarios. 

In healthcare, VAEs have been shown to successfully model complex data patterns, 

as seen in medical image analysis (Gondara, 2016), making them a promising tool for 

mortality prediction in complex datasets. "Generative models like VAEs offer a novel 

solution for imbalanced datasets in healthcare by capturing latent data distributions, 

providing an alternative to traditional methods like Deep SMOTE (Xu & Goodacre, 

2018)." Flipout Layers Only at the End has the advantages that it Captures uncertainty 

mainly in the final decision-making layer, which can be sufficient for many applications, 

which have reduced Complexity and thereby is simpler to implement compared to adding 

Flipout layers in all layers and lastly has Lower Computational Cost being Less 
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computationally expensive than applying Flipout layers throughout the network. The 

disadvantage is that it is less Comprehensive and hence does not capture all sources of 

uncertainty as effectively as applying Flipout layers throughout the network(Wen, et al.., 

2018). Bayesian Neural Networks (BNNs) estimate weights as probabilistic distributions, 

enabling them to account for uncertainty in predictions (Joshi and Dhar, 2022). According 

to Blundell et al. (2015), weights with higher uncertainty introduce greater variability into 

the network's decisions, naturally encouraging exploration. As the network observes more 

data, this uncertainty decreases, allowing the decisions to become more deterministic as 

the model gains a better understanding of the environment. 

In his study on uncertainty quantification and deep ensembles, Rahaman (2021) 

addressed the challenge of calibrating deep ensembles and explored the interaction between 

three commonly used methods for adapting deep learning to low-data scenarios: 

ensembling, temperature scaling, and mixup data augmentation. Using standard neural 

architectures, such as ResNet18 for CIFAR10/100 and ResNet34 for ImageNet, 

Imagewoof, and Diabetic Retinopathy datasets, Rahaman found that combining these 

models into an ensemble improved calibration, resulting in better-calibrated predictions 

across different tasks. 

 BNN estimates weights in the form of probabilistic distributions and thereby could 

account for uncertainty in the predictions (Joshi, and Dhar, 2022). As per Blundel et al. 

(2015), weights with greater uncertainty introduce more variability into the decisions made 

by the network, leading naturally to exploration. As more data are observed, the uncertainty 

can decrease, allowing the decisions made by the network to become more deterministic 
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as the environment is better understood. Rahaman (2021) in his paper on Uncertainty 

quantification and deep ensembles. Advances in neural information processing systems, discussed the 

problem of calibrating deep-ensembles and examined the interaction between three of the 

most simple and widely used methods for adopting deep-learning to the low-data regime: 

ensembling, temperature scaling, and mixup data augmentation. He used standard neural 

architectures networks , For CIFAR10/100 , it was  ResNet18 and  for ImageNet/Image 

woof , and  Diabetic Retinopathy it was ResNet34. When these models were pooled to 

make an ensemble, the pooled model was better calibrated. Finally, pool-then-calibrate 

with temperature scaling had the best performance (Niculescu-Mizil & Caruana, 

2005).Further, calibration techniques like isotonic regression and Platt scaling may 

perform poorly on imbalanced data. It mentions that isotonic regression can overfit when 

applied to small or imbalanced datasets due to its flexibility.   This study also found that 

pooled ensembled model followed by calibration did better in terms of identification of 

positives particularly VAE model plus Model_1 and  Model_2. Guo et al., (2017 )in their 

study "On Calibration of Modern Neural Networks" noted  that typical calibration 

techniques tend to fail with imbalanced data, especially when there are very few positive 

examples, and calibration can even degrade the classifier's performance for minority 

classes. Further, Calibration techniques like isotonic regression are prone to overfitting, 

especially when the data is limited or imbalanced, as they require a large amount of data to 

create reliable mappings between predicted and true probabilities. This  study provides 

insightful findings that both align with and challenge existing literature on calibration 

techniques for imbalanced datasets. Pool-then-calibrate with temperature scaling had the 
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best performance, aligning well with Niculescu-Mizil & Caruana's (2005) discussion on 

the importance of model calibration in improving probability predictions. This emphasizes 

the effectiveness of a systematic approach to calibration after ensembling, particularly in 

scenarios where class imbalance is a concern. It suggests that temperature scaling not only 

enhances the predictions of ensemble models but also addresses the issues commonly faced 

with minority class predictions. However contrary to the Guo et al.(2017) observation ,brier 

score after isotonic regression were smaller was  not confirmed as temperature scaling as 

also Isotonic regression reduced the brier score for all models even though values of brier 

scores   were moderate for temp scaling and quite significant for isotonic regression.  Both 

temperature scaling and isotonic regression effectively mitigated calibration issues 

for the minority class, which supports the idea that careful application of these techniques 

can yield more reliable results even in challenging data conditions. This adds to the 

discourse on calibration by indicating that with the right methods, performance degradation 

for minority classes can be addressed. Brier scores were moderate for temperature 

scaling but quite significant for isotonic regression further underscoring  the 

complexities in using these calibration techniques. It suggests that while temperature 

scaling may provide a robust performance across models, isotonic regression may offer 

superior calibration in specific cases. The distinction in performance levels also 

emphasizes the importance of selecting calibration techniques based on the specific 

characteristics of the dataset and the models used. These insights not only validate the 

calibration techniques but also contribute to the ongoing discussion on improving model 
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performance in machine learning, particularly in challenging environments characterized 

by class imbalance. 

  5.3. Discussion of Research Question Three 

RQ3. Whether the variable of importance derived from model explainability techniques of 

Local Interpretable Model-agnostic Explanations (LIME)  and SHapley Additive 

exPlanations,  commonly known as SHAP can explain and interpret the model for 

prognostication of postoperative mortality with identical results? 

There was considerable amount of match between variables of importance in two methods 

of interpretability. Both LIME and SHAP  identified similar features impacting the 

mortality in surgical procedures .Some of the features negatively impacting the outcome 

were  shared by both for example obesity  <0 with coefficient 1.1906 in LIME and  -

0.0005436729122828631  in SHAP, Alkaline Phosphate  0.11   to <= 0.14 with coefficient  

-0.002194086349926584  and  -0.0137 in SHAP. Omentoplasty  feature with value <=0 

has a LIME coefficient of -.45 whereas SHAP has a weight of  -0.011,Postop Direct 

Bilirubin with value with >.04 has a LIME coefficient of -0.11 and a SHAP weight of .009, 

, PreopTLC  <.11 had a LIME coefficient  of .20 whereas PreopTLC >.19 has a negative 

LIME coefficient of .17 whereas SHAP weight for the feature is -.006.The same is true for 

other variables like Postop Bilirubin Total(LIME if >.08, a coefficient of -.06 and SHAP 

weight of -.006,Diagnostic Laprotomy >0 ,a LIME weight of -0.11 and SHAP weight of -

.004,PreopSodium .62 <=.68 ,a  LIME Coefficient of .011 and SHAP weight of -

.004,PreopUrea <= .07 ,a LIME  coefficient of -.015 and a SHAP weight of -.004.Lap Choli 

<=0 has a LIME coefficient of .93 whereas SHAP has a weight of  -.004 meaning the same 
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thing . For patients who did not undergo Laparoscopic Cholecystectomy, the LIME model 

assigns a coefficient of 0.97. This suggests that not having the surgery is associated with a 

higher risk of the outcome (mortality) whereas SHAP weight is -0047. For feature Chronic 

Pulmonary disease <0 ,LIME coefficient is .75 whereas  SHAP value is -002. 

There are however a few differences. Reoperation >0 had a Lime coefficient of .25  

whereas SHAP  had a negative weight of -.008. In case of Tumor >0 , LIME assigned a 

value of .30 whereas SHAP had a negative weight of -.003. n this study, both LIME and 

SHAP were applied to assess feature importance in predicting postoperative mortality. 

Despite differences in how the two methods calculate variable weights, there was 

considerable overlap in the features identified as most important by both techniques. 

Features such as obesity, alkaline phosphatase levels, omentoplasty, and postoperative 

bilirubin were highlighted by both LIME and SHAP as having significant impacts on 

mortality outcomes. 

For instance, obesity had a LIME coefficient of 1.1906 and a SHAP weight of -0.0005, 

both suggesting it negatively impacts patient outcomes. Similar alignment was found for 

alkaline phosphatase (LIME coefficient: -0.0021, SHAP: -0.0137) and omentoplasty 

(LIME: -0.45, SHAP: -0.011). These findings indicate that both methods can identify 

crucial variables despite using different interpretative approaches. 

However, some discrepancies were observed between the two methods. For example, 

reoperation had a LIME coefficient of 0.25, indicating a positive impact, while SHAP 

assigned a negative weight of -0.008. Similarly, for tumor presence, LIME suggested a 

positive contribution (0.30), whereas SHAP indicated a negative effect (-0.003). These 
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differences reflect the distinct ways in which LIME and SHAP calculate feature 

importance—LIME providing local interpretability for individual predictions and SHAP 

offering a global view across all instances. 

On the whole, both methods consistently identified key features like sepsis, postoperative 

urea, small bowel resection, ASA classification, and chronic liver disease as significant 

contributors to surgical mortality outcomes. LIME tends to emphasize individual 

predictions, offering more localized insights, while SHAP provides a broader, more 

balanced perspective on feature importance across the entire dataset. For example, LIME 

assigned a higher coefficient to sepsis (2.32), signalling its strong local impact, while 

SHAP presented a more moderate contribution (0.09), reflecting its average importance 

across all predictions. 

This study's findings align with previous research by Bandstra et al. (2023), who observed 

comparable results between LIME and Kernel SHAP. They noted that SHAP is a 

generalization of LIME, which explains the similarity in their results. In conclusion, while 

LIME and SHAP approach interpretability differently, both methods provide valuable 

insights into the factors affecting postoperative mortality. Using both methods together 

offers a comprehensive understanding, with LIME aiding in case-specific analysis and 

SHAP providing a global assessment of feature importance. Omentoplasty >0 .087 and 

SHAP had a feature weight of -.011. 

While there was a dissimilarity in how the variables weights are calculated in LIME and 

SHAP ,there is considerable amount of match between variables of importance in two 

methods of interpretability. Both LIME and SHAP has identified similar features impacting 
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the mortality in surgical procedures .Some of the features negatively impacting the 

outcome are  shared by both. There are however a few differences .Reoperation >0 has a 

Lime coefficient of .25  whereas SHAP  has a negative weight of -.008. In case of Tumor 

>0 ,LIME assigns a value of .30 whereas SHAP has a negative weight of -.003. 

Omentoplasty >0 .087 and SHAP has a feature weight of -.011. 

On the whole  while both LIME and SHAP had differences in how variable weights were 

calculated, both methods identified several common features influencing mortality, These 

features were consistently highlighted across both methods, reinforcing their significance 

in predicting patient outcomes. , such as  Sepsis, Postoperative Urea, Small Bowel 

Resection: ASA Classification ,Postoperative SGPT, Chronic Liver Disease, 

Preoperative Creatinine, Postoperative Creatinine, Tumor, Reoperation , obesity, 

alkaline phosphatase levels, omentoplasty, postoperative bilirubin etc. These features were 

consistently highlighted across both methods, reinforcing their significance in predicting 

patient outcomes. However, LIME provided more local insights, focusing on individual 

predictions, while SHAP offered a global perspective across all instances. For example, 

LIME emphasized sepsis as a crucial factor with a high positive impact, while SHAP 

showed a more balanced view with lower average importance. Some discrepancies, such 

as reoperation and tumor, were also observed, with LIME indicating a positive contribution 

while SHAP suggested a negative impact. The analysis revealed that using LIME is 

beneficial for specific case-by-case interpretability, while SHAP excels in offering a 

comprehensive overview of feature importance across the entire dataset. Both methods 

together provided a thorough understanding of how various features influence surgical 
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mortality, .Bandstra et al.(2023) in their study found that  LIME and Kernel SHAP gave 

comparable and nearly identical results. They noted that this coincidence is not surprising 

given that SHAP is a generalization of LIME.This study replicates the observation. 

CHAPTER VI: 

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

6.1 Summary 

This study demonstrates that data transformation using a Variational Autoencoder (VAE) 

yields superior results for predictive models when utilizing complex machine learning and 

deep neural networks. In comparison, simpler machine learning models fail to capture the 

intricate patterns produced by the VAE. The VAE-based models consistently outperformed 

other techniques, including SMOTE and Deep SMOTE, across multiple metrics. While 

both the Deep SMOTE and VAE models showed similar performance in terms of F1 score 

and recall, the VAE had several distinct advantages that made it a better choice for 

mortality prediction. These advantages include its ability to model complex latent 

representations, which enables it to uncover hidden patterns and adapt to various datasets. 

Additionally, the generative capabilities of the VAE offer a novel approach to addressing 

class imbalance and uncertainty, providing greater flexibility for research and real-world 

applications. Unlike Deep SMOTE, which directly augments the dataset, the VAE learns a 

latent representation of the data distribution, allowing it to handle imbalance through 

complex generative modeling. To handle the uncertainty and variability in predictions, 

ensemble models were developed, combining different models (VAE, Flipout, and 

Bayesian). These ensembles were further calibrated using techniques like Temperature 

Scaling, Platt’s Scaling, and Isotonic Regression to improve probabilistic output reliability. 
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Calibration reduced Brier Scores, demonstrating better alignment of predicted probabilities 

with actual outcomes. 

The final ensemble of VAE + Model_1 (Flipout Last Layer) + Model_2 (Flipout All 

Layers) emerged as the best-performing model across all key metrics. It achieved high 

accuracy (0.94), a balanced F1 score (0.73), and low uncertainty, making it a robust choice 

for mortality prediction. The ensemble’s strong calibration and reliability make it suitable 

for real-world clinical applications, providing well-calibrated and dependable probabilistic 

predictions. 

 Both temperature scaling and isotonic regression effectively mitigated calibration 

issues for the minority class, which supports the idea that careful application of these 

techniques can yield more reliable results even in challenging data conditions. This adds 

to the discourse on calibration by indicating that with the right methods, performance 

degradation for minority classes can be addressed. This study found a high degree of 

overlap between the variables identified as important by two interpretability methods: 

LIME and SHAP. Both methods highlighted similar features impacting mortality in 

surgical procedures, such as obesity, Alkaline Phosphate levels, and certain pre- and 

postoperative lab values. For instance, obesity was shown to negatively impact outcomes 

with similar coefficients in both LIME and SHAP. 

Although most feature weights were aligned, some discrepancies were observed. For 

example, LIME assigned a positive coefficient for reoperation and tumor presence, while 

SHAP indicated negative weights for the same features. In these cases, LIME’s values 

appeared more appropriate. The findings align with previous research by Bandstra et al. 

(2023), which reported comparable results between LIME and Kernel SHAP. This suggests 

that despite differences in calculation methods,  approaches can provide consistent insights 

into feature importance in clinical settings 
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6.2 Implications 

The implications of this study on the prediction of mortality in surgical procedures are 

significant and multifaceted, particularly within the context of enhancing clinical decision-

making and patient management. Here are several key points to consider: 

6.2.1. Enhanced Predictive Accuracy 

The study demonstrates that advanced machine learning and deep learning techniques, 

particularly those utilizing Variational Autoencoders (VAE) and ensemble methods, can 

significantly improve the accuracy of mortality predictions in surgical settings. By 

leveraging complex models that can learn from imbalanced datasets, healthcare providers 

can make more informed decisions about patient risk, leading to better outcomes. 

6.2.2. Clinical Decision Support 

The development of robust predictive models offers valuable support for surgeons and 

clinical teams. By integrating these models into clinical workflows, healthcare 

professionals can better assess the risks associated with surgical procedures, ultimately 

leading to tailored preoperative assessments and interventions. This could enhance 

discussions with patients regarding their treatment options and expectations. 

6.2.3. Addressing Class Imbalance 

The study highlights the importance of addressing class imbalance in mortality prediction. 

Traditional models often struggle with this issue, leading to poor performance in 

identifying rare events like mortality. By employing techniques like VAE and various 

oversampling methods, the study presents a pathway to improve model reliability and 

accuracy, paving the way for more equitable predictive capabilities across diverse patient 

populations. 
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6.2.4. Calibration Techniques for Reliable Probabilities 

The emphasis on calibration techniques, such as temperature scaling and isotonic 

regression, underscores the necessity of producing well-calibrated probabilistic predictions 

in clinical settings. Accurate probability estimates are crucial for effective risk 

management and can enhance the trust that clinicians and patients place in model 

predictions, thereby improving the overall utility of predictive analytics in healthcare. 

6.2.5. Interpretable and Explainable Models 

The alignment of variable importance between Local Interpretable Model-agnostic 

Explanations (LIME) and SHapley Additive exPlanations (SHAP) reinforces the value of 

explainability in predictive modelling. Understanding which features influence mortality 

risk helps clinicians interpret model outputs and fosters confidence in the decision-making 

process. This interpretability is essential for translating model predictions into actionable 

clinical strategies. 

6.2.6. Integration into Surgical Practice 

The findings encourage the integration of machine learning and deep learning models into 

routine surgical practice. By embracing these innovative approaches, hospitals and surgical 

canters can enhance their predictive capabilities, improve patient stratification, and allocate 

resources more effectively, ultimately leading to improved surgical outcomes and reduced 

mortality rates. 

6.2.7. Future Research Directions 

This study opens avenues for future research to explore additional variables, enhance 

model architectures, and test these predictive models in larger, more diverse cohorts. There 
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is potential for further refinement of algorithms to address limitations identified in current 

models, as well as opportunities to explore real-time data integration and adaptive learning 

approaches in surgical settings. 

6.2.8. Broader Implications for Healthcare Analytics 

Beyond surgical mortality prediction, the methodologies and insights gained from this 

study have broader implications for healthcare analytics. The techniques developed can be 

applied to other clinical scenarios, potentially improving outcomes in areas like critical 

care, oncology, and other high-stakes medical domains where accurate risk assessment is 

paramount. 

Overall, the implications of this study underscore the transformative potential of machine 

learning and deep learning in improving predictive analytics within healthcare. By focusing 

on enhancing accuracy, reliability, interpretability, and integration into clinical practice, 

these advancements can significantly contribute to better patient care and outcomes in 

surgical settings. 

6.3 Recommendations for Future Research 

 Future research should focus on implementing and evaluating calibration error metrics 

such as Expected Calibration Error (ECE) and Maximum Calibration Error (MCE). These 

metrics will help identify where the model predictions deviate from true probabilities, 

offering deeper insights into the reliability of probabilistic outputs across different 

prediction intervals. The findings regarding the effectiveness of temperature scaling and 

the unexpected performance of isotonic regression challenge some established 

assumptions, indicating that these techniques can be beneficial even in scenarios 
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traditionally viewed as problematic. This encourages further exploration of calibration 

methods and their adaptability across different datasets and modeling scenarios. 

Additionally, increasing data size should be a priority. This can be achieved by obtaining 

and incorporating more samples or leveraging external data sources. Expanding the dataset 

would reduce overfitting and improve model generalization, which is particularly crucial 

for VAE-based models. These models often perform better with larger datasets due to their 

high capacity for learning complex patterns. 

Furthermore, applying data augmentation techniques, such as using other generative 

models like Generative Adversarial Networks (GANs) or time-series augmentation 

methods for sequential data, can synthetically increase data size and diversity. This 

approach can help enhance model robustness and provide a richer data landscape for 

improved predictive performance. 

6.4 Conclusion 

A small dataset of 930 patients was used to prognosticate the mortality. A Deep neural 

network model with  synthetic data from Variational Autoencoder was found to be superior 

to conventional Machine Learning techniques including Logistic regression, K-

Neighborshood Classifier, SVC, DecisionTreeClassifier, Random Forest Classifier, 

Gradient Boosting classifier and XGBCLASSIFIER with better recall, precision,Fi score 

and ROCAUC Values. Since deterministic models may not replicate the results due to 

Aleatoric and Epistemic uncertainty,03 probabilistic  Probabilistic models  with flipout at 

the last layer, in all layers and Bayesian model was added to measure uncertainty. Since 
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these models except for probabilistic model with flipout did not develop desired statistics 

due to lack of real data, following Ensemble models were developed: 

1. vae_model + model_1 + model_2 

2. vae_model + model_2 + bayesian_model 

3. vae_model + model_1 + bayesian_model 

4. bayesian_model + model_1 + model_2 

5. vae_model + model_1 + bayesian_model+model_2 

6. vae_model + model_1 

7. vae_model + model_2 

8. bayesian_model + model_1 

9. bayesian_model + model_2 

10. model_1 + model_2 

 

These ensembles were further calibrated using techniques like Temperature Scaling, Platt’s 

Scaling, and Isotonic Regression to improve probabilistic output reliability. Calibration 

reduced Brier Scores, demonstrating better alignment of predicted probabilities with actual 

outcomes. 

Post calibration, VAE vae_model + model_1 + model_2 was found to be best performer. 

As these Black box models are not interpretable, two techniques of model interpretability 

i.e. LIME and SHAP were used. Both gave almost similar results with variables of Sepsis, 

PostOPUrea, Small Bowel Resection, ASA Classification, Post op SGPT, Chronic Liver 
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disease ,Preop Creatinine, Postop creatinine, Tumor, Reoperation ,Postop Sodium, Mets 

,Omentoplasty, DM ,Pulmonary complication, Postop Bilirubin Direct and LapCholi being 

significant  influencers of  the model for prognostication of mortality. While the variables 

were similar, their order in terms of hierarchy  of influence was different .Similarly 

coefficients of LIME and SHAP were different due to different methodology adopted in 

their calculation. The first 10 variables in descending order  as per the LIME are Sepsis > 

0.00: weight .36, Postop Urea > >0.13: 1.10, Small Bowel Resection > 0.00: 1.05, ASA 

classification .50 to <= 1.00: 0.50,Postop SGPT > 0.02: .37, Chro Liver Dis > 0.00: 0.33, 

Pre op Creat > 0.06: 0.32 , Post op Creat > 0.10: 0.31,   Tumor > 0.00: 0.30, reoperation > 

0.00: 0.25, Post Op Sodium > 0.67: 0.21, PreopUrea > 0.14:  0.19 ,Mets > 0.00: 0.16, Post 

Op SGOT > 0.05: 0.11 ,Omentoplasty > 0.00: 0.08 , DM > 0.00: 0.03 and Pul 

Complications > 0.00: 0.03 , 0.02 < PostOpBilD <= 0.04: 0.01, LapCholi <= 0.00: 

0.97.Whereas same 10 variables of importance has mean SHAP values for   Sepsis : .09 , 

PostopUrea: 0.009,Small Bowel Resection: 0.18, ASA classification: 0.02, Post Op SGPT: 

0.04, ChroLiverDis: 0.03,PreopCreat: .006,PostopCreat:.002, Tumor:-.003, reoperation : -

0.008 , Post Op Sodium: .011,PreopUrea .009 , ,Mets: 

.0024,PostopSGOT:.004,Omentoplasty:.011, DM: 0.017, pul_Complications: 0.02. Post 

Op BilD: 0.007, LapCholi, -0.011. Both temperature scaling and isotonic regression 

effectively mitigated calibration issues for the minority class, which supports the idea 

that careful application of these techniques can yield more reliable results even in 

challenging data conditions. This adds to the discourse on calibration by indicating that 

with the right methods, performance degradation for minority classes can be addressed. 
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This encourages further exploration of calibration methods and their adaptability across 

different datasets and modelling scenarios. Future research should emphasize the 

implementation and evaluation of calibration error metrics such as Expected Calibration 

Error (ECE) and Maximum Calibration Error (MCE). These metrics are crucial for 

pinpointing where model predictions diverge from true probabilities, providing valuable 

insights into the trustworthiness of probabilistic outputs across various prediction intervals. 

In addition to refining calibration metrics, expanding the dataset is essential for improving 

model performance. This can be accomplished by acquiring more samples or incorporating 

external data sources, both of which are critical for deep learning models, which are known 

to perform best with larger datasets. 

Moreover, applying advanced data augmentation techniques should be a priority. 

Incorporating methods such as Generative Adversarial Networks (GANs) alongside 

traditional approaches can generate synthetic data that closely mimics real-world 

distributions, enhancing the model’s ability to generalize. These generative models not 

only increase the dataset size but also enrich the diversity of the data, helping deep learning 

models to learn better representations. This combination of robust calibration methods, 

increased data, and sophisticated augmentation strategies will lead to more reliable 

predictions and superior performance across all models. 
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APPENDIX A: 

 

 

 

 

  STATA & R ANALYSIS 

 

This appendix provides a detailed statistical analysis and results derived from Stata and 

‘R’. Analysis is included as an embedded object in the supplementary document and can 

be accessed here. Double-click the icon to view the document or open it in the browser, 

 

https://docs.google.com/document/d/1loogVpekeZLnorQyfBGn4ucyQttUpDzE/edit 

 

 

 

 

 

 

 

 

 

 

 

 

https://docs.google.com/document/d/1loogVpekeZLnorQyfBGn4ucyQttUpDzE/edit
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APPENDIX B   

INFORMED CONSENT 

 

 

Consent Proof for participation in research 

Research project title:          Mortality Prediction Model for General Surgeries Using a                                             

                                              Small data set with Explainable Artificial   Intelligence 

Research investigator:  Dr. Anil Kumar Pandey  

 Phone Number:                       9810986268  

  E-Mail:                                   akpandey_in@hotmail.com 
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APPENDIX C   

 

 

 

Jupyter Notebook for Model Implementation, Calibration, Evaluation and Final model 

Selection for prediction of Mortality, 

In order to develop a well-calibrated model with high predictive efficacy in the first step 

VAE, Probabilistic models with flipout in last layer and flipout in all layer and a Bayesian 

model were developed followed by a second step where the ensembles were developed and 

were calibrated with Temp Scaling, Platt’s scaling and Isotonic regression. Model were 

evaluated to find the best model for prediction of mortality. 

Link to Jupyter Notebook for Model Implementation and Results 

New_research_Sep_22_final_28_after_bty (2).ipynb                       

 

models_1 2.html     

 

models_1.html         

 

 

 

                                                                                              

https://1drv.ms/u/c/dc3c565c89f2334f/Ef0ImIOnF3tNnshfjFdnBnkBxNgvM3YzG0pS0wd8bMblYQ?e=Hgg4zC
https://1drv.ms/u/c/dc3c565c89f2334f/EQORbe9BiXdFgiilBjwA8tsB5SqA_qGeMwVnIPEnCCfAqA?e=i9nfwT
https://1drv.ms/u/c/dc3c565c89f2334f/ERidMDjrpdlEjfTB5kW8dEAB1hsqM3evUxgBrHpdmWko2A
https://1drv.ms/u/c/dc3c565c89f2334f/Ef0ImIOnF3tNnshfjFdnBnkBxNgvM3YzG0pS0wd8bMblYQ?e=Hgg4zC
https://1drv.ms/u/c/dc3c565c89f2334f/EQORbe9BiXdFgiilBjwA8tsB5SqA_qGeMwVnIPEnCCfAqA?e=i9nfwT
https://1drv.ms/u/c/dc3c565c89f2334f/ERidMDjrpdlEjfTB5kW8dEAB1hsqM3evUxgBrHpdmWko2A
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APPENDIX   D 

 

 

 

MODEL INTERPRETABILITY USING LIME AND SHAP ANALYSIS 

 This appendix provides insights into model interpretability using Local Interpretable 

Model-agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP)  Both 

techniques were used with the trained models to understand feature importance and model 

behavior for individual predictions. 

Link to Jupyter Notebook for Model interpretability and Results using LIME  

interpretable_explainable_Final_24_22.5.pdf    

Link to Jupyter Notebook for Model interpretability and Results using SHAP 

lime_new_May (1) (1).pdf 

 

 

 

 

 

 

 

https://1drv.ms/b/c/dc3c565c89f2334f/EZEkFK3_zDFJlWAuUhnm15gBy-sW0lR6-mIGYtf8btXuZQ?e=QAvYNE
https://1drv.ms/b/c/dc3c565c89f2334f/EXucvEKKORNOni0di6L1BgMB3xNu55B7HlwmQVVx8Au_Gg?e=XLJJzL
https://1drv.ms/b/c/dc3c565c89f2334f/EZEkFK3_zDFJlWAuUhnm15gBy-sW0lR6-mIGYtf8btXuZQ?e=QAvYNE
https://1drv.ms/b/c/dc3c565c89f2334f/EXucvEKKORNOni0di6L1BgMB3xNu55B7HlwmQVVx8Au_Gg?e=XLJJzL
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