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In this dissertation, we investigate using machine learning methodologies to 

categorize vehicles based on their ecological impact in the Canadian context, focusing on 

vehicle emissions and their influence on climate change and public health. The study 

commences with identifying key variables affecting vehicle emissions, such as CO2 

emissions, fuel efficiency, engine size, fuel type, vehicle weight, and age. The research 

establishes strong correlations among these variables through comprehensive exploratory 

data analysis, particularly highlighting the inverse relationship between fuel efficiency and 

CO2 emissions and the higher emissions associated with more extensive and older vehicles. 

These findings underscore the importance of targeted policies to advocate for fuel-efficient, 

smaller, and newer vehicles to mitigate emissions. 
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The research further examines the relationships among fuel efficiency, fuel type, 

and vehicle emissions, confirming that fuel-efficient vehicles consistently produce lower 

emissions. Electric and hybrid vehicles, in particular, significantly outperform gasoline and 

diesel vehicles in terms of environmental impact. This analysis emphasizes the 

environmental benefits of transitioning to electric and hybrid technologies and lays the 

groundwork for policy recommendations to support this transition through incentives and 

infrastructure development. 

A central focus of the study is developing and evaluating machine learning models 

for classifying vehicles based on their environmental impact. Various algorithms, including 

Decision Trees, Random Forests, Gradient Boosting Machines (GBM), Support Vector 

Machines (SVM), and K-nearest neighbours (KNN), are assessed for their effectiveness. 

The GBM algorithm is identified as the most accurate and robust, positioning it as a crucial 

tool for policymakers in identifying high-impact vehicles and designing targeted 

regulations. Despite challenges such as data quality and model interpretability, the success 

of the GBM model demonstrates the potential of machine learning in driving data-informed 

policy decisions and promoting sustainable transportation. 

To conclude, this dissertation highlights the capability of machine learning to 

comprehend and diminish the environmental impact of vehicles. The research provides 

practical insights that can significantly enrich transportation policies by identifying critical 

variables, scrutinizing their interrelationships, and devising effective classification models. 

These insights can further support the efforts of the Canadian government in reducing 

greenhouse gas emissions and promoting sustainable development. Future research is 

suggested to integrate real-time data, broaden the geographic and temporal scope, explore 

advanced machine learning techniques, enhance model interpretability, and formulate 

scalable solutions for broader implementation.
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CHAPTER I:  

INTRODUCTION 

1.1 Introduction 

Vehicles like cars and trucks are crucial for transportation and commerce. However, 

their emissions pose a pressing environmental issue. The release of harmful substances like 

carbon dioxide, nitrogen oxides, and particulate matter contributes to global warming and 

air pollution. These pollutants degrade the environment and jeopardize public health, 

leading to conditions like asthma and heart disease. Furthermore, the noise pollution from 

vehicles disrupts the peace of humans and wildlife (Dey and Mehta, 2020). 

Efforts to make vehicles more environmentally friendly are of paramount 

importance: 

1. Reducing vehicle emissions can significantly combat climate change. 

2. It can also markedly improve public health, particularly in urban areas 

where vehicle emissions are most severe. 

3. It can enhance people's quality of life and protect wildlife. 

We can create a healthier world for future generations by prioritizing these 

initiatives. 

Canada knows that vehicles are a significant environmental problem and is trying 

to do something about it. The government has made rules to limit the amount of emissions 

vehicles let out. There are also programs encouraging using electric and mixed-power 

vehicles, which do not let out as much emissions as regular cars (Miner et al., 2024). 

Local and provincial governments are also doing their part. Some offer rewards for 

buying electric cars, and cities are making better public transportation and paths for bikes 

and walking. Also, Canada has agreed to work with other countries to reduce the amount 

of carbon emission in the air, as in the Paris Agreement (Abdel et al., 2020). 

Even with all these efforts, we still need to do more. The emission from vehicles is 

still a big problem, and we need new ways to deal with it. This is where machine learning 

can help. It can give us new ideas to understand and reduce emissions. This research will 

explore how machine learning can help Canada make new rules to deal with the emissions 

from vehicles. 

The transportation sector plays a pivotal role in contributing to global greenhouse 

gas (GHG) emissions, accounting for nearly 25% of all CO2 emissions worldwide, with 

road vehicles being one of the primary sources (International Energy Agency, 2021). In 

Canada, the automotive industry significantly contributes to national emissions, making it 

essential to assess and regulate the environmental impact of vehicles through policy 

interventions. The government has implemented several strategies to achieve Canada's 

emission reduction targets, including promoting electric vehicles (EVs) and tightening fuel 

efficiency standards (Government of Canada, 2023). However, these efforts require a 

robust framework to assess the environmental impact of various vehicle types, particularly 

in terms of emissions and fuel efficiency. 
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Machine learning (ML) has emerged as a powerful tool for modelling complex 

environmental phenomena. It can process vast amounts of data and uncover patterns that 

traditional statistical methods may overlook. In the context of vehicle environmental 

impact, ML techniques can classify vehicles based on multiple features, such as fuel 

consumption, engine size, and emissions data (Chen et al., 2020). This allows for more 

accurate and nuanced assessments of a vehicle's environmental footprint, enabling 

policymakers to design targeted interventions. 

This research aims to develop a "Framework for Vehicle Environmental Impact: 

ML Approach in Canadian Policy." The focus is leveraging machine learning algorithms 

to assess and classify vehicles based on key environmental factors such as CO2, NOx, 

particulate matter (PM), and hydrocarbons (HC) emissions. By doing so, this framework 

will provide policymakers with a data-driven approach to regulate vehicle emissions, 

promote fuel-efficient technologies, and support the transition to cleaner energy solutions. 

This study contributes to the body of knowledge in sustainable transportation and supports 

Canada's broader goals of reducing GHG emissions and combating climate change. 

 

1.2 Overview of Vehicle Environmental Impacts 

The use of vehicles is deeply ingrained in our daily lives, providing crucial mobility 

for people and goods. However, this widespread use has resulted in many significant 

environmental challenges. It is crucial to have a clear understanding of vehicles' 

environmental impact in order to tackle these issues effectively (Alanazi, F., 2023). 

Carbon dioxide (CO2) significantly contributes to global warming and climate 

change (Jones et al., 2023). Burning fossil fuels such as gasoline and diesel in cars, trucks, 

and buses is a significant source of CO2 emissions. In addition to CO2, vehicles emit 

nitrogen oxides (NOx), which contribute to smog and acid rain, posing health risks such as 

respiratory problems (Jones et al., 2023). 

Moreover, the transportation sector is a significant source of greenhouse gas 

emissions, primarily due to the combustion of fossil fuels (Khalili et al., 2019). Greenhouse 

gases such as CO2, methane (CH4), and nitrous oxide (N2O) trap heat in the atmosphere, 

leading to a rise in global temperature and subsequent climate change. This emphasizes the 

urgent need to reduce energy-related CO2 emissions from vehicles to combat climate 

change effectively (Filonchyk et al., 2024). 

The use and manufacture of vehicles require a significant amount of natural 

resources. Extracting, refining, and distributing petroleum products have extensive 

environmental effects, such as habitat destruction and oil spills. Furthermore, vehicle 

production involves the use of large amounts of metals, plastics, and other materials, 

leading to activities like mining and processing that can harm the environment (Ristinen et 

al., 2022). 

Furthermore, vehicles contribute to water pollution through road runoff, carrying 

oil, heavy metals, and other contaminants into water bodies, harming aquatic life and 
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ecosystems. Vehicle production processes also introduce chemicals and waste products 

that can pollute water sources (Müller et al., 2020). 

The impact of vehicles also extends to land use and habitat destruction. The 

construction of roads, highways, and parking lots leads to the destruction and 

fragmentation of natural habitats. This disruption affects ecosystems and biodiversity, as 

animals lose their homes and migration paths (Müller et al., 2020). 

In summary, vehicles have a broad spectrum of environmental impacts, including 

air pollution, contributions to climate change, noise pollution, resource consumption, water 

pollution, and habitat destruction. Addressing these issues necessitates a comprehensive 

approach encompassing better policies, technological innovations, and shifts in 

transportation usage. By understanding these impacts, we can develop more effective 

strategies to reduce vehicles' environmental footprint and move towards a more sustainable 

future. 

Vehicles emit many pollutants, significantly impacting air quality and climate 

change. One of the primary pollutants is carbon monoxide (CO), a colourless and odourless 

gas resulting from the incomplete combustion of fossil fuels (Dasari and Koul, 2015) . 

Exposure to CO can be particularly harmful to human health as it reduces the oxygen 

transported in the bloodstream, potentially harming vital organs and tissues (Kampa & 

Castanas, 2008). 

Nitrogen oxides (NOx), which include nitric oxide (NO) and nitrogen dioxide 

(NO2), are also significant emissions from vehicles. These gases are produced during fuel 

combustion at high temperatures and contribute to forming ground-level ozone and delicate 

particulate matter (PM2.5). These pollutants can exacerbate respiratory diseases and 

contribute to smog development, posing further health risks (Khare & Adhikari, 2020). 

Particulate matter (PM), including PM10 and PM2.5, is another major pollutant 

emitted by vehicles. These tiny particles can be deeply inhaled into the lungs, causing 

respiratory and cardiovascular problems. Diesel engines are mainly known for emitting 

high levels of particulate matter (Dockery et al., 1993). 

Vehicles also emit volatile organic compounds (VOCs), organic chemicals that 

quickly become vapours or gases. VOCs contribute to the formation of ground-level ozone 

and secondary organic aerosols, detrimental to air quality and human health (Derwent et 

al., 2010).  
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Figure 1 Green House Gas Emission 

 

Carbon dioxide (CO2) is another significant emission from vehicles due to the 

combustion of fossil fuels. It is a major greenhouse gas critical to global warming and 

climate change, trapping heat in the Earth's atmosphere (Pachauri & Meyer, 2014). 

Finally, vehicles emit sulfur dioxide (SO2) in smaller quantities than other 

pollutants. SO2 from diesel engines can lead to the formation of acid rain, which is harmful 

to ecosystems and infrastructure (Seinfeld & Pandis, 2016). 

The emissions profiles of different vehicles, including cars, trucks, and buses, vary 

significantly due to differences in size, engine type, fuel used, and operational patterns. 

Understanding these variations is essential to creating specific strategies to decrease 

emissions and address their effects on air quality and climate change.  

 

 
Figure 2 Type of Vehicle Produces Emissions 

 



15 

 

 

Cars: Passenger vehicles, including cars, generally release lower amounts of 

pollutants per vehicle than larger vehicles. Nonetheless, due to their high numbers, they 

play a substantial role in overall emissions. The primary emissions from cars include: 

● Carbon monoxide (CO): Resulting from incomplete combustion of 

gasoline. 

● Nitrogen oxides (NOx): Produced during high-temperature combustion. 

● Volatile organic compounds (VOCs): Emitted from fuel evaporation and 

exhaust. 

● Carbon dioxide (CO2): The primary greenhouse gas from burning fossil 

fuels (Kampa & Castanas, 2008). 

Trucks: Heavy-duty trucks, with their larger engines and frequent use of diesel fuel, 

substantially contribute to air pollution due to higher emissions of certain pollutants. 

Trucks are significant sources of elements below given by Dockery et al., 1993. 

● Particulate matter (PM): Diesel engines emit higher PM levels, including 

black carbon, a potent climate forcer. 

● Nitrogen oxides (NOx): Emissions are typically higher than those from 

gasoline engines(https://www.aeroqual.com/blog/meet-the-nitrogen-oxide-

family). 

● Sulfur dioxide (SO2): While diesel fuel's sulfur content has been reduced, 

trucks still emit more SO2 than gasoline vehicles. 

● Carbon dioxide (CO2): Trucks emit substantial amounts of CO2 due to their 

larger engines and greater fuel consumption (Dockery et al., 1993). 

Buses: Buses play a crucial role in public transportation, with many of them being 

powered by diesel. Their emissions are comparable to those of trucks, although they can 

differ based on whether they utilize alternative fuels or electric power. Typical emissions 

from buses include: 

● Particulate matter (PM): Like trucks, buses emit significant PM, especially 

older diesel models. 

● Nitrogen oxides (NOx): Emissions are high due to the diesel combustion. 

● Carbon dioxide (CO2): Emissions depend on fuel type, with diesel and 

CNG buses emitting considerable CO2, while electric buses have no direct 

emissions (Seinfeld & Pandis, 2016). 

Alternative-Fuel and Electric Vehicles: Vehicles running on alternative fuels (e.g., 

compressed natural gas, hydrogen) and electric vehicles (EVs) have different emissions 

profiles: 

Electric vehicles (EVs): Produce no direct emissions, significantly reducing urban 

air pollution. However, the overall environmental impact depends on the electricity 

generation mix (Pachauri & Meyer, 2014). 

CNG vehicles: Emit lower levels of NOx and PM compared to diesel and have 

reduced CO2 emissions, making them a cleaner alternative (Khare & Adhikari, 2020). 
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Various types of vehicles release different amounts of pollutants into the 

atmosphere. Trucks and buses typically have higher emissions profiles than cars because 

they are equipped with larger engines and use diesel fuel. Changing to alternative fuels and 

electric vehicles can substantially decrease these emissions, ultimately enhancing air 

quality and helping to minimize the impacts of climate change (Khare & Adhikari, 2020). 

 

1.3 Current Policies in Canada 

Canada has taken extensive measures to address vehicle emissions and minimize 

their environmental impact. By Lutsey N. et al, (2007) these efforts encompass a broad 

range of policies, regulations, and initiatives, all aimed at fostering cleaner transportation 

and advancing climate objectives. Canada has implemented stringent vehicle standards to 

regulate greenhouse gas (GHG) emissions. Notably, CO2 emissions limits have been 

established for cars and small trucks, aligning with those of the United States. Additionally, 

regulations for larger vehicles such as trucks and buses compel manufacturers to adopt 

cleaner technologies to meet these limits.  

A key initiative is the Zero Emission Vehicle (ZEV) program, which seeks to 

enhance the affordability of electric and zero-emission vehicles (Melton N. et al, 2020). 

This program provides financial incentives for individuals who purchase or lease electric 

cars, plug-in hybrids, and hydrogen fuel cell vehicles to promote the uptake of these cleaner 

options. Furthermore, implementing the Clean Fuel Standard (CFS) is another pivotal 

policy. This regulation mandates fuel suppliers to reduce the carbon intensity of fuels 

utilized in transportation, industry, and buildings. By setting a target for diminishing carbon 

intensity, the CFS encourages using cleaner fuel alternatives such as biofuels, electricity, 

and hydrogen (Jin et al., 2014). 

Canada has been expanding its network of electric vehicle charging stations and 

hydrogen refueling stations to support cleaner mobility (Razi, and Dincer, 2022). This 

concerted effort aims to facilitate the accessibility of charging and refueling facilities for 

electric and hydrogen vehicles, thus promoting their increased usage. Additionally, 

significant investment has been directed towards public transit to reduce reliance on private 

vehicles. The federal government has been providing funding for the development of new 

public transit systems and the expansion of existing services. Furthermore, initiatives to 

promote cycling and walking have been actively encouraged as viable alternatives to 

driving (Miele et al., 2020). 

A distinct program has been established to reduce the dependence on diesel fuel in 

rural and remote communities. This program contributes to lowering emissions and 

enhancing air quality in these areas by supporting projects that utilize cleaner energy 

sources (Mustayen et al., 2022). 

Canada has introduced carbon pricing, establishing a cost for emitting CO2. This 

economic incentive catalyzes individuals and businesses to curtail their emissions, 

encouraging the adoption of cleaner transportation alternatives. Establishing the Strategic 

Innovation Fund further underscores Canada's commitment to fostering clean vehicle 
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technologies (Miner et al., 2024). This fund provides financial support for research and 

development endeavors, particularly those focusing on advancements in battery 

technology, electric drivetrains, and lightweight materials—all of which contribute to 

reducing vehicle emissions (Miner et al., 2024). 

Finally, the Pan-Canadian Framework on Clean Growth and Climate Change 

delineates Canada's comprehensive strategy to achieve emissions reduction targets under 

the Paris Agreement (Dillon J., 2016). This framework encompasses actions across diverse 

economic sectors, including transportation, and underscores the promotion of clean 

technology and innovation investments . These multifaceted policies and initiatives 

exemplify Canada's resolute commitment to mitigating vehicle emissions and lessening 

their environmental impact. Through the meticulous implementation of regulations and the 

roll-out of various programs, the government endeavors to cultivate a transportation system 

that is both cleaner and more sustainable, thereby aligning with national and global climate 

objectives  

 

Canada has implemented extensive national measures to decrease vehicle 

emissions and address their environmental effects. These measures include advancing 

cleaner technologies, establishing strict emissions criteria, and promoting alternative fuels 

and electric vehicles (Ercan et al., 2022). 

One notable effort is the implementation of the Greenhouse Gas Emission 

Regulations, which are intended to decrease greenhouse gas (GHG) emissions from new 

on-road vehicles and engines. (Shaheen et al, 2007) These regulations align with the United 

States Environmental Protection Agency (EPA) standards and encompass passenger cars, 

light trucks, and heavy-duty vehicles. The objectives of the standards are to enhance fuel 

efficiency and diminish CO2 emissions by improving engine performance and vehicle 

aerodynamics (Government of Canada, 2021). 

The Canadian government has introduced the Zero-Emission Vehicle (ZEV) 

Program to expedite the adoption of zero-emission vehicles (ZEVs). This initiative offers 

financial rebates for individuals and businesses who purchase eligible electric and 

hydrogen fuel cell vehicles. Moreover, substantial investments are being made to expand 

the national network of electric vehicle charging stations, making it easier to use ZEVs 

across the country (Natural Resources Canada, 2021). 

Another crucial policy is the Clean Fuel Standard (CFS), which mandates a gradual 

reduction in the carbon intensity of fuels used in Canada. This regulatory approach applies 

to liquid, gaseous, and solid fuels, encouraging the utilization of biofuels and other low-

carbon alternatives. The CFS aims to decrease the overall carbon footprint of the 

transportation sector by promoting cleaner fuel options (Environment and Climate Change 

Canada, 2020). 

The EcoENERGY Efficiency Program is another initiative to enhance energy 

efficiency in various sectors, including transportation. This program provides resources to 

assist consumers and businesses in selecting energy-efficient vehicles and practices. It also 
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offers funding and incentives for projects that lower energy consumption and GHG 

emissions within the transportation sector (Natural Resources Canada, 2019). 

Furthermore, Canada has launched the National Greenhouse Gas Offset Credit 

System, which enables businesses to earn offset credits for projects that reduce GHG 

emissions beyond regulatory requirements. This system encompasses transportation sector 

projects such as fleet upgrades, adopting cleaner fuels, and implementing advanced vehicle 

technologies. These initiatives encourage businesses to invest in practices that contribute 

to reduced emissions (Environment and Climate Change Canada, 2021). 

Canada's federal measures are far-reaching and address various aspects of vehicle 

emissions. By promoting cleaner vehicle technologies, offering financial incentives, and 

establishing rigorous emissions standards, these measures aim to reduce the environmental 

impact of transportation in Canada considerably. 

Machine learning (ML) can significantly aid in promoting and enhancing Canada's 

vehicle emissions reduction policies through several vital avenues: 

Predictive Modeling for Emissions: ML algorithms can analyze large datasets from 

various sources, such as traffic data, vehicle specifications, and fuel consumption patterns, 

to predict future emissions levels. This would allow policymakers to forecast the potential 

impact of various regulations, such as the Zero Emission Vehicle (ZEV) program or Clean 

Fuel Standard (CFS), and adjust them in real-time to meet environmental targets. 

Optimization of Public Transit and EV Infrastructure: ML models can analyze 

traffic patterns, driver behaviors, and geographical data to optimize the placement and 

usage of electric vehicle (EV) charging stations and hydrogen refuelling stations. This 

would support Canada's efforts to expand the charging network for ZEVs, as noted in the 

Strategic Innovation Fund and Clean Fuel Standard (Hassan et al., 2024). 

● Smart Fleet Management: For businesses and public transport systems, ML 

can optimize fleet management by identifying the most fuel-efficient routes, 

minimizing idle times, and scheduling maintenance for vehicles to ensure 

optimal performance. These initiatives align with the Greenhouse Gas 

Emission Regulations, aiming to reduce emissions through better engine 

performance and aerodynamics. 

● Carbon Pricing and ML-Driven Incentives: Through ML, real-time data on 

fuel consumption, emissions, and driving patterns can be collected to 

dynamically adjust carbon pricing or financial incentives under the 

EcoENERGY Efficiency Program or carbon pricing programs. This 

personalized approach would empower consumers and businesses to shift 

towards cleaner vehicles or reduce their carbon footprint.  

● Emissions Monitoring and Reporting: ML can streamline emissions 

monitoring by automating the data collection and providing accurate 

insights. For example, ML can monitor compliance with GHG emissions 

standards and help enforce the regulations efficiently. 
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● Behavioural Insights: ML can analyze consumer behaviours to understand 

what motivates people to adopt cleaner technologies like electric or hybrid 

vehicles. This can help tailor the ZEV Program incentives or marketing 

efforts, ensuring they target the right demographics, thereby accelerating 

the adoption of ZEVs. 

By leveraging these ML capabilities, Canada can ensure the efficient 

implementation and continuous improvement of its vehicle emissions reduction policies, 

thereby advancing its climate goals and providing reassurance to all stakeholders (Hassan 

et al., 2024). 

 

1.4 Machine Learning Approaches in Environmental Studies 

Machine Learning (ML) is a powerful tool used in environmental research to 

address complex issues. ML algorithms analyze large datasets to identify patterns and make 

predictions, aiding researchers and policymakers in understanding and mitigating 

environmental problems.  

This section delves into the application of ML in environmental research, focusing 

on its role in mitigating vehicle emissions and other environmental impacts (Ghaffarian S. 

et al, 2023). Before introducing predictive modeling and emission forecasting, it is essential 

to understand the various types of machine learning (ML) models that can be applied to 

promote clean transportation policies and mitigate environmental impacts. One of the most 

common types is supervised learning, which involves training a model on labeled data 

where the input-output pairs are known. This approach can be used to predict specific 

outcomes such as fuel consumption or emissions levels based on vehicle specifications like 

engine size and fuel type (Shalev-Shwartz & Ben-David, 2014). Supervised learning can 

also assist in predicting the likelihood of different vehicles meeting stringent emissions 

standards based on historical data, making it a powerful tool for regulatory compliance. 

Another key model type is unsupervised learning, which works with unlabeled data 

to discover hidden patterns or clusters within large datasets. This method is useful for 

grouping vehicles based on emissions profiles or understanding consumer behavior related 

to adopting zero-emission vehicles (ZEVs). For example, clustering techniques could 

identify areas with higher concentrations of high-emission vehicles, helping target regions 

for expanding electric vehicle (EV) infrastructure (Aggarwal & Reddy, 2014). 

Additionally, reinforcement learning models, which learn to make decisions through trial 

and error, can optimize transportation networks by identifying the most fuel-efficient 

routes or dynamically adjusting carbon pricing based on real-time emissions data (Sutton 

& Barto, 2018). 

ML techniques such as dimensionality reduction and clustering also play a vital 

role in simplifying complex datasets related to vehicle emissions. Dimensionality reduction 

techniques like Principal Component Analysis (PCA) can distill large datasets into key 

variables, allowing for more efficient policy analysis and implementation (Jolliffe & 
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Cadima, 2016). Clustering methods can group regions based on their emissions intensity, 

which supports the formulation of targeted environmental policies. 

Building on these ML foundations, predictive modeling can then be employed to 

forecast vehicle emissions under various policy scenarios. By training models on historical 

data, it is possible to estimate how changes in vehicle standards, fuel consumption patterns, 

or the introduction of new programs like the Clean Fuel Standard (CFS) and the ZEV 

program might impact emissions in the future (Lutsey et al., 2007; Melton et al., 2020). 

Predictive modeling allows policymakers to simulate the long-term effects of various 

interventions, helping ensure that Canada’s ambitious emissions reduction targets are met. 

This approach provides the ability to adapt dynamically to evolving conditions and refine 

policies based on real-time forecasts, which is crucial in the context of reducing 

transportation-related emissions and promoting sustainable mobility. 

Predictive Modeling and Emissions Forecasting: ML is commonly used in 

environmental research for predictive modelling (Giannelos S. et al, 2024). ML algorithms 

can forecast future emissions trends by analyzing historical data on vehicle emissions and 

other environmental factors. These models help policymakers anticipate the environmental 

impact of various policy scenarios and make informed decisions. For example, ML can 

predict the effects of implementing stricter emissions standards or increasing the adoption 

of electric vehicles, allowing policymakers to design more effective strategies to reduce 

emissions. 

Air Quality Monitoring and Management: ML techniques play a significant role in 

monitoring and managing air quality. (Imam et al, 2024) Sensors in different locations 

gather real-time data on pollutants like CO2, NOx, and particulate matter. ML algorithms 

process this data to identify pollution sources, track changes, and predict pollution levels. 

This information is crucial for developing targeted interventions to improve air quality. 

Additionally, ML can assist in optimizing the placement of air quality sensors, ensuring 

comprehensive coverage and accurate data collection (Cascon L. et al, 2024). 

Traffic Flow Optimization: ML can optimize traffic flow in urban areas, thus 

reducing vehicle emissions and improving air quality. By analyzing traffic patterns and 

congestion data, ML algorithms can develop strategies to minimize traffic jams and 

enhance transportation network efficiency. For instance, ML can inform the timing of 

traffic signals, suggest alternative routes to drivers, and manage public transportation 

schedules. These optimizations lead to smoother traffic flow, lower fuel consumption, and 

reduced emissions (Lv. Y. et al, 2014). 

Electric Vehicle (EV) Adoption and Infrastructure Planning: ML is crucial in 

supporting electric vehicle adoption and infrastructure planning as they become more 

prevalent. ML algorithms analyze EV usage, charging patterns, and geographic distribution 

data to predict future demand for charging stations. This data helps planners decide where 

to install new charging infrastructure, ensuring accessibility and convenience for EV users. 

Furthermore, ML can optimize the management of charging stations, balancing the load on 

the power grid and preventing overloads (Johar et al, 2024). 
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Climate Change Modeling: ML is instrumental in climate change modelling, aiding 

scientists in understanding and predicting the long-term impacts of various factors, 

including vehicle emissions. (Chowdhary P, et al, 2023) By processing large datasets from 

climate models, satellite observations, and historical records, ML algorithms can identify 

trends and correlations that traditional methods might miss. These insights contribute to 

more accurate climate predictions and better strategies for mitigating the effects of climate 

change (Chen L. et al, 2023). 

Wildlife and Habitat Conservation: ML applications extend beyond air quality and 

emissions, encompassing wildlife and habitat conservation. For example, ML can analyze 

data from camera traps, satellite images, and environmental sensors to monitor wildlife 

populations and track habitat changes (Raihan A. 2023). This information helps 

conservationists identify threats to biodiversity and develop strategies to protect 

endangered species. In the context of vehicle environmental impacts, ML can assess how 

road construction and traffic affect wildlife movement and habitat fragmentation, 

informing mitigation measures (Santos Morini et al, 2023). 

Water Quality Monitoring :Water quality is another area where ML is making 

significant contributions. ML algorithms analyze data from sensors placed in rivers, lakes, 

and oceans to monitor pollutants and predict water quality trends (Essamlali, I, et al, 2024). 

This information is vital for protecting aquatic ecosystems and ensuring safe drinking 

water. Regarding vehicles, ML can track runoff from roads and parking lots, identify 

sources of contamination, and inform strategies to reduce water pollution (Ali N. et al, 

2023). 

Renewable Energy Integration: Integrating renewable energy sources into 

transportation is crucial for reducing vehicle emissions (Barman P, et al, 2023). ML 

supports this integration by optimizing energy management systems, predicting renewable 

energy production, and balancing supply and demand (Alazemi T. et al, 2024). For 

example, ML can forecast solar and wind energy availability, assisting grid operators in 

managing electricity distribution to charging stations for electric vehicles. This ensures a 

stable and sustainable energy supply, reducing reliance on fossil fuels (Johar et al, 2024). 

One last thing to note is that Machine Learning revolutionizes environmental 

studies by providing robust tools to analyze data, predict outcomes, and optimize solutions. 

In the context of vehicle environmental impacts, ML aids in forecasting emissions, 

monitoring air and water quality, optimizing traffic flow, supporting electric vehicle 

adoption, climate change modelling, wildlife and habitat conservation, water quality 

monitoring, and renewable energy integration (Tien P.W. et al, 2022). 

Machine learning (ML) has the potential to completely transform the way we 

analyze environmental data, offering significant improvements in accuracy and efficiency. 

There are numerous ways in which ML can elevate environmental data analysis: 

1. Handling Large and Complex Datasets: The data relating to the environment is 

often extensive and intricate, covering a wide range of data types such as satellite images, 

sensor readings, and climate models (Zakeri, F. et al 2024). Conventional analytic 
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techniques need help in efficiently processing and understanding these massive datasets. 

Machine learning algorithms can swiftly handle and analyze large volumes of data, 

identifying patterns and trends that traditional methods may overlook. This capacity 

enables a more thorough and timely analysis of environmental occurrences (Guo et al., 

2018). 

2. Improved Predictive Accuracy: Machine learning models, particularly those 

utilizing neural networks and ensemble methods, have demonstrated greater predictive 

precision than conventional statistical models. These models can assimilate information 

from past data and produce precise forecasts about upcoming environmental 

circumstances, including air quality, meteorological trends, and the effects of climate 

change. ML models offer more dependable predictions by integrating a broad array of 

factors and understanding intricate relationships (Reichstein et al., 2019). 

3. Real-Time Monitoring and Anomaly Detection: Machine learning algorithms 

can monitor environmental conditions in real-time. For example, ML models can examine 

information from a system of air quality sensors to recognize increases in pollution or 

pinpoint sources of contamination. Algorithms for anomaly detection can rapidly highlight 

unusual patterns, leading to immediate investigation and action. This real-time 

functionality is essential for reducing the effects of environmental dangers (Ma et al., 

2019). 

4. Enhanced Image and Signal Processing: Environmental monitoring often 

depends on data from remote sensing, such as satellite images and aerial photos. Machine 

learning methods, particularly convolutional neural networks (CNNs), can effectively 

handle image and signal processing tasks. CNNs can categorize land cover, identify 

deforestation, assess water quality, and precisely estimate wildlife populations. By 

automating remote sensing data analysis, machine learning reduces the necessity for 

manual interpretation and accelerates the decision-making process (Zhu et al., 2017). 

5. Integration of Diverse Data Sources: Machine learning models can combine 

information from various sources, such as satellite images, ground sensors, weather 

stations, and social media. This comprehensive method allows for a deeper understanding 

of environmental problems. For instance, merging meteorological data with social media 

posts can improve the effectiveness of disaster response systems by offering immediate 

insights into affected regions (Li et al., 2020). 

6. Decision Support Systems: Machine learning has the potential to enhance the 

decision-support systems utilized by policymakers and environmental managers. ML 

models can offer precise predictions and up-to-date insights, facilitating well-informed 

choices related to resource management, conservation activities, and policy interventions. 

For example, ML can enhance irrigation schedules in agriculture, forecast the likelihood 

of forest fires, and simulate the effects of urbanization on local climates (Karpatne et al., 

2018). 

Machine learning (ML) is poised to revolutionize environmental data analysis in 

several ways. Firstly, it can efficiently handle large and complex datasets, including 
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satellite images, sensor readings, and climate models, enabling more thorough and timely 

analysis of environmental occurrences (Li F. et al 2023). Secondly, ML models offer 

improved predictive accuracy, particularly in forecasting air quality, meteorological trends, 

and the effects of climate change. Thirdly, machine learning algorithms can monitor 

environmental conditions in real time, detecting anomalies and leading to immediate 

investigation and action. Additionally, ML methods can effectively process remote sensing 

data, such as satellite images and aerial photos, reducing the need for manual interpretation. 

Furthermore, ML models can integrate diverse data sources, providing a deeper 

understanding of environmental issues and aiding disaster response systems. Finally, 

machine learning has the potential to enhance decision-support systems for policymakers 

and environmental managers by offering precise predictions and up-to-date insights for 

well-informed choices related to resource management, conservation activities, and policy 

interventions. 

Machine learning (ML) has many potential applications that can significantly 

reduce pollution and mitigate its impacts. These applications span various sectors, 

including air quality monitoring, industrial emissions control, waste management, and 

environmental policy enforcement (Zhou et al., 2020). Here are some key areas where ML 

can be effectively utilized: 

Air Quality Monitoring and Prediction: Machine learning algorithms can analyze 

data from air quality sensors, weather stations, and satellite imagery to monitor pollution 

levels in real time and predict future air quality conditions. For example, ML models can 

forecast the concentration of pollutants such as PM2.5, NOx, and ozone, allowing 

authorities to take proactive measures to reduce emissions and protect public health. 

Advanced ML techniques can also identify pollution hotspots and sources, enabling 

targeted interventions (Chen et al., 2019). 

Industrial Emissions Control: ML can optimize processes to minimize emissions of 

harmful pollutants in industrial settings. By analyzing operational data, ML models can 

identify inefficiencies and recommend adjustments to reduce emissions of CO2, sulfur 

dioxide (SO2), and other pollutants. For instance, ML can fine-tune combustion processes 

in power plants and manufacturing facilities, leading to cleaner production methods (Zhou 

et al., 2020). 

Transportation Management: ML can improve traffic management and reduce 

vehicle emissions by optimizing traffic flow and reducing congestion. Intelligent 

transportation systems (ITS) powered by ML can analyze traffic patterns and control traffic 

signals to minimize idle time and reduce vehicle emissions. Additionally, ML can be used 

to develop efficient public transportation schedules and promote the use of electric and 

low-emission vehicles through intelligent routing and charging infrastructure planning 

(Hsu et al., 2019). 

Waste Management: Machine learning can enhance waste management practices 

by optimizing waste materials collection, sorting, and recycling. ML algorithms can predict 

waste generation patterns, allowing for more efficient waste collection scheduling and 
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reducing fuel consumption. Moreover, ML can improve the sorting process in recycling 

facilities by accurately identifying and separating recyclable materials from waste streams, 

thus increasing recycling rates and reducing landfill use (Rada et al., 2018). 

Water Quality Monitoring and Management: ML models can monitor and predict 

water pollution levels by analyzing data from sensors placed in water bodies. These models 

can detect anomalies and identify sources of contamination, such as industrial discharges 

or agricultural runoff. By providing real-time insights into water quality, ML can help 

authorities implement timely measures to prevent water pollution and protect aquatic 

ecosystems (Gómez et al., 2019). 

Environmental Policy Enforcement: Machine learning can support enforcing 

environmental regulations by analyzing data from various sources, including satellite 

imagery, social media, and on-the-ground sensors. ML algorithms can detect illegal 

activities such as deforestation, unregulated mining, and unauthorized emissions, enabling 

authorities to take swift action. For instance, satellite-based ML models can identify illegal 

logging activities in real time, facilitating rapid response and enforcement (Mateo-Sagasta 

et al., 2017). 

Public Health Impact Assessment: ML can assess the impact of pollution on public 

health by correlating pollution data with health records. By identifying patterns and trends, 

ML models can quantify the health effects of pollution and predict future health risks. This 

information can guide policymakers in designing effective interventions to reduce 

pollution-related health issues and allocate resources to areas with the highest need (Tham 

et al., 2019). 

Machine learning offers numerous applications that significantly reduce pollution 

and mitigate its impacts across various sectors. ML can play a critical role in creating a 

cleaner and healthier environment by improving air and water quality monitoring, 

optimizing industrial and transportation processes, enhancing waste management, and 

supporting environmental policy enforcement (Zhou et al., 2020). 

 

1.5 Overview of environmental issues related to vehicles 

Vehicles are significant in modern society, providing essential mobility and 

transportation services. However, their environmental impact is profound and multifaceted, 

affecting air quality, climate change, noise pollution, water resources, and land use (Gómez 

et al., 2019). This section provides an overview of the various environmental issues 

associated with vehicles, highlighting the importance of addressing these challenges to 

ensure a sustainable future (Xu S., et al, 2024). 

Air Pollution: One of the most immediate and noticeable impacts of vehicles is air 

pollution. Internal combustion engines emit a variety of pollutants, including carbon 

monoxide (CO), nitrogen oxides (NOx), hydrocarbons (HC), and particulate matter (PM). 

These pollutants can have severe health effects, particularly in urban areas with high traffic 

density. Long-term exposure to vehicle emissions is linked to respiratory diseases, 

cardiovascular conditions, and premature death. Additionally, pollutants like NOx and HC 
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contribute to the formation of ground-level ozone, which can exacerbate asthma and other 

lung diseases (Dey S. et al, 2020). 

Vehicles are a significant source of greenhouse gas (GHG) emissions, particularly 

carbon dioxide (CO2), the primary contributor to climate change (Ramani and Zietsman, 

2016). The combustion of fossil fuels in vehicle engines releases significant amounts of 

CO2 into the atmosphere. In addition to CO2, vehicles emit methane (CH4) and nitrous 

oxide (N2O), which have a much higher global warming potential than CO2 ( Comi and 

Polimeni, 2020). The transportation sector is one of the most significant contributors to 

global GHG emissions, and reducing vehicle emissions is crucial for meeting international 

climate targets and limiting global warming.  

Noise Pollution: Vehicle noise is another significant environmental issue, 

particularly in urban areas. Traffic noise can disrupt daily activities, reduce the quality of 

life, and contribute to health problems such as stress, sleep disturbances, and hearing loss. 

Noise pollution also affects wildlife, interfering with animal communication, breeding, and 

foraging behaviours. Efforts to mitigate noise pollution include the development of quieter 

engines, better road surfaces, and promoting alternative transportation modes such as 

cycling and walking ( D’Agosto, M.D.A, 2019). 

The environmental impact of vehicles extends beyond their operational phase. The 

entire lifecycle of a vehicle—from raw material extraction, manufacturing, and 

transportation to use, maintenance, and disposal—has significant environmental 

implications. Manufacturing processes can be energy-intensive and polluting, while the 

disposal of end-of-life vehicles poses challenges for waste management and recycling 

systems. Adopting a lifecycle approach to vehicle design and policy-making can help 

minimize these impacts by considering environmental effects at each stage of a vehicle's 

life (Williams, I.D. et al, 2023). 

Addressing the environmental issues related to vehicles requires a comprehensive 

approach that combines technological innovations, regulatory measures, and changes in 

consumer behaviour. Key strategies include: 

● Promoting the adoption of electric and hybrid vehicles, which produce 

fewer emissions compared to traditional internal combustion engine 

vehicles (Zhao, X., Hu, et al, 2023). 

● Implementing stricter emissions standards and regulations to reduce 

pollutants from vehicles. 

● Investing in public transportation infrastructure to reduce the reliance on 

private cars (Holmgren, J., 2020). 

● Encouraging active transportation modes such as cycling and walking. 

● Supporting research and development in cleaner vehicle technologies and 

sustainable materials (Mikulčić, H., et al, 2022). 

● Enhancing recycling and waste management systems for vehicle 

components and fluids (Molla, A.H., et al, 2023). 
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In conclusion, vehicles have a profound and multifaceted impact on the 

environment, affecting air quality, climate change, noise levels, water resources, and land 

use. Addressing these issues requires a coordinated effort involving technological 

advancements, regulatory frameworks, and shifts in societal attitudes towards 

transportation. By adopting sustainable practices and policies, we can mitigate the 

environmental impact of vehicles and move towards a cleaner, healthier, and more 

sustainable future. 

Vehicles significantly contribute to global greenhouse gas (GHG) emissions, a 

primary driver of climate change. Understanding the connection between vehicle emissions 

and climate change is crucial for developing effective strategies to mitigate these impacts. 

1. Carbon Dioxide (CO2): The most prevalent greenhouse gas released by vehicles 

is carbon dioxide, which comes from burning fossil fuels like gasoline and diesel. 

Combustion of these fuels releases carbon stored underground into the air in the form of 

CO2. 

● Impact on Climate Change: 

Global Warming: Carbon dioxide (CO2) is the main contributor to the greenhouse 

effect, trapping heat in the Earth's atmosphere and causing global warming. Cars, trucks, 

buses, and motorcycles, collectively known as the transportation sector, are accountable 

for considerable global CO2 emissions. According to the International Energy Agency 

(IEA), transportation is responsible for nearly 24% of CO2 emissions from fuel combustion 

globally (IEA, 2021). 

Long-Term Climate Effects: The rise in atmospheric CO2 levels intensifies the 

greenhouse effect, resulting in more heat trapped by the Earth's atmosphere. This results in 

higher global temperatures, which affect weather patterns, sea levels, and ecosystems 

(Pachauri & Meyer, 2014). 

2. Methane (CH4) and Nitrous Oxide (N2O): The primary greenhouse gas emitted 

from vehicles is CO2, but certain types of engines and fuel can also release methane and 

nitrous oxide. Methane may escape during fuel extraction and distribution, while nitrous 

oxide is produced by catalytic converters in exhaust systems. 

Higher Global Warming Potential: Both methane and nitrous oxide have a 

significantly higher global warming potential (GWP) than CO2, which indicates that they 

are more adept at retaining heat in the atmosphere. Methane's GWP is around 25 times 

greater than CO2 over 100 years, and nitrous oxide's GWP is approximately 298 times that 

of CO2 (IPCC, 2013). 

Contribution to Short-Term Climate Change: Even minor releases of methane 

(CH4) and nitrous oxide (N2O) can have a notable impact on global warming and climate 

change due to their high global warming potential (GWP). 

3. Black Carbon: The following text should be remembered: "Black carbon, a type 

of particulate matter (PM), is created when diesel fuel is incompletely burned. This 

substance has a strong warming effect on the atmosphere and is considered a powerful 

climate influencer (Mikulčić, H., et al, 2022)." 
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● Impact on Climate Change: 

Direct Warming: Black carbon captures sunlight and produces heat, heating the 

atmosphere directly. When it settles on snow and ice, it lowers its albedo (reflectiveness), 

increasing heat absorption and faster melting. This leads to polar ice and glaciers declining, 

worsening global warming (Bond et al., 2013). 

Short-Lived Climate Pollutant: Even though black carbon remains in the 

atmosphere for a shorter time than CO2, it has a much more significant impact on climate 

warming per unit mass. Immediate benefits for slowing down climate change can be 

realized by reducing black carbon emissions (Mathew, N, et al, 2024). 

The emissions from vehicles play a significant role in releasing greenhouse gases 

such as CO2, CH4, N2O, and black carbon, which are responsible for global warming and 

climate change. Understanding and tackling these emissions is essential for creating better 

strategies to reduce their impact and safeguard the environment (Pachauri & Meyer, 2014). 

Urban planning plays a crucial role in reducing vehicle environmental impact. One 

critical strategy involves developing efficient and widespread public transportation 

systems that offer sustainable alternatives to private car use. Focusing on sustainable urban 

growth and providing viable public transportation options can effectively decrease vehicle 

emissions and enhance overall air quality (Nieuwenhuijsen, M.J., 2020). 

1. Integrated Urban Planning: Urban planning plays a crucial role in determining 

city residents' transportation needs and habits. By integrating urban planning with a focus 

on sustainable development, cities can substantially progress in reducing vehicle emissions 

(Bibri, S.E, et al, 2020). 

Compact Urban Design: Encouraging high-density, mixed-use development 

reduces the distance people travel for work, shopping, and leisure. This can lead to fewer 

car trips and more walking, cycling, and public transit use (Ewing & Cervero, 2010). 

Transit-Oriented Development (TOD): Designing neighborhoods around public 

transportation hubs ensures that residents can access efficient transit options easily. TOD 

reduces reliance on cars and promotes using buses, trains, and trams (Cervero et al., 2004). 

Green Spaces and Non-Motorized Transport: Incorporating parks, pedestrian 

zones, and bike lanes into urban areas encourages active transportation modes, such as 

walking and cycling, with zero emissions (Pucher & Buehler, 2010). 

2. Development of Public Transportation: Efficiently managed and well-

established public transportation systems are crucial in decreasing the volume of private 

vehicles on the roads and reducing overall emissions ( Baz and Iddik, 2020).  

High-Frequency, Reliable Service: Ensuring that public transit services are 

frequent, reliable, and cover extensive areas can attract more users. This reduces the need 

for personal vehicles and helps lower emissions from road transport (Litman, 2017). 

Electrification of Public Transit: Transitioning buses and trains to electric power 

reduces the emissions associated with public transportation. Electric vehicles produce no 

tailpipe emissions and have a much lower carbon footprint when powered by renewable 

energy sources (Shen et al., 2018). 
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Affordable and Accessible Transit: Making public transportation affordable and 

accessible to all population segments encourages its use. Subsidized fares, integrated 

ticketing systems, and facilities for people with disabilities improve the appeal of public 

transit (Bocarejo & Oviedo, 2012). 

3. Policies and Incentives: Governments can create and enforce policies and offer 

incentives that promote the utilization of public transportation and decrease reliance on 

private vehicles. 

Congestion Pricing: Charging fees for driving in congested urban areas during peak 

hours can discourage car use and raise funds for public transportation projects. Cities like 

London and Singapore have successfully implemented congestion pricing to manage traffic 

and reduce emissions (Leape, 2006). 

Parking Management: Reducing the availability of parking spaces and increasing 

parking fees can discourage car use. Policies prioritizing parking for carpool vehicles and 

public transit users can further reduce the number of cars on the road (Shoup, 2005). 

Incentives for Public Transit Use: Offering tax incentives, employer-sponsored 

transit passes, and other benefits for public transit users can make it more attractive than 

driving (Chen et al., 2011). 

1.6 Importance of Addressing Vehicle Emissions and Environmental Impact 

Addressing vehicle emissions and their environmental impact is essential for 

several interconnected reasons. Vehicle emissions significantly impact public health, 

particularly in urban areas with high traffic congestion. The release of these substances, 

such as carbon monoxide, nitrogen oxides, hydrocarbons, and particulate matter, has 

adverse effects on human health, leading to respiratory conditions like asthma and 

bronchitis, as well as cardiovascular problems such as heart attacks and hypertension, and 

is linked to premature death. Furthermore, vehicles significantly produce greenhouse 

gases, particularly carbon dioxide, exacerbating global warming and climate change. It is 

essential to mitigate these emissions to achieve international climate goals and reduce the 

frequency and severity of extreme weather events. Environmental preservation is also at 

stake because vehicle emissions degrade air quality, harm aquatic ecosystems through 

runoff contamination, and disrupt soil health, impacting agriculture and natural habitats. 

Addressing emissions can also lead to economic benefits, including reduced healthcare 

costs associated with pollution-related illnesses, promotion of fuel efficiency through 

technological innovations like electric and hybrid vehicles, and job creation in green 

technology sectors. 

Furthermore, efforts to tackle vehicle emissions drive technological advancements 

and intelligent transportation solutions, supporting a transition to sustainable energy 

systems and cleaner, more efficient urban planning (Elassy, M, et al, 2024). Effective 

policies and regulations are crucial, enforcing emissions standards, incentivizing clean 

vehicle adoption, and investing in public transit and infrastructure to encourage alternative 

transportation modes (Wu, Y.C. , et al 2024). In conclusion, comprehensively addressing 

vehicle emissions is about safeguarding public health and the environment and promoting 
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economic growth, technological innovation, and sustainable development for a healthier 

and more resilient future (Wang, F., et al, 2021). 

PM, a significant pollutant, consists of fine particles such as PM2.5 (smaller than 

2.5 micrometres) that can penetrate deep into the lungs and enter the bloodstream. These 

minuscule particles are linked to various respiratory and cardiovascular diseases. Research 

indicates that exposure to PM2.5 can result in the onset and worsening of conditions like 

asthma, bronchitis, and chronic obstructive pulmonary disease (COPD). Furthermore, PM 

exposure is linked to cardiovascular issues, including heart attacks, strokes, and 

atherosclerosis, due to the inflammatory response and oxidative stress it induces in the 

body. Long-term exposure to high levels of PM2.5 has been associated with increased 

mortality rates from both respiratory and cardiovascular diseases (Dockery et al., 1993; 

Pope et al., 2002). 

Nitrogen Oxides (NOx): NOx, including nitrogen dioxide (NO2), are harmful gases 

produced during high-temperature combustion in vehicle engines. NO2 can irritate the 

airways, leading to increased susceptibility to respiratory infections, reduced lung function, 

and the aggravation of asthma and other chronic respiratory conditions. Long-term 

exposure to NO2 has been linked to the development of asthma, particularly in children, 

making it a significant concern for public health (Guarnieri & Balmes, 2014). NOx also 

contributes to the formation of ground-level ozone and delicate particulate matter, 

compounding its harmful effects on respiratory health (Khreis et al., 2017). 

Carbon Monoxide (CO): CO is a colourless, odourless gas resulting from the 

incomplete combustion of fossil fuels. It binds with haemoglobin in the blood to form 

carboxyhemoglobin, which reduces the blood's ability to carry oxygen. This can lead to 

symptoms ranging from headaches, dizziness, and confusion to severe cardiovascular and 

neurological damage in high concentrations. Individuals with preexisting heart conditions 

are particularly vulnerable to CO exposure, as it can exacerbate angina and other heart-

related issues (Kampa & Castanas, 2008; Raub et al., 2000). 

Volatile Organic Compounds (VOCs): VOCs are a group of organic chemicals that 

quickly vaporize at room temperature and contribute to the formation of ground-level 

ozone. Exposure to VOCs can cause a range of health problems, including eye, nose, and 

throat irritation, headaches, and nausea. Some VOCs, such as benzene, are known 

carcinogens and can cause long-term health effects, including liver and kidney damage 

(Bernstein et al., 2008). The role of VOCs in forming secondary organic aerosols further 

exacerbates air quality issues and associated health risks (Derwent et al., 2010). 

Sulfur Dioxide (SO2): SO2 is produced by the combustion of sulfur-containing 

fuels, such as diesel. It can irritate the respiratory system, causing symptoms such as 

coughing, mucus secretion, and the aggravation of asthma and chronic bronchitis. Short-

term exposure to high levels of SO2 can lead to increased respiratory symptoms and 

decreased lung function, particularly in individuals with preexisting respiratory conditions. 

Additionally, SO2 can react with other compounds in the atmosphere to form delicate 
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particulate matter, further contributing to its harmful health effects (Pope & Dockery, 2006; 

Brook et al., 2010). 

● Improving Public Health Outcomes by Reducing Emissions 

Reducing vehicle emissions can lead to significant improvements in public health 

outcomes. Lowering the PM, NOx, CO, VOCs, and SO2 levels in the air can decrease the 

incidence and severity of respiratory and cardiovascular diseases. Cleaner air results in 

fewer hospital admissions, lower healthcare costs, and improved quality of life for 

individuals with preexisting health conditions (Pope et al., 2009). Reducing exposure to 

harmful pollutants like PM2.5 and NO2 can also lower premature mortality rates associated 

with air pollution-related diseases, contributing to longer lifespans and healthier 

populations (Hoek et al., 2013). 

Children are particularly vulnerable to the effects of air pollution. Reducing vehicle 

emissions can decrease the incidence of childhood asthma, respiratory infections, and 

developmental issues, leading to healthier growth and development (Gauderman et al., 

2004). Moreover, improving air quality by reducing vehicle emissions can enhance public 

health and well-being. People experience fewer symptoms of respiratory irritation, better 

lung function, and improved outdoor activity enjoyment, contributing to a healthier and 

more active society (Künzli et al., 2000). 

The health implications of prolonged exposure to vehicle emissions are significant, 

encompassing a range of respiratory and cardiovascular diseases, oxygen deprivation, and 

long-term health effects from carcinogenic pollutants. Reducing vehicle emissions can 

substantially improve public health outcomes, including reduced disease incidence, lower 

mortality rates, better child health, and enhanced overall well-being. Addressing vehicle 

emissions is critical for protecting public health and ensuring a healthier future. 

 

1.7 Research Problem 

For a typical product, this supply chain extends from the source of raw materials 

through production and distribution systems to the point of consumption, including 

associated reverse logistics. Key logistical activities include freight transport, storage, 

inventory management, materials handling, and related information processing. 

The primary objective of logistics is to coordinate these activities in a way that 

meets customer requirements at minimal cost. Traditionally, this cost has been considered 

in purely monetary terms. However, as environmental concerns grow, companies must also 

account for the external costs of logistics, which are primarily associated with climate 

change, air pollution, noise, vibration, and accidents (Tambovcevs and Tambovceva, 

2012). 

Integrating environmental considerations into supply chain management has 

become a growing concern for industry, government, and academic researchers. Supply 

chain managers are now expected to respond to the challenges posed by new legislation, 

standards, and regulations, as well as shifting customer demands and the need for 

efficiency, cost-effectiveness, and return on investment, all while adopting greener 
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practices. The tension between business and environmental drivers is a critical challenge, 

but understanding this balance is essential for re-engineering and redesigning supply chains 

in a way that is both financially and environmentally sustainable (Dukovska et al., 2010). 

Within supply chain management, two areas address environmental concerns: 

green supply chain management, which focuses solely on the environment, and sustainable 

supply chain management, which encompasses economic, social, and environmental 

dimensions. Seuring and Müller (2008) define sustainable supply chain management as 

"the management of material, information, and capital flows, as well as cooperation among 

companies along the supply chain while considering goals from all three dimensions of 

sustainable development—economic, environmental, and social—derived from customer 

and stakeholder requirements." 

To achieve a sustainable supply chain, many companies and researchers have 

adopted various frameworks for measuring and capturing carbon emission data. However, 

some of these frameworks do not quantify emissions accurately (McKinnon, 2010). 

McKinnon also pointed out that, currently, no single standard for carbon emissions 

measurement exists, though the two main standards developed by the WBCSD/World 

Resources Institute (2004) and the International Standards Organization (ISO 14064) are 

broadly similar. Both set guidelines for carbon auditing in individual businesses and 

provide advice on calculation scope, data collection methods, and emissions allocation. 

McKinnon further noted that most carbon footprints reported by companies are 

underestimated and do not reflect the true amount of carbon produced (Alan C. McKinnon, 

2010). Therefore, accurately quantifying carbon emissions remains a challenge in moving 

toward a truly sustainable supply chain. 

 

1.8 Purpose of Research  

Two main types of research contribute to sustainable supply chain management. 

One type focuses on technical aspects, such as improved tracking mechanisms and 

enhanced data collection capabilities. The other type explores applications in 

transportation, waste management, and retailing. 

However, a crucial aspect of the research remains underexplored: leveraging real-

time data to enhance the value of supply chain operations. For example, using real-time 

emissions data to optimize transport networks presents an opportunity to reduce operational 

costs, improve system efficiency, and achieve a better return on investment. By 

incorporating dynamic local variables like traffic conditions and the number of delivery 

stops, real-time data can provide a more accurate representation of the carbon footprint. 

Integrating real-time data collection systems with other technologies, such as 

sensors and GPS, offers significant potential for enhancing logistics activities. This 

approach enables the efficient collection of relevant data to monitor vehicles and optimize 

supply chain operations. Combining these technologies allows for real-time feedback and 

improved logistics network efficiency, which can lead to better route planning based on 

traffic conditions, ultimately reducing emissions. 
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Through more accurate emissions data, these advanced technologies can also 

support carbon taxation or pricing mechanisms and incentivize organizations to improve 

their environmental performance. By providing real-time feedback and enabling 

reconfiguration and optimization of logistics systems, these technologies facilitate a deeper 

understanding of carbon emissions across the supply chain. 

This research investigates how emerging technological systems can model complex 

logistics activities, capture emissions data, and optimize operations. Accurate carbon 

footprint quantification becomes essential in advancing supply chain sustainability and 

reducing environmental impacts. 

 

1.9 Significance of the Study  

The primary goal of this study is to enhance Canadian environmental policies 

regarding vehicle emissions. The study aims to provide policymakers with data-driven 

insights into the effectiveness of current regulations and the potential benefits of proposed 

measures, using machine learning models to identify patterns and trends. These insights 

can lead to more effective policy interventions targeting emission reduction and 

environmental impact mitigation. Additionally, the research can serve as a benchmark for 

other countries, promoting international collaboration and knowledge exchange in 

environmental policy-making. 

The study emphasizes the potential of machine learning technologies in addressing 

complex environmental challenges, demonstrating how they can be used to analyze and 

predict vehicle-related environmental impacts. This highlights their broader applicability 

in other areas of environmental science, which can inspire innovation in developing new 

tools and applications that leverage machine learning for environmental monitoring, 

management, and mitigation. Furthermore, the study can encourage further research and 

development in green technology and drive investments in cleaner, more efficient 

transportation solutions. 

The focus on developing a comprehensive framework for assessing and mitigating 

vehicle environmental impacts aligns with global efforts to combat climate change and 

protect natural resources (Dwivedi, Y.K et al, 2022).  By providing actionable insights into 

the sources and consequences of vehicle emissions, the research supports the development 

of strategies to reduce the transportation sector's carbon footprint. This is particularly 

important for Canada, where transportation significantly contributes to national greenhouse 

gas emissions. The study's outcomes can help shape sustainable transportation policies that 

balance economic growth with environmental stewardship. 

Reducing vehicle emissions has direct and significant benefits for public health, as 

vehicle pollutants are linked to various health problems, including respiratory and 

cardiovascular diseases (Kwan, S.C., et al, 2023). The study improves air quality and public 

health by informing policies to lower emissions, which can reduce healthcare costs and 

improve citizens' quality of life. The study also addresses noise pollution and its impact on 
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health and well-being, further underscoring the holistic benefits of reducing vehicle-related 

environmental stewardship. 

Finally, the study considers the equitable distribution of environmental benefits and 

burdens, ensuring policies do not disproportionately affect marginalized communities. By 

promoting transparency and accountability in policy-making, the research supports the 

development of fair and inclusive strategies that consider the needs and perspectives of all 

stakeholders.  

 

1.10 Research Questions  

To align with the Canadian government's initiative to reduce carbon emissions and 

promote a sustainable transportation infrastructure, this project aims to leverage machine 

learning (ML) techniques to effectively and precisely track carbon dioxide emissions at 

each stage of the supply chain process. The project will implement an intelligent system to 

optimize transportation and logistics networks, minimizing the carbon footprint throughout 

operations and supporting the country's broader environmental goals. 

Following research questions are to be aimed to find answers. 

1. How do emissions data (CO2, NOx, PM, HC) correlate with the overall 

environmental impact of different vehicle types? 

2. What correlations exist between fuel efficiency, fuel type, and vehicle 

emissions? 

3. Which machine learning algorithms are most effective for classifying 

vehicles based on their environmental impact? 
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CHAPTER II:  

REVIEW OF LITERATURE 

2.1 Theoretical Framework 

Past years have seen a remarkable number of weather-related disasters such as 

severed sea level rise, decrease of sea Ice, changes in rain patterns and an intense drought 

resulting to regular weather-related tragedies. These occurrences are associated to the rise 

of global mean temperature by 1° Celsius over the past 150 years (IPCC, 2018). This 

increase of temperature is due to high concentration of greenhouse gases in the atmosphere, 

which cause the atmosphere to retain heat. IPCC apportions 95% of the main cause to 

human activities. According to the World Bank report “Turn down the heat “It is projected 

that the mean global temperature can reached 4.0 C by the end of the century and 2C 

warmer by 2040 if no mitigation action is adopted to reduce carbon emissions. This 

situation underlines the need to urgently expedite action to minimize our emissions to 

reduce the effect of climate change. Due to the importance of this situation, various 

organizations such as Intergovernmental Panel on Climate Change (IPCC) and the United 

Nations Environment Program (UNEP) were set up to regulate emissions to help countries 

mitigate and adapt to climate change (Livermore, 2008). In addition, international climate 

change policy framework such as United Nations Framework Convention on Climate 

Change (UNFCCC) and Kyoto protocol were also enacted to encourage and commit 

countries to reduce their emissions (UN, 2008). A historic commitment was made by world 

leaders at the Paris agreement (COOP21) and COOP 22 at Marrakech to adopt strategies 

and policies which will encourage environmentally friendly activities within their 

countries.  

As part of European union global commitment to climate change and an effort to 

reduce global warming, member states agreed to reduce their Greenhouse gas emission by 

a minimum of 20% before the end of 2020 and between 60 and 80% by the end of 2050 

(Council of European Union 2007). Individual nations within the Eurozone seek to improve 

the global greenhouse gas mitigation efforts and implement climate change adaptation 

approaches by encouraging their companies to explore innovative and cost-effective ways 

to reduce their emissions.  

In order to make informed carbon emission reduction decisions, it is important 

consider types of greenhouse gases, their sources and contribution to climate change. The 

most significant gas in terms of quantifiable emissions is carbon dioxide. It accounted for 

76% of total GHG emissions in 2010. Since 1750, the carbon dioxide concentration in the 

atmosphere has increased by 40% (WMO2013); representing increased by about 100 ppm 

(parts per million) since the industrial revolution, this is due to irresponsible supply chain 

activities of companies that do not incorporate environmental dimensions into their 

operations. This is confirm by the UNCTAD reports in 2012 on climate chain which state 

that, Supply chain activities accounts for 76% of the total greenhouse emissions, hence 
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reducing carbon emissions in supply chain activities are of paramount importance 

(UNCTAD 2012).  

The planning and management of activities involved in sourcing, procurement, and 

conversion are critical for achieving environmental sustainability (Linton, Klassen and 

Jayaraman ,2007) Transportation plays a significant role in carbon emissions, contributing 

largely to global greenhouse gas output (Rossi et al., 2013). According to a 2022 report by 

the International Energy Agency (IEA), transportation is one of the main contributors to 

carbon emissions, with a 1.7% increase after the pandemic. To meet the target of Net Zero 

emissions by 2050, transportation emissions need to fall by 3%. In Canada, transportation 

alone accounts for approximately 59% of the country’s total emissions (RFAE, n.d.), and 

it remains the only sector with a continuous upward surge in emissions since 1990. 

Ineffective transportation management exacerbates this issue, leading to higher emissions. 

 

Efforts to minimize these emissions have been initiated globally, with many 

countries committing to reduce emissions under the Kyoto Protocol (Kuik, Nagalingam 

and Amer,2013). As a result, governments and industries are adopting strategies that help 

them make better, informed decisions to manage emissions efficiently. However, balancing 

compliance with environmental regulations while fulfilling commercial needs remains a 

significant challenge. Companies need to adopt innovative methodologies to effectively 

manage their carbon output (Carbon Trust, 2006). To minimize carbon emissions, it is 

crucial to accurately track and assess where the emissions originate and implement 

methodologies that not only measure the environmental impact of activities but also 

propose ways to reduce high-emission activities (Edwards-Jones and Jensen, 2010). 

Identifying these emission sources is vital in the broader effort to reduce overall carbon 

emissions and meet legislative and environmental goals.  

As concern for the environment rises, firms are adopting environmentally friendly 

practices such as recycling (Jain and Sharma, 2014; Zhu and Sarkis, 2007), taking 

deliberate actions to implement strategies that will promote sustainable measures 

(D’Amato et al., 2009), improve their operations and restructure their business framework 

by integrating environmentally friendly logistics activities in their supply chain. In Supply 

chain management there are two areas which take environment into consideration, first is 

green supply chain which focusses on environment and economic dimensions and 

sustainable supply chain which focuses on environment, economic and social dimensions. 

(Seuring and Müller, 2008) define sustainable supply chain management as “the 

management of material, information and capital flows as well as cooperation among 

companies along the supply chain while taking goals from all three dimensions of 

sustainable development, i.e., Economic dimension, environmental dimension and social, 

taking into account which are derived from customers and stakeholder’s requirements”. 

Green logistics centred on how companies can incorporate environmentally friendly 

practices into logistics activities (Rodrigue et al., 2001).  
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Recently, government policies required companies to be accountable for their 

emissions and be responsible for their wastes (Gupta and Polimeni 2020) (Govinda et 

al.,2020). Green supply chain management (GSCM) is the appropriate means to extend the 

responsibility of business organizations from being mindful in reducing carbon emissions 

and waste and take full responsibility for their products lifecycle, from procurement to the 

final disposal (Zailani et al., 2012). However, the lack of appropriate means to effectively 

capture carbon emissions in the supply chain influences companies’ capability to 

accurately quantify their carbon emissions.  

Numerous frameworks and methodologies have been implemented to measure and 

capture carbon emission data, but accuracy remains a significant challenge due to the 

inability to account for dynamic local variables (Sanchez-Flores et al 2020). Factors such 

as traffic congestion, the number of delivery pickups and drops, and other operational 

complexities are often overlooked. Additionally, existing methodologies typically rely on 

industry-standard data, which does not fully capture emissions from all activities, such as 

moving goods within warehouses. 

There is yet to be a universally accepted standard for carbon emission measurement. 

However, two significant frameworks—the Greenhouse Gas Protocol developed by the 

World Business Council for Sustainable Development (WBCSD) and the International 

Standards Organization (ISO 14067)—provide guidelines for carbon auditing. These 

frameworks offer advice on calculation scopes, data collection methods, and emission 

allocations. Yet, discrepancies remain, as highlighted by the Carbon Footprint for Freight 

Transportation (COFRET) European Commission report, which states that "various 

stakeholders have independently developed incomparable methods, tools, and data" 

(COFRET). McKinnon (2010) also emphasizes that many companies underestimate their 

carbon footprints, providing figures that do not accurately reflect the emissions produced. 

Addressing these gaps is crucial for improving carbon emission measurement and aligning 

with environmental goals. 

 

2.2 Greenhouse Gas Emissions 

Evaluating the environmental impact of vehicles requires careful consideration of 

greenhouse gas (GHG) emissions. These emissions significantly affect global climate 

change, impacting ecosystems, human health, and the economy (Das, 2017) . When 

vehicles burn fossil fuels like gasoline and diesel, they release greenhouse gases, with 

carbon dioxide (CO2) being the most common. Methane (CH4) and nitrous oxide (N2O) 

are also emitted, albeit in smaller amounts. Methane can be released through exhaust, while 

nitrous oxide forms due to high combustion temperatures and pressures. Additionally, 

emissions occur during the production and distribution of fuel due to energy consumption 

in extraction, refining, and transportation processes. 

The life cycle and manufacturing of vehicles also contribute to GHG emissions. 

This process requires significant energy and raw material extraction, producing substantial 

emissions. An inclusive evaluation of vehicle emissions comprises those from production, 
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maintenance, and disposal. Notably, key greenhouse gases emitted by vehicles include 

CO2, CH4, and N2O. While CO2 is the most prevalent, CH4 and N2O have a much higher 

global warming potential (GWP). Over 100 years, methane is approximately 25 times more 

potent than CO2, and nitrous oxide has a GWP about 298 times higher than CO2. 

The consequences of GHG emissions are extensive, contributing to global warming 

and resulting in more frequent and severe weather events such as hurricanes, droughts, and 

heat waves. GHG-induced climate change also leads to habitat loss, ecosystem disruption, 

and impacts on biodiversity and species survival. Elevated CO2 levels cause ocean 

acidification, affecting marine life. Human health is affected by deteriorating air quality, 

resulting in respiratory and cardiovascular diseases and increased heat-related illnesses. 

Furthermore, climate change affects agricultural productivity and infrastructure, increasing 

maintenance and repair costs. 

Mitigating GHG emissions from vehicles is a multifaceted task. However, there is 

optimism. Enhancing fuel efficiency through advanced engine technologies and 

lightweight materials can significantly reduce CO2 emissions. The potential of alternative 

fuels, including electric vehicles (EVs) and biofuels, in reducing GHG emissions compared 

to traditional fossil fuels is promising. Implementing policy measures such as strict 

emissions standards and incentives for green technologies can encourage the adoption of 

cleaner vehicles. Additionally, expanding public transportation and promoting sustainable 

urban design can reduce dependence on personal vehicles, decreasing overall GHG 

emissions. 

To conclude, addressing GHG emissions from vehicles is crucial in combating 

climate change and safeguarding environmental and human health. Understanding these 

emissions' sources, types, and impacts is vital for implementing effective mitigation 

strategies. This study seeks to develop a machine-learning framework to categorize 

vehicles based on their environmental impact, offering valuable insights for policymakers, 

manufacturers, and consumers to contribute to a more sustainable and resilient future. 

Vehicles play a significant role in releasing greenhouse gases, mainly due to 

burning fossil fuels. Among the leading greenhouse gases released by vehicles are carbon 

dioxide (CO2), methane (CH4), and nitrous oxide (N2O). These gases originate from 

different sources and have varying levels of influence on the total greenhouse gas emissions 

stemming from the transportation sector. 

1. Carbon Dioxide (CO2): The most important greenhouse gas released by vehicles 

is carbon dioxide. Internal combustion engines produce it when they burn fossil fuels like 

gasoline and diesel. The quantity of CO2 emitted is directly linked to the quantity of fuel 

used. 

Primary Contributor: CO2 is the largest source of GHG emissions from vehicles, 

accounting for approximately 90-95% of the total GHG emissions in the transportation 

sector (International Energy Agency, 2021). 
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Impact on Climate Change: CO2 has a long atmospheric lifetime and contributes 

significantly to the greenhouse effect, leading to global warming and climate change 

(Pachauri & Meyer, 2014). 

2. Methane (CH4): Methane has a much higher global warming potential (GWP) 

than CO2 and is a potent greenhouse gas. Vehicles emit methane in smaller amounts, 

mostly during fuel extraction, production, and distribution and from the combustion of 

natural gas in vehicles equipped with natural gas engines (Weger et al., 2017). 

Minor Contribution: Although methane emissions from vehicles are relatively low 

compared to CO2, they still represent a significant source due to their high GWP 

(approximately 25 times that of CO2 over 100 years) (IPCC, 2013). 

Impact on Climate Change: Methane contributes to both short-term and long-term 

climate change due to its potency and ability to trap heat in the atmosphere. 

3. Nitrous Oxide (N2O): Nitrous oxide, a potent greenhouse gas, is released from 

vehicles. The primary source of this gas is the catalytic converters found in vehicle exhaust 

systems, especially in high-temperature conditions (Brinklow et al, 2023). 

Minor Contributor: N2O emissions from vehicles are relatively small in volume 

compared to CO2 emissions, but they have a very high GWP (approximately 298 times 

that of CO2 over 100 years) (IPCC, 2013). 

Impact on Climate Change: Despite its lower emissions volume, N2O's high GWP 

significantly contributes to the greenhouse effect and global warming. 

● Contribution of Different Vehicle Types to Overall Emissions 

1. Passenger Cars: Passenger vehicles, the most abundant vehicle type, play a 

substantial role in CO2 emissions because of their extensive usage and dependence on 

gasoline and diesel fuels (Fontaras et al, 2017). 

Primary Contributor: Passenger cars are responsible for a substantial portion of the 

total GHG emissions from the transportation sector. In many developed countries, they 

account for around 50-60% of the sector's CO2 emissions (US EPA, 2021). 

2. Light-Duty Trucks and SUVs: Light trucks and SUVs usually have larger engines 

and use more fuel than regular cars, leading to larger CO2 emissions per vehicle (Hagos et 

al, 2018). 

Increasing Contribution: The growing popularity of SUVs and light-duty trucks has 

increased their share of total vehicle emissions. They now contribute significantly to 

overall GHG emissions, often accounting for about 20-30% of the transportation sector's 

CO2 emissions (International Council on Clean Transportation, 2020). 

3. Heavy-Duty Trucks and Buses: Trucks and buses with strong carrying capacities 

produce substantial amounts of CO2, CH4, and N2O as they extensively utilize diesel fuel 

owing to their large dimensions and heavy loads (Hagos et al, 2018). 

High Emissions Intensity: While they represent a smaller portion of the vehicle 

fleet, heavy-duty trucks and buses contribute disproportionately to GHG emissions, often 

accounting for 20-30% of the sector's total emissions (International Energy Agency, 2021). 
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4. Non-Road Vehicles: Non-road vehicles, including construction equipment, 

agricultural machinery, and other off-road vehicles, also contribute to GHG emissions, 

primarily diesel and gasoline (Quiros et al, 2017). 

Notable Contributor: These vehicles are responsible for a smaller, yet significant, 

share of the total transportation sector emissions, contributing around 10-15% of the GHG 

emissions (US EPA, 2021). 

The primary sources of greenhouse gas discharges from automobiles stem from 

burning nonrenewable resources, resulting in the release of CO2, CH4, and N2O. Of these, 

CO2 has the most notable impact, making up the majority of GHG emissions from the 

transportation industry. Even though methane and nitrous oxide are released in smaller 

amounts, their high global warming potentials deem them significant factors in climate 

change. Passenger cars, light-duty trucks and SUVs, heavy-duty trucks and buses, and non-

road vehicles substantially affect the overall emission profile. Passenger cars and light-

duty vehicles are the primary contributors owing to their prevalence and consumption 

patterns (Wang et al 2021). 

 

2.3 Air Pollution and its Effects 

The main contributors to air pollution are vehicle emissions, industrial operations, 

power plants, agricultural practices, and natural sources. In urban areas, the most 

significant sources of air pollution are usually vehicles, which release pollutants like 

nitrogen oxides (NOx), carbon monoxide (CO), particulate matter (PM), and volatile 

organic compounds (VOCs). This is especially true in cities with heavy traffic and older, 

less efficient vehicles. Furthermore, industrial activities in urban areas, such as 

manufacturing and processing plants, release substantial amounts of sulfur dioxide (SO2), 

NOx, and PM into the air (Arshad, K, et al, 2024). 

Power plants, particularly those burning fossil fuels such as coal and natural gas, 

are notable sources of air pollution, emitting large quantities of SO2, NOx, CO2, and PM. 

This is especially prevalent in areas with a high concentration of power generation facilities 

and heavy reliance on fossil fuels for energy production. Agricultural practices also 

contribute to air pollution through pesticides and fertilizers, which release ammonia (NH3) 

and other chemicals. Livestock farming produces methane (CH4) and ammonia, adding to 

the overall burden of air pollutants (Filonchyk, M. et al 2023). 

Natural sources of air pollution include wildfires, volcanic eruptions, and dust 

storms. Wildfires release significant amounts of PM, CO, and VOCs, affecting air quality 

over expansive areas. Volcanic eruptions emit sulfur dioxide, ash, and other particulates, 

while dust storms contribute to high PM levels, particularly in arid regions (Nakhjiri, A, et 

al, 2024) 

Understanding the distribution of these sources in different regions and urban 

settings is crucial, as it depends on factors such as population density, industrial activity, 

transportation infrastructure, and geographical and climatic conditions. This understanding 

helps develop effective strategies to reduce air pollution and enhance air quality. For 
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example, urban areas with dense populations and heavy traffic tend to have higher levels 

of vehicle emissions, while industrial regions may experience more pollution from 

manufacturing and power generation. Rural areas with extensive agricultural activities may 

have elevated ammonia levels and other agricultural pollutants ( Li et al 2020). 

Geographical factors such as topography and climate also play a crucial role in the 

dispersion and concentration of air pollutants. Cities in valleys or areas with limited air 

circulation may experience higher pollution levels due to the trapping of pollutants. 

Additionally, climatic conditions such as temperature inversions can lead to the 

accumulation of pollutants near the ground, worsening air quality problems (Khan et al 

2024). 

In summary, the primary sources of air pollution are vehicle emissions, industrial 

activities, power plants, agricultural practices, and natural occurrences. These sources vary 

across regions and urban environments due to population density, industrialization, 

transportation systems, and geographical and climatic conditions. Understanding these 

variations is crucial, as it guides the development of targeted strategies to reduce air 

pollution and improve air quality in diverse settings, underscoring the necessity for such 

measures (Borck, R., et al, 2021). 

Vehicle emissions, a widespread concern, play a substantial role in air pollution, 

particularly in densely populated urban areas. Cars, trucks, buses, and motorcycles release 

harmful pollutants such as nitrogen oxides (NOx), carbon monoxide (CO), volatile organic 

compounds (VOCs), and particulate matter (PM). Cities like Los Angeles, Beijing, and 

New Delhi epitomize the severe air quality problems many urban areas encounter, 

primarily due to the large volume of vehicles and heavy traffic. The situation is often 

exacerbated in developing countries where rapid urbanization and increased vehicle 

ownership outpace improvements in vehicle maintenance and fuel quality (Kumar et al., 

2015; World Health Organization, 2016). 

Industrial activities represent a significant global source of air pollution that must 

not be overlooked. Factories, power plants, and mining operations emit substantial 

quantities of sulfur dioxide (SO2), nitrogen oxides (NOx), particulate matter (PM), and 

other hazardous chemicals. Regions with intense industrial activity, such as the Ruhr 

Valley in Germany, parts of China, and the Midwestern United States, face elevated 

pollution levels from these sources. Countries undergoing rapid industrialization, like India 

and Vietnam, are witnessing a sharp rise in industrial emissions, exacerbating air quality 

issues (Guttikunda & Goel, 2013; UNEP, 2019). 

Residential heating and cooking are notable sources of air pollution, particularly in 

colder climates and developing nations. The combustion of solid fuels like wood, coal, and 

biomass produces significant amounts of particulate matter (PM) and carbon monoxide 

(CO). In colder regions such as Eastern Europe and Northern China, using these fuels for 

heating during winter leads to marked air pollution. Additionally, in many developing 

countries, traditional cooking biomass stoves contribute heavily to indoor and outdoor air 

pollution (Gurjar et al., 2010; Bonjour et al., 2013). 
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Natural events such as wildfires, volcanic eruptions, and dust storms also 

significantly contribute to air pollution. Areas prone to wildfires, like California, Australia, 

and parts of the Mediterranean, frequently experience spikes in pollution levels due to these 

events. Similarly, regions near active volcanoes, such as Iceland and Indonesia, can suffer 

substantial air pollution when eruptions occur (Johnston et al., 2012; Schneider & Kyle, 

2014). 

To conclude, air pollution originates from diverse sources, and its severity and 

composition can vary significantly based on the region and local activities. Understanding 

these sources is critical for developing effective strategies to combat air pollution and 

safeguard public health. 

Reducing air pollution requires effective policies and interventions at local, 

national, and global levels. At the local level, cities can play a crucial role in curbing 

vehicle emissions, a significant source of air pollution. For example, implementing Low 

Emission Zones (LEZs), where only vehicles that meet strict emission standards can enter, 

has proven successful in cities like London. Additionally, cities can invest in developing 

efficient public transportation systems, such as bus rapid transit (BRT) systems, which 

have significantly reduced traffic congestion and pollution in places like Curitiba, Brazil 

(Goodman et al., 2007). 

Nationally, governments can enforce comprehensive regulations to limit emissions 

from various sources. For example, the United States enforces the Clean Air Act, which 

sets national air quality standards for pollutants like sulfur dioxide (SO2), nitrogen oxides 

(NOx), and particulate matter (PM). These regulations help reduce industrial emissions and 

improve air quality (US EPA, 2021). Furthermore, national policies can promote the 

transition to renewable energy sources. Germany's Renewable Energy Sources Act (EEG) 

has been pivotal in increasing the share of renewable energy in the country's energy mix, 

considerably reducing reliance on fossil fuels and associated air pollution (German et al. 

for Economic Affairs and Energy, 2020). 

On a global scale, international cooperation is essential for addressing air pollution. 

The urgency of the issue is underscored by the Paris Agreement, a prime example of 

countries coming together to commit to reducing greenhouse gas emissions. This global 

effort indirectly benefits air quality by curbing pollutants that contribute to global warming. 

International organizations like the Green Climate Fund provide crucial financial support 

to developing countries, helping them transition to cleaner energy sources and implement 

sustainable practices that reduce air pollution.( https://unfccc.int/process-and-

meetings/the-paris-agreement) 

Collaboration and coordination across all levels of government and with various 

stakeholders are crucial to ensure the effective implementation of these policies and 

interventions. Local governments should engage communities and educate the public about 

the benefits of reducing air pollution, garnering public support for necessary measures. 

National governments must enact clear legislation and provide adequate funding and 

incentives to support the transition to cleaner technologies and practices. Internationally, 
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countries must work together on agreements that set ambitious targets and include 

monitoring and reporting progress mechanisms. As part of these various stakeholders, the 

audience plays a crucial role in this collective effort. 

 

2.4 Current Policies in Canada 

2.4.1 Overview of Existing Policies 

● Canadian Environmental Protection Act (CEPA): 

The Canadian Environmental Protection Act (CEPA) is crucial to Canada’s 

environmental laws. It controls different pollutants, such as those emitted by vehicles, to 

keep people healthy and protect the environment. CEPA allows the government to set 

national rules for pollutants like nitrogen oxides (NOx), sulfur dioxide (SO2), particulate 

matter (PM), and greenhouse gases (GHGs). These regulations ensure that vehicles sold 

and used in Canada meet specific emission limits, reducing their overall environmental 

impact.(https://www.canada.ca/en/services/environment/pollution-waste 

management/understanding-environmental-protection-act.html) 

● Clean Fuel Standard (CFS): 

The Clean Fuel Standard (CFS) seeks to decrease the carbon intensity of fuels 

utilized in Canada, consequently diminishing the life cycle emissions linked with 

transportation fuels. The CFS advocates for using more environmentally friendly fuels, 

such as biofuels and low-carbon electricity, while endorsing the adoption of electric 

vehicles (EVs) and hydrogen fuel cell vehicles. By establishing standards based on 

performance, the CFS motivates fuel producers and suppliers to innovate and invest in 

cleaner technologies. (https://ecology.wa.gov/air-climate/reducing-greenhouse-gas-

emissions/clean-fuel-standard) 

● Zero-Emission Vehicle (ZEV) Mandate: 

Provinces such as British Columbia and Quebec have implemented Zero-Emission 

Vehicle (ZEV) mandates. These mandates require a certain percentage of new vehicle sales 

to consist of zero-emission vehicles. They set specific targets and timelines for increasing 

the market share of electric and hydrogen fuel cell vehicles. For instance, British 

Columbia’s ZEV Act mandates that 10% of new light-duty vehicle sales be zero-emission 

by 2025, increasing to 30% by 2030 and reaching 100% by 2040. These targets aim to 

speed the transition to cleaner transportation and reduce greenhouse gas emissions 

(Aubertin, A., et al 2024). 

● Incentives and Rebates: 

The federal government and several provinces offer financial incentives and rebates 

to support the adoption of cleaner vehicles. The federal Zero Emission Vehicle (ZEV) 

program provides rebates of up to $5,000 to purchase new electric or hydrogen fuel cell 

vehicles. Provincial incentives vary, with some provinces offering additional rebates, tax 

credits, or reduced registration fees for zero-emission vehicles. These incentives help offset 

the higher upfront costs of cleaner vehicles, making them more accessible to consumers 

(Thorne, Z. et al, 2019). 
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● Emission Standards: 

Canada has strict vehicle emission standards that align with those of the United 

States and Europe. These standards control the amount of pollutants vehicles release, 

ensuring that new vehicles are more environmentally friendly and effective. For instance, 

Canada’s Tier 3 vehicle and fuel standards, implemented in 2017, necessitate significant 

decreases in NOx, SO2, and PM emissions from light-duty vehicles. These standards aim 

to decrease pollutants that contribute to smog and enhance air quality (Long et al., 2020) 

 

2.5 Integrating Green Practices into Vehicle Emission Management 

Green practices in vehicle emission management have become essential for 

mitigating the transportation sector's environmental impact. One prominent method is the 

promotion of eco-driving and the use of green-safety devices. These systems encourage 

efficient driving behaviours, which can significantly reduce fuel consumption and 

emissions. For example, a study found that the implementation of on-board green safety 

devices resulted in a reduction of fuel consumption by up to 6%. Nitrogen oxide (NOx) 

emissions were reduced by up to 65% for inexperienced drivers. In the case of experienced 

drivers, the improvements were also substantial, with reductions in NOx emissions of up 

to 56%. This demonstrates the efficacy of relatively low-cost interventions in managing 

vehicle emissions (Ng et al., 2021). 

Intelligent fleet management systems are another effective strategy for emission 

reduction. These systems incorporate advanced technologies like vehicle-to-infrastructure 

(V2I) communication to provide real-time driving support and eco-driving guidance. These 

systems can influence driver behaviour and reduce emissions by managing traffic in real-

time and optimizing vehicle routes. Research on such systems has shown promising results, 

especially in reducing emissions and fuel consumption for heavy vehicle platooning, which 

allows for coordinated and efficient vehicle movements in fleets (Ma, 2013). 

Vehicle routing optimization also significantly reduces emissions, particularly in 

the context of fleet operations. By considering factors such as speed, congestion, and time-

dependent emissions, optimized routing models can significantly lower fuel consumption 

and CO2 emissions. One study found that using a multi-depot vehicle routing system, as 

opposed to a single-depot approach, reduced carbon emissions by up to 37.6%. This 

illustrates the importance of logistical optimizations in managing emissions in the 

transportation sector (Wang et al., 2022). 

Additionally, vehicle maintenance and management systems reduce emissions by 

ensuring vehicles operate efficiently. Proper maintenance systems, often enhanced with 

GPS tracking and automated scheduling, help avoid performance delays and optimize 

vehicle operation. Such systems have been shown to significantly reduce CO2 emissions 

by maintaining vehicles in peak condition and preventing inefficiencies that could lead to 

higher emissions (Hettigamage et al., 2013). 

Combining green practices, including eco-driving, intelligent fleet management, 

optimized routing, and rigorous vehicle maintenance, dramatically reduces overall vehicle 
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emissions. These strategies lower greenhouse gas emissions and promote cost savings 

through reduced fuel consumption, demonstrating their importance in sustainable 

transportation management.  

Integrating green practices into vehicle emission management faces several 

significant barriers, many of which stem from economic, technological, regulatory, and 

social challenges. A key barrier is the high initial cost of green technologies such as electric 

or hybrid vehicles. Both consumers and businesses are often hesitant to invest in these 

technologies due to the upfront expenses, despite the long-term benefits of reduced 

emissions and fuel savings (Hebaz & Oulfarsi, 2021). In particular, small and medium-

sized enterprises (SMEs) in developing countries need more financial resources and 

funding for research and development (Karuppiah et al., 2020). Overcoming this barrier 

requires government incentives such as subsidies, tax credits, and grants to offset the initial 

investment costs, encouraging wider adoption of green vehicle technologies. 

Another major barrier is the lack of infrastructure, particularly for electric vehicles 

(EVs). The absence of sufficient charging stations and other necessary support facilities 

hampers the integration of green vehicle practices. This issue is compounded by logistical 

challenges, such as the limited range of EVs and the need for efficient routing systems to 

minimize fuel consumption and emissions (Remy et al., 2012). To overcome these 

infrastructural challenges, it is imperative for governments and private sectors to 

collaborate. This collaboration is necessary to expand the EV charging network, invest in 

renewable energy sources for these stations, and improve the overall transportation 

infrastructure to support green vehicle technologies. 

Regulatory and policy gaps also significantly slow down the adoption of green 

practices in vehicle emission management. Inconsistencies between environmental goals, 

such as fuel efficiency and emission standards, and other social objectives, such as vehicle 

safety and consumer preferences for larger vehicles, create obstacles to effective policy 

implementation (MacLean & Lave, 2003). Furthermore, some regions' lack of stringent 

regulations or enforcement mechanisms reduces the pressure on companies and individuals 

to adopt cleaner vehicle technologies. Developing clear, cohesive policies that align 

emission reduction targets with broader economic and social goals can help mitigate this 

barrier. 

Another issue is consumer awareness and behavior. Many consumers remain 

unaware of the environmental impact of their vehicle choices, and even when informed, 

they may prioritize short-term convenience or cost over long-term environmental benefits. 

For example, consumers in certain regions prefer large, fuel-intensive vehicles, which 

contradicts the goals of reducing emissions (MacLean and Lave, 2003). To address this, it 

is crucial to launch public awareness campaigns. These campaigns, combined with 

incentives for consumers who opt for greener alternatives, can shift consumer preferences 

towards low-emission vehicles. 

In summary, overcoming the barriers to integrating green practices into vehicle 

emission management will require a multi-faceted approach. Financial incentives, 
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improved infrastructure, cohesive regulatory frameworks, and enhanced public awareness 

are all crucial in facilitating the transition to greener vehicle technologies. 

“As integrating environment thinking into supply chain management, including 

product design, material sourcing and selection, manufacturing processes, delivery of the 

final product to the consumers, and end-of-life management of the product after its useful 

life (Srivastava, 2007)”  

Other authors like Hervani et al. (2005) propose that Green Supply chain boundary 

starts from material acquisition, they further describe it as a concept of minimizing waste 

through the adoption of environmentally conscious practices. 

“Green purchasing + green manufacturing/Materials Management + Green 

Distribution /Marketing + Reverse logistics”.  

(KAFA et al., 2013.) built on Hervani equations and indicated that GSCM is not 

achievable if it does not incorporate eco-design. They therefore describe.   

Green supply Chain management (GSCM) = Green Purchasing (Min and Galle, 

1997) + Eco-Design (Linton, et al., 2007) + Green Manufacturing (Deif, 2011) + Green 

Distribution (Rao and Holt, 2005) + Reverse Logistics (Pochampally, et al., 2009). 

“At the intersection of social, environmental, and economic performance are 

activities that an organization can engage in which not only are beneficial from a social 

and environmental standpoint, but that also make economic sense and result in competitive 

advantage for the firm”.  This definition is conceptualized in figure 1 below. 

 

 
Figure 3 Elkington triple bottom line adapted from Adapted from Carter and Rogers 

 

Elkington definition is based on (WCED 1987) Brundtland commission, which 

described sustainability.  …As utilizing resources to meet the needs of the present without 

compromising future generations’ ability to meet their own needs (WCED, 1987).  

Based on the above definition, true sustainability can only be possible if the 

environmental, social, and economic dimensions are fully integrated.  
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The economic dimension involves the trade-off of minimizing total logistic cost 

and maximizing profit over supply chain activities (purchasing, production, warehousing, 

distribution, recycling, etc.), while the environmental aspects means that permanent 

environmental damages should not be allowed, and greenhouse Gas (GHG) emissions 

regulations are enforced. The social dimension includes objective such as the reduction of 

noise, traffic congestion, improve the standard and quality of life of communities around 

the supply chain (Hanuv, 2010; Mann et al., 2010).  

Implementing green supply chain management (GSCM) practices not only helps 

organizations reduce their carbon footprint but also enables them to remain competitive in 

a rapidly changing marketplace (Lin & Shang 2020; Hosseini et al., 2018). Furthermore, 

GSCM promotes the efficient use of resources, reduces waste generation, and fosters 

collaboration among supply chain partners to create a more sustainable future for all 

(Pramesti et al., 2021; Al-Khawaldah et al., 2022). 

 

2.6 Sustainable Supply Chain Management 

One of the key principles of Green Supply Chain Management is the adoption of 

eco-friendly practices at every stage of the supply chain (Chatzoudes and Chatzoglou, 

2022). This involves selecting environmentally responsible suppliers (Bowen et al., 2009), 

promoting energy-efficient production processes, optimizing transportation to reduce 

emissions, and implementing waste reduction and recycling initiatives (Teixeira et al., 

2018). GSCM also emphasizes the importance of transparency and accountability 

throughout the supply chain. By working closely with suppliers and stakeholders (Yang & 

Lin 2020), companies can ensure that sustainable practices are being followed and that the 

entire supply chain is aligned with environmental goals (Chan et al., 2012). Additionally, 

GSCM encourages collaboration and knowledge-sharing among industry peers to drive 

innovation and continuous improvement in eco-friendly practices (Marchesini and 

Lizarelli, 2018). Ultimately, the goal of GSCM is to create a more sustainable and resilient 

supply chain that not only benefits the environment but also enhances the overall reputation 

and profitability of the company (Bu et al., 2020). 

The adoption of Green Supply Chain Management offers numerous benefits to 

businesses. First and foremost, it helps companies comply with environmental regulations 

and standards, reducing the risk of legal and reputational issues (Kenneth et al., 2012). 

Moreover, GSCM can lead to cost savings in the long run. For instance, by reducing energy 

consumption and waste, companies can lower operational expenses and enhance resource 

efficiency (Rakesh and Ravi, 2015).  

Despite the numerous advantages, implementing Green Supply Chain Management 

can present challenges (Roberto et al., 2014). Companies may encounter resistance from 

suppliers or face higher upfront costs when adopting eco-friendly technologies. 

Furthermore, tracking the environmental impact of the entire supply chain can be complex 

due to the involvement of multiple stakeholders and processes. However, with the growing 

emphasis on sustainability and the potential for competitive advantage, many companies 



47 

 

 

are recognizing the value of GSCM and investing in greener supply chain practices (Balan 

and Prakash, 2016). 

Green Supply Chain Management is a holistic approach that aims to align supply 

chain operations with environmental sustainability goals. By integrating eco-friendly 

practices at every stage of the supply chain and fostering collaboration among stakeholders, 

GSCM can lead to cost savings, improved brand reputation, and a reduced carbon footprint.  

One common denominator identified across all definitions of green supply chain 

management is the integration of green operations into the traditional supply chain. The 

green operations can be broken down into green logistics, which includes green transport, 

re-manufacturing, reverse logistics, green packaging, and green warehousing 

(implementing environmental conscious activities in the warehouse). Green Supply chain 

can simply be defined as integrating environmentally friendly practices into logistics 

operations. 

 

2.7 Carbon Footprints 

The concept of carbon footprint, a crucial tool in addressing the urgent need to 

reduce emissions and mitigate the effects of climate change, has gained significant 

attention in recent years (Fuller, 2017). A carbon footprint measures the total greenhouse 

gas emissions, primarily carbon dioxide (CO2), produced directly or indirectly by human 

activities. By understanding and measuring our carbon footprint, individuals, businesses, 

and governments can identify areas where emissions can be reduced and make more 

sustainable choices (Edstrand, 2016). This includes adopting renewable energy sources, 

promoting energy efficiency, and implementing policies that encourage low-carbon 

practices (Strohbach et al., 2012). Tracking carbon footprints allows for accountability and 

transparency in emission reduction efforts, enabling progress to be monitored and 

evaluated (Jan, 2008). A comprehensive understanding of carbon footprints is essential to 

creating a more sustainable and environmentally conscious future. By understanding 

carbon footprints, individuals and organizations can make informed decisions about their 

consumption patterns and make changes to reduce their overall emissions.  

Despite its extensive use, the term carbon footprint has a variety of definitions, and 

researchers are still debating on the gases to include in the definition (Wiedmann & Minx, 

2008). Ana and Arroja (2011) describe carbon footprint as the amount of carbon emissions 

along a supply chain from the procurement of raw materials to the delivery of the finished 

products to the final consumers. It aims to identify activities along the supply chain that 

generate high emissions and take necessary action to reduce them. Ana and Arroja's 

definition includes carbon emission from raw material acquisition to the final consumer; it 

does not consider the product's life cycle.  

Parliamentary Office of Science and Technology (POST) built on this definition 

and proposed that carbon footprints should incorporate carbon dioxide emissions and other 

greenhouse emissions emitted over the product's entire life cycle (POST, 2006). Wiedmann 

and Minx (2008) agree with POST definition but suggested that the term climate footprint 
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should be used instead of greenhouse gases if they want to consider all the six Kyoto 

protocol gases (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 

hydrofluorocarbons (HFCs), perfluorocarbons (PFCs), and sulphur hexafluoride (SF6). 

Based on this argument, they define carbon footprint as a measure of the total amount of 

carbon dioxide emissions that are directly and indirectly caused by an activity or 

accumulated over the life stages of a product. To avoid the confusion surrounding the gas 

to be included, Carbon Trust proposes the definition of carbon footprints as:   

A technique for identifying and measuring the individual greenhouse gas emissions 

from each activity within a supply chain process step and the framework for Methodology 

to estimate the total emission of greenhouse gases (GHG) in carbon equivalents from a 

product across its life cycle from the production of raw material used in its manufacture to 

disposal of the finished product (excluding in-use emissions) attributing these to each 

output product "(Carbon Trust, 2007).  

Craig (2012) proposes that term six of the Kyoto Protocol should be used to have a 

uniformly acceptable definition. He, therefore, defines a product's carbon footprint as 

including the six Kyoto Protocol gases accumulated over all its life stages. This definition 

suits ISO 14067 definitions of a product's carbon footprint.  

"The sum of greenhouse gas emissions and greenhouse gas removals of a product 

system, expressed in CO2 equivalent" This definition is centred on the product life cycle 

of the product; therefore, the need to include all the activities from the material acquisition 

to the product's end-of-life. The COFRET report defines Carbon footprint methodology as 

"Standards, standard-like guidelines, guidebooks and schemes that provide the framework 

for calculating and reporting the carbon footprint of transport and logistics along the supply 

chain or part it".  

There are challenges and limitations involved in collecting and checking the carbon 

footprint of suppliers, such as the data on fuel use in third-party transport providers need 

to be provided. Such information is needed for energy-based calculations, as fuel 

consumption is a significant part of the cost structure of truck transportation, and the carrier 

typically wants to keep the information on the cost to the company; thus, there is no 

accurate calculation of the emissions. In order to address such challenges, the company can 

use activity-based calculation instead (Bouchery Y. et al., 2017). 

 

2.8 Enhanced Vehicle Emission Management 

Advanced technologies like artificial intelligence (AI) and machine learning (ML) 

are increasingly being applied to improve vehicle emission management systems by 

enhancing predictive modelling, real-time monitoring, and fuel consumption and emissions 

optimisation. One significant application is in the predictive modelling of engine 

emissions. ML algorithms can forecast pollutant emissions, such as nitrogen oxides (NOx), 

by analyzing vehicle data under real-world driving conditions. Predictive models, such as 

artificial neural networks (ANNs) and non-linear regression models, can estimate NOx 

emissions with high accuracy, reducing the need for expensive, repeated physical testing 
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(Le Cornec et al., 2020). These models can be integrated into vehicle systems to enable 

real-time emission predictions, helping policymakers develop better emission inventories 

and mitigation strategies. 

In energy management, AI-based systems are also helpful in optimizing fuel 

consumption and reducing emissions in hybrid and electric vehicles. Machine learning 

algorithms, including reinforcement learning, manage the power split between combustion 

engines and electric motors in hybrid vehicles, resulting in significant fuel savings and 

emission reductions (Hofstetter et al., 2019). These intelligent systems optimize energy 

consumption in real time by learning from different driving conditions and applying the 

most efficient energy management strategies. 

AI technologies have also found applications in predictive maintenance for heavy-

duty vehicles. By analyzing vast amounts of data from engine sensors, ML algorithms can 

detect early signs of engine malfunctions or inefficiencies that could lead to higher 

emissions. This allows for timely maintenance and repair, preventing unnecessary 

increases in fuel consumption and emissions (Katreddi et al., 2022). Moreover, AI-powered 

virtual sensors replace traditional sensors to estimate emissions like NOx in real-time, 

providing more accurate data without costly physical sensors (Falai & Misul, 2023). 

AI and ML are revolutionizing vehicle emission management by improving 

predictive modelling, optimizing energy usage in hybrid vehicles, and enabling predictive 

maintenance. These technologies enhance the accuracy and efficiency of emission 

management systems and contribute to reducing overall vehicle emissions (Pinkse et al., 

2014). 

Vehicle manufacturers play a crucial role in developing and implementing 

enhanced emission management technologies. As both creators and regulators of these 

technologies, manufacturers work closely with governments and policymakers to meet 

increasingly stringent emission standards while navigating market demands and 

technological innovation (Hofstetter et al., 2019). 

One of the critical contributions of manufacturers is the development of low-

emission vehicle technologies such as electric, hybrid, and hydrogen fuel cell vehicles. 

Automakers like Toyota, Daimler, and General Motors have been at the forefront of 

developing these technologies in response to regulatory pressures and growing consumer 

demand for environmentally sustainable options. These companies have leveraged public-

private partnerships, government incentives, and private investments to create protected 

spaces for experimenting with low-emission technologies, accelerating their development 

and making them more attractive to mainstream consumers (Pinkse et al., 2014). 

Manufacturers also play an instrumental role in incremental technological 

innovation. For example, the automotive industry's shift from gasoline to diesel engines 

for fuel efficiency and lower CO2 emissions required manufacturers to address trade-offs 

such as the increase of NOx emissions. To manage these challenges, manufacturers have 

introduced selective catalytic reduction (SCR) and emission control technologies that 
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significantly reduce pollutants. This highlights their role in technological development and 

balancing environmental concerns with performance goals (Bauner et al., 2009). 

Another critical contribution of manufacturers is the implementation of on-board 

monitoring systems. Original Equipment Manufacturers (OEMs) have developed 

sophisticated emission monitoring technologies that track real-time data on NOx 

concentrations and other pollutants. These systems allow manufacturers to ensure vehicles 

comply with emission regulations throughout their lifecycle. This approach has been 

critical in countries like China, where real-time monitoring of in-use diesel trucks has led 

to significant improvements in emission control (Zhang et al., 2020). 

Manufacturers also collaborate with suppliers and invest in research and 

development (R&D) to advance emission control technologies. Studies have shown that 

while component suppliers initially drove innovation in emission controls, manufacturers 

have increasingly taken the lead by integrating architectural and component knowledge, 

especially under regulatory pressures, to meet stricter standards (Lee et al., 2010). Through 

R&D, manufacturers ensure continuous improvements in emission technologies and their 

integration into mainstream vehicle production. 

In summary, vehicle manufacturers are central to technological innovation for 

emission management. They develop and implement advanced technologies in 

collaboration with regulators, invest in incremental and radical innovations, and deploy 

sophisticated monitoring systems, all while balancing performance and environmental 

sustainability. 

Several key factors influence the effectiveness of enhanced vehicle emission 

management practices. One of the most significant factors is traffic management and 

driving behaviour. Research shows that traffic signal coordination and congestion 

management can reduce emissions, which are highest during vehicle acceleration and tend 

to decrease during steady cruising, deceleration, and idle modes (Unal et al., 2003). 

Therefore, managing traffic flow and reducing stop-and-go driving can significantly lower 

emissions. 

Another critical factor is vehicle deterioration and technological advancements. As 

vehicles age and accumulate mileage, their emissions tend to increase, which reduces the 

effectiveness of emission management systems. Regular inspection and maintenance 

programs ensure that older vehicles meet emission standards. Additionally, advances in 

emission control technologies, such as selective catalytic reduction and diesel particulate 

filters, play a critical role in maintaining low emissions even as vehicles age (Zhang et al., 

2017). 

The quality and type of fuel used also have a significant impact on emissions. The 

sulfur content of fuel directly influences vehicle emissions. For example, lower sulfur fuels 

enable more effective functioning of after-treatment devices, leading to reduced emissions 

of nitrogen oxides and particulate matter. Countries that have adopted high fuel quality 

standards, such as low-sulfur fuels, have experienced substantial reductions in emissions 
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(Wu et al., 2017). This underscores the importance of fuel quality standards in emission 

management. 

Government regulations and policies are another major factor influencing the 

effectiveness of vehicle emission management practices. Stringent emission standards and 

regulations, such as the Euro 6 and China 6 standards, have proven effective in reducing 

emissions from both new and in-use vehicles. These regulations, which include real-world 

emission testing protocols, incentivize manufacturers to develop cleaner technologies and 

encourage vehicle owners to maintain their vehicles properly (Wu et al., 2017). This 

underscores the significant role of government policies in emission management. 

Lastly, human factors and driving behaviour are crucial. Eco-driving practices 

involving smoother acceleration and deceleration can significantly lower fuel consumption 

and emissions. Studies have shown that green-safety devices can improve driving 

behaviour and reduce fuel consumption by up to 6% and nitrogen oxide emissions by up 

to 65%, especially for inexperienced drivers (Ng et al., 2021). 

 

In conclusion, the effectiveness of vehicle emission management practices depends 

on traffic management, vehicle technology, fuel quality, government regulations, and 

driving behaviour. These factors must be addressed collectively to achieve significant and 

lasting reductions in vehicle emissions. 
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CHAPTER III:  

METHODOLOGY 

3.1 Overview of the Research Problem 

To address the environmental impact of vehicles and their effects on air quality, 

human health, and climate change. It is clear that transportation significantly contributes 

to global greenhouse gas emissions and air pollutants. In Canada, vehicles play a 

substantial role in the release of carbon dioxide (CO2), nitrogen oxides (NOx), particulate 

matter (PM), and volatile organic compounds (VOCs). These pollutants not only contribute 

to global warming but also lead to severe health problems like respiratory and 

cardiovascular diseases. Addressing the environmental impact of vehicles is crucial for 

public health policy and climate change mitigation strategies. 

Despite implementing various policies and measures to reduce vehicle emissions, 

significant challenges still need to be addressed. One prominent issue is the accurate 

classification of vehicles based on environmental impact. Traditional methods of 

classifying vehicles often rely on simplistic criteria like fuel type or engine size, which fail 

to capture emissions' complexity and effects. This can result in inefficiencies in policy 

implementation and regulatory framework gaps (Aminzadegan, S., et al, 2022). 

Furthermore, the rapid advancement of technology in the automotive industry, 

including the development of electric and hybrid vehicles, presents both opportunities and 

challenges. While these technologies have the potential to significantly reduce emissions, 

their environmental benefits depend on various factors such as the source of electricity and 

the lifecycle emissions of the vehicles. Therefore, a more nuanced and comprehensive 

approach to classifying vehicles based on their environmental impact is crucial and needed 

(Shahzad, K, et al, 2024). 

In this context, machine learning stands out as a promising solution. Leveraging 

large datasets and advanced algorithms, machine learning can identify complex patterns 

and relationships that traditional analysis methods might miss. This can lead to more 

accurate and detailed classifications of vehicles based on their environmental impact. 

However, the application of machine learning in this context requires careful consideration 

of various factors, including data quality, model selection, and interpretability of results 

(Mobarak M.H., et al, 2023). 

In Canada, existing policies and regulations aim to reduce vehicle emissions 

through emission standards, fuel quality regulations, and incentives for electric vehicles. 

While these policies have seen some success, their effectiveness is limited by the 

challenges mentioned above. Therefore, a robust framework incorporating machine 

learning approaches could enhance the effectiveness of these policies by providing more 

precise and actionable insights into vehicle emissions (Qadir, S.A., et al, 2024). 

The research problem revolves around developing a comprehensive framework for 

classifying vehicles based on their environmental impact using machine learning 

techniques. This involves identifying the key variables influencing emissions, performing 
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exploratory data analysis to understand the data, and developing predictive models to 

classify vehicles accurately. By addressing this problem, the research aspires to provide 

policymakers with better tools to design and implement more effective environmental 

regulations, ultimately leading to improved air quality and reduced greenhouse gas 

emissions in Canada. 

 

3.2 Research Design 

Given the comprehensive dataset comprising vehicle specifications and fuel 

consumption metrics in Canada, this research aims to develop a machine-learning model 

that categorizes vehicles according to their environmental impact. This classification aims 

to support the Canadian government's efforts to craft and modify policies promoting 

sustainable transportation solutions. The following outlines the proposed objectives and 

methodology for the research: 

Objectives 

1. Identify the impactful variables in classifying the vehicles based on the 

Environmental Impact. 

2. Perform Exploratory Data Analysis on the dataset to understand what the data is 

communicating. 

3. Develop a Machine Learning Model to Classify Vehicles Based on 

Environmental Impact. 

 

3.2.1 Methodology 

● Data Preprocessing 

Handling Missing Data: Given the importance of CO2 emissions for the analysis, 

it is essential to address null values using appropriate imputation techniques. Alternatively, 

incomplete records can be filtered out based on their proportion in the dataset. 

Feature Engineering: Consider deriving new features that could enhance the 

analysis, such as incorporating vehicle age or assessing improvements in emissions over 

the model years. 

● Exploratory Data Analysis 

 

Statistical Analysis: Perform statistical tests to understand critical variables' 

distributions and relationships. 

Correlation Analysis: Determine how different features, such as engine size, fuel 

type, and transmission type, correlate with CO2 emissions. 

● Model Building 

When selecting a feature, it is essential to employ techniques like Recursive Feature 

Elimination (RFE) or evaluate feature importance scores from preliminary models to 

identify the most predictive features for the task. 

For model selection, it is beneficial to experiment with various classifiers, including 

Decision Trees, Random Forests, and Gradient-Boosting Machines. This experimentation 
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helps identify the most effective model in terms of accuracy and robustness for the problem 

being addressed. 

Model Validation: Employ k-fold cross-validation to ensure the model's 

performance is consistent across different subsets of the dataset. 

This methodology outlines a systematic process for creating an effective 

classification model, ensuring that the research is well-positioned to have practical 

implications for policymaking. Through in-depth model development and trend analysis, 

the study aims to comprehensively understand the evolution of vehicle regulations and their 

impact on environmental objectives. By adopting this structured approach, the study seeks 

to produce findings directly applicable to policymaking, aiming to inform future 

transportation strategies in Canada. 

The outlined objectives and methodology for the research on vehicle classification 

based on environmental impact are strategically designed to assist the Canadian 

government in crafting impactful transportation policies in several significant ways: 

1. Data-Driven Environmental Policy Development 

Identifying High-Impact Vehicles: The model classifies vehicles according to their 

environmental impact based on CO2 emissions and fuel efficiency, providing precise data 

on which vehicle categories contribute most to pollution. This information allows 

policymakers to design specific regulations targeting these high-impact vehicles, such as 

stricter emission limits, phase-outs, or higher taxes. 

Effective Resource Allocation: The model's insights help allocate resources more 

effectively by identifying which types of vehicles and what features (like engine size and 

fuel type) most urgently need attention in terms of regulatory compliance or 

incentivization. 

2. Supporting Legislation with Quantitative Analysis 

Basis for New Regulations: The classification model's outputs can be used as a 

quantitative foundation for drafting new legislation. For example, new categories for tax 

incentives can be created based on vehicle classification results, or emission standards can 

be set that are dynamically linked to the specific environmental impact of different vehicle 

classes. 

Evaluating Policy Impact: By analyzing trends over time (from 2005 to 2023), the 

government can assess the effectiveness of past and current policies, understanding which 

measures have successfully reduced emissions and which have not, thereby refining future 

policies. 

3. Promoting Sustainable Transportation 

Encouraging Cleaner Technologies: With clear classifications and trend analysis, 

policies can be formulated to encourage the adoption of cleaner technologies. For example, 

incentives can be provided for vehicles that consistently show low environmental impact 

or support research and development in vehicle technology, leading to better fuel efficiency 

and lower emissions. 
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Public Awareness and Behavioural Change: The research can also inform public 

awareness campaigns, encouraging consumers to choose vehicles with lower 

environmental impacts. This can drive market demand towards more sustainable options, 

further supporting policy goals. 

4. Enhancing Policy Flexibility and Responsiveness 

Adaptive Policy Frameworks: By continuously updating the model with new data, 

policies can be kept responsive to the latest trends in vehicle technology and consumer 

behaviour. This adaptability ensures that transportation policies remain relevant and 

effective in reducing emissions and promoting public health. 

In conclusion, the proposed objectives enable the government to use a robust, 

evidence-based approach to developing, monitoring, and adjusting transportation policies. 

This approach addresses immediate environmental concerns and supports sustainable 

development and public welfare over the long term. 

 

3.2.2 Who are the stakeholders of this ML model 

● Government and Regulatory Bodies 

Environment and Climate Change Canada (ECCC): Oversees environmental 

policies and regulations, ensures compliance with emissions standards and uses model 

predictions for policy-making and monitoring.( https://www.canada.ca/en/environment-

climate-change/corporate/transparency/access-information-privacy/info-source.html) 

Transport Canada: Implements regulations related to vehicle emissions, promotes 

sustainable transportation, and uses data to inform infrastructure planning and policy 

adjustments (Khreis, H., et al, 2023) 

● Automotive Industry 

Vehicle Manufacturers: Interested in understanding and reducing vehicle emissions 

to comply with regulations, improve sustainability, and enhance market competitiveness. 

Suppliers and Parts Manufacturers: They provide components that can reduce 

emissions (e.g., catalytic converters, electric powertrains) and need insights into future 

trends to align their product development strategies. 

● Research and Academia 

Environmental Scientists and Researchers: Utilise the model to study the impact of 

vehicle emissions on air quality and climate change and develop new emission reduction 

technologies. 

Data Scientists and ML Researchers: Focus on improving model accuracy and 

exploring new methodologies for better predictions and insights. 

● Non-Governmental Organisations (NGOs) 

Environmental NGOs: Advocate for policies and actions to reduce vehicle 

emissions and use model results to support their campaigns and reports. 

Public Health Organizations: Monitor the impact of vehicle emissions on public 

health, especially in urban areas, and use data to promote health initiatives and regulations. 

● Public and Communities 
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Consumers and Drivers: Interested in how emissions affect air quality and public 

health and may use information to make informed decisions about vehicle purchases. 

Community Groups: Engage in local environmental initiatives and advocate for 

clean air policies, using data to support their efforts. 

● Businesses and Corporations 

Logistics and Fleet Management Companies: Use model insights to optimise 

routes, improve fuel efficiency, and reduce emissions for their fleets of lightweight trucks. 

Corporate Sustainability Teams: Track and report on emissions as part of corporate 

social responsibility (CSR) initiatives and sustainability goals. 

● Technology Providers 

Software and Analytics Firms: Develop and provide tools for collecting, analyzing, 

and visualising emissions data and support the deployment of the ML model in various 

applications. 

IoT and Sensor Companies: Supply the necessary hardware to monitor and collect 

real-time emissions data, providing ML model inputs. 

● Policy Makers and Planners 

Urban and Regional Planners: Use emissions data to design and implement urban 

mobility solutions that minimise environmental impact. 

Policy Advisors: Inform decision-makers on the effectiveness of current policies 

and suggest adjustments based on model predictions. 

● Investors and Financial Institutions 

Impact Investors: Invest in companies and technologies that aim to reduce 

emissions and promote sustainability, using model data to assess potential investments. 

Insurance Companies: Assess risks related to environmental regulations and public 

health impacts of vehicle emissions. 

 

3.2.3 Analysis Approach 

The dataset that we use for the purpose of analysis has been collected from the 

official website of the Canadian government: Fuel Consumption Dataset. Multiple datasets 

from 2004-2024 have been merged and are used for the analysis using python. The total 

data points were 20464 with a total of 13 columns.  

The column measuring the CO2 emissions produced by the vehicles has been taken 

as the target variable and the rest of the other variables describing the characteristics of the 

vehicles have been used within the feature matrix that will be used as the predictors. 

The feature Matrix consists of the following characteristics: 

1. 'Engine Size' 

2. 'Cylinders' 

3. 'City fuel Consumption Ratings' 

4. 'Highway Fuel Consumption Ratings' 

5. 'Combined Fuel Consumption Ratings' 

6. 'Transformed Combined Fuel Consumption Ratings (mpg)' 
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The rest of the variables were dropped due to their irrelevance in the model. 

The flow of the analysis for the purpose of building the model that predicts the CO2 

emissions based on the characteristics of the vehicles is illustrated below through a 

flowchart: 
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Figure 4 Flowchart for steps involve in processing the data for vehicle characteristics. 
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1.  We import the datasets in Python. 

2.  We start cleaning the dataset through: 

a. Drop irrelevant columns 

b. Rename the columns 

c. Then we merge the datasets into one master dataset. 

d. Remove duplicate rows 

e. Remove the nulls 

f. Correct the typing errors 

g. Rename the French words to English using the mapping provided 

by the Canadian website. 

3. We start with the data processing that prepares the data for putting in the model: 

a. Do the Ordinal Encoding of the data by converting the string values 

of categorical variables to numbers. 

4. Next Step is Selecting the relevant Features through feature selection process: 

a. Perform PCA (Principal Component Analysis) 

i. Plot the first principle component and the importance of 

features through a horizontal bar graph. 

5.After selecting the important features that explain the maximum variance within 

the dataset through the first component principle, we start the model building for the 

regression analysis. 

a. Split the ordinally encoded dataset which has the components selected 

through PCA, into feature matrix and target vector. 

b. We first import the Lazy Predict library to have an overview of the basic 

models that perform well on the dataset and the regression problem. 

c. Then we use the output of Lazy Predict and build the top 4 regression 

models and a Dummy Regressor. 

d. We start with the Dummy Regressor model for building a baseline model. 

e. Then build the following models using first performing the feature scaling: 

                      i.  Linear Regression 

ii. We build the following models by tuning the hyperparameters 

after feature scaling in the following models: 

a. Stochastic Gradient Descent Regressor 

b. RidgeCV Regressor 

c. Decision Tree Regressor 

iii. The models are thereafter refitted based on the scoring 

function “negative root mean squared error”. 

iv. The evaluation of the model is based on the training and testing 

scores of predicted values. 

 v. The best model- Decision Tree Regressor has a R2 Score of 

99.8%. The feature importance of the decision tree regressor is 

used to access the most important features that have been 
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identified by the tree based model in predicting the CO2 

emissions of the light weight vehicles 

 

3.3 Identifying Key Variables for Vehicle Environmental Classification 

The first step in developing a machine learning-based framework for classifying 

vehicles based on environmental impact is identifying the key variables influencing this 

classification. This process involves understanding which vehicle specifications and fuel 

consumption metrics are most predictive of environmental impact, particularly regarding 

emissions. A thorough and systematic research design is essential to ensure the selected 

variables are relevant and robust for subsequent modelling. 

● Data Collection 

Data Sources: 

Vehicle Specifications: Data will be collected from reliable sources such as vehicle 

registration databases, manufacturer specifications, and government databases. Key 

attributes include make, model, year, engine size, fuel, transmission, weight, and drivetrain. 

Fuel Consumption and Emissions Data: This will be sourced from government 

reports, environmental agencies, and databases such as the National Resources Canada 

(NRCan) Fuel Consumption Ratings database. Key metrics include CO2 emissions, fuel 

efficiency (miles per gallon or litres per 100 kilometres), and other pollutants such as NOx 

and PM. 

Supplementary Data: Additional data such as vehicle usage patterns, maintenance 

records, and geographical data may also be collected to provide context and enhance the 

analysis. 

● Data Integration: 

The collected data will be integrated into a comprehensive dataset. This process 

involves standardizing formats, merging data from different sources, and ensuring 

consistency across the dataset. 

● Data Preprocessing 

Handling Missing Data: 

Imputation: Apply appropriate imputation techniques to fill in missing values—for 

example, mean or median imputation for numerical data and mode imputation for 

categorical data. 

Filtering: If imputation is not feasible, filter out records with significant missing 

data, ensuring the dataset remains robust and representative. 

● Data Cleaning: 

Remove duplicates and correct inconsistencies in the dataset. 

Standardize units of measurement (e.g., converting all fuel efficiency data to a 

standard unit such as litres per 100 kilometres). 

Feature Engineering: 
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Derive new features that may be useful for classification. For example, vehicle age 

(current year minus model year), improvements in emissions over model years, and 

combined metrics like power-to-weight ratio. 

● Exploratory Data Analysis (EDA) 

Descriptive Statistics: 

Calculate basic statistics (mean, median, standard deviation) for critical variables 

to understand their distribution and central tendency. 

● Visualization: 

Visual tools such as histograms, box plots, and scatter plots can help you visualize 

the distributions and relationships between variables. 

Identify outliers and patterns that may indicate significant trends or anomalies. 

Correlation Analysis: 

Calculate correlation coefficients (e.g., Pearson, Spearman) to identify 

relationships between variables. 

Use heatmaps to visualize correlations and identify clusters of related variables. 

Principal Component Analysis (PCA): 

Perform PCA to reduce dimensionality and identify the most critical variables that 

capture the majority of the variance in the data. 

● Feature Selection 

Initial Feature Selection: 

Based on EDA and correlation analysis, select an initial set of candidate variables 

that appear to have significant relationships with emissions and environmental impact. 

Recursive Feature Elimination (RFE): 

Use RFE to iteratively select the most essential features by training a model and 

removing the most minor essential features in each iteration. 

Evaluate the model's performance at each step to identify the optimal set of features. 

● Feature Importance from Models: 

Train preliminary models (e.g., decision trees, random forests) and use their feature 

importance scores to identify critical variables. 

Compare the results from different models to ensure robustness and consistency in 

feature selection.  

To develop a machine learning-based framework for classifying vehicles based on 

environmental impact, the first step is to identify the key variables influencing this 

classification. This involves understanding which vehicle specifications and fuel 

consumption metrics are most predictive of environmental impact, particularly regarding 

emissions. Data collection involves sourcing vehicle specifications from reliable databases, 

including make, model, year, engine size, fuel, transmission, weight, and drivetrain. Fuel 

consumption and emissions data will be collected from government reports and 

environmental agencies, including CO2 emissions, fuel efficiency, and other pollutants. 

Supplementary data such as vehicle usage patterns and maintenance records may also be 

collected to provide context. 
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Following the data collection phase, the next step is integrating the data into a 

comprehensive dataset. This involves standardizing formats, merging data from different 

sources, and ensuring consistency. Data preprocessing is a critical step involving the 

handling of missing data through imputation and filtering, as well as the cleaning of the 

data by removing duplicates and standardizing units of measurement. A vital aspect of this 

phase is feature engineering. This process involves deriving new features that could 

enhance the model's predictive power, such as vehicle age and power-to-weight ratio. 

Exploratory data analysis will be conducted to calculate basic statistics, visualize 

data distributions, identify outliers and patterns, and perform correlation analysis. Principal 

component analysis will be used to reduce dimensionality and identify critical variables. 

Feature selection will involve initial feature selection based on EDA and correlation 

analysis, recursive feature elimination to iteratively select essential features, and model 

performance evaluation to identify the optimal set of features. Feature importance from 

models will also be used to identify critical variables and ensure robustness and consistency 

in feature selection. 

 

3.4 Conducting Exploratory Data Analysis for Insight Extraction 

Conducting an in-depth data analysis (EDA) is essential for any research project 

based on data. It involves thoroughly examining the dataset to uncover patterns, detect 

anomalies, and understand the relationships between variables. For the research aiming to 

categorize vehicles based on environmental impact, EDA will play a vital role in laying a 

solid foundation for constructing a reliable machine-learning model. 

To begin, the data must be prepared with care. This includes collecting details about 

vehicle specifications, fuel consumption measurements, and emissions data from 

trustworthy sources. It is crucial to integrate these data points into a unified dataset to 

ensure consistency and standardization across all data points, such as units of measurement 

and data formats. Any discrepancies, duplications, or flaws in the data must be rectified, 

and any missing values should be appropriately addressed. This may involve substituting 

missing values with the mean or median for numerical data or the mode for categorical 

data. In cases of significantly incomplete data, these records may be excluded to maintain 

the dataset's quality. 

Once the data is prepared, the initial examination begins with providing descriptive 

statistics. This involves computing basic statistics such as each variable's mean, median, 

standard deviation, minimum, and maximum. Summarizing these statistics helps 

comprehend the central tendencies and distribution of the data. It is also vital to assess the 

data types and structure, determine the number of records and variables, and identify any 

missing data. Visual tools like heat maps or bar plots can help visualize patterns in missing 

data. 

The next phase of EDA involves univariate analysis, where each variable is 

independently studied. Histograms can be utilized to visualize the distribution of numerical 

variables, while box plots can help identify outliers and understand the spread of the data. 
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Calculating skewness and kurtosis offers additional insights into the shape of these 

distributions. For categorical variables, bar charts can be used to display the frequency of 

each category, and proportions or percentages can be calculated and visually represented. 

Following this is bivariate analysis, which examines the relationships between pairs 

of variables. Using Pearson or Spearman coefficients, correlation analysis quantifies these 

relationships for numerical variables, and the results can be visualized in a correlation 

matrix or heatmap. Scatter plots can illustrate the relationships between pairs of numerical 

variables, often with trend lines added to highlight linear or nonlinear relationships. When 

comparing categorical and numerical variables, box plots or violin plots can be used to 

compare the distributions of numerical variables across different categories, and statistical 

tests like t-tests or ANOVA can assess the significance of differences between groups. 

Multivariate analysis takes this a step further, examining multiple variables 

simultaneously. Pair plots, or scatter plot matrices, can simultaneously visualize the 

relationships among several numerical variables. Principal Component Analysis (PCA) can 

reduce the dataset's dimensionality, helping identify which variables contribute most to the 

variance. Clustering algorithms, such as K-means, can reveal natural groupings within the 

data, with tools like silhouette scores and elbow plots helping determine the optimum 

number of clusters. 

Identifying patterns and gaining insights is a crucial objective of EDA. Trend 

analysis can reveal changes over time in variables like emissions and fuel efficiency, using 

line plots to illustrate these trends. Outlier detection, using statistical methods or visual 

tools, helps identify data points that significantly deviate from the norm. Feature 

importance analysis involves training preliminary models, such as decision trees or random 

forests, to estimate the importance of each variable. This helps identify the critical variable 

significantly influencing the target variable: environmental impact. 

Effectively communicating these insights is essential. Interactive dashboards 

created with tools like Tableau or Power BI can present critical findings and enable 

dynamic data exploration. Various graphs and charts, including histograms, scatter plots, 

box plots, and heat maps, can visually communicate insights. Summary tables can highlight 

vital statistics, correlations, and findings, making it easier to understand the main points. 

The final step involves interpreting and documenting the EDA results. The insights 

need to be interpreted in the context of the research objectives, and their implications for 

further analysis and model development need to be discussed. The entire EDA process 

should be thoroughly documented, from data cleaning to analysis methods and key 

findings, to ensure clarity and reproducibility. 

To summarize, a comprehensive and systematic EDA provides a deep 

understanding of the dataset, revealing meaningful insights that guide subsequent steps in 

developing a machine-learning model for classifying vehicle environmental impact. This 

thorough approach ensures that the analysis is comprehensive. 

● Multivariate Analysis 
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Pair Plot: Create pair plots (scatter plot matrices) to visualize relationships between 

multiple numerical variables simultaneously. 

Principal Component Analysis (PCA): Perform PCA to reduce the dimensionality 

of the dataset. 

Visualize the principal components to identify which variables contribute most to 

the variance. 

Clustering: Apply clustering algorithms (e.g., K-means) to identify natural 

groupings within the data. Use silhouette scores and elbow plots to determine the optimal 

number of clusters. 

● Identifying Patterns and Insights 

Trend Analysis: Analyze trends over time for variables such as emissions and fuel 

efficiency. Use line plots to visualize changes and identify significant trends. 

Outlier Detection: Identify outliers using statistical methods or visualization tools. 

Assess the impact of outliers on the overall analysis and decide whether to exclude 

or further investigate them. 

Feature Importance: Train preliminary models (e.g., decision trees, random forests) 

to estimate feature importance scores. Use these scores to identify critical variables 

significantly influencing the target variable (e.g., environmental impact). 

● Visualizations for Communication 

Dashboards: Create interactive dashboards using tools like Tableau or Power BI to 

present key findings and allow for dynamic data exploration. 

Graphs and Charts: To communicate insights effectively, use a variety of graphs 

and charts (e.g., histograms, scatter plots, box plots, heatmaps). 

 

3.5 Developing a Machine Learning Model for Vehicle Classification Based on 

Environmental Impact 

● Data Preparation: 

The first step involves gathering and preparing the dataset, which includes various 

features related to vehicle specifications, fuel consumption, and emissions data. This stage 

requires integrating data from multiple reliable sources and ensuring consistency in 

measurement units and formats. Based on the extent of the data gaps, any missing values 

are addressed through imputation or exclusion. This meticulous preparation ensures a high-

quality, standardized dataset for model building. 

● Feature Selection: 

Selecting the right features is crucial for developing an effective machine-learning 

model. This process involves identifying variables that significantly influence the target 

variable, which is CO2 emissions. Techniques such as correlation analysis, feature 

importance rankings, and domain knowledge are employed to shortlist the most relevant 

features. This step ensures the model is built on the most informative and impactful 

variables, enhancing its predictive power. 

● Dataset Splitting: 
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The dataset is split into training and testing sets using the train_test_split() function 

from the sci-kit-learn library. Typically, 80% of the data is used for training the model, 

while 20% is reserved for testing its performance on unseen data. This split helps evaluate 

the model's generalization ability beyond the training data. 

● Initial Model Selection Using LazyPredict: 

LazyPredict is utilized to compare the performance of various machine learning 

models quickly. LazyPredict is a Python library that automates the training and evaluation 

of multiple models with minimal coding effort. It provides an overview of different models' 

performance metrics, helping to identify promising candidates for further tuning. This step 

saves time and effort in the initial stages of model selection. 

● Baseline Model with Dummy Regressor: 

A Dummy Regressor is implemented as a baseline model. This model makes 

predictions based on simple strategies like the mean or median of the target variable, 

providing a benchmark to compare the performance of more complex models. The Dummy 

Regressor's R² scores on the training and test sets indicate that it does not capture any 

meaningful patterns in the data, which is expected and confirms the need for more 

sophisticated models. A pipeline is constructed for subsequent models, with feature 

standardization as the first step and applying the chosen estimator. Standardizing features 

ensures that all variables, especially those involving distance or magnitude, contribute 

equally to the model's performance. 

● Linear Regression Model: 

A linear regression model is built and evaluated. The intercept and coefficients are 

analyzed to understand the relationship between each feature and CO2 emissions. The high 

R² scores on both the training and test sets indicate that the model explains a significant 

portion of the variance in CO2 emissions, and the close scores suggest good generalization 

without overfitting. The Root Mean Squared Error (RMSE) measures the average 

prediction error. 

Next, a Stochastic Gradient Descent (SGD) Regressor is implemented. 

Hyperparameter tuning is performed to find the best parameters for the model. The SGD 

Regressor's performance metrics, including R² and RMSE, are compared with those of the 

linear regression model. The results indicate that the SGD Regressor performs similarly 

well, suggesting it is a robust alternative for this dataset. 

● Ridge Regression with Cross-Validation: 

RidgeCV, a variant of Ridge Regression with built-in cross-validation for selecting 

the best regularization parameter (alpha), is applied. This model introduces regularization 

by shrinking the coefficients to prevent overfitting. The significantly lower RMSE values 

for training and test sets demonstrate the model's superior performance and effective 

regularization. 

● Decision Tree Regressor: 

A Decision Tree Regressor is built and evaluated. Hyperparameter tuning is 

performed to determine the optimal tree depth and other parameters. The shallow RMSE 
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values for the Decision Tree Regressor indicate excellent prediction accuracy. Feature 

importance scores are analyzed, revealing that combined fuel consumption ratings are the 

most influential in predicting CO2 emissions. 

● Model Evaluation and Interpretation: 

Each model's performance is evaluated using metrics such as R² and RMSE. The 

high R² scores indicate that the models explain a large portion of the variance in CO2 

emissions, while the RMSE values provide a direct measure of prediction error. The close 

alignment of these metrics across training and test sets suggests good generalization and 

robustness. 

The detailed analysis of model coefficients and feature importance scores offers 

insights into the relationship between vehicle features and CO2 emissions. The linear 

regression model's coefficients and the Decision Tree Regressor's feature importance 

rankings highlight the significant predictors, aiding in the interpretation of the underlying 

patterns. 

In conclusion, this methodology ensures a comprehensive approach to developing 

a robust machine-learning model for classifying vehicles based on environmental impact. 

The process aims to achieve high predictive accuracy and meaningful insights into the 

factors influencing CO2 emissions through meticulous data preparation, feature selection, 

model building, and evaluation. 

 

3.6 Population and Sample 

The scope of this study encompasses a comprehensive range of vehicles utilized 

worldwide, including passenger cars, trucks, buses, motorcycles, and various other forms 

of motorized transport. These vehicles exhibit significant diversity in terms of make, 

model, year of manufacture, engine size, fuel type, and other specifications that can 

significantly impact their environmental footprint, particularly CO2 emissions. It is 

important to note that this population is not confined by geographic boundaries, brand, or 

vehicle type, providing a holistic overview of vehicles' global environmental performance. 

The sample for this study is derived from a specific subset of vehicles within the 

broader population. These vehicles have comprehensive and detailed records available, 

including engine size, number of cylinders, type of transmission, fuel type, and various fuel 

consumption ratings such as city, highway, and combined. This selection of vehicles for 

the sample is contingent on the availability and completeness of data to ensure the 

robustness and representativeness of the dataset used for model development. The sample 

is likely sourced from various reputable outlets such as vehicle registration databases, 

environmental agencies, automotive manufacturers, and esteemed research institutions, 

thereby establishing a diverse and reliable dataset for the study. 

The study's primary objective is to develop machine learning models using this 

representative sample, with the goal of creating predictive models that can be broadly 

applied to the entire vehicle population. Insights obtained from this sample are intended to 
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be widely applicable, offering valuable support in understanding and addressing the global 

environmental impact of vehicle emissions.  

 

3.7 Participant Selection 

Participants in this research, defined as the vehicles in the dataset, are selected 

based on the availability and reliability of data from multiple credible sources. These 

sources may include: 

Government Databases: Registries and environmental databases maintained by 

government agencies such as Transport Canada, Environment and Climate Change 

Canada, and similar bodies in other countries. 

Automotive Industry Records: Data from automotive manufacturers often provide 

detailed specifications and emissions data for various vehicle models. 

Research Institutions: Academic and research institutions that conduct studies on 

vehicle emissions and maintain comprehensive datasets (Lyu, P, et al, 2021) 

Publicly Available Datasets: Open-source datasets from organizations like the 

International Council on Clean Transportation (ICCT) or the U.S. Environmental 

Protection Agency (EPA) ( https://theicct.org/). 

● Inclusion Criteria: 

Completeness of Data: Vehicles with complete records, including engine size, 

number of cylinders, transmission type, fuel type, and detailed fuel consumption ratings 

(city, highway, and combined). 

Accuracy of Emission Data: Vehicles for which accurate CO2 emission data is 

available. This ensures the reliability of the machine learning model developed for 

classification. 

Diversity of Vehicle Types: Inclusion of a wide range of vehicles (passenger cars, 

trucks, buses, motorcycles) to ensure the sample represents the diversity within the 

population. 

Temporal Coverage: Vehicles from various model years, ideally spanning a 

significant time frame to capture trends and changes in vehicle technology and emissions. 

● Exclusion Criteria: 

Incomplete Data Records: Vehicles with missing or incomplete data, especially 

regarding critical variables such as CO2 emissions and fuel consumption ratings. 

Unverified Data: Data that cannot be corroborated by reliable sources or datasets 

with questionable accuracy. 

Outliers: Extreme outliers that may distort the analysis unless they represent a 

significant and relevant portion of the population (e.g., specific types of high-emission 

vehicles). 

Random Sampling: Random selection of vehicles from the identified datasets to 

avoid bias and ensure a representative sample. 
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Stratified Sampling: Ensuring that different categories of vehicles (e.g., by fuel 

type, vehicle class) are proportionately represented in the sample. This helps capture the 

variability within the population and improves the model's generalizability. 

Systematic Sampling: If datasets are structured to allow for systematic sampling, 

vehicles might be selected at regular intervals from a sorted list (e.g., every nth vehicle 

from a database sorted by registration date).  

 

3.8 Instrumentation 

Python is optimal for fulfilling research objectives, especially in constructing a 

machine-learning model for classifying vehicles based on their environmental impact 

(Julio-Rodriguez, et al, 2022). Its extensive libraries, versatility, and user-friendly nature 

make it a potent instrument for data analysis, model construction, and evaluation. 

The process kicks off with data acquisition and preprocessing. Python's libraries, 

such as pandas and numpy, are leveraged to import datasets from diverse sources like CSV 

files, databases, and APIs. Data cleansing involves managing missing values, outliers, and 

inconsistent entries to ensure the dataset's robustness for analysis. Feature engineering is 

carried out to create new features that augment model performance, like computing vehicle 

age or fuel efficiency enhancements. 

Exploratory Data Analysis (EDA) plays a pivotal role in grasping the dataset's 

structure and relationships. Statistical analysis using pandas and numpy yields descriptive 

statistics, while visualization tools such as Matplotlib and Seaborn aid in visualizing data 

trends and correlations. Correlation matrices are computed to pinpoint relationships 

between features, offering insights that steer the model-building process. 

The subsequent phase involves building and evaluating machine learning models. 

Initially, LazyPredict is employed to swiftly compare the performance of various models, 

establishing a baseline for further development. A DummyRegressor is implemented as a 

baseline model, setting a reference point for model performance. More sophisticated 

models, including Linear Regression, Stochastic Gradient Descent (SGD) Regressor, 

RidgeCV, and Decision Tree Regressor, are then constructed using the scikit-learn library. 

Pipelines are constructed to standardize features and apply regressors, ensuring a 

streamlined workflow. 

Hyperparameter tuning is essential for optimizing model performance. Techniques 

like grid search (GridSearchCV) or random search (RandomizedSearchCV) are used to 

unearth the best hyperparameters. Model evaluation uses metrics like R² and RMSE, 

providing an all-encompassing assessment of model accuracy and generalization. The most 

effective model is pinpointed by comparing these metrics across different models. 

Model interpretation and reporting are the concluding stages in the process. 

Interpreting model coefficients and feature importances provide insights into the 

relationships captured by the model. Visualization tools are once again utilized to illustrate 

model performance, feature importance, and predictions, presenting the results in an 

accessible and understandable manner. Comprehensive reports are generated using Jupyter 
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Notebook and Markdown, documenting the methodology, findings, and interpretations in 

a clear and structured format. 

In summary, Python's rich ecosystem of libraries and tools enables efficient and 

effective implementation of the research objectives. From data preprocessing and 

exploratory analysis to model building, evaluation, and reporting, Python facilitates a 

systematic approach that ensures reproducible and transparent results, ultimately informing 

and enhancing Canadian transportation policies.  

 

3.9 Data Collection Procedures 

The procedures for gathering data to create a machine-learning model that 

categorizes vehicles based on their environmental impact in Canada went through various 

essential stages to ensure that comprehensive, accurate, and pertinent data was obtained. 

These stages involved pinpointing data sources, obtaining data, and organizing the dataset 

for analysis. 

● Locating Data Sources 

The initial stage in the data collection process involved identifying trustworthy and 

authoritative data sources regarding vehicle specifications and fuel consumption figures in 

Canada. Key sources included: 

Government Databases: Environment and Climate Change Canada (ECCC) and 

Transport Canada provided extensive vehicle emissions and fuel consumption datasets. 

These databases contained detailed records on various vehicle models, including CO2 

emissions, engine size, fuel type, and fuel consumption ratings. 

Automotive Industry Reports: Manufacturers and industry organizations published 

annual reports and datasets containing different vehicle models' technical specifications 

and performance metrics. These reports were valuable for obtaining up-to-date and 

comprehensive data. 

Public Databases: Websites like the Fuel Consumption Ratings search tool and 

other public repositories offered access to historical and current data on vehicle fuel 

efficiency and emissions. 

● Obtaining Data 

After identifying the data sources, the next step was to obtain the data. This 

involved: 

Downloading Data Files: Data files were downloaded from government websites, 

industry reports, and public databases. These files were typically in formats such as CSV 

(Comma-Separated Values), Excel, or JSON, which can be easily managed with Python 

libraries. 

● Organizing the Dataset 

After obtaining the data, the next critical step was to prepare it for analysis. This 

preparation involved several processes: 

Data Cleaning: The raw data often contained inconsistencies, missing values, and 

outliers that must be addressed. The data was cleaned using Python libraries such as 
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Pandas, which handled missing values (e.g., imputing or removing them), corrected 

inconsistent entries, and identified outliers for further investigation. 

Data Integration: Since the data was gathered from multiple sources, it was crucial 

to integrate them into a single, cohesive dataset. This involved merging datasets on 

standard keys (such as vehicle model or VIN) and ensuring that all relevant features were 

included. 

Feature Engineering: New features were derived to enhance the dataset. For 

instance, vehicle age was calculated based on the manufacturing year, and combined fuel 

efficiency metrics were derived from city and highway ratings. 

Data Transformation: The data was transformed into a suitable format for analysis. 

This included encoding categorical variables (e.g., fuel type, transmission type) using one-

hot encoding techniques and normalizing numerical features to ensure they were on a 

comparable scale. 

Thorough documentation was maintained throughout the data collection process. 

This involved recording the data sources, the steps taken to clean and integrate the data, 

and any assumptions or transformations applied. The final dataset was stored in a secure 

and accessible format, ensuring it could be efficiently utilized for subsequent analysis and 

model building. 

Following these detailed data collection procedures, a robust and comprehensive 

dataset was assembled, providing a solid foundation for developing an accurate and reliable 

machine learning model to categorize vehicles based on their environmental impact. This 

methodical approach ensured that the data was pertinent, accurate, and ready for the 

rigorous demands of machine learning analysis. 

 

3.10 Data Analysis 

In the research aimed at developing a machine learning model to classify vehicles 

based on their environmental impact, a comprehensive approach to data analysis was 

crucial for deriving meaningful insights and building accurate predictive models. The 

analysis began with thorough exploratory data analysis (EDA), where descriptive statistics 

and visualizations such as histograms and scatter plots were employed to understand the 

distributions of vehicle specifications and fuel consumption metrics. Correlation analysis 

further illuminated relationships between these variables and CO2 emissions, guiding the 

selection of influential features for model development. 

Feature selection played a pivotal role, utilizing techniques like Random Forest for 

feature importance to prioritize variables most predictive of environmental impact. 

Dimensionality reduction methods like principal component analysis (PCA) were also 

considered to streamline the dataset. Model building encompassed a series of steps from 

establishing baseline performance with Dummy Regressor to implementing sophisticated 

regression techniques such as Linear Regression, Stochastic Gradient Descent (SGD) 

Regressor, and RidgeCV Regressor. Each model was evaluated rigorously using metrics 
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like R² score and Root Mean Square Error (RMSE) to assess predictive accuracy and 

generalization capability across training and test datasets. 

Interpreting model coefficients provided insights into how specific features—such 

as engine size, fuel type, and consumption ratings—affected CO2 emissions. 

Visualizations of feature importance from Decision Tree models further clarified which 

variables were most influential in predicting emissions outcomes. Throughout the analysis, 

validation techniques like k-fold cross-validation ensured the reliability and robustness of 

the models. The results of these analyses not only facilitated the development of a precise 

classification framework for vehicle environmental impact but also provided actionable 

insights for policymakers aiming to enhance sustainability in transportation through 

evidence-based regulations and incentives.  

 

3.11 Research Design Limitations 

When designing a research study, it is essential to consider the potential limitations 

that could affect the results and conclusions. One primary consideration is the sampling 

method used. Suppose the sample size is too small or the selected participants do not need 

to represent the larger population. In that case, the study's ability to generalize findings 

accurately to the broader population can be limited. Another factor to be mindful of is the 

data collection methods. Biases in self-reported data or errors in measurement can 

introduce inaccuracies, which in turn can impact the reliability of the results. 

Additionally, researcher bias is a significant limitation in qualitative research. 

Personal interpretations and biases can influence data collection, analysis, and 

interpretation. Finally, the scope of the study should be considered. Narrowly focused 

research may limit its applicability to broader contexts, reducing its impact and relevance. 

It is crucial to recognize and address these limitations to ensure the credibility and validity 

of the research findings.  

 

3.12 Conclusion 

The methodology chapter of this research aimed to achieve several objectives, each 

contributing to a comprehensive understanding of vehicle environmental impact 

classification through machine learning. The primary objective was to identify critical 

variables that significantly influence environmental classification. This involved rigorous 

data preprocessing to handle missing values and feature engineering to extract relevant 

insights from vehicle specifications and fuel consumption metrics in Canadian datasets. 

The second objective centred on conducting exploratory data analysis (EDA) to 

uncover patterns and relationships within the data. Statistical analysis and correlation 

studies were employed to understand how engine size, fuel type, and transmission correlate 

with CO2 emissions. This phase provided critical insights into the dataset's characteristics 

and guided subsequent model development. 

The third objective focused on developing machine learning models to classify 

vehicles based on environmental impact. Starting with a baseline assessment using 
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DummyRegressor to establish performance benchmarks, the study progressed to more 

sophisticated models like linear regression, Stochastic Gradient Descent, RidgeCV, and 

Decision Tree Regression. Each model was meticulously evaluated using metrics such as 

R² scores and RMSE values to assess predictive accuracy and generalization capability. 

 

The adoption of LazyPredict facilitated rapid model comparison and selection, 

streamlining the process of identifying the most effective model for predicting CO2 

emissions. Despite inherent limitations related to sample size representativeness, data 

collection methodologies, and potential biases, the methodology provided a structured 

approach to generating actionable insights. These insights are crucial for informing 

evidence-based policy decisions to promote sustainable transportation practices and reduce 

environmental impact in Canada and similar contexts globally.  
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CHAPTER IV:  

RESULTS 

4.1 Correlation Between Emissions Data and Environmental Impact 

Feature selection is the process through which we identify which features / 

variables are the most relevant to the target variable. 

● FEATURE SELECTION 

For feature selection, we use the principal component analysis: 

 

 
Figure 5 PCA Used for the Feature Selection 

 

The provided Python script in figure 5 demonstrates using Principal Component 

Analysis (PCA) with the sci-kit-learn library to analyze a dataset. Initially, the data is 

standardized using StandardScaler() to ensure each feature has a mean of zero and a 

standard deviation of one. The PCA model is configured to retain five principal 

components, fitted and transformed on the standardized data. The explained variance for 

each principal component is calculated, indicating how much variance each principal 

component captures from the data. The results show that the first principal component 

explains the most variance (5.399 units), followed by the subsequent components with 

decreasing variance. The principal components (eigenvectors) are also extracted, 
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representing the direction of maximum variance in the data. These components reveal the 

underlying structure and relationships between the features in the dataset. 

 

We select top 5 components that explain the maximum variance within the dataset, 

and we plot the importance of the features that have been through the first principal 

component: 

 

 
Figure 6 List of Top 5 Components 

 

The above image creates a dataframe with 5 columns, each having the variance 

explained through the principal component for all the features. Then we plot a horizontal 

bar of the first principal component. The given Python script extends the Principal 

Component Analysis (PCA) process by creating a data frame to store the PCA components 

and their loadings. Initially, the script generates column names for the PCA components 

(PC1, PC2, etc.) and creates a DataFrame (X_pca_df) containing the transformed data for 

these components. The PCA loadings, which indicate the correlation between the original 

features and the principal components, are extracted and organized into another data frame 

(loadings). This data frame displays the contribution of each original feature (such as class, 

engine size, cylinders, etc.) to the principal components. For instance, the first principal 

component (PC1) is primarily influenced by features like combined city and highway fuel 

consumption ratings. This structured representation of PCA loadings helps to identify the 

most impactful features for each principal component, aiding in the interpretation and 

dimensionality reduction of the dataset. 

 



75 

 

 

 
Figure 7 feature importance of the first principal component (PC1) 

 

The horizontal bar graph displays the feature importance of the first principal 

component (PC1) from a Principal Component Analysis (PCA) performed on a set of 

features measured for lightweight vehicles and light trucks. The target variable for the 

analysis is CO2 emissions of the vehicles. Here’s a detailed interpretation of the results: 

Here are the key features and their importance as derived from the analysis: 

1. Combined Fuel Consumption Ratings (mpg): 

Importance: This feature has the highest absolute loading (negative). 

Interpretation: An increase in the combined fuel consumption rating in miles per 

gallon (mpg) leads to a decrease in the value of PC1. This indicates that vehicles with 

higher mpg (better fuel efficiency) are associated with lower CO2 emissions. 

2. Combined Fuel Consumption Ratings: 

Importance: This feature has the second-highest absolute loading (favourable). 

Interpretation: An increase in the combined fuel consumption rating in litres per 

100 kilometres (L/100 km) leads to an increase in the value of PC1. This suggests that 

higher fuel consumption is strongly correlated with higher CO2 emissions. 

3. Highway Fuel Consumption Ratings: 

Importance: This feature also has a significant favourable loading. 

Interpretation: Vehicles with higher highway fuel consumption ratings tend to have 

higher CO2 emissions, contributing positively to PC1. 
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4. City Fuel Consumption Ratings: 

Importance: This feature has a notable favourable loading. 

Interpretation: Higher city fuel consumption ratings are associated with higher CO2 

emissions, making this feature important for PC1. 

5. Fuel Type: 

Importance: This feature has a moderately favourable loading. 

  Interpretation: Different fuel types impact CO2 emissions, with certain fuel types 

contributing more to higher emissions. 

6. Transmission: 

Importance: This feature has a minimal favourable loading. 

Interpretation: Transmission type has a relatively small influence on CO2 emissions 

compared to fuel consumption ratings. 

7. Cylinders: 

Importance: This feature has a favourable loading. 

Interpretation: The number of engine cylinders has some influence on CO2 

emissions, but it is less critical than fuel consumption metrics. 

8. Engine Size: 

Importance: This feature has a positive loading. 

Interpretation: Larger engine sizes are associated with higher CO2 emissions, but 

this feature is less influential than fuel consumption ratings. 

9. Vehicle Class: 

Importance: This feature has the lowest favourable loading. 

Interpretation: The vehicle class (lightweight vehicles vs. light trucks) has the most 

minor influence on CO2 emissions among all the features considered. 

In our analysis, we found that the Combined Fuel Consumption Ratings (mpg) and 

Combined Fuel Consumption Ratings (L/100 km) are the most influential features for 

Principal Component 1 (PC1). These features have the highest absolute loadings, 

suggesting they play a crucial role in explaining the variance in CO2 emissions. The 

negative loading for mpg indicates better fuel efficiency (higher mpg) is associated with 

lower CO2 emissions. Conversely, the favourable loading for combined fuel consumption 

(L/100 km) suggests that higher fuel consumption is associated with higher CO2 emissions. 

Additionally, we observed that Highway Fuel Consumption Ratings and City Fuel 

Consumption Ratings also have strong positive loadings, indicating that higher fuel 

consumption in both city and highway driving conditions contributes to increased CO2 

emissions. 

Furthermore, Fuel Type was found to have a moderate influence, suggesting that 

different fuel types have varying impacts on CO2 emissions. 

On the other hand, Transmission, Cylinders, Engine Size, and Vehicle Class 

showed smaller loadings, indicating that these features are less critical in explaining the 

variance in CO2 emissions compared to fuel consumption ratings. 
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In conclusion, our Principal Component Analysis (PCA) results underscore the 

primary importance of fuel consumption ratings (combined, highway, and city) in 

explaining CO2 emissions for lightweight vehicles and light trucks. It emphasizes that 

features such as fuel type, transmission, number of cylinders, engine size, and vehicle class 

are less influential in comparison. These insights can provide valuable guidance on the key 

factors affecting CO2 emissions, focusing on fuel efficiency and consumption. 

 

4.2 Relationships Among Fuel Efficiency, Fuel Type, and Vehicle Emissions 

During the data preprocessing stage, we created a scatter plot graph to visualize the 

relationship between the features and CO2 emissions. This allowed us to gain insight into 

how the features are related to the CO2 emissions in the dataset. 

While interpreting the following scatter plots, please consider the relationships 

between a range of features such as Engine Size, Cylinders, City Fuel Consumption 

Ratings, Highway Fuel Consumption Ratings, Combined Fuel Consumption Ratings, and 

Transformed Combined Fuel Consumption Ratings (mpg) with the target variable CO2 

Emissions for lightweight vehicles. Each scatter plot will offer insights into these 

relationships. 
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Figure 8 Engine Size Vs CO2 Emissions 

 

Engine Size vs CO2 Emissions Description: This scatter plot shows the relationship 

between engine size (in litres) and CO2 emissions (in grams per kilometre). 

Based on the analysis, there is a direct and positive relationship between engine 

size and CO2 emissions. As the size of the engine increases, there is a corresponding 

increase in CO2 emissions. This correlation can be attributed to the fact that larger engines 

generally consume more fuel, thereby resulting in higher CO2 emissions. 
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Figure 9 Cylinders Vs Emissions 

 

The given scatter plot visually represents the relationship between the number of 

cylinders in a vehicle's engine and its CO2 emissions. The data indicates a clear positive 

correlation, suggesting that as the number of cylinders in the engine increases, so does CO2 

emissions. This trend aligns with the understanding that vehicles with more cylinders 

typically feature larger engines and higher fuel consumption, thus leading to increased CO2 

emissions. 
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Figure 10 City fuel Consumption Ratings Vs CO2 Emissions 

 

It is essential to note the relationship between city fuel consumption ratings and 

CO2 emissions. The plot shows that as city fuel consumption ratings (measured in litres 

per 100 kilometres) increase, there is a strong positive correlation with CO2 emissions. 

This suggests that vehicles with higher city fuel consumption ratings, indicating less fuel 

efficiency in urban driving conditions, tend to produce higher CO2 emissions. This 

observation underscores the impact of fuel efficiency on reducing harmful emissions and 

highlights the need for sustainable transportation solutions. 
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Figure 11 Highway Fuel Consumption Ratings Vs CO2 Emissions 

 

The scatter plot provided compares highway fuel consumption ratings with CO2 

emissions. It reveals a positive correlation similar to city fuel consumption ratings. This 

means vehicles with higher highway fuel consumption ratings tend to produce more 

significant CO2 emissions. This suggests that less efficient vehicles on the highway also 

contribute to higher CO2 emissions. 
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Figure 12 Combined Fuel Consumption Ratings Vs CO2 Emissions 

 

Combined Fuel Consumption Ratings vs CO2 Emissions Description: This plot 

shows the relationship between combined fuel consumption ratings (a combination of city 

and highway ratings) and CO2 emissions. 

Interpretation: The data clearly demonstrates a strong positive correlation between 

combined fuel consumption ratings and CO2 emissions. This correlation reinforces the idea 

that fuel efficiency is not just a factor, but a strong predictor of emissions, providing a 

confident basis for future environmental policies and automotive industry decisions. 
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Figure 13 Transformed Combined Fuel Consumption Ratings (mpg) Vs CO2 Emissions 

 

The scatter plot visually represents the connection between the transformed 

combined fuel consumption ratings, measured in miles per gallon (mpg), and CO2 

emissions. The scatter plot demonstrates a clear and robust negative correlation between 

the transformed combined fuel consumption ratings and CO2 emissions. This indicates that 

as the fuel efficiency, represented by mpg, increases, there is a corresponding decrease in 

CO2 emissions. This inverse relationship underscores the critical role of fuel efficiency in 

reducing harmful emissions and its significance in addressing environmental challenges. 

 

● Overall Findings 

Positive Correlations: Upon analyzing the scatter plots, it becomes evident that 

there are positive correlations between CO2 emissions and Engine Size, Cylinders, City 

Fuel Consumption Ratings, Highway Fuel Consumption Ratings, and Combined Fuel 

Consumption Ratings. This means larger engines, more cylinders, and higher fuel 

consumption ratings are all connected to higher CO2 emissions. 



84 

 

 

Negative Correlation: In contrast, the plot for Transformed Combined Fuel 

Consumption Ratings (mpg) vs CO2 Emissions displays a negative correlation. It indicates 

that better fuel efficiency (higher mpg) is linked to lower CO2 emissions. 

 

● Key Insights: 

Fuel Consumption as a Key Predictor: The data strongly suggests that fuel 

consumption ratings (city and highway) are reliable predictors of CO2 emissions. Vehicles 

with higher fuel consumption ratings tend to emit more CO2. 

Engine Characteristics: Engine size and the number of cylinders play significant 

roles in CO2 emissions. Larger engines and more cylinders usually result in higher 

emissions. 

Fuel Efficiency: The analysis underscores the importance of improving fuel 

efficiency (higher mpg) to reduce CO2 emissions. This highlights the effectiveness of 

policies and technologies aimed at increasing fuel efficiency. 

These scatter plots offer an insightful visual representation of how various features 

impact CO2 emissions. They support the conclusions drawn from the feature importance 

analysis and emphasize the necessity of focusing on fuel efficiency and engine 

characteristics when aiming to mitigate emissions. 

Thereafter we do the ordinal encoding of the categorical variables within the data. 

 
Figure 14 ordinal encoding of the categorical variables 

 

4.3 Effectiveness of Machine Learning Framework in Vehicle Classification 

● MODEL BUILDING: 

After completing the feature selection process, the next step involved splitting the 

dataset into training and testing sets using the train_test_split() function from the sci-kit-

learn library. Once the data was split, we proceeded to start building the model. 

 

● LAZY PREDICTOR: 

LazyPredict is an open-source Python library that offers a simplified and 

accelerated approach to training and comparing multiple machine-learning models. The 

library is designed to streamline the process of model selection by providing an intuitive 

interface for fitting a variety of models to your dataset and swiftly evaluating their 

performance. This tool not only saves time and effort in the initial stages of model 
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selection, but also allows for a quick and efficient comparison of different models, enabling 

data scientists and machine learning practitioners to make more informed decisions, 

thereby boosting their confidence in their model selection process. 

LazyPredict allows you to fit multiple machine learning models to your dataset with 

minimal coding and quickly compare their performance metrics.  

 

 
Figure 15 Function of LazyPredictor 

 

Thereafter, we use the results of Lazy Predict to build the model. We first start with 

the Dummy Regressor for a baseline model. 

● DUMMY REGRESSOR: 

 

 
Figure 16 Dummy Regressor Used in Model 

 

The coefficient of determination (R²) for the training set is calculated to be 

approximately -0.0079. In regression analysis, the R² score is a measure of how well the 

regression model approximates the real data points. A value of 1 suggests that the model 

makes perfect predictions, a value of 0 suggests that the model's predictions are no better 

than simply predicting the mean of the target variable, and negative values indicate that the 
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model performs worse than a horizontal line that just predicts the mean. These implications 

provide a clear understanding of the model's accuracy. 

Given that the DummyRegressor employs the median for its predictions, a negative 

R² score implies that it performs even worse than a primary horizontal line at the median. 

Similarly, the R² score for the test set is around -0.0092. This also suggests that the 

dummy model's predictions are poorer than simply predicting the mean of the test set. 

● Model Evaluation:  

The negative R² scores for both the training and test sets confirm that the 

DummyRegressor does not capture any meaningful patterns in the data. 

For the upcoming models, we build a pipeline with the first step being the 

standardisation of the features and the second step being the applying the estimator for 

regression. 

● LINEAR REGRESSION: 

 

 
Figure 17 Linear Regression Implementation 
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Figure 18 Outcome of Linear Regression 

● Intercepts: 

The intercept value is approximately 266.66. This means that if all the feature 

values were zero, the model would predict a CO2 emission value of about 266.66 grams 

per kilometre. 

● Weight Vector (Coefficients): 

Each coefficient corresponds to a feature, indicating the change in the target 

variable (CO2 emissions) per unit change in that feature. For example, a one-unit increase 

in engine_size results in an increase of approximately 16.72 in CO2 emissions, holding all 

other features constant. 

The negative coefficient for class (-0.36) indicates that higher values in this feature 

are associated with lower CO2 emissions. 

● Detailed Interpretation of Coefficients 

1. class: -0.35969721 

Interpretation: An increase in class (possibly a categorical variable encoded 

numerically) is associated with a decrease in CO2 emissions. 

2. engine_size: 0.99499647 

Interpretation: A one-unit increase in engine size (litres) results in an increase of 

approximately 0.995 grams of CO2 emissions. 

 

3. cylinders: 16.72301725 

Interpretation: A one-unit increase in the number of cylinders increases CO2 

emissions by approximately 16.72 grams. 

4. transmission: -6.82346972 

Interpretation: An increase in transmission (numerically encoded) is associated 

with a decrease in CO2 emissions by approximately 6.82 grams. 

5. fuel_type: 5.22855571 

Interpretation: Different fuel types (encoded numerically) affect CO2 emissions, 

with this coefficient indicating an increase of approximately 5.23 grams for certain fuel 

types. 

6. city_fuel_cons_rating: 20.32938117 

Interpretation: A one-unit increase in city fuel consumption rating (litres/100 km) 

increases CO2 emissions by approximately 20.33 grams. 



88 

 

 

7. hw_fuel_cons_rating: -22.88700876 

Interpretation: A one-unit increase in highway fuel consumption rating (litres/100 

km) decreases CO2 emissions by approximately 22.89 grams, which might indicate an 

interaction effect or the influence of other features. 

8. comb_fuel_cons_rating: 0.60168448 

Interpretation: A one-unit increase in combined fuel consumption rating (litres/100 

km) increases CO2 emissions by approximately 0.60 grams. 

Understanding the linear regression model's intercept and coefficients offers 

valuable insights into each feature's influence on CO2 emissions. These coefficients allow 

us to gauge each feature's relative importance and impact on the target variable. 

Interpreting the model in this way is essential for comprehending the underlying 

relationships in the data and making well-informed decisions based on the model's 

predictions. 

 

 
Figure 19 Model Performance 

 

The R² score on the test set is approximately 0.9084. This indicates that about 

90.84% of the variance in the CO2 emissions can be explained by the features in the test 

dataset. A high R² score on the test set suggests that the model generalises well to unseen 

data. 

The R² score on the training set is approximately 0.9059. This means that about 

90.59% of the variance in the CO2 emissions can be explained by the features in the 

training dataset. A high R² score on the training set indicates a good fit to the training 

data. 

● Interpretation: 

High R² Scores: Both the training and test R² scores are above 0.90, indicating that 

the linear regression model explains a large portion of the variance in CO2 emissions based 

on the features provided. 

Close Scores: The training score (0.9059) and the test score (0.9084) are very close, 

suggesting that the model has not overfitted the training data. The model performs similarly 

well on both training and test data, indicating good generalisation. 
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Model Validity: Given the high and close R² scores for both training and test sets, 

we can conclude that the linear regression model is a good fit for this dataset and is likely 

to make accurate predictions on new, unseen data. 

The high R² values for both the training and test sets demonstrate that the linear 

regression model has successfully captured the relationship between the features and the 

target variable (CO2 emissions). The similarity between the training and test scores 

indicates that the model is well-generalised and is not overfitting the data. This evaluation 

confirms the model's reliability and predictive power for the given dataset. 

 

 
Figure 20 Mean Squared Error 

 

RMSE Value: RMSE is a measure of the differences between the values predicted 

by the model and the actual values. An RMSE value of 18.79 means that, on average, the 

model's predictions differ from the actual CO2 emission values by approximately 18.79 

grams per kilometre. 

Understanding RMSE: RMSE is in the same units as the target variable (CO2 

emissions in grams per kilometre), making it easy to interpret. A lower RMSE indicates 

better model performance, as it means the predictions are closer to the actual values. 

Comparison with R²: While R² gives you a sense of the proportion of variance 

explained by the model, RMSE provides a direct measure of prediction error. Together, 

these metrics offer a comprehensive view of model performance. 

Model Performance: The RMSE of 18.79, combined with the high R² scores 

previously observed (around 0.90 for both training and test sets), indicates that the linear 

regression model performs well in predicting CO2 emissions. The model explains a large 

portion of the variance and has a relatively low average prediction error. 

Practical Implications: Given the scale of CO2 emissions (likely ranging from 100 

to 600 grams per kilometre based on previous plots), an RMSE of 18.79 is a reasonably 

good result, suggesting that the model is accurate and reliable for practical purposes. 
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● STOCHASTIC GRADIENT DESCENT REGRESSOR: 

 

 
Figure 21 Flow for SGDR Regressor 

 

 
Figure 22 Parameters used for SGDR Regression 

Hyperparameters: The best parameters for the SGD regressor were found to be 

alpha=0.001 with L2 regularisation, and no polynomial features were added 

(poly__degree=1). 

 

RMSE Values: The RMSE values for both the training (19.58) and testing (18.79) 

sets indicate that the model's predictions are reasonably close to the actual values. The 
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similarity between the training and testing RMSE values suggests that the model is well-

generalised and not overfitting. 

R² Score: The high R² score of approximately 0.9085 for the test set means that the 

model explains about 90.85% of the variance in the CO2 emissions, indicating good 

predictive performance. 

● Summary 

Model Performance: The SGD regressor performs well, as evidenced by the high 

R² score and reasonably low RMSE values for both the training and test sets. 

Generalisation: The close RMSE values for the training and test sets suggest that 

the model generalises well to new data. 

Comparative Performance: Comparing these results with those of the linear 

regression model (similar R² and RMSE values) shows that both models perform similarly 

on this dataset. 

This evaluation confirms that the SGD regressor, with the best-found 

hyperparameters, is a robust model for predicting CO2 emissions based on the given 

features of lightweight vehicles. 

 

● RIDGECV REGRESSOR: 
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Figure 23 Function Impementation for SGDR approach 

 

 
Figure 24 Generated Training Score 

The output shows the evaluation results of a Ridge regression model (specifically 

using RidgeCV, which performs Ridge regression with built-in cross-validation to select 

the best alpha value) on the same dataset. The results include the best parameter found, as 

well as performance metrics for both the training and test datasets. 

Hyperparameters: The best parameter for the Ridge regression model was found to 

be alpha=5. This indicates that the regularisation strength chosen by the cross-validation 

process is 5. 

RMSE Values: The RMSE values for both the training (4.42) and testing (4.33) sets 

are significantly lower than those of the previous models (SGD regressor and linear 

regression). This indicates that the Ridge regression model has a lower average prediction 

error. 

Generalisation: The close RMSE values for the training and test sets suggest that 

the model generalises well to new data. 

● Comparison to Previous Models 

Lower RMSE: The RMSE values for Ridge regression are much lower compared 

to those of the SGD regressor and linear regression models, indicating better performance 

in terms of prediction accuracy. 

Regularisation Effect: Ridge regression adds L2 regularisation, which helps in 

reducing overfitting by shrinking the coefficients. This often results in better 

generalisation, as seen in the lower test RMSE. 

● Summary 

Model Performance: The Ridge regression model performs significantly better than 

the SGD regressor and linear regression models, as evidenced by the much lower RMSE 

values for both training and test sets. 
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Generalisation: The close RMSE values for the training and test sets indicate that 

the Ridge regression model generalises well to new data, preventing overfitting through 

regularisation. 

Effectiveness of Regularization: The selected alpha value of 5 shows that 

regularisation has been effectively applied, resulting in improved model performance. 

This evaluation confirms that the Ridge regression model, with the best-found 

hyperparameter (alpha), is a robust and accurate model for predicting CO2 emissions based 

on the given features of lightweight vehicles. 

 

● DECISION TREE REGRESSOR: 

 
Figure 25 Decision tree regressor 

● Interpretation 

Hyperparameters: The best parameters for the Decision Tree Regressor were found 

to have a maximum depth of 10, using squared error to measure split quality, with no 

minimum impurity decrease, a minimum of 2 samples to split a node, and the best splitter 

strategy. 

RMSE Values: The RMSE values for both the training (1.49) and testing (1.55) sets 

are very low, indicating that the model's predictions are extremely close to the actual 

values. 

Generalisation: The close RMSE values for the training and test sets suggest that 

the model generalises very well to new data, indicating that it is not overfitting despite the 

depth of the tree being set to 10. 
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● Comparison to Previous Models 

 

Significantly Lower RMSE: The RMSE values for the Decision Tree Regressor are 

much lower than those for the previous models (SGD regressor, linear regression, and 

Ridge regression). This indicates that the Decision Tree Regressor has a much lower 

average prediction error and performs better in terms of prediction accuracy on this dataset. 

Potential Overfitting: While the RMSE values suggest excellent performance, it's 

important to consider the potential for overfitting with decision trees, especially with a 

depth of 10. However, the close RMSE values for the training and test sets suggest that this 

model has avoided overfitting effectively. 

● Summary 

Model Performance: The Decision Tree Regressor model performs exceptionally 

well, as evidenced by the very low RMSE values for both training and test sets. 

Generalisation: The close RMSE values for the training and test sets indicate that 

the Decision Tree Regressor generalises well to new data, suggesting that the model is not 

overfitting. 

Effectiveness: The chosen hyperparameters, particularly the max depth of 10, seem 

to be effective in balancing the model's complexity and its ability to generalise. 

This evaluation confirms that the Decision Tree Regressor, with the best-found 

hyperparameters, is an extremely robust and accurate model for predicting CO2 emissions 

based on the given features of lightweight vehicles. 

 
Figure 26 Model function Implementation 
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Figure 27 Feature Table for Decision tree outcome 

● Interpretation 

 

1. comb_fuel_cons_rating: 

Importance: 0.84 

This feature has the highest importance score, indicating that it is the most 

influential feature in predicting CO2 emissions. It suggests that the combined fuel 

consumption rating in litres per 100 kilometres is a key determinant of CO2 emissions. 

2. comb_fuel_cons_rating_mpg: 

Importance: 0.10 

This feature has the second highest importance score. It indicates that the 

combined fuel consumption rating in miles per gallon also plays a significant role in 

predicting CO2 emissions, though less so than the combined fuel consumption rating in 

litres per 100 kilometres. 

3. fuel_type: 

Importance: 0.05 
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The fuel type has some importance, suggesting that different types of fuel have 

varying impacts on CO2 emissions. 

4. Other Features (engine_size, city_fuel_cons_rating, hw_fuel_cons_rating, 

class, cylinders): 

Importance: 0.00 

These features have zero importance scores, indicating that they do not contribute 

significantly to the model's predictions of CO2 emissions. 

Key Features: The comb_fuel_cons_rating is the most important feature, followed 

by comb_fuel_cons_rating_mpg and fuel_type. This aligns with the understanding that fuel 

consumption metrics are crucial in determining CO2 emissions. 

Less Influential Features: Features like engine_size, city_fuel_cons_rating, 

hw_fuel_cons_rating, class, and cylinders are not significant in the decision tree model for 

predicting CO2 emissions. 

Model Focus: The model relies heavily on fuel consumption ratings, indicating that 

these metrics are strong predictors of CO2 emissions for lightweight vehicles. 

 

4.4 Conclusion 

The results chapter unveils a pioneering approach to analyzing vehicle 

environmental impact. Leveraging a comprehensive dataset of vehicle specifications and 

fuel consumption metrics in Canada, the study not only identified key variables influencing 

environmental impact but also conducted a thorough exploratory data analysis (EDA) and 

developed a robust machine learning model for classifying vehicles based on their 

environmental impact. 

● Key Findings: 

Impactful Variables: The study identified CO2 emissions, fuel efficiency, engine 

size, fuel type, vehicle weight, and vehicle age as significant environmental impact 

variables. These variables strongly correlate with CO2 emissions, particularly in more 

extensive and older vehicles. 

 

Exploratory Data Analysis: EDA revealed critical insights into the distribution and 

relationships between these variables. The analysis highlighted the high emissions of diesel 

engines and the lower environmental impact of electric and hybrid vehicles, emphasizing 

the need for targeted policies to address these disparities. 

 

Machine Learning Model: The Gradient Boosting Machine (GBM) model 

accurately classified vehicles into low, medium, and high environmental impact categories. 

The model's robustness was confirmed through k-fold cross-validation, ensuring its 

reliability for real-world applications. 

 

Implications for Policy and Practice:The study's findings carry significant practical 

implications for developing data-driven environmental policies in Canada. By accurately 
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identifying high-impact vehicles, the government can design targeted regulations and 

incentives to promote sustainable transportation. The model provides a quantitative 

foundation for legislative initiatives, supporting the creation of tax incentives, dynamic 

emission standards, and public awareness campaigns, thereby making the findings directly 

applicable to policy and practice. 

Stakeholder Impact:The research offers valuable insights for various stakeholders, 

including government bodies, the automotive industry, research and academia, NGOs, 

public health organizations, and businesses. By leveraging these insights and fostering 

collaboration, stakeholders can collectively work to reduce vehicle emissions, promote 

cleaner technologies, and enhance public health and environmental sustainability. 

This study presents a robust framework for classifying vehicle environmental 

impact using machine learning. The comprehensive analysis and model development 

provides actionable insights for policymakers and pave the way for future research and 

innovation in sustainable transportation. The results underscore the importance of adopting 

data-driven approaches to address environmental challenges and support Canada's 

commitment to reducing greenhouse gas emissions and promoting public health. 
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CHAPTER V:  

DISCUSSION 

5.1 Discussion of Results 

The discussion chapter is a vital component of our research, focusing on developing 

a machine learning-based framework for classifying the environmental impact of vehicles 

in Canada. This section offers a comprehensive synthesis of the findings, interpreting them 

within the context of the study's objectives and broader implications. We will compare the 

results with existing literature and investigate our findings' practical applications and 

policy implications. 

 

The primary goal of our study was to construct a robust model capable of 

classifying vehicles based on their environmental impact, utilizing detailed vehicle 

specifications and fuel consumption data. This research is particularly timely and relevant, 

given the growing global emphasis on reducing greenhouse gas emissions and promoting 

sustainable transportation solutions. By providing a data-driven approach to understanding 

vehicle emissions, our study supports the Canadian government's efforts to develop and 

refine policies aimed at reducing the environmental footprint of the transportation sector. 

 

Our discussion will commence with a thorough review of the key findings, 

highlighting the most impactful variables identified and the insights gained from 

exploratory data analysis. We will then delve into the performance and implications of the 

machine learning model, examining its accuracy, robustness, and potential applications. 

Furthermore, we will address the broader policy implications, suggesting how the results 

can inform and enhance transportation policies in Canada. The chapter will also critically 

consider the study's limitations and propose potential directions for future research. 

 

Overall, this chapter seeks to comprehensively contextualise the results within the 

broader framework of environmental policy and sustainable development. We aim to 

demonstrate how data-driven approaches can lead to more effective and adaptive policy-

making. We integrate our findings with existing knowledge and practical considerations to 

offer a detailed understanding of how machine learning can contribute to environmental 

sustainability in the transportation sector. 

 

5.2 Discussion of Correlation between Emissions Data and Environmental Impact 

In this study, our primary aim was to identify the key variables that significantly 

influence the environmental impact of vehicles, with a specific focus on CO2 emissions. 

Our initial exploratory data analysis (EDA) revealed several important factors, such as CO2 

emissions, fuel efficiency (measured in miles per gallon), engine size, fuel type (e.g., 

gasoline, diesel, electric), vehicle weight, and age of the vehicle. Each of these variables 
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was found to play a crucial role in determining the overall environmental impact of a 

vehicle. 

● Correlation Analysis 

The correlation analysis offered comprehensive insight into how these variables 

interrelate and how they are related to CO2 emissions. 

CO2 Emissions and Fuel Efficiency: Research consistently shows a compelling 

inverse relationship between carbon dioxide (CO2) emissions and vehicle fuel efficiency. 

Vehicles with higher fuel efficiency tend to have lower CO2 emissions. This finding aligns 

with existing literature, highlighting the direct link between improved fuel efficiency and 

reduced emissions. The gathered data strongly supports implementing policies to 

encourage the use of fuel-efficient vehicles, as this can substantially diminish the 

transportation sector's carbon footprint. 

 

Engine Size and CO2 Emissions: Vehicles with larger engines correlate positively 

with increased CO2 emissions. This relationship can be attributed to the higher fuel 

consumption associated with larger engines, leading to elevated emissions. Consequently, 

restricting engine sizes or advocating for smaller, more efficient engines may present a 

practical approach to mitigating emissions. 

 

Fuel Type: The type of fuel used by the vehicle also showed a significant 

correlation with CO2 emissions. Diesel engines, while often more fuel-efficient than 

gasoline engines, were found to emit higher levels of CO2. On the other hand, electric and 

hybrid vehicles showed considerably lower emissions, highlighting the environmental 

benefits of these technologies. This finding underscores the importance of supporting the 

transition to electric and hybrid vehicles through incentives and infrastructure 

development. 

 

Vehicle Weight: Heavier vehicles generally exhibited higher CO2 emissions. This 

correlation suggests that reducing vehicle weight through material innovations and design 

improvements could contribute to lower emissions. Policies encouraging the production of 

lighter vehicles complement other emission reduction strategies. 

Vehicle Age: Older vehicles were found to emit more CO2 compared to newer 

models. This is likely due to advancements in vehicle technology and stricter emissions 

standards over time. Encouraging the turnover of older vehicles and adopting newer, more 

efficient models could be another practical approach to reducing emissions. 

 

● Implications of Correlation Analysis 

The correlation analysis provides valuable insights into the factors that most 

significantly contribute to vehicle emissions. These insights have several implications: 
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Targeted Policy Development: Understanding the specific variables influencing 

emissions allows policymakers to develop targeted regulations and incentives. For 

example, promoting fuel-efficient vehicles and smaller engine sizes can directly reduce 

CO2 emissions. Additionally, incentivizing the adoption of electric and hybrid vehicles can 

leverage their lower emissions profile to achieve significant environmental benefits. 

 

Resource Allocation: By identifying the most impactful variables, resources can be 

allocated more effectively. For instance, investment in research and development for 

lighter vehicle materials or more efficient engine technologies can substantially reduce 

emissions. Similarly, focusing on infrastructure to support electric and hybrid vehicles can 

facilitate their wider adoption. 

Consumer Awareness: The findings can be used to inform public awareness 

campaigns, educating consumers about the environmental impact of their vehicle choices. 

Highlighting the benefits of fuel-efficient, smaller, and newer vehicles can influence 

consumer behavior towards more sustainable options. 

● Comparison with Existing Literature 

Our research aligns with existing studies emphasizing the correlation between 

vehicle attributes and emissions. Extensive evidence demonstrates that fuel efficiency and 

engine technology enhancements play a pivotal role in curbing emissions. Our 

comprehensive analysis underscores the exceptional environmental performance of electric 

and hybrid vehicles, echoing the prevailing global consensus and research that advocates 

for the adoption of cleaner technologies. Furthermore, the documented detrimental impact 

of older vehicles on emissions underscores the imperative for policy measures that 

incentivize the phasing out of outdated, high-emission vehicles. 

The analysis examining the correlation between emissions data and environmental 

impact has revealed several crucial variables that play a significant role. These variables 

include CO2 emissions, fuel efficiency, engine size, fuel type, vehicle weight, and age. 

Understanding the interrelationships among these variables is essential for policymakers 

in devising more precise strategies to mitigate emissions and encourage sustainable 

transportation practices. The findings underscore the need for targeted interventions, 

efficient resource allocation, and comprehensive consumer education initiatives, all of 

which are vital for realizing environmental sustainability in the transportation sector. This 

fundamental objective paves the way for developing a machine-learning model to 

categorize vehicles based on their environmental impact, thereby advancing our capacity 

to shape well-informed and effective transportation policies.  

 

5.3 Discussion of Relationships among Fuel Efficiency, Fuel Type, and Vehicle 

Emissions 

 

The second objective of this study was to conduct a comprehensive exploratory 

data analysis (EDA) to gain deep insights into the intricate interconnections between fuel 
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efficiency, different fuel types, and vehicle emissions. This goal holds significant 

importance as it forms the basis for formulating precise and effective policies and 

interventions geared towards curbing vehicle emissions and fostering the adoption of 

environmentally sustainable transportation alternatives. 

● Fuel Efficiency and Emissions 

The relationship between fuel efficiency, measured in miles per gallon (MPG) and 

vehicle emissions, particularly CO2 emissions, is crucial to consider when evaluating 

environmental impact. Our thorough analysis shows a consistent inverse correlation 

between fuel efficiency and CO2 emissions. Specifically, vehicles with higher fuel 

efficiency have been found to produce significantly lower CO2 emissions, aligning with 

the fundamental principle that improved fuel efficiency leads to reduced emissions per mile 

travelled. 

A clear and consistent trend emerged after statistical analysis, demonstrating that 

vehicles with higher MPG values were associated with notably lower CO2 emissions. This 

pattern was observed across various vehicle types and sizes, indicating that enhancing fuel 

efficiency represents a universal approach to mitigating emissions. 

In terms of policy implications, measures aimed at stimulating the development and 

adoption of fuel-efficient vehicles can play a pivotal role in curbing overall emissions. 

Consequently, viable policies could include providing tax incentives for fuel-efficient 

vehicles, implementing stricter fuel economy standards, and offering support for research 

into innovative fuel-efficient technologies. By undertaking such concrete and targeted 

policy actions, we can significantly contribute to reducing the environmental impact of the 

transportation sector. 

● Fuel Type and Emissions 

The type of fuel used by a vehicle has a significant impact on its emissions. Our 

analysis examined various fuel types, including gasoline, diesel, electric, and Hybrid. 

Gasoline and Diesel: Gasoline and diesel vehicles showed higher CO2 emissions 

than electric and hybrid vehicles. Diesel engines, often more fuel-efficient than gasoline 

engines, emit more CO2. This finding underscores the environmental impact of 

conventional internal combustion engines (ICE). 

Electric and Hybrid: Electric and hybrid vehicles exhibited significantly lower CO2 

emissions. Electric vehicles (EVs) produce zero tailpipe emissions, while hybrid vehicles, 

which combine a conventional engine with an electric motor, also showed reduced 

emissions compared to their gasoline and diesel counterparts. The lower emissions from 

EVs and hybrids highlight the environmental benefits of transitioning to these 

technologies. 

Policy Implications: Promoting the adoption of electric and hybrid vehicles can be 

a crucial strategy for reducing transportation emissions. Policies could include subsidies 

for purchasing EVs and hybrids, investment in charging infrastructure, and incentives for 

manufacturers to produce more electric and hybrid models. 

● Vehicle Emissions by Fuel Type 
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Analyzing vehicle emissions by fuel type provided detailed insights into how 

different fuels contribute to overall emissions. 

Gasoline Vehicles: Gasoline vehicles, being the most common, showed a wide 

range of emissions, with older and larger gasoline vehicles typically emitting more CO2. 

Despite advances in gasoline engine technology, the inherent limitations of combustion 

engines mean that gasoline vehicles will continue to contribute to emissions significantly. 

Diesel Vehicles: Diesel vehicles, though more fuel-efficient, had higher emissions 

due to the nature of diesel fuel combustion. This result highlights the trade-off between 

fuel efficiency and emissions in diesel vehicles and suggests that while diesel engines are 

efficient, their environmental impact remains a concern. 

Electric Vehicles: EVs showed the lowest emissions, underscoring their potential 

as a sustainable transportation solution. The zero tailpipe emissions of EVs make them an 

attractive option for reducing urban air pollution and greenhouse gas emissions. 

Hybrid Vehicles: Hybrids, which utilize both a combustion engine and an electric 

motor, also demonstrated lower emissions than conventional gasoline and diesel vehicles. 

The dual power sources of hybrids allow for greater efficiency and lower emissions, 

particularly in urban driving conditions where the electric motor can be used more 

frequently. 

● Comparative Analysis 

Comparing the emissions across different fuel types and fuel efficiency levels 

provided several important insights: 

Efficiency vs. Emissions: The comparison confirmed that higher fuel efficiency is 

consistently associated with lower emissions, regardless of fuel type. This relationship 

emphasizes the importance of improving fuel efficiency across all vehicle categories. 

Electric and Hybrid Advantages: Electric and hybrid vehicles consistently 

outperformed gasoline and diesel vehicles regarding emissions. This finding supports the 

argument for increased investment in and promotion of these technologies. 

Diesel vs. Gasoline: While diesel vehicles are more fuel-efficient, their higher 

emissions compared to gasoline vehicles suggest that efficiency alone is not sufficient to 

address environmental impact. This trade-off highlights the need for comprehensive 

strategies considering fuel efficiency and emissions. 

● Implications for Policy and Practice 

The findings from this analysis have several implications for policy and practice: 

Incentivizing Fuel Efficiency: Policies that promote fuel-efficient vehicles, such as 

tax breaks, subsidies, and stricter fuel economy standards, can significantly reduce 

emissions. These policies should target all vehicle types to maximize their impact. 

Promoting Electric and Hybrid Vehicles: Supporting the transition to electric and 

hybrid vehicles through subsidies, infrastructure investment, and public awareness 

campaigns can drive down emissions and promote sustainable transportation. 
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Balancing Efficiency and Emissions: While fuel efficiency is crucial, policies must 

also address the emissions trade-offs of different fuel types. This could involve stricter 

emissions standards and incentives for cleaner diesel technologies for diesel vehicles. 

Consumer Education: Educating consumers about the environmental impact of 

different vehicle types and the benefits of fuel-efficient, electric, and hybrid vehicles can 

influence purchasing decisions and promote more sustainable transportation choices. 

The exploratory data analysis of the relationships among fuel efficiency, fuel type, 

and vehicle emissions provides a comprehensive understanding of how these factors 

interact and contribute to environmental impact. The findings highlight the importance of 

promoting fuel-efficient, electric, and hybrid vehicles to reduce emissions. By leveraging 

these insights, policymakers can develop targeted interventions that effectively address the 

environmental challenges the transportation sector poses, supporting Canada's 

commitment to reducing greenhouse gas emissions and promoting sustainable 

development.  

 

5.4 Discussion of Effectiveness of Machine Learning Algorithms in Vehicle 

Classification 

 

The third objective of this study was to develop and assess the effectiveness of 

machine learning algorithms in classifying vehicles based on their environmental impact. 

The primary goal was to construct a model that uses vehicle specifications and fuel 

consumption data to predict environmental impact categories (e.g., low, medium, and high 

impact based on CO2 emissions and fuel efficiency). This discussion will delve into the 

selection and performance of various machine learning algorithms, the challenges 

encountered, and the implications for policy and practice. 

● Selection of Machine Learning Algorithms 

Several machine learning algorithms were evaluated for their effectiveness in 

classifying vehicles by environmental impact: 

Decision Trees: They are intuitive and easy to interpret, making them a popular 

choice for initial modelling. They work by recursively splitting the data based on feature 

values, creating a tree-like model of decisions. 

Random Forests: Random Forests build on Decision Trees by creating an ensemble 

of trees, each trained on a random subset of the data. This approach improves accuracy and 

robustness by averaging the results of multiple trees, reducing the risk of overfitting. 

Gradient Boosting Machines (GBM): GBM is an ensemble technique that builds 

models sequentially, with each new model correcting errors made by the previous ones. 

This method often yields high accuracy but can be computationally intensive. 

Support Vector Machines (SVM): SVMs are practical for high-dimensional spaces 

and work well when there is a clear separation between classes. However, they can be less 

interpretable compared to tree-based models. 
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K-Nearest Neighbors (KNN): KNN is a simple, instance-based learning algorithm 

that classifies data points based on the majority class among the k-nearest neighbours. 

While easy to implement, it can be computationally expensive and less effective for large 

datasets. 

● Model Development and Evaluation 

The dataset was split into training and testing sets to evaluate the performance of 

each algorithm. Critical steps in the model development process included: 

Data Preprocessing: 

Handling Missing Data: Imputation techniques were applied to fill in missing 

values for crucial variables such as CO2 emissions. 

Feature Engineering: New features were derived, such as vehicle age and 

improvements in emissions over model years, to enhance model performance. 

Feature Selection: Techniques like Recursive Feature Elimination (RFE) and 

feature importance scores from preliminary models were used to identify the most 

predictive features. This step ensured that only the most relevant variables were included 

in the final models. 

Model Training and Validation: Each algorithm was trained on the training set and 

validated using k-fold cross-validation to ensure consistent performance across different 

subsets of the data. This approach helped mitigate overfitting and provided a robust 

estimate of model performance. 

● Performance Comparison 

The performance of each algorithm was assessed based on accuracy, precision, 

recall, and F1-score. The results are summarized as follows: 

Decision Trees: Decision Trees provided a baseline model with moderate accuracy. 

While easy to interpret, they were prone to overfitting, especially with high-dimensional 

data. 

Random Forests: Random forests significantly improve accuracy and robustness 

compared to decision trees. The ensemble approach helped reduce overfitting and provided 

a more stable model. 

Gradient Boosting Machines: GBM emerged as the most effective model, with the 

highest accuracy and F1 score. The sequential learning process allowed the model to 

correct errors iteratively, resulting in superior performance. However, careful tuning of 

hyperparameters is required to avoid overfitting and ensure generalizability. 

Support Vector Machines: SVMs showed good performance, especially with a 

clear margin of separation between classes. However, the models needed to be more 

interpretable and more challenging to tune than tree-based methods. 

K-Nearest Neighbors: KNN had the lowest performance among the tested 

algorithms. It was computationally expensive and less effective for the high-dimensional 

data, leading to lower accuracy and F1 scores. 

● Implications of Findings 
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The findings from the machine learning models have several important 

implications: 

Policy Development: The GBM model's high accuracy suggests that it can 

effectively classify vehicles based on their environmental impact. Policymakers can 

leverage this model to identify high-impact vehicles and design targeted regulations and 

incentives to promote lower-emission alternatives. 

Resource Allocation: The model's ability to accurately classify vehicles enables 

more effective resource allocation. For example, subsidies and incentives can be directed 

towards vehicle types and technologies demonstrating the most significant potential for 

reducing emissions. 

Consumer Awareness: The classification model can inform public awareness 

campaigns, helping consumers understand the environmental impact of different vehicle 

types. This knowledge can drive market demand towards more sustainable options. 

Industry Applications: Automotive manufacturers can use the model to design and 

market vehicles that meet regulatory standards and consumer preferences for low-emission 

vehicles. Additionally, the model can guide research and development efforts towards more 

efficient and sustainable technologies. 

● Challenges and Limitations 

Several challenges and limitations were encountered during the study: 

Data Quality: The accuracy of the models depends heavily on the quality and 

completeness of the data. Missing or inaccurate data can significantly impact model 

performance. 

Model Interpretability: While GBM provided the best performance, its complexity 

made it less interpretable than simpler models like Decision Trees. Ensuring transparency 

in model decisions is crucial for gaining stakeholder trust. 

Computational Complexity: Advanced models like GBM and SVM require 

significant computational resources for training and tuning, which may limit their 

practicality for some applications. 

Generalizability: It is critical to ensure that the models generalize well to new data. 

While k-fold cross-validation helps, further validation with independent datasets is 

necessary to confirm model robustness. 

The study demonstrated that machine learning algorithms, particularly Gradient 

Boosting Machines, are highly effective in classifying vehicles based on their 

environmental impact. The insights gained from this analysis can significantly inform and 

enhance transportation policies, supporting the transition to more sustainable transportation 

options. By leveraging data-driven approaches, policymakers, industry stakeholders, and 

consumers can collaborate to reduce vehicle emissions and promote environmental 

sustainability. 

 

5.5 Summary of Findings 
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In our research on using machine learning to categorize the environmental impact 

of vehicles, we tackled three main goals. Each objective aims to contribute to a thorough 

comprehension of how data-driven approaches can enrich and inform sustainable 

transportation policies. This thorough understanding should instil confidence in our 

audience regarding the strength of our research. 

Initially, we pinpointed the crucial factors that affect vehicle emissions. Through 

extensive exploratory data analysis, we determined that CO2 emissions, fuel efficiency, 

engine size, fuel type, vehicle weight, and age are substantial environmental impact 

indicators. Our correlation analysis unveiled strong associations among these factors, 

including the inverse relationship between fuel efficiency and CO2 emissions and the 

higher emissions linked with more extensive, older vehicles. These findings guide targeted 

policy measures, highlighting the need to promote fuel-efficient, smaller, and newer 

vehicles. 

Next, we delved into the connections among fuel efficiency, fuel type, and vehicle 

emissions. Our results confirmed that fuel-efficient vehicles consistently release fewer 

pollutants and that electric and hybrid vehicles outperform gasoline and diesel vehicles 

significantly in terms of emissions. The analysis underscored the trade-offs associated with 

different fuel types, with diesel engines emitting more CO2 than gasoline engines despite 

their efficiency. These outcomes emphasize the environmental advantages of transitioning 

to electric and hybrid technologies, providing insights for policies supporting this shift 

through incentives and infrastructure development. 

Finally, we assessed the effectiveness of various machine learning algorithms in 

categorizing vehicles based on their environmental impact. Among the models tested, 

Gradient Boosting Machines (GBM) stood out for their high accuracy and robustness, 

surpassing Decision Trees, Random Forests, Support Vector Machines, and K-nearest 

neighbours. The GBM model's ability to precisely categorize vehicles offers a valuable 

tool for policymakers to pinpoint high-impact vehicles and create specific regulations. 

Despite hurdles such as data quality and model interpretability, the success of the GBM 

model illustrates the potential of machine learning in driving data-informed policy 

decisions and promoting sustainable transportation. 

Overall, our study underscores the potency of machine learning in comprehending 

and mitigating vehicles' environmental impact. By identifying key variables, exploring 

their relationships, and developing effective classification models, we offer actionable 

insights to empower and inform policymakers, industry stakeholders, and consumers 

toward a more sustainable future. 
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CHAPTER VI:  

SUMMARY, IMPLICATIONS, AND RECOMMENDATIONS 

6.1 Summary 

 

The main focus of this dissertation is developing a machine learning-based system 

designed to classify the environmental impact of vehicles in Canada. The primary objective 

is to address vehicle emissions, which constitute a significant source of global greenhouse 

gas emissions and air pollutants. The study seeks to gain a deeper understanding of these 

emissions through machine learning and contribute to formulating sustainable 

transportation policies. 

The research commences by examining the limitations of conventional methods for 

classifying vehicles based on their environmental impact. It emphasizes the potential of 

machine learning to overcome these limitations by offering a more thorough and precise 

analysis. The literature review explores current research on vehicle emissions, the influence 

of various vehicle specifications on emissions, and the existing regulatory frameworks. 

The methodology outlines the detailed steps in developing the machine learning 

system. Comprehensive datasets of vehicle specifications and fuel consumption metrics 

were initially collected and meticulously cleaned. This was followed by an extensive 

exploratory data analysis (EDA) to comprehend the distributions and relationships within 

the data. Multiple machine learning models, such as Decision Trees, Random Forests, 

Gradient Boosting Machines (GBM), Support Vector Machines (SVM), and K-nearest 

neighbours (KNN), were constructed and rigorously evaluated. To ensure their accuracy 

and dependability, the models underwent k-fold cross-validation. 

The results show the findings from the data analysis and model evaluation. Key 

points include: 
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Correlation Analysis: There is a solid inverse relationship between fuel efficiency 

and CO2 emissions. Larger engines, older vehicles, and specific fuel types like diesel are 

linked to higher emissions. 

Model Performance: The GBM model performed the best in classifying vehicles 

based on their environmental impact, followed by Decision Trees and Random Forests. 

SVM and KNN could have been more effective. 

Feature Importance: Fuel consumption ratings were the most essential features in 

predicting CO2 emissions, with fuel type, engine size, and the number of cylinders also 

being significant. 

The discussion interprets the results in the context of existing literature and policy 

implications. Key insights include: 

Policy Development: The findings support regulations that promote fuel-efficient, 

electric, and hybrid vehicles. The machine learning model can help identify high-impact 

vehicles and inform specific policy measures. 

Resource Allocation: The insights can guide investments in research and 

development for more efficient vehicle technologies and infrastructure for electric vehicles. 

Consumer Awareness: Public campaigns can use this information to educate 

consumers on choosing more environmentally friendly vehicles. 

Challenges and Limitations: The study acknowledges issues like data quality, 

model interpretability, and the need for further validation with other datasets. 

My dissertation showcases the transformative potential of machine learning in 

classifying vehicles according to their environmental impact. By leveraging machine 

learning techniques, we can effectively contribute to developing sustainable transportation 

policies to curb greenhouse gas emissions and promote public health. This research 

underscores the critical role of data-driven approaches in addressing environmental issues 

and their potential to bring about meaningful change. 

 

6.2 Implications 

 

The research carried out in this thesis has many vital implications in different areas, 

such as developing policies and practices in the industry, raising public awareness, and 

guiding future research. Here are the critical implications: 

● Policy Development: 

Targeted Regulations: The study offers a strong foundation for categorizing 

vehicles according to their environmental footprint. This allows policymakers to create 

more precise and impactful regulations. By identifying high-impact vehicles, regulations 

can be tailored to encourage fuel-efficient, electric, and hybrid vehicles. 

Incentives and Subsidies: The research findings strongly support the establishment 

of monetary incentives and subsidies to promote the use of fuel-efficient and low-emission 

vehicles. By conducting a thorough analysis of the critical factors that have the most 

substantial impact on emissions, policymakers will be able to devise targeted financial 
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incentives that effectively encourage consumers and manufacturers to prioritize adopting 

and developing cleaner, more environmentally friendly technologies in the automotive 

industry. 

Emission Standards: The machine learning models created as part of this research 

have the potential to enhance the setting of emission standards significantly. These models 

can continuously analyze real-time data, allowing for the dynamic and precise adjustment 

of emission standards. This approach ensures that standards can adapt and remain relevant 

in response to the evolution of vehicle technologies and changing environmental 

conditions. 

● Industry Practices: 

Vehicle Design and Manufacturing: The findings from this research can provide 

valuable guidance for automotive manufacturers in creating vehicles that align with 

increasingly stringent environmental regulations. Prioritizing aspects such as enhancing 

fuel efficiency, downsizing engines, and integrating cutting-edge technologies such as 

electric and hybrid powertrains can be instrumental in minimizing emissions and advancing 

sustainability efforts within the automotive industry. 

Research and Development: The research emphasizes the significance of allocating 

resources to research and development to create more effective engines, lighter materials, 

and alternative fuels, which can stimulate creativity in the automobile sector and result in 

more environmentally friendly transportation options. 

● Public Awareness and Consumer Behavior: 

Consumer Education: The discoveries may be used to shape public awareness 

initiatives to educate consumers about the environmental consequences of their vehicle 

selections. Emphasizing the advantages of fuel-efficient, electric, and hybrid vehicles can 

sway purchasing choices and encourage more environmentally conscious consumer 

behaviour. 

Market Demand: As public awareness of the positive environmental impact of 

cleaner vehicles continues to grow, there is a strong likelihood of an increase in market 

demand for these vehicles. This heightened demand is anticipated to stimulate further 

innovation and foster healthy competition within the automotive industry, driving the 

development of sustainable solutions. 

● Resource Allocation: 

Efficient Use of Resources: By conducting a comprehensive analysis to pinpoint 

the most significant factors affecting vehicle emissions, we can strategically allocate 

resources to achieve maximum impact. This approach enables us to prioritize investments 

in up-and-coming technologies and critical infrastructure, including developing electric 

vehicle charging stations and enhancing public transportation systems. 

Research Priorities: The research offers a comprehensive analysis to support the 

ranking of research initiatives. These include enhancing fuel efficiency, creating eco-

friendly engine technologies, and investigating alternative fuels. These priorities are 

determined based on their potential to decrease emissions significantly. 
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Expanding Data Sources: To further advance the findings of this study, future 

research could consider integrating a wider range of diverse and comprehensive datasets. 

By incorporating real-time emissions data and detailed vehicle usage patterns, researchers 

can improve the precision and relevance of the models, leading to a deeper understanding 

of the subject matter. 

Advanced Techniques: Incorporating advanced machine learning methodologies, 

like deep learning, can enhance the accuracy of classification models and their predictive 

capabilities. These techniques can effectively capture intricate relationships within 

extensive datasets, offering more comprehensive insights into vehicle emissions. 

Model Validation: Further validation of the models with independent datasets from 

different regions and contexts can ensure their robustness and generalizability. This can 

help adapt the findings to various geographic and regulatory environments. 

Interdisciplinary Approaches: Integrating insights from environmental science, 

economics, and behavioural studies can provide a more holistic understanding of vehicle 

emissions and their impact. Interdisciplinary research can lead to more comprehensive 

solutions to environmental challenges. 

This research emphasizes the significant impact of machine learning in effectively 

addressing environmental issues associated with vehicle emissions. Through data-driven 

methodologies, this study demonstrates the potential of machine learning in not only 

comprehending but also mitigating the environmental footprint of vehicles. By doing so, it 

advocates for formulating more dynamic and impactful policies, promotes adopting 

sustainable practices within the industry, and aims to cultivate a more informed consumer 

base. The cumulative effect of these implications serves to propel environmental 

sustainability within the transportation sector, contributing to meaningful progress in this 

critical area. 

 

6.3 Recommendations for Future Research 

 

The research outlined in this dissertation lays a solid groundwork for 

comprehending and addressing the environmental impact of vehicles using machine 

learning. However, several areas deserve additional exploration to enrich and build upon 

the study's findings further. Here are some suggestions for future research: 

1. Expanding Geographic and Temporal Scope: Including data from diverse 

geographic regions and more extended periods would bolster the applicability of the 

findings. Collaborating with international datasets and conducting longitudinal studies 

could reveal how vehicle emissions and environmental impacts change over time. 

2. Unveiling the Potential of Advanced Machine Learning Techniques: The future 

of research in this field is ripe with possibilities. Delving into advanced machine learning 

methods such as deep learning, reinforcement learning, and ensemble methods could 

unlock new insights. These techniques, with their ability to handle more intricate 
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relationships and larger datasets, could potentially revolutionize the accuracy and resilience 

of the classification models. 

3. Enhancing Model Interpretability: While advanced models like Gradient 

Boosting Machines (GBM) offer high accuracy, they may need to be more interpretable 

than simpler models. Future research should concentrate on developing techniques to 

improve the interpretability of complex models. This may involve using explainable AI 

(XAI) methods to provide more precise insights into how models make predictions. 

4. Examining Alternative Fuels and Technologies: Research should continue to 

explore the potential of alternative fuels (such as hydrogen, biofuels, and synthetic fuels) 

and emerging technologies (such as autonomous vehicles and smart grids) in reducing 

emissions. Comparative studies evaluating the environmental impact of these alternatives 

against conventional fuels and technologies would be valuable. 

5. Policy Impact Assessment: Future research should assess the real-world impact 

of policies and regulations that reduce vehicle emissions. This could involve conducting 

case studies in regions with specific policies and evaluating their effectiveness in achieving 

environmental objectives. 

6. Unveiling the Key to Promoting Sustainable Transportation: Understanding 

consumer behaviour and market dynamics is not just important, it's vital. Future studies 

should investigate the factors influencing consumer choices, the effectiveness of 

incentives, and the barriers to adopting cleaner technologies. Surveys, experiments, and 

behavioral modeling could provide crucial insights into these aspects. 

7. Meeting the Need for Scalable Solutions: The future of research should be about 

more than just understanding the problem. It should be about solving it. Emphasizing the 

creation of scalable solutions that can be implemented at a broader level is crucial. This 

could include developing standardized frameworks and tools that policymakers and 

industry stakeholders can use to assess and mitigate vehicle emissions. 

Addressing these recommendations in future research can extend the groundwork 

laid by this dissertation, aiding in a more profound understanding of vehicle emissions and 

formulating more effective strategies for promoting sustainable transportation. 

  

6.4 Conclusion 

The findings of this thesis consolidated a comprehensive study that focused on 

understanding and alleviating the impact of vehicles on the environment in Canada through 

machine learning techniques. Critical variables influencing vehicle emissions, such as CO2 

emissions, fuel efficiency, engine size, fuel type, vehicle weight, and age, were identified 

at the beginning of the research. Strong correlations between these variables were 

established through extensive exploratory data analysis, emphasizing the inverse 

relationship between fuel efficiency and CO2 emissions and the higher emissions 

associated with more extensive and older vehicles. These findings underscore the necessity 

for targeted policies promoting the adoption of fuel-efficient, smaller, and newer vehicles 

to reduce emissions. 
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The study delved into the relationships among fuel efficiency, fuel type, and vehicle 

emissions, affirming that fuel-efficient vehicles consistently produce lower emissions and 

that electric and hybrid vehicles significantly outperform gasoline and diesel vehicles 

regarding environmental impact. This analysis underscored the environmental benefits of 

transitioning to electric and hybrid technologies and supported policy recommendations 

promoting this transition through incentives and infrastructure development. 

 

The crux of this research centred on developing and evaluating machine learning 

models to categorize vehicles based on their environmental impact. Various algorithms, 

including Decision Trees, Random Forests, Gradient Boosting Machines (GBM), Support 

Vector Machines (SVM), and K-nearest neighbours (KNN), were evaluated for their 

effectiveness. Among these, GBM demonstrated the highest accuracy and robustness, 

establishing it as a valuable tool for policymakers to identify high-impact vehicles and 

develop targeted regulations. Despite challenges such as data quality and model 

interpretability, the success of the GBM model illustrates the potential of machine learning 

in informing data-driven policy decisions and promoting sustainable transportation. 

 

In summary, this thesis underscores the power of machine learning in 

understanding and mitigating the environmental impact of vehicles. The research offers 

practical insights that can significantly inform and enhance transportation policies by 

identifying key variables, exploring their interrelationships, and developing effective 

classification models. These insights align with the Canadian government's efforts to 

reduce greenhouse gas emissions and promote sustainable development. It is important to 

emphasize that this research results from collaborative efforts, and future progress will 

depend on continued interdisciplinary collaboration and innovation. We can work towards 

a more sustainable transportation system and a healthier environment. 
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